纯电动汽车通信协议(V1.1)
电动汽车通讯协议
电动汽车通讯协议协议名称:电动汽车通讯协议协议编号:[编号]生效日期:[日期]制定单位:[单位名称]1. 引言本协议旨在规范电动汽车通讯协议的标准格式,以确保电动汽车之间的通讯能够高效、安全地进行。
本协议适合于所有电动汽车通讯相关的设备和系统,包括但不限于电动汽车充电桩、电池管理系统、车载电子设备等。
2. 定义在本协议中,以下术语的定义如下:2.1 电动汽车(EV):指使用电池或者其他可再生能源驱动的汽车。
2.2 通讯接口:指电动汽车及其相关设备之间进行数据传输的接口。
2.3 通讯协议:指电动汽车及其相关设备之间进行数据传输时所遵循的规范和约定。
3. 通讯协议规范3.1 通讯协议的版本控制3.1.1 通讯协议的版本号应以主版本号、次版本号和修订版本号的形式表示,例如:X.Y.Z。
3.1.2 当通讯协议发生重大变化时,主版本号应递增;当通讯协议进行功能扩展时,次版本号应递增;当通讯协议进行错误修正时,修订版本号应递增。
3.1.3 通讯协议的版本控制应由制定单位负责,制定单位应确保通讯协议的版本号与实际使用的版本保持一致。
3.2 通讯接口规范3.2.1 通讯接口应符合相关国际标准或者行业标准的要求,确保通讯的稳定性和互操作性。
3.2.2 通讯接口的物理连接方式、传输速率等参数应在通讯协议中明确规定,并由制定单位进行验证和确认。
3.2.3 通讯接口的安全性应得到重视,包括但不限于数据加密、身份认证等措施,以防止未经授权的访问和数据泄露。
3.3 数据传输规范3.3.1 数据传输应采用统一的数据格式和编码方式,以确保数据在不同设备之间的正确解析和处理。
3.3.2 数据传输的频率和时序应在通讯协议中明确规定,以满足实际应用的需求。
3.3.3 数据传输的容错机制应得到重视,包括但不限于数据校验、重传机制等,以确保数据的完整性和可靠性。
4. 通讯协议实施4.1 通讯协议的实施应遵循相关法律法规和标准要求,确保通讯的合法性和安全性。
电动汽车直流充电通信协议
电动汽车直流充电通信协议关键信息项:协议方信息甲方(房东):姓名/公司名称:____________________________乙方(租客):姓名:____________________________协议目的目的说明:____________________________租赁房屋信息租赁房屋地址:____________________________房屋租赁合同编号:____________________________犬只信息犬只种类:____________________________犬只品种:____________________________犬只年龄:____________________________犬只体重:____________________________养犬要求饲养地点:____________________________养犬设施:____________________________犬只管理:____________________________犬只行为规范:____________________________费用及赔偿犬只相关费用:____________________________赔偿条款:____________________________维修费用:____________________________协议的修改与终止修改条件与程序:____________________________终止条件:____________________________争议解决争议解决方式:____________________________适用法律:____________________________协议生效协议生效日期:____________________________协议甲方(房东)与乙方(租客)就租赁房屋中饲养大型犬的事宜达成如下补充协议:协议目的1.1 本协议的目的是为了明确乙方在租赁房屋中饲养大型犬的具体要求及双方责任,以保障房屋及其周边环境的安全与整洁。
电动汽车通讯协议
电动汽车通讯协议协议名称:电动汽车通讯协议一、引言本协议旨在规范电动汽车通讯协议的制定和应用,以促进电动汽车行业的发展和互联互通。
本协议适用于电动汽车与充电桩、能源管理系统、智能交通系统等设备之间的通讯。
二、定义1. 电动汽车:指采用电动机作为动力源的车辆,包括纯电动汽车、插电式混合动力汽车等。
2. 充电桩:指用于给电动汽车充电的设备,包括交流充电桩和直流充电桩。
3. 能源管理系统:指对电动汽车充电、放电、储能等进行管理和控制的系统。
4. 智能交通系统:指利用信息与通信技术对交通进行管理和控制的系统。
三、通讯协议要求1. 通讯协议应采用开放、公平、透明的原则,允许不同厂商的设备进行互联互通。
2. 通讯协议应具备高效、稳定、安全的特性,确保通讯数据的可靠传输和保密性。
3. 通讯协议应支持多种通讯方式,包括有线通讯和无线通讯,以满足不同场景的需求。
4. 通讯协议应具备良好的可扩展性和兼容性,能够适应未来电动汽车行业的发展和创新。
四、通讯协议内容1. 设备识别与认证:通讯协议应规定设备的唯一标识符和认证机制,确保设备的合法性和安全性。
2. 数据格式与编码:通讯协议应定义数据的格式和编码规则,确保数据的一致性和可解析性。
3. 通讯接口与协议栈:通讯协议应规定设备之间的物理接口和通讯协议栈,包括传输层、网络层和应用层。
4. 通讯命令与消息:通讯协议应定义设备之间的通讯命令和消息格式,包括设备状态查询、控制指令等。
5. 安全与加密机制:通讯协议应规定通讯数据的加密和解密机制,确保通讯的安全性和防护能力。
6. 异常处理与错误码:通讯协议应定义设备之间的异常处理机制和错误码,以提供良好的用户体验和故障排除能力。
五、应用场景1. 充电桩与电动汽车之间的通讯:通讯协议应规定充电桩与电动汽车之间的通讯方式和协议,包括充电桩的识别、电动汽车的充电需求等。
2. 能源管理系统与电动汽车之间的通讯:通讯协议应规定能源管理系统与电动汽车之间的通讯方式和协议,包括能源管理系统对电动汽车的充电、放电、储能等控制。
纯电动客车整车CAN通讯协议
0 to1500(0 to 15) 0 to16000(-8000 to 8000) 0 to36666(-5500 to 5500)
0 to250(-40 to 210) 0 to200(0 to 1)
0 to250(0 to 100) 0 to1000(0 to 100) 0 to2000(0 to 200) 0 to255(0 to 510) 0 to250(0 to 50)
0 8000 18333 40
0 0 0 0 0 0
2BYTE 2BYTE 2BYTE 1BYTE 1BYTE 1BYTE 2BYTE 2BYTE 1BYTE 1BYTE
3.5 整车系统控制网络 CAN 通讯机制
根据实验测得 CAN 总线在 250K 速率的通讯情况下,每帧报文的占用时间是 500uS。为了保证通讯的可靠性和稳定性,同时 考虑到控制的实时性,网络通讯周期定为 50mS,整车控制器初始化运行后,每隔 50mS 以广播方式发送数据给各部件,在一个周 期里只发送一次(在收到综合控制器数据后的 50mS 内);
实际电压 18~36V 范围内使用; 4)CAN 总线的通信电缆采用屏蔽双绞线(阻燃 0.5mm),屏蔽层应连接到 CAN_GND,屏蔽线的接地方式由整车布线时选择
合适位置单点接地; 5)网络的接线拓扑为一个尽量紧凑的线形结构以避免电缆反射。ECU 接入总线主干网的电缆要尽可能短。为使驻波最小化,
节点不能在网络上等间距接入,接入线也不能等长,且接入线的最大长度应小于 1m; 6)CAN 总线上各部件均有终端电阻(120Ω),同时,终端电阻同网络线之间通过跳线连接,以便灵活搭配,方便调试使用,
8
3.6 各系统 ECU 参数组定义
3.6.1 CANBus1 中各系统 ECU 参数组定义
电动汽车通讯协议
电动汽车通讯协议协议名称:电动汽车通讯协议一、引言本协议旨在规范电动汽车通讯协议的标准格式,以确保电动汽车之间的通信能够高效、安全地进行。
本协议适用于电动汽车之间的通信,包括车辆与充电桩、车辆与车辆之间的通信。
二、术语定义1. 电动汽车:指使用电能作为主要能源的车辆,包括纯电动汽车和插电式混合动力汽车。
2. 充电桩:指用于给电动汽车充电的设备。
3. 通信协议:指电动汽车之间进行通信所遵循的规则和约定。
三、通信协议标准格式1. 协议版本:本协议的版本号,用于标识协议的不同版本。
2. 协议目的:明确协议的目的和应用范围。
3. 协议范围:详细描述协议适用的对象和通信场景。
4. 协议要求:列出协议对通信的要求和规范。
5. 协议流程:描述电动汽车通信的流程和步骤,包括建立连接、数据传输和断开连接等。
6. 数据格式:定义通信中所使用的数据格式,包括数据包头部、数据包体和数据包尾部等。
7. 安全性要求:规定通信过程中的安全性要求,包括身份验证、数据加密和防止恶意攻击等。
8. 错误处理:定义通信中可能出现的错误情况和相应的处理方法。
9. 兼容性:要求通信协议具备兼容不同电动汽车品牌和型号的能力。
10. 协议更新和维护:规定协议的更新和维护机制,确保协议持续适应技术发展的需求。
四、协议要求1. 通信稳定性:电动汽车通信协议应确保通信的稳定性,避免因通信故障导致数据传输失败或延迟。
2. 数据安全性:通信协议应采取必要的安全措施,确保数据传输过程中的机密性和完整性。
3. 兼容性:通信协议应具备兼容不同品牌和型号的电动汽车的能力,以促进行业发展和互联互通。
4. 可扩展性:通信协议应具备良好的可扩展性,能够适应未来技术的发展和新功能的添加。
5. 互操作性:通信协议应支持不同厂商的设备之间的互操作,确保设备能够正常通信和协同工作。
五、协议流程1. 建立连接:a) 电动汽车发送连接请求给目标设备。
b) 目标设备接收连接请求并发送连接确认。
纯电动汽车通信协议V
纯电动汽车通信协议V随着全球环保意识的不断加强,纯电动汽车作为一种绿色出行工具,正逐渐受到人们的关注和青睐。
然而,在纯电动汽车的发展过程中,一个关键的问题是如何实现车辆与充电设备之间的有效通信和智能管理。
为此,各国汽车制造商和科研机构纷纷提出了不同的通信协议,其中最为重要且被广泛应用的是纯电动汽车通信协议V。
本文将介绍该协议的概述和特点,以及其在电动汽车行业中的应用和未来发展。
一、纯电动汽车通信协议V的概述纯电动汽车通信协议V,简称为V2G协议(Vehicle-to-Grid Protocol),是指纯电动汽车与电网之间进行通信和数据交换的标准协议。
它是基于物联网和云计算技术的发展而来,通过车辆与电网之间的通信,实现了智能充电和能源管理。
该协议主要包括两个方面的内容:一是车辆与电网之间的充电通信,即V2G(Vehicle-to-Grid)通信;二是车辆与电网之间的能源管理,即V2H(Vehicle-to-Home)和V2B(Vehicle-to-Building)通信。
通过这些通信方式,纯电动汽车可以与电网相互协作,实现智能充电、储能和能源管理。
二、纯电动汽车通信协议V的特点1. 双向通信能力:V2G协议具有双向通信的能力,可以实现车辆与电网之间的数据传输和指令交换。
这使得电网可以根据车辆的充电需求和电网负荷情况进行智能调度,提高能源利用效率。
2. 多种接口支持:V2G协议支持多种通信接口,包括CAN总线、以太网和无线通信等。
这样可以适应不同类型的车辆和充电设备,提高通信的灵活性和兼容性。
3. 安全性和隐私保护:V2G协议对通信数据进行加密和认证,确保通信的安全性和隐私保护。
这是十分重要的,因为电动汽车作为一种智能移动终端,与外界的通信必须具备高度的安全性。
4. 能源管理和优化:V2G协议通过车辆与电网之间的能源管理,可以实现能源的优化和储能利用。
例如,车辆可以将多余的电能反馈到电网,进而供应给其他用户,或者在需要时将电能反馈到家庭用电系统或商业建筑系统中使用。
纯电动车BMS与整车系统CAN通信协议详情
纯电动车BMS与整车系统CAN通信协议详情随着环保意识的增强和电动车市场的迅速发展,纯电动车(Battery Electric Vehicle,BEV)作为零排放、零尾气的新能源汽车正逐渐受到人们的关注和青睐。
在纯电动车的电池管理系统(Battery Management System,BMS)中,与整车系统之间的通信协议变得尤为重要。
本文将详细介绍纯电动车BMS与整车系统CAN通信协议的相关内容。
一、纯电动车BMS与整车系统的关系纯电动车的BMS作为一套独立的系统,主要用于监测和管理电池组的状态、实时数据采集、故障诊断以及能量管理等功能。
而整车系统则负责电动车的整体控制,包括电机控制、车速控制、动力分配等。
BMS与整车系统之间的通信,可以实现BMS对整车系统的控制和监控,保证电池组和整车系统的协调运行,提高电动车的安全性和性能。
二、CAN通信协议的基本原理控制器局域网络(Controller Area Network,CAN)是一种广泛应用于汽车、工业自动化等领域的通信协议。
CAN总线采用串行通信方式,具有高可靠性、抗干扰能力强的特点,在电动车领域得到了广泛应用。
CAN协议定义了通信的物理层、数据链路层和应用层,保证了数据的可靠传输和节点间的高效通信。
三、CAN通信协议在纯电动车BMS与整车系统中的应用1. 数据交互:CAN通信协议在BMS和整车系统之间实现了数据的双向交互。
BMS可以向整车系统提供电池组的相关信息,如电池电压、电流、温度等。
同时,整车系统也可以向BMS发送指令,如充电指令、功率调节指令等。
2. 故障诊断:CAN通信协议可以实现对电池组和整车系统的故障诊断。
当BMS检测到电池组或整车系统存在异常情况时,会通过CAN总线将故障码发送给整车系统,从而实现故障的定位和诊断。
3. 控制策略:CAN通信协议可以实现BMS对整车系统的控制。
例如,BMS可以根据电池组的状态和整车系统的需求,发送合适的控制策略给整车系统,如调节电机的输出功率、控制充放电速度等。
M3通信协议V1.1
一.基本需求详见标书二.通信协议[ 版本修改记录 ]:--V1.0: 初始版本,2014年11月18日一)、通信规程Zigbee与M3,RS232与M3之间均采用串口通信方式波特率:115200bps。
数据位:8停止位:1校验位:无流控制:无二)、通信协议格式1.包头(Head):(1).A8->M3:0xA5(2).M3->A8:0x772.功能码(CMD):(1). A8-> M3:(2). M3->A8:3.数据域(DATA):(1). A8->M3:●功能码为0x01时,选择当前通信工作模式,数据域字节个数为1个,其数据域内容如下:1个.其数据域内容如下:1个.其数据域内容如下:2个.数据字节2:2个.其数据域内容如下: 数据字节1:数据字节2:(2). M3->A8:功能码为0x11/0x12/0x13/0x14/0x15时,数据域字节个数为0个4.校验:采用循环冗余检验(CRC16)校验方式,占用2字节,取CRC的2个字节外所有传输字节计算出CRC值。
注意,CRC16初值为0xFF!三)、通信协议详解(1)A8->M3命令①.功能码:0x01:通知当前使用zigbee通信方式命令:A5 06 01 01 02 B9通知当前使用RS232通信方式命令:A5 06 01 02 42 B8通知当前使用NET通信方式命令:A5 06 01 03 83 78②.功能码:0x02:舵机打到最小位置命令:A5 06 02 01 02 49舵机打到最大位置命令:A5 06 02 0242 48③.功能码:0x03:电磁锁打开命令:A5 06 03 01 03 D9电磁锁关闭命令:A5 06 03 00 C2 19④.功能码:0x04:直流电机正转+速度为1:命令:A5 07 04 01 01 E8 FC直流电机正转+速度为5:命令:A5 07 04 01 05 E9 3F直流电机正转+速度为9:命令:A5 07 04 01 09 E9 3A直流电机停止:命令:A5 07 04 00 00 28 AC⑤.功能码:0x05:继电器全部打开命令:A5 07 05 FF 01 F9 5C继电器全部关闭命令:A5 07 05 FF 00 38 9C继电器1打开命令:A5 07 05 01 01 B9 3C继电器1关闭命令:A5 07 05 01 00 78 FC继电器2打开命令:A5 07 05 02 01 B9 CC继电器2关闭命令:A5 07 05 02 00 78 0C继电器3打开命令:A5 07 05 03 01 B8 5C继电器3关闭命令:A5 07 05 03 00 79 9C(2)M3->A8响应功能码:0x11,响应,数据域--0个字节。
电动汽车通讯协议汇总
电动汽车通讯协议汇总
电动汽车通讯协议是指用于电动汽车与充电桩、能源管理系统以及其
他相关设备之间进行数据通信和控制的协议。
这些协议旨在确保电动汽车
的充电、能源管理和互操作性等方面的顺利进行。
以下是常见的电动汽车
通讯协议的汇总。
1. OCPP(Open Charge Point Protocol,开放式充电桩协议):OCPP是一种为开放式充电桩设计的通信协议,由于其开放性和灵活性,
被广泛应用于充电桩之间的通信。
该协议允许充电桩与能源管理系统进行
数据交换,例如充电状态、电站信息、电能计量等。
3. CHAdeMO(Charge de Move,充电行动):CHAdeMO是一种由日本
汽车制造商共同开发的快速直流充电协议。
该协议能够实现高功率快速充电,充电速度通常比其他协议更快,但限制了充电桩与电动汽车间的互操
作性。
4. Tesla Supercharger Protocol(特斯拉超级充电协议):特斯拉
超级充电协议是特斯拉汽车独有的充电协议,用于特斯拉电动汽车与特斯
拉的充电设施进行通信。
该协议具有高速率和高功率的特点,能够在短时
间内为电动汽车提供大容量的电能。
以上是常见的电动汽车通讯协议的汇总。
随着电动汽车的普及和发展,通讯协议的统一和互操作性将成为一个重要的问题,只有通过统一的协议
标准,才能确保电动汽车充电和能源管理的高效性和安全性。
电动汽车通讯协议
电动汽车通讯协议协议名称:电动汽车通讯协议1. 引言本协议旨在规范电动汽车的通讯协议,以确保不同厂商的电动汽车之间能够进行可靠、安全、高效的通信。
本协议适用于电动汽车的各种通信场景,包括车辆与车辆之间的通信、车辆与充电桩之间的通信等。
2. 定义2.1 电动汽车(EV):指使用电能作为动力源的汽车。
2.2 通信协议:指电动汽车之间或电动汽车与充电桩之间进行数据交换和通信的规范。
3. 通信协议架构3.1 物理层:定义电动汽车通信所需的物理接口和传输介质,如CAN总线、以太网等。
3.2 数据链路层:定义数据帧的格式、传输方式和错误检测机制,保证数据的可靠传输。
3.3 网络层:定义数据包的路由和转发机制,确保数据能够正确传递到目标设备。
3.4 传输层:提供端到端的可靠数据传输服务,包括流量控制、拥塞控制等。
3.5 应用层:定义电动汽车通信的具体应用协议,如充电协议、车辆远程控制协议等。
4. 通信协议规范4.1 数据帧格式:定义电动汽车通信数据帧的格式,包括帧头、帧数据和帧尾等字段。
4.2 数据传输方式:规定电动汽车通信数据的传输方式,如单播、广播、组播等。
4.3 错误检测和纠错机制:定义电动汽车通信数据的错误检测和纠错机制,以保证数据的完整性和准确性。
4.4 数据包路由和转发:规定电动汽车通信数据包的路由和转发机制,以确保数据能够正确传递到目标设备。
4.5 数据传输控制:定义电动汽车通信的流量控制和拥塞控制机制,以保证通信的高效性和稳定性。
4.6 安全性和隐私保护:规定电动汽车通信的安全性和隐私保护措施,包括加密、认证等。
5. 协议实施和测试5.1 实施要求:制定电动汽车通信协议的实施要求,包括硬件和软件的支持等。
5.2 测试要求:定义电动汽车通信协议的测试要求,包括功能测试、性能测试、兼容性测试等。
6. 协议版本管理6.1 版本号:为电动汽车通信协议定义版本号,以便进行版本管理和升级。
6.2 更新记录:记录电动汽车通信协议的更新历史,包括版本号、更新内容、更新日期等。
电动汽车充电机通信协议
目录宁波拜特发送给通讯板CAN1 ......................................................................第一帧0001:宁波拜特发送给充电机 ..............................................................第二帧0002:宁波拜特发送给充电机 ..............................................................第三帧0003:宁波拜特发送给充电机 ..............................................................第四帧0004:宁波拜特发送给充电机 ..............................................................第五帧0005:宁波拜特发送给充电机 ..............................................................第六帧0006:宁波拜特发送给充电机 ..............................................................通讯板CAN1 发送给宁波拜特 ....................................................................第一帧401充电机发送给宁波拜特 ...............................................................第二帧402:充电机发送给宁波拜特 ...............................................................第三帧403:充电机发送给宁波拜特 ...............................................................第四帧404:充电机发送给宁波拜特 ...............................................................第五帧405:充电机发送给宁波拜特 ...............................................................主控板发送给通讯板CAN2 ........................................................................第一帧18A0ABCC:APF侧主控板发送给通讯板 ....................................................第二帧:BiDCDC侧主控板发送给通讯板 ..........................................................第三帧C0:APF侧主控板发送给通讯板 ...........................................................第四帧:APF侧主控板发送给通讯板 ............................................................第五帧:BiDCDC侧主控板发送给通讯板 ..........................................................通讯板发送给主控板CAN2 ........................................................................第一帧C0: 通讯板发送给主控板CAN2 ...........................................................11第二帧C1: 通讯板发送给主控板CAN2 ...........................................................第三帧C2:通讯板发送给主控板CAN2.............................................................1111第四帧404:通讯板发送给主控板CAN2 ..........................................................BiDCDC侧发送给APF侧 ........................................................................第一帧C0: BiDCDC发送给APF侧 CAN2 ......................................................第二帧:BiDCDC侧主控板发送给APF侧 CAN2 ..................................................APF侧发送给BiDCDC侧 .........................................................................第一帧C0: APF发送给BiDCDC侧 CAN2........................................................第二帧: APF发送给BiDCDC侧 CAN2 .........................................................3.1、充电桩CAN1发往充电机A通迅板CAN1:共2帧 ..............................................3.1.1第一帧D1:充电桩对充电机的控制命令 .....................................................3.1.2第二帧D2:充电统计信息数据 .............................................................3.2、充电机A通迅板CAN1发往充电桩协议:共4帧 ................................................3.2.1第一帧C1:充电机运行信息 ...............................................................3.2.2第二帧C2:充电机交流输入信息 ...........................................................3.2.3第三帧C3:充电机APF侧运行信息码与温度 .................................................3.2.4第三帧C4:充电机BiDCDC侧运行信息码与温度 ...........................................3.3、充电机B通迅板CAN3发往上位机协议:共9帧 ..................................................3.3.1第一帧D1:充电机工作信息 ................................................................3.3.2第二帧D2:充电信息统计数据 .............................................................3.3.3第三帧C1:充电机状态信息 ...............................................................3.3.4第四帧C2:充电机交流输入信息 ...........................................................3.3.5第五帧C3:充电机APF侧工作信息码与温度 .................................................3.3.6第六帧C4:充电机BiDCDC侧工作信息码与温度 ...........................................3.3.7第七帧E1:电动汽车电池组单体电压信息1 ................................................3.3.8第八帧E2:电动汽车电池组单体电压信息2 ................................................3.3.9第九帧E3:电动汽车电池组信息 ..........................................................3.4、CAN以太网转换器发往充电机B通迅板CAN3协议: ...........................................3.4.1第一帧C1:监控系统对充电机的控制命令 ..................................................C1:通过CANB板的CAN1发送监控系统对充电机的控制命令 ......................................宁波拜特发送给通讯板CAN1第一帧0001:宁波拜特发送给充电机ID 0x001 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 保护电压上限低字节 HighestVoltage_Prt BYTE2 保护电压上限高字节 0.025VBYTE3 保护电压下限低字节 LowestVoltage_PrtBYTE4 保护电压下限高字节 0.025VBYTE5 保护电流上限低字节 Charge_MaxCurrent_Prt BYTE6 保护电流上限高字节 0.015ABYTE7 保护电流下限低字节 Discharge_MaxCurrent_Prt BYTE8 保护电流下限高字节 0.015A第二帧0002:宁波拜特发送给充电机ID 0x002 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 充电运行电压限制低字节 LimitVoltage_Charging BYTE2 充电运行电压限制高字节 0.025VBYTE3 充电运行电流限制低字节 LimitCurrent_Charging BYTE4 充电运行电流限制高字节 0.015ABYTE5 充电运行单体电压上限低字节 LimitCellVoltage_Charging BYTE6 充电运行单体电压上限高字节 0.025VBYTE7BYTE8第三帧0003:宁波拜特发送给充电机ID 0x003 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 放电运行电压限制低字节 LimitVoltage_Charging BYTE2 放电运行电压限制高字节 0.025VBYTE3 放电运行电流限制低字节 LimitCurrent_Charging BYTE4 放电运行电流限制高字节 0.015A第四帧0004:宁波拜特发送给充电机ID 0x004 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 主参数低字节 MainParameterBYTE2 主参数高字节 0.025VBYTE3 工作模式 工作模式WorkModeSet_NBT01 恒流充电 02恒压充电03 恒流放电 04 恒功率充电05恒功率放电 06恒阻放电07搁置工作状态WorkStateSet_NBT单体控制 CellCtrl_NBT 第五帧0005:宁波拜特发送给充电机ID 0x005 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明BYTE1 当前最高单体电压低字节 CellBatteryHighestVoltage BYTE2 当前最高单体电压高字节 0.025V第六帧0006:宁波拜特发送给充电机ID 0x006 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 当前电流电压发送周期低字节 CurrentVolSendCycleBYTE2 当前电流电压发送周期高字节通讯板CAN1 发送给宁波拜特第一帧401充电机发送给宁波拜特ID 0x401 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 保护电压上限低字节 HighestVoltage_Prt BYTE2 保护电压上限高字节 0.025VBYTE3 保护电压下限低字节 LowestVoltage_PrtBYTE4 保护电压下限高字节 0.025VBYTE5 保护电流上限低字节 Charge_MaxCurrent_Prt BYTE6 保护电流上限高字节 0.015ABYTE7 保护电流下限低字节 Discharge_MaxCurrent_Prt BYTE8 保护电流下限高字节 0.015A第二帧402:充电机发送给宁波拜特ID 0x402 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 充电运行电压限制低字节 LimitVoltage_Charging BYTE2 充电运行电压限制高字节 0.025VBYTE3 充电运行电流限制低字节 LimitCurrent_Charging BYTE4 充电运行电流限制高字节 0.015ABYTE5 充电运行单体电压上限低字节 LimitCellVoltage_Charging BYTE6 充电运行单体电压上限高字节 0.025VBYTE7BYTE8第三帧403:充电机发送给宁波拜特ID 0x403 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 放电运行电压限制低字节 LimitVoltage_Charging BYTE2 放电运行电压限制高字节 0.025VBYTE3 放电运行电流限制低字节 LimitCurrent_Charging BYTE4 放电运行电流限制高字节 0.015ABYTE5BYTE6第四帧404:充电机发送给宁波拜特ID 0x404 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 主参数低字节 MainParameterBYTE2 主参数高字节 0.025VBYTE3 工作模式 工作模式WorkModeSet_NBT01 恒流充电 02恒压充电03 恒流放电 04 恒功率充电05恒功率放电 06恒阻放电07搁置工作状态WorkStateSet_NBT单体控制 CellCtrl_NBT 第五帧405:充电机发送给宁波拜特ID 0x405 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 运行电压低字节 Voltage_BiDCDCBYTE2 运行电压高字节 0.025VBYTE3 运行电流低字节 Current_BiDCDCBYTE4 运行电流高字节 0.015A主控板发送给通讯板CAN2第一帧18A0ABCC:APF 侧主控板发送给通讯板ID 0x18A0ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)C1 AB CC数 据 域位置 数 据 名 数 据 说 明 BYTE1 工作模式/工作状态 WorkMode_Set WorkMode_APFWorkState_R WorkState_APFdeadband_comBYTE2 WorkMode_Set 0.1.2.3.CtrlMode 4.5Test_Mode 6,7BYTE3 APF侧母线电压低字节 dis_udc APF_udcBYTE4 APF侧母线电压高字节BYTE5 交流输入电流低字节 dis_iaf APF_iafBYTE6 交流输入电流高字节BYTE7 flag_protect_softBYTE8第二帧:BiDCDC 侧主控板发送给通讯板ID 0x18A0CCBB 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)C1 AB CC数 据 域位置 数 据 名 数 据 说 明BYTE1 工作模式/工作状态 WorkMode_Set WorkMode_BiDCDCWorkState_R WorkState_BiDCDCdeadband_comBYTE2 工作状态/工作模式 WorkMode_Set 0.1.2.3.CtrlMode 4.5Test_Mode 6,7BYTE3 充电机输出的充电电压低字节 dis_udc Voltage_BiDCDCBYTE4 充电机输出的充电电压高字节BYTE5 充电机输出的充电电流低字节 disp_IOUTdc Current_BiDCDCBYTE6 充电机输出的充电电流高字节BYTE7 APF侧母线电压低字节 APF_BusVoltageBYTE8 APF侧母线电压高字节第三帧C0:APF侧主控板发送给通讯板ID 0x18A1CCAA 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)C1 AB CC数 据 域位置 数 据 名 数 据 说 明 BYTE1 线电压低字节 APF_u_abBYTE2 线电压高字节BYTE3 A相电流低字节 APF_iafBYTE4 A相电流高字节BYTE5 B相电流低字节 APF_ibfBYTE6 B相电流高字节BYTE7 C相电流低字节 APF_icfBYTE8 C相电流高字节第四帧:APF 侧主控板发送给通讯板ID 0x18F1CCAA 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 APF运行信息代码1 APF_ERROR[0]BYTE2 APF运行信息代码2 APF_ERROR[1]BYTE3 APF运行信息代码3 APF_ERROR[2]BYTE4 APF运行信息代码4 APF_ERROR[3]BYTE5 APF散热器温度1 APF_Temp[0]BYTE6 APF散热器温度2 APF_Temp[0]BYTE7 APF散热器温度3 APF_Temp[0]BYTE8 APF散热器温度4 APF_Temp[0]第五帧:BiDCDC 侧主控板发送给通讯板ID 0x18F1CCAA 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 BiDCDC运行信息代码1 BiDCDC_ERROR[0]BYTE2 BiDCDC运行信息代码2 BiDCDC_ERROR[1]BYTE3 BiDCDC运行信息代码3 BiDCDC_ERROR[2]BYTE4 BiDCDC运行信息代码4 BiDCDC_ERROR[3]BYTE5 BiDCDC散热器温度1 BiDCDC_Temp[0]BYTE6 BiDCDC散热器温度2 BiDCDC_Temp[0]BYTE7 BiDCDC散热器温度3 BiDCDC_Temp[0]BYTE8 BiDCDC散热器温度4 BiDCDC_Temp[0]通讯板发送给主控板CAN2第一帧C0: 通讯板发送给主控板CAN2ID 0x18C0ABCC周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)C1 AB CC数 据 域位置 数 据 名 数 据 说 明BYTE1 工作模式/工作状态 WorkMode_SetbyCAN 低四位0B0000 静置 0B0001 恒流充电0B0010 恒压充电(限压恒流充电)0B0011 恒功率充电0B0100 恒流放电0B0101 恒压放电(限压恒流放电)0B0110 恒功率放电0B0111 系统调试模式WorkState_Set 4,5位0B00 停止 0B01 运行0B10 暂停 0B11 出错deadband_comHMI_TestMode = 0:为正常工作模式; 1:为系统调试模式BYTE2 充电电压设置低字节 VoltageSet_ChargeBYTE3 充电电压设置高字节 0.1VBYTE4 充电电流设置低字节 CurrentSet_ChargeBYTE5 充电电流设置高字节 0.1ABYTE6 AC侧电流设置低字节 IacSet_HMIBYTE7 AC侧电流设置高字节 0.1ABYTE8 控制模式/调试模式 KM1FANKA3KA4_CtrlHMI_CtrlMode第二帧C1: 通讯板发送给主控板CAN2ID 0x18C1ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)C1 AB CC数 据 域位置 数 据 名 数 据 说 明 BYTE1 主参数低字节 MainParameterBYTE2 主参数高字节BYTE3 单体最高电压低字节 CellBatteryHighestVoltage BYTE4 单体最高电压高字节BYTE5 单体电压限值低字节 LimitCellVoltage_Charging BYTE6 单体电压限值高字节BYTE7 控制信息 KM2_ENABLE 1吸合 2 断开CellCtrl_NBT 单体控制 BYTE8 故障信息 CCS_ErrorCode第三帧C2:通讯板发送给主控板CAN2ID 0x18C2ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 保护电压上限低字节 HighestVoltage_Prt BYTE2 保护电压上限高字节 0.1VBYTE3 保护电压下限低字节 LowestVoltage_PrtBYTE4 保护电压下限高字节 0.1VBYTE5 保护电流上限低字节 Charge_MaxCurrent_Prt BYTE6 保护电流上限高字节 0.1ABYTE7 保护电流下限低字节 Discharge_MaxCurrent_Prt BYTE8 保护电流下限高字节 0.1A第四帧404:通讯板发送给主控板CAN2ID 0x404 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 主参数低字节 MainParameterBYTE2 主参数高字节 0.025VBYTE3 工作模式 工作模式WorkModeSet_NBT01 恒流充电 02恒压充电03 恒流放电 04 恒功率充电05恒功率放电 06恒阻放电07搁置工作状态WorkStateSet_NBT单体控制 CellCtrl_NBT第五帧F1:通讯板发送给主控板CAN2【新增参数设置】 ID 0x18F1ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 直流电压矫正BYTE2 直流电流矫正BYTE3 直流电压偏移低字节BYTE4 直流电压偏移高字节BYTE5 直流电流偏移低字节BYTE6 直流电流偏移高字节BYTE7BYTE8第六帧F2:通讯板发送给主控板CAN2【新增参数设置】 ID 0x18F2ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 直流电压比例1低字节BYTE2 直流电压比例1高字节BYTE3 直流电压比例2低字节BYTE4 直流电压比例2高字节BYTE5 直流电压比例3低字节BYTE6 直流电压比例3高字节BYTE7 直流电压比例4低字节BYTE8 直流电压比例4高字节第七帧F3:通讯板发送给主控板CAN2【新增参数设置】 ID 0x18F3ABCC 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 充电电流比例1低字节BYTE2 充电电流比例1高字节BYTE3 充电电流比例2低字节BYTE4 充电电流比例2高字节BYTE5 放电电流比例1低字节BYTE6 放电电流比例1高字节BYTE7 放电电流比例2低字节BYTE8 放电电流比例2高字节BiDCDC侧发送给APF侧第一帧C0: BiDCDC发送给APF侧 CAN2ID 0x18A0CCBB:周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明BYTE1 工作模式/工作状态 BiDCDC_WorkMode 低四位0B0000 静置 0B0001 恒流充电0B0010 恒压充电(限压恒流充电)0B0011 恒功率充电0B0100 恒流放电0B0101 恒压放电(限压恒流放电)0B0110 恒功率放电0B0111 系统调试模式BiDCDC_WorkState 4,5位0B00 停止 0B01 运行0B10 暂停 0B11 出错BYTE2 充电电压设置低字节 Voltage_BiDCDCBYTE3 充电电压设置高字节 0.1VBYTE4 充电电流设置低字节 Current_BiDCDCBYTE5 充电电流设置高字节 0.1A第二帧:BiDCDC侧主控板发送给APF 侧 CAN2ID 0x18F1CCBB 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 BiDCDC运行信息代码1 BiDCDC_ERROR[0]BYTE2 BiDCDC运行信息代码2 BiDCDC_ERROR[1]BYTE3 BiDCDC运行信息代码3 BiDCDC_ERROR[2]BYTE4 BiDCDC运行信息代码4 BiDCDC_ERROR[3]BYTE5 BiDCDC散热器温度1 BiDCDC_Temp[0]BYTE6 BiDCDC散热器温度2 BiDCDC_Temp[0]BYTE7 BiDCDC散热器温度3 BiDCDC_Temp[0]BYTE8 BiDCDC散热器温度4 BiDCDC_Temp[0]APF侧发送给BiDCDC侧第一帧C0: APF发送给BiDCDC 侧 CAN2ID 0x18A0CCBB:周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明BYTE1 工作模式/工作状态 APF_WorkMode 低四位0B0000 静置 0B0001 恒流充电0B0010 恒压充电(限压恒流充电)0B0011 恒功率充电0B0100 恒流放电0B0101 恒压放电(限压恒流放电)0B0110 恒功率放电0B0111 系统调试模式APF_WorkState 4,5位0B00 停止 0B01 运行0B10 暂停 0B11 出错BYTE2 APF侧母线电压低字节 APF_BusVoltageBYTE3 APF 侧母线电压高字节 0.1V第二帧: APF发送给BiDCDC侧 CAN2ID 0x18F1CCAA 周期(ms)PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)数 据 域位置 数 据 名 数 据 说 明 BYTE1 APF运行信息代码1 APF_ERROR[0]BYTE2 APF运行信息代码2 APF_ERROR[1]BYTE3 APF运行信息代码3 APF_ERROR[2]BYTE4 APF运行信息代码4 APF_ERROR[3]BYTE5 APF散热器温度1 APF_Temp[0]BYTE6 APF散热器温度2 APF_Temp[0]BYTE7 APF散热器温度3 APF_Temp[0]BYTE8 APF散热器温度4 APF_Temp[0]3.1、充电桩CAN1发往充电机A通迅板CAN1:共2帧3.1.1第一帧D1:充电桩对充电机的控制命令ID 0x0FD1CCDD 周期(ms)20PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)011 11 D1 CC DD数 据 域位置 数 据 名 数 据 说 明BYTE1 充电模式 0x00 :高频整流0x01 :恒流限压充电,0x02 :恒压限流充电,0x03 :恒功率充电,0x04 :容性无功输出0x05 :感性无功输出0x06 :恒流限压放电,0x07 :恒阻放电0x08 :恒功率放电,BYTE2 工作命令 0x00 : 停机 0x01 :运行0x02 :恢复 0x03 :故障BYTE3 控制方式 0x00 :手动 0x01: 国网BMS模式0x02: 充电桩控制0x03: 监控系统控制0x04: 国标BMS模式BYTE4 工作模式 0x00 :正常工作模式0x01 :系统调试模式BYTE5 充电电压设定低字节 0.1V/bit 偏移量:0例:V =3201,对应电压为320.1v BYTE6 充电电压设定高字节BYTE7 充电电流设定低字节 0.1A/bit 偏移量:0例:I =582 ,对应电流为58.2A BYTE8 充电电流设定高字节3.1.2第二帧D2:充电统计信息数据ID 0x0FD2CCDD 周期(ms)1000 PRI Resv FunctionCode DestAddr(8bit) SourceAddr(3bit) (2bit) (8bit) (8bit) (8bit) 011 11 D2 CC DD数 据 域位置 数 据 名 数 据 说 明BYTE1 充电起始时间_低字节 充电起始时间为:时分秒BYTE2 充电起始时间_高字节BYTE3 充电时长低字节 单位:分钟,偏移量:0例:V =65535,对应费用为65535分钟 BYTE4 充电时长高字节BYTE5 充电电量低字节 单位:0.01度,偏移量:0例:V =65535,对应费用为655.35度 BYTE6 充电电量高字节BYTE7 充电费用低字节 单位:0.01元,偏移量:0例:V =65535,对应费用为655.35元 BYTE8 充电费用高字节3.2、充电机A通迅板CAN1发往充电桩协议:共4帧3.2.1第一帧C1:充电机运行信息ID 0x07C1DDCC 周期(ms) 20PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)001 11 C1 DD CC数 据 域位置 数 据 名 数 据 说 明BYTE1 充电模式 0x00 :高频整流0x01 :恒流限压充电,0x02 :恒压限流充电,0x03 :恒功率充电,0x04 :容性无功输出0x05 :感性无功输出0x06 :恒流限压放电,0x07 :恒阻放电0x08 :恒功率放电,BYTE2 工作命令 0x00 : 停机 0x01 :运行0x02 :恢复 0x03 :故障BYTE3 控制方式 0x00 :手动 0x01: 国网BMS模式0x02: 充电桩控制0x03: 监控系统控制0x04: 国标BMS模式BYTE4 工作模式 0x00 :正常工作模式0x01 :系统调试模式BYTE5 充电电压低字节 0.1V/bit 偏移量:0例:V =3201,对应电压为320.1v BYTE6 充电电压高字节BYTE7 充电电流低字节 0.1A/bit 偏移量:0例:I =582 ,对应电流为58.2A BYTE8 充电电流高字节3.2.2第二帧C2:充电机交流输入信息ID 0x07C2DDCC 周期(ms)20PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)001 11 C2 DD CC数 据 域位置 数 据 名 数 据 说 明BYTE1 交流输入电压低字节 0.1V/bit 偏移量:0例:V =3201,对应电压为320.1v BYTE2 交流输入电压高字节BYTE3 三相电流Ia低字节 0.1A/bit 偏移量:0例:I =582 ,对应电流为58.2A BYTE4 三相电流Ia高字节BYTE5 三相电流Ib低字节 0.1A/bit 偏移量:0例:I =582 ,对应电流为58.2A BYTE6 三相电流Ib高字节BYTE7 三相电流Ic低字节 0.1A/bit 偏移量:0例:I =582 ,对应电流为58.2A BYTE8 三相电流Ic 高字节3.2.3第三帧C3:充电机APF侧运行信息码与温度ID 0x07C3DDCC 周期(ms)20PRI (3bit)Resv(2bit)FunctionCode(8bit)DestAddr(8bit)(8bit)SourceAddr(8bit)001 11 C3 DD CC数 据 域位置 数 据 名 数 据 说 明BYTE1 APF信息码1 Error_1, 16进制数,具体数值含义,参阅充电机相关操作文件BYTE2 APF信息码2 Error_2, 16进制数,具体数值含义,参阅充电机相关操作文件BYTE3 APF信息码3 Error_3, 16进制数,具体数值含义,参阅充电机相关操作文件BYTE4 APF信息码4 Error_4, 16进制数,具体数值含义,参阅充电机相关操作文件BYTE5 APF充电机温度1 PWM整流侧机箱温度。
纯电动车BMS与整车系统CAN通信协议书范本
纯电动车BMS与整车系统CAN通信协议书范本【注意:以下协议书范本仅为演示用途,实际情况可根据具体需求进行相应调整】一、引言本协议书旨在规范纯电动车电池管理系统(BMS)与整车系统之间的通信协议,确保两个系统之间的数据交换和信息传输的稳定和准确。
该通信协议基于控制器局域网(Controller Area Network,CAN)技术,并遵循相关国际标准。
本协议书适用于车辆制造商、BMS供应商以及相关技术人员。
二、通信协议规范1. CAN通信协议a. CAN通信速率:根据实际车辆需求确定,一般为250kbps或500kbps。
b. CAN物理层:遵循ISO 11898标准。
c. CAN帧格式:使用标准CAN 2.0A或CAN 2.0B帧格式。
d. CAN标识符:根据车辆厂商约定进行分配。
e. BMS节点:BMS设备在CAN总线上作为一个节点存在,使用独立的CAN标识符进行通信。
2. 数据格式a. 数据长度:BMS与整车系统之间交换的数据长度为8字节,每个字节包含8位。
b. 数据格式:BMS与整车系统采用统一的数据格式,包括数据类型、数据单位等信息。
具体格式由车辆制造商和BMS供应商协商确定。
3. 数据交互a. 数据采集:BMS负责采集电池相关参数,如电压、温度、电流等。
b. 数据传输:BMS将采集到的数据通过CAN总线传输给整车系统。
c. 故障诊断:整车系统可向BMS发送命令以获取电池状态、报警信息等。
d. 数据解析:整车系统根据协议定义解析接收到的数据,以确保准确读取和使用。
4. 错误处理a. 数据校验:BMS和整车系统使用CRC校验确保数据传输的准确性。
b. 异常处理:BMS和整车系统应具备异常处理机制,对通信错误和故障进行处理和报警。
5. 通信安全性a. 数据加密:可根据实际需求采用加密技术,确保通信数据的安全性。
b. 认证授权:BMS与整车系统之间的通信可采用认证和授权机制,确保只有合法的系统才能进行通信。
电动汽车通讯协议 (2)
电动汽车通讯协议协议名称:电动汽车通讯协议协议编号:EVCP-001生效日期:20XX年XX月XX日1. 引言本协议旨在规范电动汽车(以下简称"EV")与充电设备(以下简称"CP")之间的通讯协议,以确保EV与CP之间的信息交换和互操作性。
该协议适合于所有EV和CP的创造商、供应商、运营商和终端用户。
2. 定义2.1 电动汽车(EV)指使用电力作为动力源的交通工具,包括纯电动汽车、插电式混合动力汽车等。
2.2 充电设备(CP)指提供给EV进行充电的设备,包括充电桩、充电站、充电器等。
3. 协议目标本协议的目标是确保EV与CP之间的通讯协议规范,以实现以下功能:3.1 EV与CP之间的基本通讯能力,包括电池状态、充电状态、充电速度等信息的传输。
3.2 EV与CP之间的互操作性,使不同创造商的EV能够与不同供应商的CP进行通讯和充电。
3.3 EV与CP之间的安全性,包括通讯数据的加密和身份验证等。
4. 协议内容4.1 通讯协议EV与CP之间的通讯协议应采用国际标准的通讯协议,例如CAN(Controller Area Network)或者Ethernet等。
4.2 通讯接口EV与CP之间的通讯接口应符合国际标准,例如ISO 15118或者GB/T 27930等。
4.3 通讯数据格式EV与CP之间的通讯数据格式应采用统一的数据格式,包括数据字段、数据长度、数据类型等。
4.4 通讯速率EV与CP之间的通讯速率应符合国际标准,以确保通讯的稳定和高效。
4.5 通讯安全EV与CP之间的通讯应采用加密技术,确保通讯数据的机密性和完整性。
同时,应实施身份验证机制,防止未授权的访问和操作。
5. 实施和测试5.1 实施计划创造商和供应商应制定EV和CP之间通讯协议的实施计划,包括协议的更新和升级。
5.2 通讯测试创造商和供应商应进行EV和CP之间通讯的测试,确保协议的正确实施和互操作性。
电动汽车通讯协议
电动汽车通讯协议协议名称:电动汽车通讯协议一、引言本协议旨在规范电动汽车通讯协议的标准格式,以确保电动汽车之间的通讯能够高效、安全地进行。
本协议适用于电动汽车之间的数据交换和通讯操作。
二、术语定义1. 电动汽车(Electric Vehicle,EV):指以电力为动力源的汽车。
2. 通讯协议(Communication Protocol):指在电动汽车之间进行数据交换和通讯操作的规范。
3. 数据传输(Data Transfer):指电动汽车之间传递和接收数据的过程。
4. 数据格式(Data Format):指数据在传输过程中的组织形式和结构。
5. 通讯接口(Communication Interface):指电动汽车用于进行数据交换和通讯的硬件或软件接口。
6. 数据加密(Data Encryption):指对传输的数据进行加密处理,以保证数据的安全性和隐私性。
三、协议要求1. 数据传输方式电动汽车之间的数据传输应采用可靠、高效的方式,确保数据的完整性和准确性。
建议采用基于互联网的通讯技术,如Wi-Fi、蓝牙等。
2. 数据格式要求数据格式应符合国际通用标准,确保不同品牌、型号的电动汽车之间能够互相通讯。
建议采用XML或JSON等常用的数据交换格式。
3. 通讯接口要求电动汽车应配备标准的通讯接口,以便与其他电动汽车进行数据交换和通讯。
通讯接口应符合国际标准,并支持常用的通讯协议,如TCP/IP、HTTP等。
4. 数据安全性要求为确保数据的安全性和隐私性,电动汽车之间的数据传输应采用加密技术进行保护。
建议采用对称加密和公钥加密相结合的方式,确保数据在传输过程中不被篡改或窃取。
5. 故障处理要求在数据传输过程中,如果出现通讯故障或数据丢失等问题,电动汽车应能够自动检测并进行相应的故障处理。
故障处理应及时有效,确保通讯的连续性和稳定性。
6. 兼容性要求电动汽车通讯协议应具有良好的兼容性,能够适应不同品牌、型号的电动汽车之间的通讯需求。
电动汽车通讯协议
电动汽车通讯协议协议名称:电动汽车通讯协议一、引言本协议旨在规范电动汽车通讯协议的标准格式,以确保电动汽车之间的通讯能够高效、安全、可靠地进行。
本协议适用于电动汽车的通讯系统,包括车辆与车辆之间、车辆与充电设施之间的通讯。
二、定义1. 电动汽车(EV):指使用电能作为动力源的汽车,包括纯电动汽车和混合动力汽车。
2. 通讯系统:指电动汽车与其他设备之间进行信息交换的系统,包括数据传输、命令控制等功能。
3. 充电设施:指用于给电动汽车充电的设备,包括充电桩、充电站等。
三、通讯协议要求1. 通讯协议应采用开放标准,以促进不同厂商之间的互操作性。
2. 通讯协议应支持多种通讯方式,包括有线通讯和无线通讯。
3. 通讯协议应支持高速数据传输,以满足电动汽车与充电设施之间大量数据的传输需求。
4. 通讯协议应具备安全性,包括数据加密、身份认证等功能,以防止信息泄露和非法访问。
5. 通讯协议应支持实时通讯,以保证电动汽车与充电设施之间的快速响应和交互。
6. 通讯协议应支持故障诊断和远程监控功能,以方便对电动汽车和充电设施进行状态监测和维护。
四、通讯协议架构1. 物理层:定义电动汽车通讯的物理接口和传输介质,包括有线和无线通讯方式。
2. 数据链路层:负责将数据分割成数据帧,并进行差错检测和纠正,确保数据的可靠传输。
3. 网络层:负责数据的路由和转发,以实现不同设备之间的通讯。
4. 传输层:提供端到端的数据传输服务,包括数据分段、重组和流量控制等功能。
5. 应用层:定义电动汽车通讯的应用协议,包括数据格式、命令和控制规则等。
五、通讯协议数据格式1. 数据帧格式:数据帧由帧头、数据字段和帧尾组成,帧头和帧尾用于标识数据帧的起始和结束。
2. 数据格式:数据采用统一的格式进行编码,包括数据类型、数据长度和数据内容等信息。
3. 命令格式:定义通讯双方之间的命令格式,包括命令类型、参数和返回值等。
4. 控制规则:定义通讯协议中的控制规则,包括数据的请求、应答和重传等。
纯电动车BMS与整车系统CAN通信协议
纯电动车BMS与整车系统CAN通信协议随着电动车领域的快速发展,纯电动车的电池管理系统(BMS)和整车系统之间的通信协议变得越发重要。
BMS负责监控电池状态、控制充放电过程,并将相关信息传递给整车系统,以实现对纯电动车的全面控制和管理。
而整车系统则负责接收和解析BMS传递的信息,并作出相应的调控。
CAN通信协议,即控制器局域网通信协议(Controller Area Network),是一种广泛应用于汽车电子系统中的标准通信协议。
它采用差分信号传输,在高速和抗干扰性能方面优于其他通信协议,因此成为了纯电动车BMS与整车系统之间通信的首选协议。
CAN通信协议通过一对不同电压的差分信号来传递信息。
在CAN总线上,整车系统和BMS通过CAN节点来实现通信。
CAN节点可以是控制器、传感器、执行器等。
CAN通信协议有两种工作模式:基本帧格式(Standard Frame Format)和扩展帧格式(Extended Frame Format)。
基本帧格式用于低速通信,帧ID为11位;扩展帧格式用于高速通信,帧ID为29位。
CAN总线的通信速率可根据具体的需求设置,一般可达到1 Mbps。
在纯电动车中,BMS和整车系统之间的通信通过CAN总线进行。
BMS将电池相关信息(如电池状态、电流、电压等)发送给整车系统,以供整车系统做出相应的控制和管理。
而整车系统也可以向BMS发送指令,如设置电池充电电流、放电电流等。
为了确保通信的安全可靠,CAN通信协议还支持错误检测和纠正。
每个CAN节点都有一个唯一的地址(节点ID),用于识别发送和接收的信息。
在发送信息时,节点会将信息打包成帧,并附上CRC(循环冗余校验)码以进行错误检测。
接收节点在接收到信息后会进行CRC校验,若校验失败,则说明信息发生错误,可以进行相应的错误处理。
另外,纯电动车的BMS和整车系统之间的通信协议还应考虑一些特殊需求。
例如,BMS需要监测电池的温度和故障状态,并将这些信息传递给整车系统。
电动汽车通讯协议
电动汽车通讯协议协议名称:电动汽车通讯协议一、引言本协议旨在规范电动汽车通讯协议的制定和应用,以促进电动汽车行业的发展和普及。
本协议适用于电动汽车通讯协议的设计、开发、测试和应用等相关环节。
二、背景随着电动汽车的快速发展,电动汽车通讯协议的标准化和统一成为推动电动汽车行业发展的关键因素。
本协议的制定旨在解决电动汽车通讯协议的多样性和不兼容性问题,提高电动汽车通讯协议的互操作性和安全性。
三、定义1. 电动汽车(Electric Vehicle,EV):指使用电能作为动力源的汽车,包括纯电动汽车和插电式混合动力汽车。
2. 通讯协议(Communication Protocol):指用于电动汽车之间或电动汽车与充电设施之间进行数据交换和通信的规范和约定。
四、协议内容1. 协议设计原则本协议的设计原则包括兼容性、互操作性、安全性和可扩展性。
协议应能够适应不同厂商和不同型号的电动汽车,实现数据的可靠传输和互通。
2. 协议架构本协议采用分层架构,包括物理层、数据链路层、网络层和应用层。
各层之间通过接口进行数据交换和通信。
3. 物理层协议物理层协议规定了电动汽车通讯协议在物理层的传输方式和接口标准。
具体内容包括传输介质、传输速率、连接方式等。
4. 数据链路层协议数据链路层协议规定了电动汽车通讯协议在数据链路层的帧格式、传输控制和错误检测等。
具体内容包括帧头、帧尾、校验和等。
5. 网络层协议网络层协议规定了电动汽车通讯协议在网络层的路由和数据传输等。
具体内容包括IP地址分配、路由选择、数据分段和重组等。
6. 应用层协议应用层协议规定了电动汽车通讯协议在应用层的数据格式和交互方式。
具体内容包括数据包格式、数据交换协议和应用接口等。
7. 安全协议安全协议规定了电动汽车通讯协议在数据传输和通信过程中的安全机制和措施。
具体内容包括身份认证、数据加密和防止恶意攻击等。
8. 兼容性测试为确保电动汽车通讯协议的兼容性和互操作性,应进行兼容性测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纯电动汽车通信协议版本号:V1.0(2016/08/18)武汉合康动力技术有限公司更改记录:目录一:整车网络拓扑结构: - 4 -二:通讯协议制定的原则- 4 -三:Can网络节点地址分配- 6 -四:电池管理系统协议- 7 -4.1电池基本信息 ID:0x18F201F3 ........................................................................................ - 7 -4.2电池基本信息2 ID:0x18F202F3 ..................................................................................... - 7 -4.3电池故障报警信息 ID:0x18F205F3 ................................................................................ - 9 -4.4电池单体最高电压信息1 ID:0x18F206F3 ................................................................... - 12 -4.5电池单体最高电压信息2 ID:0x18F207F3 ................................................................... - 12 -4.6电池单体最低电压信息1 ID:0x18F208F3 ................................................................... - 13 -4.7电池单体最低电压信息2 ID:0x18F209F3 ................................................................... - 14 -4.8电池最高温度信息 ID:0x18F20AF3 ............................................................................. - 14 -4.9电池最低温度信息 ID:0x18F20BF3.............................................................................. - 15 -4.10电池极柱温度信息1 ID:0x18F210F3 ......................................................................... - 16 -4.11电池极柱温度信息2 ID:0x18F211F3 ......................................................................... - 16 -4.12电池极柱温度信息3 ID:0x18F212F3 ......................................................................... - 17 -4.14电池箱体在线状态 ID:0x185017F3 ............................................................................ - 18 -4.15电池组基本信息1(厂家容量) ID: 0x18F20CF3 ..................................................... - 19 -4.16电池组基本信息2(序列号) ID:0x18F221F3 ........................................................ - 20 -4.17电池组基本信息3(总能量) ID:0x18F222F3 ........................................................ - 21 -4.18电池组充电状态(此帧只在充电过程中发出)ID 0x18F20DF3 .............................. - 21 -4.19绝缘检测仪 ID: 0x1819A1A4....................................................................................... - 22 -五:整车控制器(VCU) 协议- 24 -5.1整车控制器状态信息1 ID:0x18F101D0......................................................................... - 24 -5.2整车控制器状态信息2 ID:0x18F103D0......................................................................... - 26 -5.3VCU使能控制 ID:0x18F105D0 ....................................................................................... - 26 -5.4高压柜状态信息 ID:0x18F106D0.................................................................................... - 27 -六:电机控制器(MCU) - 28 -6.1AMT控制器报文1 ......................................................................................................... - 29 -6.2驱动电机控制器报文1 (驱动电机反馈报文) ................................................................ - 30 -6.3驱动电机控制器报文2 (驱动电机反馈报文) ................................................................ - 31 -七:高压附件控制器(发送) - 33 -7.1助力油泵发送报文状态ID 0x0CF601 A0 ...................................................................... - 33 -7.3气泵发送报文状态ID 0x0CF603 A2 .............................................................................. - 34 -八:仪表- 36 -8.1车辆状态信息 ID:18F40117 ........................................................................................... - 36 -8.2车辆里程信息 ID:18F40217 ........................................................................................... - 37 -一:整车CAN网络拓扑结构:注:终端电阻匹配请按拓扑图中执行!!电机CANA上匹配电阻分别在电机控制器及AMT整车控制器内部整车CANB上匹配电阻分别在仪表及AMT整车控制器内部电池箱CANC上匹配电阻分别在BMS主控内及通信线束末端(线束末端电阻由线束设计单位负责)充电CAND上匹配电阻分别在在BMS主控内及充电机内部二:通讯协议制定的原则1.本协议主要规定了整车CANB上的通信协议;CANC电池箱之间通信由配套厂家自行定义;CAND如无特殊要求采用GBT_27930-20112.本协议采用INTEL格式。
3.所有CAN通信总线通信速率都为250kbps;4.总线通信电缆需采用双绞屏蔽线,线束中间禁止对接,应在端子处并压5.每帧数据均为8字节,无效或预留的字节以FFH 填充,无效或预留的位均置为0三:Can网络节点地址分配四:电池管理系统协议4.1电池基本信息 ID:0x18F201F34.2电池基本信息2 ID:0x18F202F31)“BMS请求切断高压”仅用在BMS控制总正/负时,在故障状态主动切断高压时进行请求,正常低压电断电切断不需请求。
(此处在样车测试时需进行测试)附表14.3电池故障报警信息 ID:0x18F205F31.1.Byte1 4的报警状态长度为2Bit报警值定义为:正常:00一级:01二级:10三级:112.SOC低二级报警时,仪表同时显示“请补电”,仪表声音持续报警30秒后停止。
3.动力电池故障状态,BMS所有故障此位均置1,仪表点亮;4.充电状态仪表点亮(黄色);5.充电枪连接状态由BMS判断CC2信号,并将充电枪连接状态置1。
仪表点亮红色6.整车控制器在充电枪连接/充电状态下,禁止行车4.4电池单体最高电压信息1 ID:0x18F206F34.5电池单体最高电压信息2 ID:0x18F207F34.6电池单体最低电压信息1 ID:0x18F208F34.7电池单体最低电压信息2 ID:0x18F209F34.8电池最高温度信息 ID:0x18F20AF34.9电池最低温度信息 ID:0x18F20BF34.10电池极柱温度信息1 ID:0x18F210F34.11电池极柱温度信息2 ID:0x18F211F34.12电池极柱温度信息3 ID:0x18F212F34.14电池箱体在线状态 ID:0x185017F34.15电池组基本信息1(厂家容量) ID: 0x18F20CF34.16电池组基本信息2(序列号) ID:0x18F221F34.17电池组基本信息3(总能量) ID:0x18F222F34.18电池组充电状态(此帧只在充电过程中发出)ID 0x18F20DF3用,仪表不做显示状态。