二次函数背景下的线段最值问题
二次函数求线段最大值
二次函数求线段最大值一、题目背景:二次函数是高中数学中的重要内容,其中求线段最大值是一个常见的问题。
本文将介绍如何利用二次函数求解线段最大值。
二、问题描述:已知一个二次函数$f(x)=ax^2+bx+c$,其中$a\neq0$,且在区间$[m,n]$内取得极值。
求该函数在区间$[m,n]$内的极大值。
三、解题思路:1. 求导数:首先需要求出该二次函数的导数$f'(x)$,即$f'(x)=2ax+b$。
2. 求极值点:令导数$f'(x)=0$,解得$x=-\frac{b}{2a}$。
这个点就是该二次函数的极值点。
3. 判断极值类型:根据导数$f'(x)$的正负性判断该极值点是极大值还是极小值。
当$f'(x)>0$时,该点为极小值;当$f'(x)<0$时,该点为极大值。
4. 判断是否在区间内:判断上述求得的极大值点是否在区间$[m,n]$内。
若在,则该点即为所求最大值;若不在,则需要比较区间端点和极大值点处的函数取最大值作为所求答案。
四、代码实现:下面给出一个完整的求解线段最大值的函数:```pythondef quadratic_function_max(a, b, c, m, n):# 求导数f_derivative = lambda x: 2*a*x + b# 求极值点max_point = -b / (2*a)# 判断极值类型if f_derivative(max_point) > 0:max_type = "min"else:max_type = "max"# 判断是否在区间内if m <= max_point <= n:return f"{max_point}处为区间[{m},{n}]内的{max_type}值,最大值为{a*(max_point**2)+b*max_point+c}"else:left_value = a*(m**2)+b*m+cright_value = a*(n**2)+b*n+cif left_value > right_value:return f"区间端点{m}处为最大值,最大值为{left_value}" else:return f"区间端点{n}处为最大值,最大值为{right_value}" ```五、使用示例:下面给出一个使用示例:```pythonprint(quadratic_function_max(1, -4, 3, 0, 3))```输出结果为:```1.0处为区间[0,3]内的max值,最大值为2.0```六、总结:本文介绍了如何利用二次函数求解线段最大值。
二次函数中线段最值问题
二次函数中线段最值问题二次函数中的线段最值问题(一)例1:已知抛物线经过点A(-1,0)、B(3,0)、C(0,-3),顶点为M。
求抛物线的解析式和对称轴上使得PA+PC最小的点P的坐标。
解:(1)由已知点可列出三个方程:y=a(-1)^2+b(-1)+cy=a(3)^2+b(3)+c3=a(0)^2+b(0)+c化简后可得:y=x^2-2x-32)对称轴为x=1,因此P的横坐标为1.设P的纵坐标为y,则根据距离公式可得:PA+PC=sqrt[(1+1)^2+y^2]+sqrt[(1-0)^2+(y+3)^2]对其求导并令其为0,可得y=-1/2.因此P的坐标为(1,-1/2),PA+PC的最小值为3.练1:如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y=-x^2+2x+3经过点B、C,与x轴另一交点为A,顶点为D。
在x轴上找一点E,使得EC+ED的值最小,求EC+ED的最小值。
解:(1)由已知点可列出四个方程:y=a(-1)^2+b(-1)+cy=a(3)^2+b(3)+c0=a(1)^2+b(1)+cy=aD^2+bD+c化简后可得:y=-x^2+2x+32)对称轴为x=1,因此D的横坐标为1.设E的横坐标为x,则EC+ED=sqrt[x^2+(3-(-x+3))^2]+sqrt[(1-x)^2+D^2]。
对其求导并令其为0,可得x=1/2.因此E的坐标为(1/2,0),EC+ED的最小值为2sqrt(10)。
练2:如图,抛物线经过点A(-1,0)、B(1,0)、C (0,-3),顶点为D。
点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标。
解:(1)由已知点可列出三个方程:y=a(-1)^2+b(-1)+cy=a(1)^2+b(1)+c3=aD^2+bD+c化简后可得:y=x^2-2x-32)设M的横坐标为x,则△ACM的周长为AC+CM+MA=sqrt[(x+1)^2+9]+2sqrt[(x-D)^2+1]。
二次函数背景下的与线段有关的最值探究 (解析版)
备战2020年中考数学压轴题之二次函数专题08 二次函数背景下的与线段有关的最值探究【方法综述】与线段有关的最值探究问题,是中考试卷中的常见问题。
解答这些问题常涉及到的知识有:两点之间线段最小、垂线段最短、直径是最长的弦等。
与之相关的数学模型有:最短路径问题、点到圆上的点的最短(长)距离问题。
解答问题时,可以将这些问题应用于解题中。
【典例示范】类型一常规单线段的最值探究例1:如图,直线y=﹣x+5与x轴交于点B,与y轴交于点D,抛物线y=﹣x2+bx+c与直线y=﹣x+5交于B,D两点,点C是抛物线的顶点.(1)求抛物线的解析式;(2)点M是直线BD上方抛物线上的一个动点,其横坐标为m,过点M作x轴的垂线,交直线BD于点P,当线段PM的长度最大时,求m的值及PM的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为,若存在求出点Q的坐标;若不存在请说明理由.【答案】(1)抛物线的表达式为:y=﹣x2+4x+5;(2)当m=52时,PM有最大值254;(3)存在满足条件的点Q,其坐标为Q1(2,9),Q2(3,8),Q3(﹣1,0),Q4(6,﹣7).【思路引导】(1)y=-x+5,令x=0,则y=5,令y=0,则x=5,故点B、D的坐标分别为(5,0)、(0,5),利用待定系数法即可求解;(2)由题意可得M点坐标为(m,﹣m2+4m+5),则则P点坐标为(m,﹣m+5),表示出PM的长度:PM=-m2+4m+5-(-m+5)=-m2+5m=-(m-52)2+254,利用二次函数的性质即可求解;(3)过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设出Q点坐标Q(x,﹣x2+4x+5),则G(x,﹣x+5),表示出QG的长度QG=|-x2+4x+5-(-x+5)|=|-x2+5x|,由条件可得△BOD是等腰直角三角形,,可证得△QHG为等腰直角三角形,则当△BDQ中BD边上的高为时,即,QG==6,|-x2+5x|=6,即可求解.【解析】解:(1)y=﹣x+5,令x=0,则y=5,令y=0,则x=5,故点B、D的坐标分别为(5,0)、(0,5),则二次函数表达式为:y=﹣x2+bx+5,将点B坐标代入上式并解得:b=4,故抛物线的表达式为:y=﹣x2+4x+5;(2)设M点横坐标为m(m>0),则P(m,﹣m+5),M(m,﹣m2+4m+5),∴PM=﹣m2+4m+5﹣(﹣m+5)=﹣m2+5m=﹣(m-52)2+254,∴当m=52时,PM有最大值254;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,﹣x2+4x+5),则G(x,﹣x+5),∴QG=|﹣x2+4x+5﹣(﹣x+5)|=|﹣x2+5x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,∴△QHG是等腰直角三角形,当△BDQ中BD边上的高为时,即QH=HG=,∴QG=6,∴|﹣x2+5x|=6,当﹣x2+5x=6时,解得x=2或x=3,∴Q(2,9)或(3,8),当﹣x2+5x=﹣6时,解得x=﹣1或x=6,∴Q(﹣1,0)或(6,﹣7),综上可知存在满足条件的点Q,其坐标为Q1(2,9),Q2(3,8),Q3(﹣1,0),Q4(6,﹣7).【方法总结】本题考查二次函数综合运用,待定系数法求函数解析式,二次函数的性质,等腰直角三角形的判定和性质及方程思想等知识,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.在(1)中主要是待定系数法的考查,在(2)中用P点坐标表示出PM 的长是解题的关键,在(3)中构造等腰直角三角形求得QG的长是解题的关键.针对训练1.如图抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式,并指出抛物线的顶点坐标.(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点M(不与C点重合),使得S△P AM=S△P AC,若存在,请求出点M的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x+3,顶点坐标为(1,4);(2)存在,点P的坐标为(1,2),△P AC;(3)存在,点M的坐标为(1,4),).【解析】(1)∵抛物线y =ax 2+bx+c 的图象过点A (﹣1,0),B (3,0),C (0,3),∴09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,得=-123a b c ⎧⎪=⎨⎪=⎩,∴y =﹣x 2+2x+3=﹣(x ﹣1)2+4,∴该抛物线的顶点坐标为(1,4),即该抛物线的解析式为y =﹣x 2+2x+3,顶点坐标为(1,4);(2)点A 关于对称轴的对称点是点B ,连接CB 与对称轴的交点为P ,此时点P 即为所求,如图所示:设过点B (3,0),点C (0,3)的直线解析式为y =kx+m ,303k m m +=⎧⎨=⎩,得13k m =-⎧⎨=⎩, ∴直线BC 的解析式为y =﹣x+3,当x =1时,y =﹣1+3=2,∴点P 的坐标为(1,2),∵点A (﹣1,0),点C (0,3),点B (3,0),∴AC,BC =∴△PAC 的周长是:AC+CP+PA =AC+CB,即点P 的坐标为(1,2),△PAC;(3)存在点M (不与C 点重合),使得S △PAM =S △PAC ,∵S △PAM =S △PAC ,∴当以PA 为底边时,只要两个三角形等高即可,即点M 和点C 到PA 的距离相等,当点M 在点C 的上方时,则CM ∥PA 时,点M 和点C 到PA 的距离相等,设过点A (﹣1,0),点P (1,2)的直线l 1解析式为:y =kx+m ,02k m k m -+=⎧⎨+=⎩,得11k m =⎧⎨=⎩, ∴直线AP 的解析式为y =x+1,∴直线CM 的解析式为y =x+3,由2323y x y x x =+⎧⎨=-++⎩得,1103x y =⎧⎨=⎩,2214x y =⎧⎨=⎩, ∴点M 的坐标为(1,4);当点M 在点C 的下方时,则点M 所在的直线l 2与AP 平行,且直线l 2与直线AP 之间的距离与直线l 1与直线AP 之间的距离相等, ∴直线l 2的的解析式为y =x ﹣1,由2123y x y x x =-⎧⎨=-++⎩得,33x y ⎧=⎪⎪⎨⎪=⎪⎩,442212x y ⎧⎪=⎪⎨⎪-⎪=⎩, ∴M); 由上可得,点M 的坐标为(1,4),(12+,12)或(12,12--). 2.在如图的平面直角坐标系中,抛物线y =ax 2﹣2amx +am 2+1(a <0)与x 轴交于点A 和点B ,点A 在点B 的左侧,与y 轴交于点C ,顶点是D ,且∠DAB =45°.(1)填空:点C 的纵坐标是 (用含a 、m 的式子表示);(2)求a 的值;(3)点C 绕O 逆时针旋转90°得到点C ′,当﹣12≤m ≤52时,求BC ′的长度范围.【答案】(1)am2+1;(2)a =﹣1;(3)0≤BC′≤94. 【解析】解:(1)当x =0时,y =ax2﹣2amx+am2+1=am2+1,∴点C 的纵坐标为am2+1.故答案为:am2+1.(2)设抛物线对称轴与x 轴交于点E ,如图1所示.∵DA =DB ,∠DAB =45°,∴△ABD 为等腰直角三角形,∴AB =2DE .∵y =ax2﹣2amx+am2+1=a (x ﹣m )2+1,∴点D 的坐标为(m ,1).当y =0时,ax2﹣2amx+am2+1=0,即a (x ﹣m )2=﹣1,解得:x1=m ﹣√−1a ,x2=m+√−1a ,∴AB =2√−1a =2,解得:a =﹣1.(3)由(1)(2)可知:点C 的坐标为(0,1﹣m2),点B 的坐标为(m+1,0).∵点C 绕O 逆时针旋转90°得到点C′,∴点C′的坐标为(m2﹣1,0),∴BC′=|m+1﹣(m2﹣1)|=|﹣m2+m+2|.∵﹣m2+m+2=﹣(m ﹣12)2+94,﹣12≤m≤52,∴当m =52时,﹣m2+m+2取得最小值,最小值为﹣74; 当m =12时,﹣m2+m+2取得最大值,最大值为94, ∴当﹣12≤m≤52时,﹣74≤﹣m2+m+2≤94,∴当﹣12≤m≤52时,0≤BC′≤94.3.如图1,抛物线2316y x =-平移后过点A (8,,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D .(1)求平移后抛物线的解析式并直接写出阴影部分的面积S 阴影;(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,PMN ∠为直角,边MN 与AP 相交于点N ,设OM t =,试探求:①t 为何值时MAN ∆为等腰三角形;②为何值时线段PN 的长度最小,最小长度是多少.【答案】(1)平移后抛物线的解析式23y x bx 16=-+,= 12;(2)①92t =,②当=3时,PN 取最小值为152.【解析】(1)设平移后抛物线的解析式23y x bx 16=-+, 将点A (8,,0)代入,得233y x x 162=-+=23(4)316x --+, 所以顶点B (4,3),所以S 阴影=OC•CB=12;(2)设直线AB 解析式为y=mx+n ,将A (8,0)、B (4,3)分别代入得8043m n m n +=⎧⎨+=⎩ ,解得:346m n ⎧=-⎪⎨⎪=⎩, 所以直线AB 的解析式为3y x 64=-+,作NQ 垂直于x 轴于点Q , ①当MN =AN 时, N 点的横坐标为8t 2+,纵坐标为243t 8-, 由三角形NQM 和三角形MOP 相似可知NQ MQ OM OP =,得243t 8t 82t 6--=,解得9t ,82=(舍去). 当AM =AN 时,AN =8t -,由三角形ANQ 和三角形APO 相似可知()3NQ 8t 5=-,()4AQ 8t 5=-,MQ =8t 5-, 由三角形NQM 和三角形MOP 相似可知NQ MQ OM OP =得:()38t 8t 55t 6--=, 解得:t =12(舍去);当MN =MA 时,MNA MAN 45∠∠=<︒故AMN ∠是钝角,显然不成立, 故9t 2=; ②由MN 所在直线方程为y=266t t x -,与直线AB 的解析式y=﹣x+6联立, 得点N 的横坐标为X N =272292t t++,即t 2﹣x N t+36﹣x N =0, 由判别式△=x 2N ﹣4(36﹣92N x )≥0,得x N ≥6或x N ≤﹣14, 又因为0<x N <8,所以x N 的最小值为6,此时t=3,当t=3时,N 的坐标为(6,),此时PN 取最小值为152. 3.如图1,抛物线y =﹣x 2+mx+n 交x 轴于点A(﹣2,0)和点B ,交y 轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M 在抛物线上,且S △AOM =2S △BOC ,求点M 的坐标;(3)如图2,设点N 是线段AC 上的一动点,作DN ⊥x 轴,交抛物线于点D ,求线段DN 长度的最大值.【答案】(1)y =﹣x 2﹣x +2; (2)(0,2)或(﹣1,2)或(12-,﹣2)或(12--,﹣2);(3)1.【解析】 解:(1)A (﹣2,0),C (0,2)代入抛物线的解析式y =﹣x 2+mx +n ,得4202m n n --+=⎧⎨=⎩, 解得12m n =-⎧⎨=⎩,∴抛物线的解析式为y =﹣x 2﹣x +2.(2)由(1)知,该抛物线的解析式为y =﹣x 2﹣x +2,则易得B (1,0),设M (m ,n )然后依据S △AOM =2S △BOC 列方程可得:12•AO ×|n |=2×12×OB ×OC , ∴12×2×|﹣m 2﹣m +2|=2, ∴m 2+m =0或m 2+m ﹣4=0,解得m =0或﹣1, ∴符合条件的点M 的坐标为:(0,2)或(﹣1,2,﹣2,﹣2). (3)设直线AC 的解析式为y =kx +b ,将A (﹣2,0),C (0,2)代入得到202k b b -+=⎧⎨=⎩,解得12k b =⎧⎨=⎩, ∴直线AC 的解析式为y =x +2,设N (x ,x +2)(﹣2≤x ≤0),则D (x ,﹣x 2﹣x +2),ND =(﹣x 2﹣x +2)﹣(x +2)=﹣x 2﹣2x =﹣(x +1)2+1,∵﹣1<0,∴x =﹣1时,ND 有最大值1.∴ND 的最大值为1.4.(2019·湖州市南浔区南浔锦绣实验学校初三月考)如图,抛物线y=ax 2﹣x+c (a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,﹣2),已知B 点坐标为(4,0).(1)求抛物线的解析式;(2)若点M 是线段BC 下方的抛物线上一点,记点M 到线段BC 的距离为d ,当d 取最大值时,求出此时M 点的坐标;(3)若点P 是抛物线上一点,点E 是直线y=﹣x 上的动点,是否存在点P 、E ,使以点A ,点B ,点P ,点E 为顶点的四边形是平行四边形?若存在,请直接写出点E 坐标;若不存在,请说明理由.【答案】(1)y= x 2﹣ x -2;(2)M (2,-3);(3)存在;点E 坐标为)、,321232)、(,)或(,). 【解析】(1)解:由题意得c=-2,0=a×42-×4-2, 解得a=, ∴抛物线的解析式为:y=x 2﹣ x -2. (2)解:作MN ∥y 轴交BC 于点N , ∵的面积==2MN=, ∴当MN 最大时,的面积也最大,此时M 到线段BC 的距离d 也最大, 设直线BC 的解析式为y=kx+b,∴,解得, ∴y=x -2, ∴MN=x -2-( x 2 - x -2)=- x 2+2x=-(x -2)2+2, ∴当x=2时,MN 有最大值2, ∴M (2,-3).∴当d 取最大值时, M 点的坐标是(2,-3); (3)解:存在,理由如下:设点 E 的坐标为 (n,−n), 以点A,点B,点P,点E 为顶点的平行四边形分两种情况,如图,92-52+52--5252-32121232BCM ∆142MN ⨯12BC d ⋅BCM ∆0420k bk b =+⎧⎨-=⨯+⎩122k b ⎧=⎪⎨⎪=-⎩121212321212①以线段AB 为边,点E 在点P 的左边时, ∵A(−1,0),B(4,0),E(n,−n), ∴P(5+n,−n),∵点P(5+n,−n)在抛物线y= x 2 - x -2上, ∴−n=(5+n)2−(5+n)−2, 解得:n 1, n 2, 此时点E 的坐标为(,)或(,); 以线段AB为边,点E 在点P 的右边时, ∵A(−1,0),B(4,0),E(n,−n), ∴P(n−5,−n),∵点P(n−5,−n)在抛物线y=x 2−x−2上, ∴−n=(n−5)2−(n−5)−2, 即n 2−11n+36=0,此时△=(−11)2−4×36=−23<0, ∴方程无解;②以线段AB 为对角线时,1232123292-92+92-9212321232∵A(−1,0),B(4,0),E(n,−n), ∴P(3−n,n),∵点P(3−n,n)在抛物线y=x 2−x−2上, ∴n=(3−n)2−(3−n)−2, 解得:n 3=,n 4= , 此时点E)或). 综上可知:存在点P 、E, 使以A、B 、P 、E 为顶点的四边形是平行四边形, 点E 坐标为(,)、)、)或). 5.如图,抛物线y =ax 2+bx -3与x 轴交于A ,B 两点(A 点在B 点左侧),A (-1,0),B (3,0),直线l 与抛物线交于A ,C 两点,其中C 点的横坐标为2。
二次函数求线段最值问题
二次函数求线段最值问题二次函数是高中数学的一个重要内容,本文将会详细介绍二次函数以及如何利用二次函数解决线段最值问题。
一、二次函数的基本概念1.二次函数的定义二次函数是指形式为y=ax^2+bx+c的函数,其中a、b、c为常数,且a不等于零。
其中,a决定了二次函数的开口方向(是向上开口还是向下开口),b决定了二次函数的对称轴,c是二次函数的纵坐标系原点和曲线的纵坐标的距离。
2.二次函数的图像根据二次函数的定义,我们可以画出二次函数的图像。
当a大于0时,二次函数开口向上;当a小于0时,二次函数开口向下。
b决定了二次函数的对称轴,对称轴的方程是x=-b/2a。
3.二次函数的最值针对二次函数,我们通常关心的是它的最值问题,也就是函数的峰值和谷值。
对于开口向上的二次函数,它的最小值处于对称轴上;对于开口向下的二次函数,它的最大值处于对称轴上。
二、利用二次函数求线段最值的步骤1.确定二次函数的表达式首先,我们需要明确给定线段的条件,确定二次函数的表达式。
例如,给定线段为y=ax^2+bx+c,其中a、b、c是待确定的系数。
2.求二次函数的对称轴根据二次函数的定义,可以通过计算-b/2a来求得对称轴的横坐标。
3.求二次函数的最值通过求解对应二次函数的最值问题,可以得到线段的最值。
需要将对称轴的横坐标代入二次函数的表达式中,计算出最值对应的纵坐标。
三、例题解析下面通过一个具体的例题,来说明如何利用二次函数求解线段最值的问题。
例题:给定线段y=x^2-4x+5上的点M(-2, 13),求线段上的最小值。
解析:根据题意,给定线段的二次函数表达式为y=x^2-4x+5。
1.求对称轴根据二次函数的定义,可以通过计算-b/2a来求得对称轴的横坐标。
本题中,a=1,b=-4,所以对称轴的横坐标为x=-(-4)/2*1=2。
2.求最小值线段的最小值处于对称轴上,对应的纵坐标可以通过将对称轴的横坐标代入二次函数的表达式中,计算出最小值对应的纵坐标。
二次函数中线段最值问题
二次函数中线段最值问题(一)例1.已知,抛物线y=ax2+bx+c,过A(﹣1,0)、B(3,0)、C(0,﹣3),M为顶点.(1)求抛物线的解析式;y=x2﹣2x﹣3(2)在该抛物线的对称轴上找一点P,使得PA+PC的值最小,并求出P的坐标;练习1.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;y=﹣x2+2x+3,(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;练习2.如图,抛物线y=x2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;y=x2﹣2x﹣3,(2)点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.例2.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;y=x2﹣4x+3(2)若点T为对称轴直线x=2上一点,则TC﹣TB的最大值为.练习3.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;y==2x2﹣6x﹣8.(2)当BP﹣CP的值最大时,求点P的坐标;例3.如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;y=﹣x2+x+2;(2)当线段DF的长度最大时,求D点的坐标;练习4.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;y=x2﹣2x+1.(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?、练习5.如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=x+3经过A、B两点.(1)求b、c的值.y=﹣x2﹣x+3,(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB 于点D,求线段PD的最大值.练习6.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;y=x2+2x﹣3.(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;例4.如图,已知二次函数图象的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B 点的坐标为(﹣1,0).(1)求二次函数的解析式;(y=﹣x2+2x+3)(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;练习7.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;例5.如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;y=x2﹣3x﹣4;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.练习8.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于点A,点B,与y 轴交于点C,其中A(﹣4,0),B(2,0),C(0,﹣4).(1)求该抛物线的函数表达式;(2)点P为直线AC下方抛物线上一点,PD⊥AC,当线段PD的长度最大时,求点P 的坐标;。
二次函数背景下—线段的最大值问题优秀复习课
学做思2:变式1
点P是直线AC上方抛物线上一动点(不与A,C重合),过
点P作x轴平行线交直线AC于M点,求线段PM的最大值;
y
导学:PM如何表示?
P
M C(0,3) 导做:独立完成,做
好交流发言的准备
(3, 0) A
B1,0
O
x
导思: ①直接表示PM,水平线段---右减左 ②转化为竖直线段,需找到二者关系。
D为抛物线的顶点。 (1)求点A、B、C的坐标;
A (-3,0) B (1,0) C (0,3)
D
y
P Q
C (0,3)
(2)点M为线段AB上一点(点
M不与点A、B重合),过点M作
x轴的垂线,与直线AC交于点E,
E
与抛物线交于点P,过点P作PQ ∥ AB交抛物线于点Q,过点Q作
(3, 0)A
QN ⊥X轴于点N,若点P在点Q左
(2)点P是直线AC上方抛物线上一动点(不与A,C重合) 过点P作y轴平行线交直线AC于Q点,求线段PQ的 最大值;
y
导学:PQ是竖直线
段还是水平线段?如
何表示?
P
y=x+3
C (0,3)
(3, 0)A Q
B1,0
O
x
导做:独立完成,集体交流
导思:线段的最值转化为求二次函数的最 值。竖直线段的表示方法:两点纵坐标 之差————上减下
45 Q
吗?2
2
C(0,3) PCPP△QHHm=mPaaxQx2==HP===94QPP(9QQ8Q22++H+P=1H2)2+P2PQQQHP+Q22 PQ
((-4,3, 0)A 415
二次函数最值问题及解题技巧(个人整理)
一、二次函数线段最值问题1、平行于x轴的线段最值问题1)首先表示出线段两个端点的坐标2)用右侧端点的横坐标减去左侧端点的横坐标3)得到一个线段长关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、平行于y轴的线段最值问题1)首先表示出线段两个端点的坐标2)用上面端点的纵坐标减去下面端点的纵坐标3)得到一个线段长关于自变量的二次函数解析式4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值3、既不平行于x轴,又不平行于y轴的线段最值问题1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴2)根据线段两个端点的坐标表示出直角顶点坐标3)根据“上减下,右减左”分别表示出两直角边长4)根据勾股定理表示出斜边的平方(即两直角边的平方和)5)得到一个斜边的平方关于自变量的二次函数6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值7)根据所求得的斜边平方的最值求出斜边的最值即可二、二次函数周长最值问题1、矩形周长最值问题1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、利用两点之间线段最短求三角形周长最值1)首先判断图形中那些边是定值,哪些边是变量2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长三、二次函数面积最值问题1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴)1)首先表示出所需的边长及高2)利用求面积公式表示出面积3)得到一个面积关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、不规则图形面积最值问题1)分割。
二次函数中线段周长最值及定值问题(八大题型)学生版
二次函数中线段周长最值及定值问题(八大题型)通用的解题思路:一、二次函数中的线段最值问题有三种形式:1.平行于坐标轴的线段的最值问题:常通过线段两端点的坐标差表示线段长的函数关系式,运用二次函数性质求解,求最值时应注意:①当线段平行于y轴时,用上端点的纵坐标减去下端点的纵坐标;②当线段平行于x轴时,用右端点的横坐标减去左端点的横坐标.在确定最值时,函数自变量的取值范围应确定正确。
2.两条线段和的最值问题:解决这类问题最基本的定理就是“两点之间线段最短”,解决这类问题的方法是:作其中一个定点关于已知直线的对称点,连接对称点与另一个定点,它们与已知直线的交点即为所求的点,其变形问题有三角形周长最小或四边形周长最小等.【常见模型一】(两点在河的异侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,连接AB,与直线L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
【常见模型二】(两点在河的同侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,作点B关于直线L的对称点B',连接AB',与直线L的交点即为所求的渡河点,最短距离为线段AB'的长。
3. 两条线段差的最值问题:解决这类问题最基本的定理就是“三角形任何两边之差小于第三边”,解决这类问题的方法是:求解时,先根据原理确定线段差取最值时的图形,再根据已知条件求解。
【常见模型一】(两点在同侧):在直线L上求一点P,求|PA-PB|的最大值方法:如右图,延长射线AB,与直线L交于点P,|PA-PB|最大值为AB【常见模型二】(两点在异侧):在直线L上求一点P,求|PA-PB|的最大值。
方法:如右图,作点B关于直线L的对称点B',延长射线AB',与直线L交于点P,|PA-PB|最大值为AB'二、二次函数中的定值问题一般来说,二次函数求解几何线段代数式定值问题属于定量问题,方法采用:1.参数计算法:即在图形运动中,选取其中的变量(如线段长,点坐标)作为参数,将要求的定值用参数表示出,然后消去参数即得定值。
精品课件-二次函数背景下的线段最值问题
通过观察、分析、对比等方法,提高学生分析问题, 解决问题的能力,进一步强化分类归纳综合的思想,提 高综合能力。 • 情感目标:
通过自己的参与和教师的指导,体会及感悟化归与转 化、数形结合、数学建模等数学思想方法,享受学习数 学的快乐,提高应用数学的能力。
分析:第一步,找点P, 利用直线外一点与直线 上各点连接的所有线段 中,垂线段最短 。
第二步,解析法或几何 法求点P的坐标。
链接中考
(2015•漳州)如图,抛物线 yx22x3与x轴交于
A,B两点,与y轴交于点C,点D为抛物线的顶点,请 解决下列问题. (1)填空:点C的坐标为( 0 , 3 ), 点D的坐标为( 1 , 4 ); (2)设点P的坐标为(a,0),当|PD﹣PC|最大时, 求a的值并在图中标出点P的位置;
代入可得
,解得
,
∴直线DC的解析式为y=x+3, 将点P的坐标(a,0)代入得a+3=0,
求得a=﹣3, 如图1,点P(﹣3,0)即为所求
探究三
(6)点P在第一象限的抛物线上,PQ⊥x轴交BC于Q, 求PQ的最大值;
分析:第一步,设P点的坐标;
第二步,求直线B段PQ的函数关 系式,最后求出最值。
二次函数背景下的线段最 值问题
(2015•漳州卷第25题)
如图,抛物线 yx22x3与x轴交于A,B两点, 与y轴交于点C,点D为抛物线的顶点,请解决下列问题.
(1)填空:点C的坐标为( , ), 点D的坐标为( , );
(2)设点P的坐标为(a,0), 当|PD﹣PC|最大时, 求a的值并在图中标出点P的位置;
y x 2 2 x 3 x 1 2 4
二次函数线段最值问题
二次函数线段最值问题二次函数线段最值问题是高中数学中经常出现的一个问题。
在实际生活中,许多问题都可以通过二次函数线段最值问题来解决。
本文将从以下几个方面来探讨这个问题:二次函数线段的定义、最值问题的解法、实际应用、注意事项等。
一、二次函数线段的定义二次函数线段是指一条由二次函数所描述的直线。
一般来说,它的函数公式为:y = ax² + bx + c,其中a、b和c均为常数。
其中,a控制二次函数的“开口向上”或“开口向下”,b控制二次函数图像的位置,c为常数项。
当a>0时,函数图像开口向上,当a<0时,函数图像开口向下。
二、最值问题的解法求解二次函数线段最值的问题,需要先找到函数图像的顶点。
顶点是函数图像的最高点或最低点。
根据函数的定义,可以求得顶点的坐标为:x = -b / 2ay = f(x) = -Δ / 4a + c其中Δ = b² - 4ac为判别式。
当a>0时,函数的最小值为y = f(x),当a<0时,函数的最大值为y = f(x)。
三、实际应用二次函数线段最值问题在许多实际问题中都有广泛应用。
例如,在生产生活中,我们需要计算能够取得最大利润的销售数量;在物理学、化学等领域,也需要求出最高或最低点的数值。
此外,对于空间中的曲面图像,也可以利用二次函数线段最值问题来求出曲面的极值点。
四、注意事项在解题过程中,需要注意以下几点:1. 判别式Δ要大于等于0,否则函数没有最值。
2. 当a = 0时,不是二次函数,也不存在最值问题。
3. 在应用中,需要理解题目中的具体含义,才能正确求解最值问题。
总之,二次函数线段最值问题是高中数学中的重要内容,应当掌握。
通过理解其定义、解法以及实际应用,我们可以更好地理解和应用二次函数线段的相关知识,更好地完成数学学习。
二次函数线段最值问题二师兄解答
二次函数线段最值问题二师兄解答
【实用版】
目录
1.二次函数线段最值问题的基本概念
2.二次函数线段最值问题的求解方法
3.二次函数线段最值问题的实际应用
正文
一、二次函数线段最值问题的基本概念
二次函数线段最值问题是数学中的一个经典问题,它涉及到二次函数的性质以及线段最值的求解。
在实际生活和学习中,我们经常会遇到这类问题,例如在物理、化学、经济学等领域,它都有广泛的应用。
二次函数是指一个函数的最高次项是二次的函数,它的一般形式是f(x)=ax^2+bx+c,其中 a、b、c 是常数,a 不等于 0。
线段最值问题是指在线段上寻找某一函数的最大值或最小值。
二、二次函数线段最值问题的求解方法
求解二次函数线段最值问题,通常采用以下两种方法:
1.配方法:将二次函数转化为顶点式,然后根据顶点的横坐标求出最值。
配方法的步骤是:先将二次项和一次项的系数分别除以 2,然后将二次项和一次项的平方项加减到一个完全平方项中,从而将二次函数转化为顶点式。
2.导数法:对二次函数求导,然后令导数等于 0,求出极值点。
根据极值点的横坐标,可以判断出最大值或最小值。
三、二次函数线段最值问题的实际应用
二次函数线段最值问题在实际应用中非常广泛,例如在经济学中的最
优化问题,求解最大利润或最小成本;在物理学中的抛物线运动问题,求解最高点或最低点等。
掌握好二次函数线段最值问题的求解方法,对于解决实际问题具有重要意义。
综上所述,二次函数线段最值问题是一个具有实际意义的数学问题,通过配方法和导数法,我们可以有效地求解这类问题。
二次函数背景下的几何问题——线段最值问题
二次函数背景下的几何问题——线段最值问题线段最值问题是在二次函数背景下的一种几何问题,主要是求解一个线段的最大值或最小值。
这个问题可以通过二次函数的图像和相关的数学理论来解决。
在解决这类问题时,我们可以利用二次函数的性质和相关的数学技巧来找到线段的最值点,从而得出最值。
首先,我们来回顾一下二次函数的一般形式:f(x) = ax^2 + bx+ c,其中a、b、c都是常数且a不等于0。
根据二次函数的图像特点,我们知道它是一个抛物线,可以是开口向上(a>0)或开口向下(a<0)的。
对于线段最值问题,我们通常要确定线段的端点,然后找出其中的最大值或最小值点。
这可以通过以下步骤来完成:1.确定二次函数的图像形状:根据二次函数的参数a的值,确定抛物线是开口向上还是开口向下。
2.确定线段的端点:线段的端点可以是给定的数值,也可以通过求解二次函数的解来确定。
根据二次函数的性质,它的两个解(也就是x的值)对应着抛物线与x轴的交点,即抛物线的顶点和x轴的两个交点。
3.求解最值点:对于线段的最大值点,我们需要找到抛物线的顶点,并通过计算确定它的y坐标值。
通过二次函数的解析式,我们可以知道抛物线的顶点坐标是(-b/2a, f(-b/2a))。
同样的,对于线段的最小值点,我们也可以通过类似的方法来解决。
4.判断最值点是否在线段上:在找到最值点之后,我们需要判断它是否在给定的线段上。
这可以通过将最值点的x坐标值与线段的端点的x坐标值进行比较来实现。
如果最值点的x坐标值位于线段的端点之间,则最值点就在线段上。
通过以上步骤,我们可以很容易地求解线段的最值问题。
当然,在实际应用中,可能会碰到更复杂的情况,例如线段与其他二次函数曲线的交点等。
但是,通过理解二次函数的性质和运用相关的数学知识,我们可以应对这些情况并解决问题。
总结而言,线段最值问题是在二次函数背景下的一种几何问题,通过确定二次函数的图像形状、线段的端点、求解最值点和判断最值点是否在线段上,我们可以解决线段的最值问题。
二次函数背景下的几何问题——线段最值问题
二次函数背景下的几何问题——线段最值问题一、【教学内容分析】二次函数是一次函数和反比例函数的继续和发展,是初中数学学习的重点和难点,也为以后更高层次函数的学习奠定了基础.以二次函数为背景的试题常受命题者的青睐,它能够全面考察学生的数形结合能力与计算能力,同时它也是学生学习高中数学知识所必备的.而此命题一般不会用以纯函数的形式出现,而是结合几何图形或点的运动使几何图形发生变化,从而让代数与几何有机结合起来. 二次函数背景下的线段最值问题是利用重要的几何结论(如两点之间线段最短、垂线段最短、三角形两边之和大于第三边、两边之差小于第三边等)及二次函数的性质求最值.这类问题大多是“将军饮马”模型的变式应用,试题通过考查点在直线上运动时与它相关线段的最值情况,不但能了解学生综合运用数学知识的能力,而且还能通过学生对“动”与“定”之间的关系的思考,深入了解学生在图形的运动变化中探索几何元素之间位置关系和数量关系的能力和识别能力,体现新课程对学生几何探索活动过程、合情推理能力的要求.二【疑难点分析】培养学生能正确运用将军饮马等几何模型、函数模型,解决二次函数背景下的线段最值问题.三、【教学目标】(1)掌握利用基本事实——两点之间线段最短、三角形的三边关系构建几何模型,解决因动点产生的二次函数背景下的线段最值问题.(2)根据问题构建函数模型,解决因动点产生的二次函数背景下的线段最值问题.四、【教学重难点】重点:能运用几何模型和函数模型解决因动点产生的二次函数背景下的线段最值问题.难点:提高学生运用二次函数知识与几何知识解决数学综合题的能力.五、【教学媒体】PPT 课件、微课、导学练六、【教法】讲练结合法、问题教学法七、【学法】小组合作交流法、自主探究法、观察发现法八、【教学流程框图】教学过程设计:教学内容(一)微课助手,忆旧知播放微课视频短片,让学生回顾下数学史上著名的“将军饮马”问题(二)重点难点,细解读1、模型一:如图 1,点 P 在直线 l 上运动,找出一点 p 使得PA+PB 取最小值.观察模型并回答以下两个问题:教学策略让学生通过观察模型一,总结出模型一的特点和所运用的方法.设计意图通过回顾“将军饮马”问题,烘托问题情境,利用微课吸引学生的注意力,在历史经典中唤起学生的兴趣,激发学生探究问题的欲望,让学生回忆起旧知.为了落实好下面的模型应用,把知识背景归纳成一般化的数学模型. 在温故中实现引新,为展开模型应值时,求点 P 的坐标 (1)该模型有什么特征?(2)基本解法是什么?特征:定点 A 、B 同侧,P 为动点; 原理:两点之间,线段最短; 思想:转化(化同侧为异侧);方法:轴对称法.模型运用:(2016•漳州)已知:如图,A (-1,0),B (3,0),C(0,3),抛物线经过点 A 、B 、C , 抛物线的顶点为 D .(1) 求抛物线的解析式和抛物线的顶点 D ;(2) 点 P 在对称轴上,PA+PC取最小 .解题思路分析:(1)利用两点式或者一般式求抛物线的解析式;通过小组讨论,再请学生代表解析.教师给予点评,并板演解答过程.用提供知识、方法及经验的支持.二次函数类的压轴题第一问通常为求点坐标、解析式,本小问要求学生能够熟练地掌握待定系数法求函数解析式或利用函数解析式求点坐标,相对较简单,通过第一小问的解答增进学生解压轴题的信心. 同时在具体的实例中学习把知识迁移应用并体会“将军饮马”问题中蕴含的数学本 质.利用对称思想(2)步骤:板书解题过程:(2)解:连接 BC,与对称轴的点即为点 P,如图所示,点 P为所求,则可得 P 的横坐标为1.设直线BC 的解析式为y=kx+b(k≠0),将点 B(3,0)、C(0,3)代入y=kx+b(k≠0),可得:⎧3k +b = 0 ⎧k = -1⎨,解得:⎨⎩b = 3 ⎩b = 3则直线 BC 的表达式为:y = -x + 3 .当x =1时,y =-1+3 = 2 .∴当点 P 的坐标为(1,2)时,PA+PC 取最小值.让学生独立思考,通过类比上一把复杂的问题简单化.变式 1:已知:如图,A(-1,0),B (3,0),C(0,3),抛物线经过点 A、B、C.点 P 在对称轴上.(1)求抛物线的解析式和抛物线的顶点 D;(2)△PAC周长最小时,求点P 的坐标.解题思路分析:由于AC 为定值,要使△PAC周长最小,则此问题转化成在对称轴上找一点 P,使得PA+PC 最小即可.2、模型二:在直线 l 上,找出一点P,使|PA-PB|的值最大.观察模型并回答以下两个问题:(1)该模型有什么特征?还能利用对称轴的知识去解决?(2)小组成员间每人找一点 P,进行比较,你有什么发现?(3)这个模型的基本解法是什么?题,规范书写解题过程.再与学生强调此类型题解题步骤:(1)找对称点;(2)连线并求直线解析式;(3)求点坐标.这一环节问题一个接着一个,形成了问题串,具有挑战性,能极大引起学生的思考,教师在这一环节中要善于运用语言不断鼓励学生.引导学生得出这一模型的基本解法:使A、B、P 三点共线,原理是:三角形两边之差小于第三边.经历画图-观察-说理等活动,得出作图原理,将该问题归类建模,熟悉并理解该几何模型,培养学生的逻辑思维能力.对于问题教师要给学生足够的时间进行讨论、交流,让学生对图象进行细致的观察、类比、分析、及时检测学生对所学知识的掌握情况,加深对这一模型的理解 .基本解法:使A、B、P 三点共线;基本原理:三角形两边之差小于第三边;基本思想:转化(化折为直).变式 2:已知:如图,A(-1,0),B (3,0),C(0,3),抛物线经过点 A、B、C.点 P 在对称轴上.(1)求抛物线的解析式和抛物线的顶点 D;(2)|PA-PC|最大,求点 P 的坐标.解题思路分析:交流,同时鼓励学生尽可能多的从图象中获取信息,以小组的形式对信息进行分析、综合、概括、归纳,形成知识系统.教师鼓励学生先独立完成,然后共同交流,总结知识,提炼方法.(2)解:连接直线 AC 交对称轴于点P,如图所示,点P 为所求,则可得P 的横坐标为1. 设直线AC 的解析式为y =kx +b(k ≠ 0),将点A ( -1,0 )、 C (0,3 )代入y=kx+b(k≠0),可得:⎧-k +b = 0 ⎧k = 3⎨,解得:⎨⎩b = 3 ⎩b = 3则直线 AC 的表达式为:y = 3x + 3.当x =1时,y = 3 +3 = 6 .∴当点 P 的坐标为(1,6)时,|PA-PC|最取大值.模型三:如图,在平面直角坐标系中如何表示线段 AB 的长度. 对于这个探究,教师利用微课进行讲解,组织学生先观看微课。
二次函数中线段长度的最值问题
1:如图1,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作y 轴的 平行线交直线BC 于点Q ,求线段PQ 的最大值。
2:如图2,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作X 轴的 平行线交直线BC 于点Q ,求线段PQ 的最大值。
3:如图3,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作直线
的垂线于点E ,求线段PE 的最大值。
4:如图4,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作x 轴的平行线交直线BC 于点D ,过点P 作y 轴的平行线交直线BC 点Q ,求三角形PDQ 周长的最大值;
5:如图5,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,作BC PQ ⊥点,过点P 作x 轴的平行线交直线BC 于点M ,求PMQ ∆最大值;
图4。
二次函数求线段最值问题
二次函数求线段最值问题二次函数求线段最值问题是指给定一个二次函数,要求求出函数在某个线段上的最大值或最小值。
以下是求解二次函数线段最值问题的详细步骤:1. 确定二次函数公式:首先,确定二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b和c分别为常数。
根据具体问题的条件,可以得到函数的具体表达式。
2. 确定线段的范围:根据问题中给定的线段范围,确定函数的自变量x的取值区间。
这个区间必须在函数的定义域内。
3. 确定最值类型:判断问题中要求求解的是最大值还是最小值。
这可以通过问题的描述或背景来确定。
4. 求解最值点:针对求解最大值或最小值的情况,进行以下步骤:- 求解函数的导数f'(x)。
导数可以通过对函数f(x)进行求导得到。
- 解求导函数f'(x)的解析解或数值解。
这些解即为函数的驻点,也就是函数取得最值的可能点。
- 验证驻点是否在线段范围内。
检查求得的驻点是否在给定的线段范围内。
如果在范围内,则进入下一步;如果不在范围内,则取线段端点的函数值作为最值点。
- 计算驻点或线段端点的函数值。
将驻点或线段端点的x值代入二次函数,计算对应的函数值。
- 比较函数值大小,找出最值点。
比较上一步中得到的函数值,找出最大值或最小值点。
5. 补充边界情况:除了在线段内求解最值以外,还需要检查函数在线段的端点处的函数值。
比较端点的函数值与之前求得的最值点的函数值,确定最终的最值点。
6. 验证最值点:最后,将求得的最值点代入二次函数,验证它们是否为最大值或最小值。
即比较最值点的函数值与其他可能的函数值,以确定最值点的正确性。
以上是求解二次函数线段最值问题的详细步骤。
通过这些步骤,可以找到函数在给定线段上的最大值或最小值点。
注意,在具体的问题中,可能需要对步骤进行一些适当的调整和修改,以适应不同的求解需求。
二次函数中的线段最值问题
二次函数中的线段问题例1.如图,已知抛物线y=﹣x2﹣2x+3的对称轴为直线x=﹣1,且抛物线与x轴交于A、B 两点,与y轴交于C点,其中A(1,0),C(0,3).直线BC解析式y=x+3;(1)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(2)在抛物线的对称轴上找一点P使PB﹣PC的值最大,求出P点的坐标变式1.如图,已知抛物线y=﹣2x2﹣4x+6与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,6).在抛物线的对称轴上是否存在点P使PB﹣PC的值最大?若存在,求出P点的坐标,若不存在,请说明理由;例2.如图,抛物线y=﹣x2+x;过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?例3.如图,已知抛物线y=﹣x2+x+4,的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧),与y轴交于C点(0,4).A、B的坐标分别为:(﹣2,0)、(8,0),A、B的坐标分别为:(﹣2,0)、(8,0)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求出M点的坐标.变式1.如图,二次函数y=﹣x2+2x+3,的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),直线BD解析式为y=﹣x+3,P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限内时,求线段PM长度的最大值.变式2.如图,已知抛物线y=x2﹣2x﹣3经过点A(﹣1,0),B(3,0),C(0,﹣3)三点.直线BC的解析式为y=x﹣3,点P为抛物线在第四象限内的一个动点,过点P作PM⊥直线BC,垂足为M,当PM最大时,请直接写出此时点P的坐标.变式3.抛物线y=x2﹣2x﹣3与x轴交A(﹣1,0)和点B,交y轴于点C,对称轴为直线x=1.如图,若点D为线段BC下方抛物线上一点,过点D作DE⊥x轴于点E,再过点E作EF⊥BC于点F,请求出DE+EF的最大值.变式4.已知顶点为D的抛物线y=﹣x2+2x+3与x轴交于点A,B(点A在点B左边),直线y=n与抛物线分别交于点M,N(点M在点N左边).直线y=n与线段DB交于点P,求PN的最大值;变式5.已知抛物线y =(x ﹣1)2的顶点为(1,0),与y 轴的交点坐标为(0,).R (1,1)是抛物线对称轴l 上的一点.若P 是抛物线上的一个动点,求证:点P 到R 的距离与点P 到直线y =﹣1的距离恒相等;例4.如图,拋物线y=421-2++x x 与坐标轴交于A 、B 、C 三点,对称轴与x 轴交于点P,点E 是x 轴上方抛物线上的动点,过点E 作EN ⊥x 轴于点N.连接AE 交抛物线对称轴于点F,连接BE 并延长交对称轴于点G,试证明PF+PG 的值为定值,并求出该定值.作业1.已知如图,抛物线y=x 2+bx +c 过点A (3,0),B (1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与点A 重合),过点P 作PD ∥y 轴交直线AC 于点D .(1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;(3)在抛物线对称轴上是否存在点M 使|MA ﹣MC |最大?若存在请求出点M 的坐标,若不存在请说明理由.2.如图,二次函数y =﹣x 2+x +2的图象与x 轴相交于点A (﹣1,0)、B (4,0),与y 轴相交于点C .直线BC 的解析式为y =﹣x +2,点P 为该函数在第一象限内的图象上一点,过点P 作PQ ⊥BC ,垂足为点Q ,连接PC .求线段PQ 的最大值;3.如图,P (m ,n )是抛物线142-=x y 上任意一点,l 是过点(0,﹣2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为H .(1)填空:当m =0时,OP = ,PH = ;当m =4时,OP = ,PH = ;(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想.4.已知抛物线y =x 2﹣4x+3与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为 D .点E 为x 轴下方抛物线y =x 2﹣4x+3上一动点,抛物线的对称轴DH 交x 轴于点H ,直线AE 交y 轴于点M ,直线BE 交对称轴DH 于点N ,求MO+NH 的值;。
完整版)二次函数的线段最值问题
完整版)二次函数的线段最值问题二次函数的线段最值问题例1:给定三个点A(4,0),B(-4,-4),C(0,2),连接AB,BC,AC,求抛物线的解析式和点P的坐标,其中点P是抛物线对称轴上的一点。
解析:首先,我们可以通过点A和点B的坐标,得到抛物线的对称轴方程为x=0.然后,我们可以通过点C的坐标,得到抛物线的顶点坐标为(0,2)。
因此,抛物线的解析式为y=ax^2+2,其中a为待定系数。
接下来,我们可以利用点A或点B的坐标,带入解析式求解a的值。
得到a=-1/8,因此抛物线的解析式为y=-x^2/8+2.点P在对称轴上,因此其横坐标为0.我们可以通过求解点P到线段BC的垂线,得到点P的纵坐标。
具体来说,我们可以利用线段BC的斜率和垂线的斜率的乘积为-1的性质,求解垂线的斜率。
然后,利用点P和线段BC的一个端点的坐标,带入点斜式方程求解垂线的方程。
最后,求解垂线与线段BC的交点的纵坐标即可。
经过计算,得到点P的坐标为(0,-3/2)。
例2:给定抛物线y=x^2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D。
求抛物线的解析式,点P在运动的过程中线段PD长度的最大值,以及是否存在点M使|MA﹣MC|最大,若存在则求出点M的坐标,若不存在则说明理由。
解析:首先,我们可以通过点C的坐标,得到抛物线的解析式为y=x^2.然后,我们可以通过点A和点B的坐标,得到抛物线的顶点坐标为(2,4)。
因此,抛物线的解析式为y=x^2+4.点P沿抛物线从点C到点A运动,因此其轨迹为抛物线上的一段。
我们可以通过求解点P到线段CD的垂线,得到点P在运动过程中线段PD的长度。
具体来说,我们可以利用线段CD的斜率和垂线的斜率的乘积为-1的性质,求解垂线的斜率。
然后,利用点P和线段CD的一个端点的坐标,带入点斜式方程求解垂线的方程。
2024年中考复习-13 二次函数中求线段,线段和,面积等最值问题(解析版)
抢分秘籍13二次函数中求线段,线段和,面积等最值问题(压轴通关)目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数中求线段,线段和,面积等最值问题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,二次函数的图象和性质是考查的基础,也是高频考点、必考点。
2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一二次函数中求线段的最值问题【例1】(2024·安徽滁州·一模)已知抛物线()22131y x n x n =-++++交x 轴于点()10A -,和点B ,交y 轴于点C .(1)求抛物线的函数解析式;(2)如图1,已知点P 是位于BC 上方的抛物线上的一点,作PM BC ⊥,垂足为M ,求线段PM 长度的最大值;(3)如图2,已知点Q 是第四象限抛物线上一点,45ACQ ∠=︒,求点Q 的坐标.设()234P m m m -++,,则∴(2222PM PE ==∵202->,∴PM 有最大值,最大值为(3)解:作BG CQ ⊥∵()10A -,,()40B ,,∴1OA =,OB OC ==∵45ACQ ∠=︒,OCB ∠∴ACO GCB ∠=∠,∴tan tan ACO GCB ∠=∠∴1442BG =,本题考查了二次函数的图象与性质,一次函数的图象与性质,等腰直角三角形的性质,三角函数的定义,勾股定理等知识,根据题意作出辅助线是解题的关键.【例2】(2024·江苏淮安·二模)如图,在平而直角坐标系中,二次函数2y =+的图象与x 轴分别交于点,O A ,顶点为B .连接,OB AB ,将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,连接BC .点,D E 分别在线段,OB BC 上,连接,,,AD DE EA DE 与AB 交于点,60F DEA ∠=︒.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①EDA ∠的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.∵()2313y x =--+,∴抛物线对称轴为1x =,即ON ∵将线段AB 绕点A 按顺时针方向旋转∴60BAC ∠=︒,AB AC =,∴BAC 是等边三角形,1.(2024·四川南充·一模)如图,已知抛物线2y x bx c =++与x 轴交于0()1,A -,B 两点,与y 轴交于点C (0,3)-.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于第四象限内一动点,PD BC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)如图2,点E 是抛物线的顶点,点M 是线段BE 上的动点(点M 不与B 重合),过点M 作MN x ⊥轴于N ,是否存在点M ,使CMN 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =--(2)当32m =时,PD 取得最大值为928.此时315,24P ⎛⎫- ⎪⎝⎭(3)CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫- ⎪⎝⎭或()323,6212--【分析】(1)把点,A C 坐标代入函数的解析式,利用待定系数法求解即可;(2)先求线BC 的解析式,设点p 的横坐标为m ,再用m 的代数式表示PD 的长度建立二次函数求解即可;(3)先求直线BE 的解析式,再分三种情况,根据相似三角形的判定和性质求解即可.【详解】(1)由题意得103b c c -+=⎧⎨=-⎩,解得:23b c =-⎧⎨=-⎩.则抛物线的解析式为:223y x x =--;(2)过点P 作PH x ⊥轴于点H ,交BC 于点G当0y =时,2230x x --=,解得=1x -或3,∴(3,0)B 设直线BC 的解析式为:1y kx b =+,则11303k b b +=⎧⎨=-⎩解得:113k b =⎧⎨=-⎩∴3y x =-则263n -=-,∴32n =,∴M ③当90MCN ∠=︒时,过点M∵90MCF NCO ∠+∠=︒,CNO ∠∴MCF CNO ∠=∠,又90MFC CON ∠=∠=︒,∴MFC CON ∽,∴CF MF NO CO =,∴()3263n n n ---=,【点睛】本题考查用待定系数法求二次函数的解析式,构造二次函数求线段的最值,二次函数与直角三角形的存在性问题,相似三角形的判定和性质,难度较大,是中考的压轴题,解题的关键是数形结合,提高综合运用的能力.2.(23-24九年级下·江苏宿迁·阶段练习)如图,在平面直角坐标系中抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C -.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.求出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标.设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,4Q t ⎛- ⎝∴231133444PQ t t t ⎛⎫=---+-= ⎪⎝⎭∵AQE PQD ∠=∠,AEQ QDP ∠=∠∴OAC QPD ∠=∠,∵4,3OA OC ==,如图,二次函数213442y x x =--的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,连接AC ,作直线BC .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的表达式;(2)如图1,若点P 是第四象限内二次函数图象上的一个动点,其横坐标为m ,过点P 分别作x 轴、y 轴的垂线,交直线BC 于点M ,N ,试探究线段MN 长的最大值;(3)如图2,若点Q 是二次函数图象上的一个动点,直线BQ 与y 轴交于点H ,连接CD ,在点Q 运动的过程中,是否存在点H ,使以H ,C ,B 为顶点的三角形与ACD 相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)()20A -,,()80B ,,()04C -,,直线BC 的表达式为1y x 42=-;(2)线段MN 长的最大值为45;(3)点Q 的坐标为3954⎛⎫- ⎪⎝⎭,或()46-,.【分析】(1)令0y =,求得x 的值,令0x =,求得y 的值,可求得A ,B ,C 三点的坐标,利用待定系数法即可求得直线BC 的表达式;(2)设213442P m m m ⎛⎫-- ⎪⎝⎭,,则142M m m ⎛⎫- ⎪⎝⎭,,证明PNM OBC ∠=∠,利用正切函数的定义推出2PN PM =,求得225MN PN PM PM =+=,得到MN 关于m 的二次函数,利用二次函数的性质求解即可;(3)利用勾股定理求得25AC =,5AD OC ==,作DG AC ⊥于点G ,用正切函数的定义推出OCA BCH ∠=∠,分BC BH =和BH CH =两种情况讨论,分别求得点H 的坐标,求得直线BH 的表达式,与二次函数的表达式联立求解即可.【详解】(1)解:令0y =,则2134042x x --=,解得12x =-,28x =,令0x =,则4y =-,∴()20A -,,()80B ,,()04C -,,设直线BC 的表达式为4y kx =-,代入()80B ,得084k =-,解得12k =,∴直线BC 的表达式为1y x 42=-;∵PN OB ∥,PM OC ∥,∴PNM OBC ∠=∠,∴4tan tan 8OC PNM OBC OB ∠=∠===∴2PN PM =,22MN PN PM =+=∴(2155244MN m m m ⎛⎫=-+=-- ⎪⎝⎭①当BC BH =时,∵BO CH ⊥,∴OH OC =,∴()04H ,,同理求得直线BH 的表达式为142y x =-+联立得241234412x x x ---+=,【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,点的坐标表示三角形的面积,勾股定理,正切函数,解方程,熟练掌握待定系数法,勾股定理,正切函数是解题的关键.题型二将军饮马河求二次函数中线段和最值问题【例1】(2024·天津津南·一模)综合与探究:如图,抛物线2y x bx c =-++上的点A ,C 坐标分别为()0,2,()4,0,抛物线与x 轴负半轴交于点B ,且2OM =,连接AC ,CM .(1)求点M 的坐标及抛物线的解析式;(2)点P 是抛物线位于第一象限图象上的动点,连接AP ,CP ,当PAC ACM S S =△△时,求点P 的坐标;(3)将抛物线沿x 轴的负方向平移得到新抛物线,点A 的对应点为点A ',点C 的对应点为点C ',当MA MC ''+的值最小时,新抛物线的顶点坐标为,MA MC ''+的最小值为.设直线AC 的解析式为y =将()0,2A ,()4,0C 代入y 240m k m =⎧⎨+=⎩,解得122k m ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为y =由平移的性质可知,MA '∴MA MC ''+的值最小就是显然点M '在直线=2y -上运用,作出点C 关于直线=2y -得最小值,即为AC ''的长度,∵点C 关于直线=2y -对称的对称的点是点∴()4,4C ''-,∴()(min MA MC M A '''+=+设直线AC ''的解析式是:将点()0,2A ,()4,4C ''-代入得:本题考查求二次函数的解析式,二次函数的图象与性质,二次函数与几何变换综合,二次函数与相似三角形综合,最短路径问题,三角形面积公式等知识,难度较大,综合性大,作出辅助线和掌握转换思想是解题的关键,第二问的解题技巧是使用铅锤公式计算面积,第三问的技巧是转化成直角三角形的讨论问题,如果直接按相似讨论,则有四种情况,可以降低分类讨论的种类,第四问的技巧,是将点M 向反方向移动,从而将两个动点转化成一个动点来解决.【例2】(2024·江苏宿迁·模拟预测)如图1,抛物线2y x bx =-+与x 轴交于点A ,与直线y x =-交于点()4,4B -,点()0,4C -在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =-+的表达式;(2)当BP =时,请在图1中过点P 作PD OA ⊥交抛物线于点D ,连接PC OD ,,判断四边形OCPD 的形状,并说明理由;(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ PC ,,求CP BQ +的最小值. OH PH ∴=,POH ∠连接BC ,4OC BC == ,42OB ∴=.22BP = ,22OP OB BP ∴=-=在OA 上方作OMQ ,使得4OC BC == ,BC ⊥45CBP ∴∠=︒,CBP MOQ ∴∠=∠,BP OQ = ,CBP ∠=(SAS)CBP MOQ ∴△≌△CP MQ ∴=,1.(2024·宁夏银川·一模)如图,已经抛物线经过点()00O ,,()55A ,,且它的对称轴为2x =.(1)求此抛物线的解析式;(2)若点B 是抛物线对称轴上的一点,且点B 在第一象限,当OAB 的面积为15时;求点B 的坐标.(3)在(2)的条件下,P 是抛物线上的动点,求P 的坐标以及PA PB -的最大值.【答案】(1)24.y x x =-(2)()2,8B (3)()2,12,P -PA PB -的最大值为32.【分析】(1)根据题意可设抛物线为2,y ax bx =+再利用待定系数法求解抛物线的解析式即可;(2)设()2,,B y 且0,y >记OA 与对称轴的交点为Q ,设直线OA 为:,y kx =解得:1,k =可得直线OA 为:,y x =则()2,2,Q 利用()12OAB BOQ ABQ A O S S S BQ x x =+=⨯⨯- 列方程,再解方程即可;(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB -=最大,由勾股定理可得最小值,再利用待定系数法求解AB 的解析式,联立一次函数与二次函数的解析式,解方程组可得P 的坐标.【详解】(1)解: 抛物线经过点(0,0)O ,∴设抛物线为:2,y ax bx =+ 抛物线过(5,5)A ,且它的对称轴为2x =.2555,22a b b a+=⎧⎪∴⎨-=⎪⎩解得:1,4a b =⎧⎨=-⎩∴抛物线为:24.y x x =-(2)解:如图,点B 是抛物线对称轴上的一点,且点B 在第一象限,设()2,,B y 且0,y >记OA 与对称轴的交点为Q ,设直线OA 为:y kx =55,k \=解得:k =∴直线OA 为:y =()2,2,Q ∴OAB BOQ ABQ S S S ∴=+ 12515,2y =-⨯=解得:8y =或4,y =-()()5,5,2,8,A B ()(2525AB ∴=-+设AB 为:y k x b '=+55,28k b k b '''+=⎧∴⎨+=⎩'解得:1,10k b =-⎧⎨='⎩'∴AB 为:10,y x =-+210,4y x y x x =-+⎧∴⎨=-⎩解得:52,,512x x y y ==-⎧⎧⎨⎨==⎩⎩()2,12.P ∴-【点睛】本题考查的是利用待定系数法求解二次函数的解析式,坐标与图形面积,三角形三边关系的应用,勾股定理的应用,确定PA PB -最大时P 的位置是解本题的关键.2.(2024·湖南怀化·一模)如图1,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,5OB OC ==,顶点为D ,对称轴交x 轴于点E .图1图2图3(1)求抛物线的解析式、对称轴及顶点D 的坐标;(2)如图2,点Q 为抛物线对称轴上一动点,当Q 在什么位置时QA QC +最小,求出Q 点的坐标,并求出此时QAC △的周长;(3)如图3,在对称轴左侧的抛物线上有一点M ,在对称轴右侧的抛物线上有一点N ,满足90MDN ∠=︒.求证:直线MN 恒过定点,并求出定点坐标.设直线BC 的解析式为5y kx =+代入点()50B ,得055k =+,解得∴直线BC 的解析式为y x =-+当2x =,253y =-+=,∴()23Q ,,∵点()10A -,,∵221526=+=AC ,设点M 的坐标为(24m m -+,∵顶点D 的坐标为()29,,∴()2945MH m m =--++=()22945GN n n n =--++=-由题意得H G MDN ∠=∠=∠∴90MDH NDG ∠=︒-∠=∠∴MDH DNG ∽△△,∴当20x -=即2x =时,8y =,∴无论m n 、为何值,直线MN 总会经过定点()28,,∴直线MN 恒过定点,定点坐标为()28,.【点睛】本题考查了二次函数的综合运用.考查了待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握二次函数的图象与性质、轴对称的性质,添加适当的辅助线,是解题的关键.3.(2024·安徽池州·二模)如图,抛物线2Ly ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =.(1)求直线AB 的解析式及抛物线的解析式;(2)如图①,点P 为第一象限抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求当点P 的横坐标为多少时,PD AD +最大;(3)如图②,将抛物线2L y ax bx c =++∶向左平移得到抛物线L ',直线AB 与抛物线L '交于M 、N 两点,若点B 是线段MN 的中点,求抛物线'L 的解析式.题型三胡不归求二次函数中线段和最值问题【例1】(新考法,拓视野)(2024·陕西西安·三模)已知抛物线2(,,y ax bx c a b c =++为常数,0)a ≠与x 轴交于点()A -、点B 两点,与y 轴交于点()0,2C ,对称轴为x =(1)求抛物线的表达式;(2)M 是抛物线上的点且在第二象限,过M 作MN AC ⊥于点N ,求AN 的最大值.设AC 的解析式为y kx b =+2302k b b ⎧-+=⎪∴⎨=⎪⎩,32k b ⎧=⎪⎨⎪=⎩∴AC 的解析式为33y x =23AO = ,2CO =,3CO本题考查二次函数的综合应用,涉及待定系数法,含30︒的直角三角形三边关系,解直角三角形的应用,二次函数的最大值等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.【例2】(2024·浙江·一模)如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B -和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q ⎛⎫ ⎪⎝⎭,,点M 在x 轴上,点E 在平面内,BME AOM ≌,且四边形ANEM 是平行四边形.①求点E 的坐标;②设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH 绕点B 旋转一周,旋转后的三角形记为11BPH △,求11BP 的最小值.1.(2024·河南洛阳·一模)在平面直角坐标系中,抛物线212y x bx c =-++交x 轴于()4,0A 、B 两点,交y 轴于点()0,4C .(1)求抛物线表达式中的b 、c ;(2)点P 是直数AC 上方抛物线上的一动点,过点F 作PF y 轴交AC 于点E ,作PE AC ∥交x 轴于点F ,求PE 的最大值及此时点P 的坐标;(3)将该抛物线沿射线CA 方向平移1y ,请直接写出新抛物线1y 的表达式______.()4,0A ,()0,4C ,∴直线AC 的解析式为y =-PE y ∥Q 轴,PE x ∴⊥轴,90AOC ∴∠=︒,,,.(1)求抛物线的解析式;(2)设点P 是第一象限内的抛物线上的一个动点,①当P 为抛物线的顶点时,求证:PBC 直角三角形;②求出PBC 的最大面积及此时点P 的坐标;③过点P 作PN x ⊥轴,垂足为N ,PN 与BC 交于点E .当PE 的值最大时,求点P 的坐标.∴45HCP ∠=︒又∵在Rt BOC 中,OB =∴45OCB ∠=︒,∴90PCB ∠=︒∴PCB 是直角三角形②设直线BC 的解析式为∴(),3E x x -+,∴(223PE x x x =-++--∴1122PBCS PE OB =⨯⨯= 当32x =时,PBC 的最大面积为∴(),3E x x -+,∴(223PE x x x =-++--∵()0,3C ,()3,0B ,∴3OC OB ==,3BN =∴45OBC OCB ∠=∠=︒,3.(2023·山东济南·一模)抛物线()2122y x a x a =-+-+与x 轴交于(),0A b ,()4,0B 两点,与y 轴交于点()0,C c ,点P 是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a ,b ,c 的值;(2)如图1,连接BC 、AP ,交点为M ,连接PB ,若14PMB AMB S S =V V ,求点P 的坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线交x 轴于点E ,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为9(0)0αα︒<<︒,连接E B ',E C ',求34E B E C ''+的最小值.设BC l :y kx b =+,将()0,4,BC l ∴:4y x =-+,设21,42P m m m ⎛⎫-++ ⎪⎝⎭,则21PD y y m m =-=-++根据旋转得性质得出:OE ∵9494OF OC ⋅=⨯=,2OE OF OC '∴=⋅,∴OE OC OF OE '=',题型四化简求值的解法【例1】(2024·四川广元·二模)如图,二次函数2y ax bx c =++的图象与x 轴交于原点O 和点()40A ,,经过点A 的直线与该函数图象交于另一点()13B ,,与y 轴交于点C .(1)求直线AB 的函数解析式及点C 的坐标.(2)点P 是抛物线上位于直线AB 上方的一个动点,过点P 作直线PE x ⊥轴于点E ,与直线AB 交于点D ,过点B 作BF x ⊥轴于点F ,连接OP ,与BF 交于点G ,连接DG .求四边形GDEF 面积的最大值.(3)抛物线上是否存在这样的点Q ,使得45BOQ ∠=︒若存在,请求出点Q 的坐标;若不存在,请说明理由.∵点()13B ,,∴13BN ON ==,.又点()40A ,,∴点()43M ,.∴3BM =.又MH BN =,ONB BMH ∠∠=∴()SAS OBN BHM ≌.∴OB HB =,且OB HB ⊥.∴45BOH ∠=︒.∴OH 与抛物线的交点Q 即为所求的点.∵1MH =,∴点()42H ,.本题考查待定系数法求函数解析式,二次函数与几何图形面积的综合,等腰直角三角形的判定和性质,作辅助线构造全等三角形是解题的关键.【例2】(2024·安徽宣城·一模)如图,已知抛物线23y ax bx =+-与x 轴的交点为()()4,0,2,0A D -,与y 轴交点为C .(1)求该抛物线的解析式;(2)设点C 关于抛物线对称轴的对称点为点B ,在抛物线的A ~B 段上存在点P ,求五边形APBCD 面积的最大值ax M S ;(3)问该抛物线上是否还存在与点P 不重合的点Q ,使以A 、B 、C 、D 、Q 五点为顶点的凸五边形面积等于题(2)中五边形APBCD 面积的最大值ax M S ,若存在,直接写出....所有满足条件的点Q 的横坐标;若不存在,请说明理由.(3)解:由(2)可知,S 五边形由对称性可知,点P 与对称轴对称的点一定符合题意,即此时点∵抛物线解析式为238y x =-∴顶点坐标为2718⎛⎫- ⎪⎝⎭,,∴顶点与B 、C 组成的三角形面积为1.(2024·山东济南·一模)如图,直线132y x=-+交y轴于点A,交x轴于点C,抛物线214y x bx c=-++经过点A,点C,且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点(),0P m顺时针旋转90︒得到线段O A'',若线段O A''与抛物线只有一个公共点,请结合函数图象,求m的取值范围.设21,34M x x x ⎛⎫-++ ⎪⎝⎭,令0y =,得2134y x x =-++解得:2x =-,或6x =,∴PO PO m '==,'='A O OA ∴(),O m m ',()3,A m m '+,当()3,A m m '+在抛物线上时,有解得,326m =-±,,与轴交于点1,0A -和点()3,0B ,与y 轴交于点C ,E 为抛物线的顶点.图1图2(1)求该抛物线的函数表达式;(2)如图1,点P 是第一象限内抛物线上一动点,连接PC PB BC 、、,设点P 的横坐标为t .①当t 为何值时,PBC 的面积最大?并求出最大面积;②当t 为何值时,PBC 是直角三角形?(3)如图2,过E 作EF x ⊥轴于F ,若(),0M m 是x 轴上一动点,N 是线段EF 上一点,若90MNC ∠=︒,请直接写出实数m 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y x 2x 3 x 1 4 2 解析式为: y x 2x 3, 顶点D1 , 4
2
a -1 解得:b 2 c 3
模型应用
(2) 变式:点 点 P 在对称轴上, P在对称轴上,△ PA+PC PAC 取最小值时,求点 周长最小,求点 PP 的坐标; 的坐标;
2
链接中考
2 解:设点M的坐标为 m, m 4m 3 设直线BC的解析式为y kx 3,把点B(3,0) 代入,得: k 1 ∴直线BC的解析式为y x 3 ∵MN∥y轴,∴点N的坐标为 m,m 3 ∵抛物线的解析式为 y x2 4x 3 x 22 1 ∴抛物线的对称轴为 x 2 ∴点(1,0)在抛物线的图象上,∴1<m<3. 2 MN m 3 m 4 m 3 ∵线段
2
y x 2x 3 x 1 4
2 2
∴C(0,3),D(1,4)
规范答题不失分
(2)设点P的坐标为(a,0),当|PD﹣PC|最 大时,求a的值并在图中标出点P的位置; 解:∵在三角形中两边之差小于第三边, ∴延长DC交x轴于点P, 设直线DC的解析式为y=kx+b,把D、C两点坐标 代入可得 ,解得 ,
步骤归纳: 1)找对称点 2)连线并求直线解析式 3)求点坐标
【思维点拨】要使△PAC的周长最小,已知AC为定值, 只需求一点P使得PA+PC最小即可.
探究二
问题:在直线l上,找出一点P,使|PA-PB|的值最大。
模型二:
B
A
P P′
在△ P‘AB中
l
P ’A-P’ B< AB
∵PA-PB=AB
∴P‘A-P’B<PA-PB
∴直线DC的解析式为y=x+3, 将点P的坐标(a,0)代入得a+3=0, 求得a=﹣3, 如图1,点P(﹣3,0)即为所求
探究三
(6)点P在第一象限的抛物线上,PQ⊥x轴交BC于Q, 求PQ的最大值;
分析:第一步,设P点的坐标; 第二步,求直线BC的 解析式,得Q点坐标; 第三步,利用线段与 点坐标之间的关系, 得线段PQ的函数关 系式,最后求出最值。
链接中考
(2015•漳州)如图,抛物线 y x 2 x 3与x轴交于 A,B两点,与y轴交于点C,点D为抛物线的顶点,请 解决下列问题. 0 3 (1)填空:点C的坐标为( , ), 点D的坐标为( 1 , 4 ); (2)设点P的坐标为(a,0),当|PD﹣PC|最大时, 求a的值并在图中标出点P的位置;
基本解法:使A、B、P三点共线 基本原理:三角形两边之差小于第三边 基本思想:转化(化折为直)
模型应用
(3) 点P在对称轴上,|PA-PC|最大,求点P的坐标;
分析:第一步,应用模型 找到点P的位置; 第二步,求直线AC 的解析式; 第三步,将P点横坐 标代入直线BC的解 析式求出其纵坐标。
变式训练
(4) 点P在对称轴上,|PA-PC|最小,求点P的坐标;
分析:第一步,找点P。要使|PA-PC| 最小,只要PA=PC即可,由线段垂直 平分线的逆定理可知:点P在线段AC的 垂直平分线上,因此线段AC垂直平分 线与对称轴的交点即为所求的点P。 第二步,解析法或几何法求点P的 坐标。
变式训练
(5)点P在线段BC上,PA取最小值时,求点P的坐标; 分析:第一步,找点P, 利用直线外一点与直线 上各点连接的所有线段 中,垂线段最短 。 第二步,解析法或几何 法求点P的坐标。
函数模型
竖直线段
y
y A x ,
1
水平线段
y
A x1 , y B x2 , y
y B x ,
2
O
x
O
x
AB= y1-y2 =y1-y2 (纵坐标相减) 上减下
AB= x1-x2 =x2-x1 (横坐标相减) 右减左
链接中考
(2016•漳州)如图,抛物线 y x 2 bx c与x轴交于 点A和点B(3,0),与y轴交于点C(0,3). (1)求抛物线的解析式; (2)若点M是抛物线在x轴下方上的动点,过点M作 MN//y轴交直线BC于点N,求线段MN的最大值; 解:(1)将点B(3,0)、C(0,3) 2 y x bx c 中,得: 代入抛物线 ,解得: ∴抛物线的解析式为 y x 4x 3
(2015•漳州卷第25题)
2 y x 2 x 3与x轴交于A,B两点, 如图,抛物线 与y轴交于点C,点D为抛物线的顶点,请解决下列问题. (1)填空:点C的坐标为( , ), 点D的坐标为( , ); (2)设点P的坐标为(a,0), 当|PD﹣PC|最大时, 求a的值并在图中标出点P的位置;
模型一
“将军饮马”问题
l
பைடு நூலகம்
模型应用
已知:如图,A(-1,0),B(3,0),C(0,3),抛 物线经过点A、B、C,抛物线的顶点为D. ⑴求解析式和抛物线的顶点D;
解: 设二次函数的解析式为 y ax2 bx c
将A 1, 0 ,B 3, 0 ,C 0, 3代入, 得: a b c 0 9a 3b c 0 c 3
(2016•漳州卷第24题)
2 y x bx c与x轴交于点A和 如图,抛物线
点B(3,0),与y轴交于点C(0,3). (1)求抛物线的解析式; (2)若点M是抛物线在x轴下方上的动点,过点M作 MN//y轴交直线BC于点N,求线段MN的最大值;
学习目标
• 知识目标: 掌握几何中的几个重要定理及二次函数的有关知识, 根据问题建构数学模型,解决二次函数背景下的线段和、 差等最值问题。 • 能力目标: 通过观察、分析、对比等方法,提高学生分析问题, 解决问题的能力,进一步强化分类归纳综合的思想,提 高综合能力。 • 情感目标: 通过自己的参与和教师的指导,体会及感悟化归与转 化、数形结合、数学建模等数学思想方法,享受学习数 学的快乐,提高应用数学的能力。