第15章 时序逻辑电路的分析与设计
时序分析教程范文
时序分析教程范文时序分析(Timing Analysis)是指对数字电路或系统进行时间性能评估和验证的过程。
它主要关注信号在电路中的传播延迟、时钟频率、时序关系等参数,帮助设计者确保电路或系统工作在正确的时序要求下。
时序分析在数字电路的设计和验证中具有重要的作用,特别是对于高速电路和复杂系统来说更为关键。
下面是一些常用的时序分析技术和方法:1.时钟分析:时钟是数字电路中最重要的信号之一,时钟的频率和时钟偏斜对电路的性能有着直接影响。
时钟分析主要关注时钟的频率、时钟偏斜、时钟分配和时钟网络等方面。
通过时钟分析可以评估时钟网络的性能,优化时钟分配方案,减少时钟偏斜等。
2.时序约束:时序约束是指在设计过程中对电路或系统的时序要求进行规定和约束的过程。
时序约束涉及到输入信号和时钟之间的关系,以及输出信号在一些时钟边沿之后的稳态时间等要求。
正确的时序约束有助于设计者确保电路或系统可以在正确的时序要求下运行。
3.时序分析工具:时序分析工具可以帮助设计者对电路或系统进行时序分析和验证。
常用的时序分析工具包括静态时序分析工具和动态时序分析工具。
静态时序分析工具主要通过对电路的逻辑和时钟分析,检查时序约束是否满足。
动态时序分析工具则通过模拟电路行为,计算信号的传播延迟和时序关系。
4.时序优化:时序优化是指通过改变电路结构和布局,减少路径延迟、降低时钟偏斜等手段,提高电路的时序性能。
常用的时序优化技术包括逻辑编码、时钟优化、布局布线优化等。
时序优化需要结合时序分析工具进行验证,确保优化后的电路满足时序要求。
时序分析对数字电路的正确性和性能具有重要的影响,它能帮助设计者在设计和验证过程中找到潜在的问题和改进方案。
因此,时序分析是数字电路设计和验证中必不可少的一部分。
通过学习和掌握时序分析的基本原理和方法,可以提高数字电路设计的质量和效率。
异步时序逻辑电路的分析与设计
异步时序逻辑电路的分析与设计异步时序逻辑电路是一种基于信号的到达时间和时序性的电路设计方法。
与同步时序逻辑电路不同,异步时序逻辑电路中的数据传输和处理不依赖于时钟信号,而是根据输入信号的到达顺序和时序关系来进行操作。
本文将详细介绍异步时序逻辑电路的分析与设计。
异步时序逻辑电路的分析主要包括信号流图的建立和状态表的推导。
首先,通过对输入信号的时序关系进行分析和理解,可以根据具体应用需求建立信号流图。
信号流图是一种图形化表示方式,其中包含了电路中信号的流动方式以及各个元件的逻辑功能。
在建立信号流图时,需要注意信号的输入和输出时间以及逻辑功能的实现方式,这是实现异步时序逻辑电路的关键。
在信号流图的基础上,可以根据信号的到达先后顺序推导状态表。
状态表是对电路中每个元件当前状态和下一状态的描述。
通过观察信号流图,可以确定每个元件在不同状态下的输出值,并利用这些信息进行状态表的推导。
在状态表中,可以列出元件的当前状态和下一状态的取值,并根据逻辑功能的要求来确定元件的控制信号。
异步时序逻辑电路的设计主要涉及到逻辑电路元件的选择和电路的优化。
在异步时序逻辑电路中,常用的逻辑电路元件包括触发器、门电路和编码器等。
根据实际需求,可以选择不同类型的逻辑电路元件来实现电路的逻辑功能。
在设计时,需要注意减少电路的延迟和功耗,提高电路的性能和可靠性。
可以通过选择低延迟的元件、合理布局电路和优化信号传输路径等方式来减小电路的延迟。
另外,可以采用时序检测和冗余检测等方法来增加电路的可靠性。
除了分析和设计,测试和验证是异步时序逻辑电路设计中的重要环节。
可以利用仿真软件对电路进行测试和验证,以确保电路的正确性和性能。
通过仿真可以观察电路的输入输出关系,检测是否存在冲突或错误,并进行合理的调整和优化。
总结起来,异步时序逻辑电路的分析与设计涉及到信号流图的建立、状态表的推导、元件的选择和电路的优化等方面。
通过合理的分析和设计,可以实现复杂的时序逻辑功能,并提高电路的性能和可靠性。
时序逻辑电路设计与分析(完整电子教案)
图8.20具有异步控制端的同步触发器
【训练与提高】
制作一个时钟电路中的分钟校时电路。
工作原理:时钟电路中的分钟校时电路有按键控制,按键按一次(阐述有效信号,打开门电路),门电路输出将改变N次状态,其中N此变化(变化快门)由输入的时钟信号决定。同时该电路中具有秒钟输入信号。其参考电路如下图8.21所示。试搭建调试电路,分析其工作过程。
时序逻辑电路设计与分析(完整电子教案)
8.
触发器(flip flop)是构成时序逻辑电路的基本单元,能记忆、存储一位二进制信息,触发器也称双稳态触发器,它有两种稳定输出工作状态,即分别输出1和输出0的状态。在无输入信号作用时,这种状态是稳定的;而当输入信号到来并满足一定逻辑关系时,输出端的状态将迅速变化,能从一种稳定状态转换到另一种稳定状态。
三、RS触发器在机械开关去抖上的应用
通常按键开关为机械弹性开关,当机械触点断开、闭合时,电压信号小型如图8.6。由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。因而在闭合及断开的瞬间均伴随有一连串的抖动,如下图。抖动时间的长短由按键的机械特性决定,一般为5ms~10ms。这是一个很重要的时间参数,在很多场合都要用到。
【训练与提高】
搭建2组按键去抖动电路,并用示波器观察输出结果。
8.
【项目任务】
测试如下电路,改变A、B状态,观察LED1和LED2的变化,并建立真值表。
图8.8测试电路(multisim)
【信息单】
基本RS触发器属于无时钟触发器,触发器状态的变换由 、 端输入信号直接控制。在实际工作中,触发器的工作状态不仅由输入决定,而且还要求触发器按一定的节拍翻转,为此需要加入一个时钟控制端CP,只有在CP端上出现时钟脉冲时,触发器的状态才能变化。带有时钟信号的触发器叫时钟触发器,又称同步触发器。
异步时序逻辑电路的分析与设计
异步时序逻辑电路的分析与设计异步时序逻辑电路是指电路中的各个逻辑门的输出不仅仅取决于当前的输入,还取决于先前的输入和输出状态。
与同步时序逻辑电路相比,异步时序逻辑电路具有更高的灵活性和可扩展性。
在本文中,将详细介绍异步时序逻辑电路的分析与设计方法。
首先,异步时序逻辑电路的分析是指通过对电路中各个逻辑门的输入和输出状态进行推导和分析,以获取电路所实现的具体功能和工作原理。
异步时序逻辑电路通常采用状态图或状态转换表来描述其运行过程。
状态图是一个有向图,其中每个节点表示一个状态,而边表示状态之间的转换。
状态转换表则是一种矩阵形式的表示方法,其中行表示当前状态,列表示输入,表格中的元素表示输出和下一个状态的关系。
在进行异步时序逻辑电路的设计之前,通常需要明确电路所要实现的功能和要求。
在设计过程中,需要通过一系列的步骤来完成。
第一步是确定输入和输出信号的数量和类型。
输入信号是电路用来接收外部输入的信号,而输出信号是电路的输出结果。
在这一步骤中,需要明确输入和输出信号所能取的值范围以及其对应的功能。
第二步是确定状态的数量和类型。
在异步时序逻辑电路中,状态是指电路在不同时间点的输出和输入的组合。
状态的数量和类型决定了电路的复杂程度和所能实现的功能。
第三步是绘制状态图或状态转换表。
通过绘制状态图或状态转换表,可以清晰地描述电路的工作原理和功能。
其中,状态图可以直观地表示状态之间的转换关系,而状态转换表则更加直观地表示输入输出和状态的关系。
第四步是推导逻辑表达式。
通过推导逻辑表达式,可以将电路的功能转化为逻辑门的连接方式。
在这一步骤中,可以通过布尔代数和卡诺图等方法来简化逻辑表达式,以减少电路的复杂性和成本。
第五步是选取逻辑门类型。
逻辑门是构成异步时序逻辑电路的基本元件,它决定了电路的工作速度和功耗。
在选择逻辑门类型时,需要考虑到电路的功能和性能要求,以及逻辑门的延迟时间和功耗等特性。
第六步是进行逻辑门的连接和布线。
本科专业认证《数字电路与逻辑设计A》课程教学大纲
《数字电路与逻辑设计A》课程教学大纲(Digital Circuits and Digital DesignA)编写单位:计算机与通信工程学院计算机科学与技术系编写时间:2021年7月《数字电路与逻辑设计A》课程教学大纲一、基本信息课程名称:数字电路与逻辑设计A英文名称:Digital Circuits and Digital Design A课程类别:专业教育课程课程性质:必修课课程编码:0809000146学分:4总学时:64 其中,讲授64学时,实验0学时,上机0学时,实训0学时适用专业:计算机科学与技术先修课程与知识储备:高等数学、大学物理后继课程:计算机组成原理、嵌入式系统二、课程简介《数字电路与逻辑设计A》是计算机科学与技术专业学生的一门必修专业基础课程,是该专业学生学习有关“电”的重要工程基础类课程。
本课程首先学习电路的基本规律、定理以及电路的分析方法。
然后学习模拟电子电路的基本原理及分析设计方法,包括半导体器件、放大电路、集成运算放大器等相关知识。
最后学习数字逻辑电路的基本原理、基本分析方法和基本设计方法,掌握数字集成电路的使用,了解可编程逻辑器件原理和数字电路EDA设计概念,为后续专业课程的学习打下基础。
三、教学目标1、课程思政教学目标:集成电路产业的重要性、国内外差距现状、国内优势领域、创新意识培养、家国情怀和责任意识、严肃认真的科学作风。
2、课程教学总目标:通过本课程的教学,使学生掌握电路的基本理论知识和基本分析方法,以及模拟电路和数字电路的相关理论、分析和设计方法,培养学生的科学思维能力和理论联系实际解决问题的能力。
3、课程目标与学生能力和素质培养的关系:课程思政目标有利于培养学生的爱国意识、专业素养和良好的工作作风;课程教学目标有利于培养学生对计算机科学与技术中涉及到的模拟电路和数字电路问题进行分析和设计的能力。
4、毕业要求—课程目标关系(OBE结果导向)表1 毕业要求-课程目标关系表注:表中“H(高)、M(中)、L(弱)”表示课程与各项毕业要求的关联度。
计算机时序逻辑电路
描述时序电路逻辑功能的函数一般有两个:
输出函数: Yi f i X 1 ,, X p , Q1 ,, Qt 激励函数: Wj f j X1 ,, X p , Q1 ,, Qt
i 1,, m j 1, , r
可见,时序电路的输出不仅与电路的输入有关,而且与电 路的状态有关。
T1 X Q0n T0 1
Q1n1 X Q0n Q1n ③ 状态方程: n1 n Q0 Q0
(3)画出状态转换真值表 将三个触发器现态的各种取值组合,代入状态方程、输出 方程,求出相应的次态和输出,可得该电路的状态转换真值表, 如表7-3所示。
表7-3
● 教学要求:掌握时序逻辑电路的结构、分类以及描述工具;
熟练掌握同步时序逻辑电路的表格分析法;了解同步时序逻辑 电路设计的一般步骤;理解计数器、寄存器的原理与应用。
返回本章首页
7.1 时序逻辑电路概述
● 7.1.1 时序逻辑电路的结构与分类 1. 时序逻辑电路结构
时序逻辑电路(简称时序电路)的结构框图如图7.1所示。时序电 路一般由组合逻辑电路、存储电路和反馈回路三部分组成。
4. 选择触发器的类型,求出状态方程、驱动方程、输出方程
根据最简状态转换图(表)可求出状态方程、输出方程,然后将 状态方程与触发器的特性方程进行比较,可得到驱动方程。由于JK 触发器功能较全、使用较灵活,因此在设计中多选用JK触发器。
5. 画出逻辑电路图,并检查有无自启动能力
根据驱动方程和输出方程画出逻辑电路图。如设计的电路存在无 效状态时,应检查电路进入无效状态后,能否在时钟脉冲作用下自动 返回到有效状态工作。如能回到有效状态,则电路具有自启动能力; 如不能,则需修改设计,使电路具有自启动能力。
数字电子技术 时序逻辑电路的分析与设计 国家精品课程课件
《数字电子技术》精品课程——第6章
FF0
FF1
1J
Q0 1J
Q1
时序逻辑电路的分析与设计
&Z
FF2
1J
Q2
C1
C1
C1
1K
1K
1K
Q0
Q1
Q2
CP
➢驱动方程:
《数字电子技术》精品课程——第6章 时序逻辑电路的分析与设计
② 求状态方程
JK触发器的特性方程:
Qn1 JQ n KQn
将各触发器的驱动方程代入,即得电路的状态方程:
简化状态图(表)中各个状态。 (4)选择触发器的类型。
(5)根据编码状态表以及所采用的触发器的逻辑功能,导出待设计 电路的输出方程和驱动方程。
(6)根据输出方程和驱动方程画出逻辑图。
返回 (7)检查电路能否自启动。
《数字电子技术》精品课程——第6章 时序逻辑电路的分析与设计
2.同步计数器的设计举例
驱动方程: T1 = X T2 = XQ1n
输出方程: Z= XQ2nQ1n
(米利型)
2.写状态方程
T触发器的特性 方程为:
Qn1 TQn TQn
Q 1nQ1QX21nn TX1QQ1n1nXTQX11nQ1n X Q1n
Q1n
Qn1 2
T2 Q2n
T2Qn2
T Q n 将T1、 T2代入则得X到Q两1n Q2n XQ1nQn2
0T1 = X0 0 0 0 0 0
0
求T1、T2、Z
0T2
0
=ZX=01QX1nQ10 2nQ010n
0 0
0 1
1 0
0 0
由状态方程
求Q2n+1 、 Q1n+1
《数字电子技术》详细目录
《数字电子技术》目录第1章数制与编码1.1 数字电路基础知识1.1.1 模拟信号与数字信号1.1.2 数字电路的特点1.2 数制1.2.1 十进制数1.2.2 二进制数1.2.3 八进制数1.2.4 十六进制数1.3 数制转换1.3.1 二进制数与八进制数的相互转换1.3.2 二进制数与十六进制数的相互转换1.3.3 十进制数与任意进制数的相互转换1.4 二进制编码1.4.1 加权二进制码1.4.2 不加权的二进制码1.4.3 字母数字码1.4.4 补码1.5带符号二进制数的加减运算1.5.1 加法运算1.5.2 减法运算第2章逻辑门2.1 基本逻辑门2.1.1 与门2.1.2 或门2.1.3 非门2.2 复合逻辑门2.2.1 与非门2.2.2 或非门2.2.3 异或门2.2.4 同或门2.3 其它逻辑门2.3.1 集电极开路逻辑门2.3.2 集电极开路逻辑门的应用2.3.3 三态逻辑门2.4 集成电路逻辑门2.4.1 概述2.4.2 TTL集成电路逻辑门2.4.3 CMOS集成电路逻辑门2.4.4 集成逻辑门的性能参数2.4.5 TTL与CMOS集成电路的接口*第3章逻辑代数基础3.1 概述3.1.1 逻辑函数的基本概念3.1.2 逻辑函数的表示方法3.2 逻辑代数的运算规则3.2.1 逻辑代数的基本定律3.2.2 逻辑代数的基本公式3.2.3 摩根定理3.2.4 逻辑代数的规则3.3 逻辑函数的代数化简法3.3.1 并项化简法3.3.2 吸收化简法3.3.3 配项化简法3.3.4 消去冗余项法3.4 逻辑函数的标准形式3.4.1 最小项与最大项3.4.2 标准与或表达式3.4.3 标准或与表达式3.4.4 两种标准形式的相互转换3.4.5 逻辑函数表达式与真值表的相互转换3.5 逻辑函数的卡诺图化简法3.5.1 卡诺图3.5.2 与或表达式的卡诺图表示3.5.3 与或表达式的卡诺图化简3.5.4 或与表达式的卡诺图化简3.5.5 含无关项逻辑函数的卡诺图化简3.5.6 多输出逻辑函数的化简*第4章组合逻辑电路4.1 组合逻辑电路的分析4.1.1 组合逻辑电路的定义4.1.2 组合逻辑电路的分析步骤4.1.3 组合逻辑电路的分析举例4.2 组合逻辑电路的设计4.2.1 组合逻辑电路的一般设计步骤4.2.2 组合逻辑电路的设计举例4.3 编码器4.3.1 编码器的概念4.3.2 二进制编码器4.3.3 二-十进制编码器4.3.4 编码器应用举例4.4 译码器4.4.1 译码器的概念4.4.2 二进制译码器4.4.3 二-十进制译码器4.4.4 用译码器实现逻辑函数4.4.5 显示译码器4.4.6 译码器应用举例4.5 数据选择器与数据分配器4.5.1 数据选择器4.5.2 用数据选择器实现逻辑函数4.5.3 数据分配器4.5.4 数据选择器应用举例4.6 加法器4.6.1 半加器4.6.2 全加器4.6.3 多位加法器4.6.4 加法器应用举例4.6.5 加法器构成减法运算电路*4.7 比较器4.7.1 1位数值比较器4.7.2 集成数值比较器4.7.3 集成数值比较器应用举例4.8 码组转换电路4.8.1 BCD码之间的相互转换4.8.2 BCD码与二进制码之间的相互转换4.8.3 格雷码与二进制码之间的相互转换4.9 组合逻辑电路的竞争与冒险4.9.1 冒险现象的识别4.9.2 消除冒险现象的方法第5章触发器5.1 RS触发器5.1.1 基本RS触发器5.1.2 钟控RS触发器5.1.3 RS触发器应用举例5.2 D触发器5.2.1 电平触发D触发器5.2.2 边沿D触发器5.3 JK触发器5.3.1 主从JK触发器5.3.2 边沿JK触发器5.4 不同类型触发器的相互转换5.4.1 概述5.4.2 D触发器转换为JK、T和T'触发器5.4.3 JK触发器转换为D触发器第6章寄存器与计数器6.1 寄存器与移位寄存器6.1.1 寄存器6.1.2 移位寄存器6.1.3移位寄存器应用举例6.2 异步N进制计数器6.2.1 异步n位二进制计数器6.2.2 异步非二进制计数器6.3 同步N进制计数器6.3.1 同步n位二进制计数器6.3.2 同步非二进制计数器6.4 集成计数器6.4.1 集成同步二进制计数器6.4.2 集成同步非二进制计数器6.4.3 集成异步二进制计数器6.4.4 集成异步非二进制计数器6.4.5 集成计数器的扩展6.4.6 集成计数器应用举例第7章时序逻辑电路的分析与设计7.1 概述7.1.1 时序逻辑电路的定义7.1.2 时序逻辑电路的结构7.1.3 时序逻辑电路的分类7.2 时序逻辑电路的分析7.2.1时序逻辑电路的分析步骤7.2.2 同步时序逻辑电路分析举例7.2.3 异步时序逻辑电路分析举例7.3 同步时序逻辑电路的设计7.3.1 同步时序逻辑电路的基本设计步骤7.3.2 同步时序逻辑电路设计举例第8章存储器与可编程器件8.1 存储器概述8.1.1 存储器的分类8.1.2 存储器的相关概念8.1.3 存储器的性能指标8.2 RAM8.2.1 RAM分类与结构8.2.2 SRAM8.2.3 DRAM8.3 ROM8.3.1 ROM分类与结构8.3.2 掩膜ROM8.3.3 可编程ROM8.3.4 可编程ROM的应用8.4 快闪存储器(Flash Memory)8.4.1 快闪存储器的电路结构8.4.2 闪存与其它存储器的比较8.5 存储器的扩展8.5.1 存储器的位扩展法8.5.2 存储器的字扩展法8.6 可编程阵列逻辑8.6.1 PAL的电路结构8.6.2 PAL器件举例8.6.3 PAL器件的应用8.7 通用阵列逻辑8.7.1 GAL的性能特点8.7.2 GAL的电路结构8.7.3 OLMC8.7.4 GAL器件的编程与开发8.8 CPLD、FPGA和在系统编程技术8.8.1 数字可编程器件的发展概况8.8.2数字可编程器件的编程语言8.8.3数字可编程器件的应用实例第9章D/A转换器和A/D转换器9.1 概述9.2 D/A转换器9.2.1 D/A转换器的电路结构9.2.2 二进制权电阻网络D/A转换器9.2.3 倒T型电阻网络D/A转换器9.2.4 D/A转换器的主要技术参数9.2.5 集成D/A转换器及应用举例9.3 A/D转换器9.3.1 A/D转换的一般步骤9.3.2 A/D转换器的种类9.3.3 A/D转换器的主要技术参数9.3.4 集成A/D转换器及应用举例第10章脉冲波形的产生与整形电路10.1 概述10.2 多谐振荡器10.2.1 门电路构成的多谐振荡器10.2.2 采用石英晶体的多谐振荡器10.3 单稳态触发器10.3.1 门电路构成的单稳态触发器10.3.2 集成单稳态触发器10.3.3 单稳态触发器的应用10.4 施密特触发器10.4.1 概述10.4.2 施密特触发器的应用10.5 555定时器及其应用10.5.1 电路组成及工作原理10.5.2 555定时器构成施密特触发器10.5.3 555定时器构成单稳态触发器10.5.4 555定时器构成多谐振荡器第11章数字集成电路简介11.1 TTL门电路11.1.1 TTL与非门电路11.1.2 TTL或非门电路11.1.3 TTL与或非门电路11.1.4 集电极开路门电路与三态门电路11.1.5 肖特基TTL与非门电路11.2 CMOS门电路11.2.1 概述11.2.2 CMOS非门电路11.2.3 CMOS与非门电路11.2.4 CMOS或非门电路11.2.5 CMOS门电路的构成规则11.3 数字集成电路的使用。
时序逻辑电路的设计与时序分析方法
时序逻辑电路的设计与时序分析方法时序逻辑电路是数字电路中的一种重要类型,用于处理按时间顺序发生的事件。
它在各种电子设备中被广泛应用,例如计算机、通信设备等。
本文将介绍时序逻辑电路的设计原理和常用的时序分析方法。
一、时序逻辑电路的设计原理时序逻辑电路是根据输入信号的状态和时钟信号的边沿来确定输出信号的状态。
它的设计原理包括以下几个方面:1. 状态转移:时序逻辑电路的状态是通过状态转移实现的。
状态转移可以使用触发器实现,触发器是一种存储元件,能够存储和改变信号的状态。
常见的触发器有D触发器、JK触发器等。
2. 时钟信号:时序逻辑电路中的时钟信号是控制状态转移的重要信号。
时钟信号通常为周期性的方波信号,它的上升沿或下降沿触发状态转移操作。
3. 同步与异步:时序逻辑电路可以是同步的或异步的。
同步电路通过时钟信号进行状态转移,多个状态转移操作在同一时钟周期内完成。
异步电路不需要时钟信号,根据输入信号的状态直接进行状态转移。
二、时序分析方法时序分析是对时序逻辑电路的功能和性能进行分析的过程,它可以帮助设计人员检查和验证电路的正确性和可靠性。
以下是几种常用的时序分析方法:1. 序时关系图:序时关系图是一种图形表示方法,它直观地显示了输入信号和输出信号之间的时间关系。
通过分析序时关系图,可以确定电路的特性,例如最小延迟时间、最大延迟时间等。
2. 状态表和状态图:状态表是对时序逻辑电路状态转移过程的描述表格,其中包括当前状态、输入信号和下一个状态的对应关系。
状态图是对状态表的图形化表示,用图形的方式展示状态和状态转移之间的关系。
3. 时钟周期分析:时钟周期分析是对时序逻辑电路的时钟频率和时钟周期进行分析,以确保电路能够在规定的时钟周期内完成状态转移操作。
常用的时钟周期分析方法包括最小周期分析和最大频率分析。
4. 时序仿真:时序仿真是通过计算机模拟时序逻辑电路的行为来验证电路的功能和性能。
通过输入不同的信号序列,可以观察和分析电路的输出响应,以判断电路设计是否正确。
电子设计中的时序逻辑设计
电子设计中的时序逻辑设计时序逻辑设计是电子设计中非常重要的一个部分,它主要涉及到在数字电路中对信号的时序进行控制和调整,以确保电路能够按照预定的顺序正确地工作。
在电子设备中,时序逻辑设计直接影响着整个系统的性能、稳定性和功耗等方面。
首先,时序逻辑设计需要考虑时钟信号的控制。
时钟信号是数字系统中非常关键的一个信号,它提供了同步的时序参考,确保各个部分能够同时工作。
在时序逻辑设计中,需要合理地设置时钟信号的频率、相位和占空比等参数,以保证整个系统的稳定性和可靠性。
其次,时序逻辑设计还涉及到时钟域的概念。
数字系统中的不同部分可能工作在不同的时钟频率下,这就涉及到时钟域之间的数据传输和同步。
在时序逻辑设计中,需要考虑时钟域之间的同步问题,采取合适的方法来确保数据的正确传输和处理。
此外,时序逻辑设计还需要考虑信号的延迟和时序约束。
在数字系统中,信号的传输会存在一定的延迟,这可能会导致时序不一致的问题。
因此,在时序逻辑设计中,需要对信号的延迟进行分析和优化,以满足系统的时序约束要求,确保数据的正确性和稳定性。
在实际的时序逻辑设计中,通常会采用时序分析工具来辅助设计。
时序分析工具可以帮助设计工程师对时序逻辑进行建模和仿真,提前发现潜在的时序问题,并进行相应的优化。
通过时序分析工具,可以有效地提高设计的可靠性和稳定性。
总的来说,时序逻辑设计在电子设计中具有非常重要的地位,它直接影响着数字系统的性能和稳定性。
设计工程师需要充分理解时序逻辑设计的原理和方法,合理地设计时钟信号控制、时钟域同步和信号延迟等,以确保系统能够按照预期的时序要求正确地工作。
通过良好的时序逻辑设计,可以提高数字系统的性能和可靠性,满足不同应用领域的需求。
数字电路设计中的时序逻辑与状态机设计
数字电路设计中的时序逻辑与状态机设计时序逻辑与状态机设计是数字电路设计中的重要概念。
在数字电路中,时序逻辑指的是电路的输出是根据输入信号的时序关系而变化的,而状态机则是通过状态转换来实现特定功能的电路。
本文将详细介绍时序逻辑与状态机设计的原理、方法和实践经验。
一、时序逻辑设计的基础原理时序逻辑设计是指在数字电路中,通过引入时钟信号来控制电路的行为。
时钟信号可以被理解为一个周期性的信号,它将整个电路的工作分为不同的阶段。
在每个时钟周期内,时序逻辑根据输入信号的状态进行计算,并且在下一个时钟边沿产生输出信号。
时序逻辑设计的基础原理包括以下几个关键要点:1. 时钟信号:时钟信号的频率决定了电路的最大工作速度,而时钟边沿决定了电路的状态更新时机。
2. 触发器:触发器是实现时序逻辑的基本元件,它可以存储和传递信息,并在时钟边沿触发状态更新。
常见的触发器有D触发器、JK触发器和T触发器等。
3. 时序逻辑电路的设计方法:时序逻辑电路的设计方法包括状态转移图、状态转移方程和状态表等。
这些设计方法可以帮助设计师理清输入、输出和状态之间的关系,便于电路功能的实现。
二、状态机设计的基本概念与方法状态机是一种抽象的数学模型,常用于描述具有确定性行为的系统。
在数字电路设计中,状态机通常用于实现序列逻辑电路的控制部分,如计数器、序列检测器等。
状态机设计的基本概念与方法包括以下几个关键要点:1. 状态:状态是指系统在某个时刻的特定条件。
在状态机设计中,状态通常用离散的值来表示,比如二进制编码。
2. 状态转换:状态转换表示系统从一个状态切换到另一个状态的过程。
状态转换可以通过组合逻辑电路来实现,也可以通过时序逻辑电路实现。
3. 输出函数:输出函数定义了每个状态下的输出值。
它可以通过组合逻辑电路来实现,也可以通过状态寄存器的输出来实现。
4. 状态机设计流程:状态机设计的一般流程包括确定系统的输入、输出和状态集合,绘制状态转移图,推导状态转移方程,实现状态转移电路等。
同步时序逻辑电路的设计
D3 D2 D1 D0 =Q3n+1Q2n+1Q1n+1Q0n+1
由状态图可以看出,这是一个循环移位计数器。在计数时循
Q0 Q1, Q1 Q2 , Q2 Q3 , Q3 Q0
这种计数器的循环长度l=2n,其中n为位数,这里n=4,l=8
由状态图还可看出,图左半部8个状态形成闭环,称为 “有效序列”,右半部8个状态称为“无效序列”。如果该 时序电路在某种偶然因素作用下,使电路处于“无效序列” 中的某一状态,则它可以在时钟脉冲 CP的作用下,经过若 干个节拍后,自动进入有效序列。因此,该计数器称为具
01 0 10 0 00 1
10 1 00 1 01 0
01
状态图
1/0 0/0
6
画时序波形图。
根据状态表或状态图, 可画出在CP脉冲作用下电路的时序图。
00
0/0 1/0 1/1 0/1 10 1/0 0/0 01
CP X Q0 Q1 Z
7
(4)逻辑功能分析:
该电路一共有3个状态00、01、10。
有自恢复功能的扭环移位计数器。
2 同步时序逻辑电路的设计
同步时序逻辑电路的设计是指根据特定的逻辑要求,设计 出能实现其逻辑功能的时序逻辑电路。显然, 设计是分析的逆 过程,即:
分析
逻辑电路
设计
逻辑功能
同步时序逻辑电路设计追求的目标是,使用尽可能少的 触发器和逻辑门实现预定的逻辑要求!
设计的一般步骤如下:
构造Moore型原始状态图如下:
1
相应的原始状态表如下表所示。
例 设计一个用于引爆控制的同步时序电路,该电路有一 个输入端x和一个输出端Z。平时输入x始终为0,一旦需要引爆, 则从 x 连续输入4个1信号(不被0间断),电路收到第四个1后在 输出端Z产生一个1信号点火引爆,该电路连同引爆装置一起被 炸毁。试建立该电路的Mealy型状态图和状态表。
CMOS数字集成电路:分析与设计(第三版)(中文版)
CMOS数字集成电路:分析与设计(第三版)(中文版)佚名
【期刊名称】《电气电子教学学报》
【年(卷),期】2006(28)3
【摘要】内容简介:本书集中讲述CMOS数字集成电路,反映现代技术的发展水平,提供电路设计的最新资料。
本书共有15章。
前半部分详细讨论MOS晶体管相关特性和工作原理、基本反相器电路设计、组合逻辑电路及时序逻辑电路的结构与工作原理。
后半部分介绍应用于先进VLSI芯片设计的动态逻辑电路,先进的半导体存储电路,低功耗MCMOS逻辑电路,双极性晶体管基本原理和BiCMOS数字电路设计,芯片的I/O设计,电路的可制造性设计和可测试性设计等问题。
【总页数】1页(P44-44)
【关键词】CMOS数字集成电路;分析与设计;中文版;第三版;数字电路设计;CMOS 逻辑电路;时序逻辑电路;工作原理;MOS晶体管;组合逻辑电路
【正文语种】中文
【中图分类】TN79;TM44
【相关文献】
1.CMOS数字集成电路I/O单元设计分析 [J], 刘艳艳;耿卫东;代永平;孙钟林
2.基于CMOS工艺的中小规模数字集成电路设计浅析 [J], 孙玲;陈海进
3.高温CMOS数字集成电路的瞬态特性分析 [J], 柯导明;柯晓黎
4.《CMOS数字集成电路:分析与设计》课程教学探索 [J], 陈伟中;贺利军;黄义;周
前能;杨虹
5.CMOS数字集成电路的低功耗设计 [J], 陈光胜;张旭;沈力为
因版权原因,仅展示原文概要,查看原文内容请购买。
电子设计中的时序电路设计
电子设计中的时序电路设计
时序电路是电子设计中非常重要的一部分,它用于控制信号在电子系统中的时
序和顺序。
时序电路的设计涉及到时钟信号的分配、同步和延迟等方面,是确保整个系统正常工作的关键因素。
在进行时序电路设计时,首先需要明确系统的时钟信号源以及时钟频率。
时钟
信号是整个系统中的主导信号,它决定了数据的传输速度和时序关系。
因此,在设计时需要保证时钟信号的稳定性和准确性,避免产生时序偏差和时序冲突。
另外,在时序电路设计中,时序分析是必不可少的一步。
时序分析可以帮助设
计人员理清系统中各模块之间的时序关系,确定数据传输的路径和时序要求。
通过时序分析,可以发现潜在的时序问题,并及时进行调整和优化,确保系统的可靠性和稳定性。
此外,在时序电路设计中,还需要考虑时序同步和时序延迟的问题。
时序同步
是指保证不同模块之间的时序一致性,避免数据传输过程中出现时序不匹配的情况。
而时序延迟则关系到数据在不同模块之间的传输速度和时序关系,需要设计合适的延迟电路来保证数据的正确接收和传输。
总的来说,时序电路设计是电子设计中至关重要的一环,它直接关系到整个系
统的性能和稳定性。
设计人员需要充分理解时序电路的原理和设计要求,合理规划时序分配和时序关系,通过时序分析和验证确保系统的正常工作。
只有做好时序电路设计,才能保证整个电子系统的可靠性和性能优化。
时序逻辑电路的分析方法和设计思路
时序逻辑电路
数字电路与逻辑设计
2. 异步时序逻辑电路的基本分析方法
以下图所示3个T′触发器构成的时序逻辑电路为例,我
们讨论其分析方法和步骤。
Q0
Q1
Q2
JQ
CP
C F0
KQ
JQ C F1 KQ
JQ C F2 KQ
“1”
RD
1
分析电路类型:
时序逻辑电路中如果除CP时钟脉冲外,无其它输入信 号,就属于莫尔型,若有其它输入信号时为米莱型;各位
为了能把在一系列时钟脉冲操作下的电路状态转换全过 程形象、直观地描述出来,常用的方法有状态转换真值表、 状态转换图、时序图和激励表等。这些方法我们将在对时 序逻辑电路的分析过程中,更加具体地加以阐明。
时序逻辑电路
数字电路与逻辑设计 1. 同步时序逻辑电路的基本分析方法
[例7.2.1] 分析如图7.2.2所示时序电路的逻辑功能
时序逻辑电路
数字电路与逻辑设计
1. 二进制计数器
当时序逻辑电路的触发器位数为n,电路状态按二进制数
的自然态序循环,经历2n个独立状态时,称此电路为二进
制计数器。
Q0
Q1
Q2
JQ
CP
C F0
KQ
JQ C F1 KQ
JQ C F2 KQ
“1”
RD
结构原理:三个JK触发器可构成一个“模8”二进制计数器。 触发器F0用时钟脉冲CP触发,F1用Q0触发,F2用Q1触发; 三位JK触发器均接成T′触发器—让输入端恒为高电平1; 计数器计数状态下清零端应悬空为“1”。(如上一节的分 析例题,就是一个三位触发器构成的二进制计数器。)
时序逻辑电路分析与设计方法的研究及探讨
( nb i iei f iac n cn mi Daa 10 5C ia Do ge v rt o nn e dE o o c Un sy F a s, ln 16 2 .hn ) i
AbtatSq etllg  ̄utaa s d dd n a mp r n ec i o t to Dit o c o r .T i pp r s c:eu ni oi c ci nl i a e g r i ot tt hn cne f” g a L g ”cus h ae r a c ysn e a a g n i l i e s ma es d n x lr o e un a l c cci aa s d di n me os nld g te fr l me o d te d t y ad epoe n sq e t o k ut nl i a eg t d,ic i h omua t d a u i l g i y sn h un h n h
时序 逻 辑 电路 分 析 与设 计 方 法 的研 究 及 探 讨
陶 永 明
( 东北财经大学管理科 学与工程 学院, 大连 16 2 1 05)
摘
要: 时序逻辑电路 的分析与设计是《 数字逻辑》 课程 中的重要教学 内容 , 文章对时序逻辑 电路分析与设计 的方法进行
了研 究及探讨 。 包括公式法和表格法在 时序 逻辑 电路的分析和设计过程 中的应 用。
析得 出该 电路实现的逻辑功能的过程。逻辑电路 的设 计过程就是根据指定的逻辑功能要求 ,设计得出该电 路的电路 图的过程 。数字逻辑课程中的两大类电路包 括组合逻辑电路和时序逻辑 电路 。
求出待设计 电路的输出方程和驱动方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.在下列电路中,不属于时序电路的是( A. 计数器 C. 异步计数器 D. 寄存器
13. 一位8421BCD 码计数器至少需要( A. 8 B. 4 C. 2 D. 1
)个触发器。
B. 二 - 十进制译码器
14. 一个5位的二进制加法计数器,由00000状态开始,经 ) 过75个时钟脉冲后,此计数器的状态为( A. 01011 B. 01100 C. 01010 ) A. 101 B. 010 C. 110 D. 111 D. 00111 )级触发器 20.要想把串行数据转换成并行数据,应选( )。 A. 并行输入串行输出方式 B. 串行输入串行输出方式 C. 串行输入并行输出方式 D. 并行输入并行输出方式
三、填空题
1.数字电路按照是否有记忆功能通常可分为两类: 组合逻 辑电路和_________。 2. 时序逻辑电路按其是否有统一的时钟控制分为同步时 序电路和_________。 3.统计输入脉过触发器 的 端口实现的。 18. 74LS290能实现二进制、 五进制和 进制计数功能。
A.并行寄存器 B.计数器 C.移位寄存器 D.加法器 25. 不能构成移位寄存器的是( A.SR B.JK C.D )触发器。 D.T 和 T′
26. 74LS161 是( A.2 B.4
)位二进制同步计数器。 C.8 )。 B. 8 位双向移位寄存器 D. 8 位单向移位寄存器 D.10
27. 74LS194 是(
) A. 101 B. 100 C. 011 D. 000
2.时序电路某一时刻的输出状态,与当前输入以及该时 刻之前的输入信号( A. 无关 )。 C. 有关 D. 以上都不对 )。 B. 无法判断
D.2
n
12. 寄存器具有( A. 计数
)功能。 D. 译码
B. 寄存与输出数码 C. 定时
19.假设电路中各触发器的当前状态 Q2 Q1 Q0 为 110, 那么在时钟作用下, 触发器下一状态 Q2 Q1 Q0 为 ( ) 。
B. 只与电路当前状态有关
8.把一个四进制计数器与一个五进制计数器串联可得到 ( )进制计数器。 A. 4 A. 5 B. 5 B. 10 C. 9 C. 15 D. 20 ) D. 20 ) A. 四进制计数器 C. 八进制计数器 B. 六进制计数器 D. 十进制计数器
9. 五个D触发器构成环形计数器, 其计数长度为( 10. 寄存器在电路组成上的特点是( A. 有 CP 输入端,无数码输入端。 B. 有 CP 输入端和数码输入端。 C. 无 CP 输入端,有数码输入端。 D. 无 CP 输入端和数码输入端。
时序逻辑电路的特点; 时序逻辑电路的功能描述方法; 分析时序逻辑电路的步骤; 计数器的概念、分类;异步二进制、五进制计数器; 同步二进制计数器;同步二-十进制计数器; 74LS161的使用; 寄存器的概念;移位寄存器; 利用移位寄存器实现数据的并/串及串/并转换; 同步时序逻辑电路设计的步骤; 异步时序逻辑电路的设计; 任意模值计数/分频器的设计;
5.构成移位寄存器的触发器,其逻辑功能一定为( C. T触 发 器 )
6.米里型时序逻辑电路的输出是( A. 只与输入有关
16. 二进制加法计数器从0计到27,需要( A. 3 B. 4 C. 5 -1D. 27
B. 只与电路当前状态有关
21. 有一个移位寄存器,高位在左,低位在右,欲将存放 在其中的二进制数乘上(4)10,则应将该寄存器中的数 ( ) 。 © Prof. Guo
4.用于临时存放数据、指令等信息的逻辑器件称为______。 5.寄存器主要由 ______ 构成。 -2© Prof. Guo
4.同步和异步时序电路的差别在于后者( A. 没有触发器 C. 没有统一的时钟脉冲控制 A. JK触 发 器 B. D触 发 器
B. 输出只与内部状态有关 D. 没有稳定状态 )。 D. T′ 触 发 器
15. 欲设计0,1,2,3,4,5,6,7 这几个数的计数器, 若采用同步二进制计数器,最少应使用( A. 3 B. 4 C. 7 D. 8 )个触发器
18. 假设电路中各触发器的当前状态Q2 Q1 Q0为100,那 么在时钟作用下,触发器下一状态Q2 Q1 Q0 为( )。
一、选择题
1.时序逻辑电路中一定包含( A. 触发器 B. 编码器 )。 D. OC门 C. 译码器
11. 用n个触发器组成计数器,其最大计数模为( A.n B.2n C.n
2
29. 将一个数据延时 4 个 CP 的时间,则最简单的办法采 用( )。 A. 4位并行寄存器 C. 4进制计数器 30. 74LS161 的模是( A.2 B.4 B. 4位移位寄存器 D. 4位加法器 )。 C.8 D.16
19. 将同步加法和减法计数器合并在一起,增加一些控制 门就可实现 计数器。 20. 计数器的设计过程中,实现状态跳跃的方法有两种, 一种是复位法,另一种是 。
第 15 章
时序逻辑电路的分析与设计 二、判断题 ) 个 CP 脉冲后, D. 2N , 1. 时序电路由组合电路和存储器两部分构成。( 2. 时序电路不含有记忆功能的器件。( ) ) ) ) )
Work hard and make progress every day! 6.具有存放数码和使数码逐位右移或左移的电路称为 __________。 7.时序逻辑电路的分析就是根据给定的电路图,经过一系 列的分析、计算来确定该电路的_________。 8.当来一个CP脉冲时,各触发器的状态移入下一级的输入 方式称为 输入。 9. 对于一个8位移位寄存器,经过5个CP脉冲后,共有 个数码存入寄存器中。 10. 某计数器的状态变化为00→01→10→11→00,则该计 数器为二进制_____法计数器。 11. 反映时序电路状态转移规律及相应输入、输出取值情 况的几何图形称为_________。 12. 时序电路的输出信号是由当前输入信号和存储电路的 状态有关,称该类型的电路为_______型时序逻辑电路。 13. 输出信号仅取决于存储电路的状态,则该时序电路为 型时序逻辑电路。 14. 在同步计数器中,各触发器的CP输入端应接 时钟脉冲。 15. 移位寄存器不但可以进行数据的移位, 还能实现数据 的 。 16. 要构成5进制计数器,至少需要 效状态有 个。 个触发器,其无
A. 4 位双向移位寄存器 C. 4 位单向移位寄存器
14. 寄存器主要由触发器构成。(
) )
15. 移位寄存器可以实现乘2或除2运算。(
28. 一个四位串行数据,输入四位移位寄存器,时钟脉冲 频率为 1kHz,经过( A.8ms B.4ms )可转换为 4 位并行数据输出。 C.1ms D.1us
A. 右移二位 B. 右移一位 C. 左移二位 D. 左移一位 22. N 进制计数器状态转换特点是经过 ( 计数器回到初始状态。 A. N-1 B. N C. N+1
3. 异步时序电路的各级触发器类型不同。( 4. 同步时序电路具有统一的时钟CP控制。(
23. 用 J K 触发器来实现特性方程: 则 JK 端的方程为( ) A. C. 24. 如图所示电路的功能是( B. D. )。
第 15 章 本章知识点:
时序逻辑电路的分析与设计 C. 与输入和电路当前状态均有关 7.摩尔型时序逻辑电路的输出是( A. 只与输入有关 C. 与输入和电路当前状态均有关 D. 无法确定 ) D. 无法确定
Work hard and make progress every day! 17. 如下所示为某计数器的时序图, 则该计数器为 ( ) 。
5. 环形计数器若不作自启修改, 则总有孤立状态存在。 ( 6. 计数器的模是指构成计数器的触发器的个数。( )
7. 某计数器是由8个触发器构成, 则该计数器具有256个计 数状态。( ) 8. 同步时序电路和异步时序电路的最主要区别是,前者 没有CP脉冲,后者有CP脉冲。( ) 9. 时序电路的逻辑功能可用逻辑图、逻辑表达式、状态 表、卡诺图、状态图和时序图等方法来描述,它们在本质 上是相通的,可以互相转换。( ) 10. 当时序逻辑电路进入无效状态后,若能自动返回有效 工作状态,该电路能自启动。( ) 11. 计数器是统计输入脉冲个数的时序逻辑电路。( 12. 异步二进制计数器需要注意各级触发器的时钟。 ( 13. 移位寄存器可分为单向和双向移位寄存器。( ) ) )