2019-2020学年高中数学 第一章 §1.3.1-1.3.2赋值语句 输入、输出语句配套训练 苏教版必修3.doc

合集下载

2019_2020学年高中数学第一章算法初步1.3算法案例课件新人教A版必修3

2019_2020学年高中数学第一章算法初步1.3算法案例课件新人教A版必修3

课堂探究·素养提升
题型一 求最大公约数 [例1] 分别用辗转相除法和更相减损术求779与209的最大公约数.
解:法一 辗转相除法: 779=209×3+152, 209=152×1+57, 152=57×2+38, 57=38×1+19, 38=19×2. 所以,779与209的最大公约数为19.
法二 更相减损术法: 779-209=570,570-209=361,361-209=152,209-152=57,152-57=95, 95-57=38,57-38=19,38-19=19. 所以779和209的最大公约数为19.
方法技巧
求两个正整数的最大公约数的问题,可以用辗转相除法,也可以用更 相减损术.
思考3:不同进位制之间的数是否能比较大小?
答案:能.都可以把其化为相同进位制的数,然后比较其大小.
名师点津
常见的进位制 (1)二进制:①只使用0和1两个数字;②满二进一,如1+1=10. (2)八进制:①使用0,1,2,3,4,5,6,7八个不同的数字;②满八进一,如 7+1=10. (3)十六进制:①使用0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F这十六个不 同的数码,其中A,B,C,D,E,F分别代表十进制中的10,11,12,13,14,15; ②满十六进一,如F+1=2+E=10.
新知导学·素养养成
1.求两个正整数的最大公约数的算法
(1)辗转相除法(欧几里得算法)的算法步骤: 第一步,给定 两个正整数m,n . 第二步,计算 m除以n所得的余数r . 第三步, m=n,n=r . 第四步,若r=0,则m,n的最大公约数等于 m ;否则返回 第二步 .

2019-2020学年高中数学(人教A版必修一)教师用书:第1章 1.3.2 奇偶性 Word版含解析

2019-2020学年高中数学(人教A版必修一)教师用书:第1章 1.3.2 奇偶性 Word版含解析

1.3.2奇偶性1.结合具体函数了解函数奇偶性的含义.(难点)2.会判断函数奇偶性的方法.(重点、难点)3.能运用函数图象理解和研究函数的奇偶性,了解函数奇偶性与图象的对称性之间的关系.(易混点)[基础·初探]教材整理1 偶函数阅读教材P33~P34“观察”以上部分,完成下列问题.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图1-3-4所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间.图1-3-4【解】由题意做出函数图象如下:据图可知,单调增区间为(-1,0),(1,+∞).教材整理2 奇函数阅读教材P34“观察”至P35“例5”以上部分,完成下列问题.判断(正确的打“√”,错误的打“×”)(1)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.( )(2)不存在既是奇函数,又是偶函数的函数.( )(3)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.( )【解析】(1)×.如f(x)=x2,满足f(-0)=-f(0)=0,但函数f(x)=x2不是奇函数.(2)×.存在f(x)=0,x∈R既是奇函数,又是偶函数.(3)×.函数f(x)=x2-2x,x∈R的定义域关于原点对称,但它既不是奇函数,也不是偶函数.【答案】(1)×(2)×(3)×[小组合作型]①f (x )=|x +1|-|x -1|是奇函数;②g(x )=1-x2|x +2|-2既不是奇函数也不是偶函数; ③F (x )=f (x )f (-x )(x ∈R )是偶函数;④h (x )=x2-1+1-x2既是奇函数,又是偶函数.其中正确的序号是________. 【精彩点拨】 先求函数的定义域,若定义域不关于原点对称,则既不是奇函数也不是偶函数;若关于原点对称,利用函数的奇偶性判断.【自主解答】 对于①,∵f (-x )=|-x +1|-|-x -1|=-(|x +1|-|x -1|)=-f (x ), ∴f (x )=|x +1|-|x -1|是奇函数,①正确;对于②,由1-x 2≥0,得-1≤x ≤1,∴g (x )=1-x2|x +2|-2=1-x2x +2-2=1-x2x ,满足g (-x )=-g (x ),故y =g (x )是奇函数,②错误;对于③,∵F (x )=f (x )f (-x ),∴F (-x )=f (-x )f (x )=F (x )(x ∈R ),∴F (x )=f (x )f (-x )是偶函数,③正确;对于④,由⎩⎨⎧x2-1≥0,1-x2≥0,解得x =±1,故函数h (x )的定义域为{-1,1},且h (x )=0,所以h (x )既是奇函数,又是偶函数,④正确.【答案】 ①③④定义法判断函数奇偶性的步骤[再练一题]1.下列函数中,是偶函数的有________.(填序号)【导学号:97030060】 (1)f (x )=x 3;(2)f (x )=|x |+1;(3)f (x )=1x2;(4)f(x)=x+1x;(5)f(x)=x2,x∈[-1,2].【解析】对于(1),f(-x)=-x3=-f(x),则为奇函数;对于(2),f(-x)=|-x|+1=|x|+1,则为偶函数;对于(3),定义域为{x|x≠0},关于原点对称,f(-x)=错误!=错误!=f(x),则为偶函数;对于(4),定义域为{x|x≠0},关于原点对称,f(-x)=-x-1x=-f(x),则为奇函数;对于(5),定义域为[-1,2],不关于原点对称,不具有奇偶性,则为非奇非偶函数.故为偶函数的是(2)(3).【答案】(2)(3)(1)A.12 B.23C.34D.1(2)已知f(x)=x5+ax3+bx-8且f(-2)=10,那么f(2)=________.【精彩点拨】(1)利用奇函数的定义得到f(-1)=-f(1),列出方程求出a;(2)由已知中f(x)=x5+ax3+bx-8,我们构造出函数g(x)=f(x)+8,由函数奇偶性的性质,可得g(x)为奇函数,由f(-2)=10,我们逐次求出g(-2)、g(2),可求f(2).【自主解答】(1)∵f(x)为奇函数,∴f(-1)=-f(1),∴11+a=错误!,∴1+a=3(1-a),解得a=12,故选A.(2)∵f(x)=x5+ax3+bx-8,令g(x)=f(x)+8=x5+ax3+bx,则g(x)为奇函数,∵f(-2)=10,∴g(-2)=10+8=18,∴g(2)=-18,∴f(2)=g(2)-8=-18-8=-26.【答案】(1)A (2)-261.由函数的奇偶性求参数应关注两点(1)函数奇偶性的定义既是判断函数的奇偶性的一种方法,也是在已知函数奇偶性时可以运用的一个性质,要注意函数奇偶性定义的正用和逆用.(2)利用常见函数如一次函数、反比例函数、二次函数具有奇偶性的条件也可求得参数. 2.利用函数的奇偶性求函数值时,若所给的函数不具有奇偶性,一般需利用所给的函数来构造一个奇函数或偶函数,然后利用其奇偶性求值,如本例(2)即是如此.[再练一题]2.若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.【解析】 由于f (x )是偶函数,由题意可知 ⎩⎨⎧a -1+2a =0,b =0, ∴a =13,b =0. 【答案】 13 0函数f (x ) 【精彩点拨】 设x <0,则-x >0,结合f (-x )=-f (x ),f (0)=0,可求f (x ).【自主解答】 设x <0,则-x >0,∴f (-x )=-x +1.∵f (x )是奇函数,∴f (-x )=-f (x ), 即-f (x )=-x +1,∴f (x )=--x -1. ∵f (x)是奇函数,∴f (0)=0,∴f (x )=⎩⎨⎧1+x ,x>0,0,x =0,--x -1,x<0.利用奇偶性求函数解析式的一般步骤1.在哪个区间上求解析式,x就设在哪个区间.2.把x对称转化到已知区间上,利用已知区间的解析式进行代入.3.利用函数的奇偶性把f(-x)改写成-f(x)或f(x),从而求出f(x).[再练一题]3.已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(x-2),则当x<0时,f(x)的表达式为( )A.f(x)=x(x-2) B.f(x)=x(x+2)C.f(x)=-x(x-2) D.f(x)=-x(x+2)【解析】∵函数y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x).∵当x≥0时,f(x)=x(x-2),∴当x<0时,即-x>0,f(x)=-f(-x)=-[-x(-x-2)]=-x(x+2).故选D.【答案】 D[探究共研型]探究1 )上的单调性如何?如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上的单调性如何?【提示】如果奇函数f(x)在区间(a,b)上单调递增,那么f(x)在(-b,-a)上单调递增;如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上单调递增.探究2 你能否把探究1所得出的结论用一句话概括出来?【提示】奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.探究3若偶函数f(x)在(-∞,0)上单调递增,那么f(3)和f(-2)的大小关系如何?若f(a)>f(b),你能得到什么结论?【提示】f(-2)>f(3),若f(a)>f(b),则|a|<|b|.(1)定义在R上的偶函数f(x)满足:对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)[f (x 2)-f (x 1)]>0,则当n ∈N *时,有( )A .f (-n )<f (n -1)<f (n +1)B .f (n +1)<f (-n )<f (n -1)C .f (n -1)<f (-n )<f (n +1)D .f (n +1)<f (n -1)<f (-n )(2)已知y =f (x )在定义域(-1,1)上是减函数,其图象关于原点对称,且f (1-a )+f (1-2a )<0,则a 的取值范围是________.【精彩点拨】 (1)根据条件判断函数的单调性,利用函数奇偶性和单调性之间的关系进行判断即可.(2)由于y =f (x )在定义域(-1,1)上,其图象关于原点对称,可得函数f (x )是奇函数.再利用单调性即可得出.【自主解答】 (1)∵对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)[f (x 2)-f (x 1)]>0, ∴若x 2-x 1>0,则f (x 2)-f (x 1)>0,即x 2>x 1,则f (x 2)>f (x 1),若x 2-x 1<0,则f (x 2)-f (x 1)<0,即x 2<x 1,则f (x 2)<f (x 1),则函数在(-∞,0]上为单调递增函数.又∵f (x )为定义在R 上的偶函数,∴函数f (x )在[0,+∞)上为单调递减函数,则f (n +1)<f (n )<f (n -1),即f (n +1)<f (-n )<f (n -1),故选B .(2)∵y =f (x )在定义域(-1,1)上,其图象关于原点对称,∴函数f (x )是奇函数.∵f (1-a )+f (1-2a )<0,∴f (1-a )<-f (1-2a )=f (2a -1),又y =f (x )在定义域(-1,1)上是减函数,∴1>1-a >2a -1>-1,解得0<a <23. ∴a 的取值范围是0<a <23. 【答案】 (1)B (2)⎝ ⎛⎭⎪⎫0,231.利用函数的奇偶性与单调性求参数的范围问题,要首先弄清函数在各区间上的单调性,然后利用单调性列出不等式并求解,同时不应忘记函数自身定义域对参数的影响.2.利用函数的奇偶性与单调性比较函数值的大小,关键是利用奇偶性把自变量转化到函数的一个单调区间内,然后利用单调性比较.[再练一题]4.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) 【导学号:97030062】A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)【解析】由偶函数与单调性的关系知,若x∈[0,+∞)时,f(x)是增函数,则x∈(-∞,0)时,f(x)是减函数,故其图象的几何特征是自变量的绝对值越小,则其函数值越小,∵|-2|<|-3|<π,∴f(π)>f(-3)>f(-2),故选A.【答案】 A1.下列函数是偶函数的是( )A.f(x)=x B.f(x)=2x2-3C.f(x)=x D.f(x)=x2,x∈(-1,1]【解析】对于A,f(-x)=-x=-f(x),是奇函数;对于B,定义域为R,满足f(x)=f(-x),是偶函数;对于C和D,定义域不对称,则不是偶函数,故选B.【答案】B2.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调递增区间为( )A.(-∞,0] B.[0,+∞)C.(-∞,+∞) D.[1,+∞)【解析】因为函数为偶函数,所以a+2=0,a=-2,即该函数f(x)=-2x2+1,所以函数在(-∞,0]上单调递增.【答案】A3.若奇函数f(x)在[-6,-2]上是减函数,且最小值是1,则它在[2,6]上是( ) 【导学号:97030063】A.增函数且最小值是-1B.增函数且最大值是-1C.减函数且最大值是-1D.减函数且最小值是-1【解析】 ∵奇函数f (x )在[-6,-2]上是减函数,且最小值是1,∴函数f (x )在[2,6]上是减函数且最大值是-1.【答案】 C4.如图1-3-5,已知偶函数f (x )的定义域为{x |x ≠0},且f (3)=0,则不等式f (x )<0的解集为________.图1-3-5【解析】 画出函数f (x )在R 上的简图,如图所示.数形结合可得不等式f (x )<0的解集为(-3,0)∪(0,3). 【答案】 (-3,0)∪(0,3)5.设函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x 2-x . (1)求f (x )的表达式; (2)画出f (x )的图象.【解】 (1)当x =0时,f (-0)=-f (0),则f (0)=0;当x <0时,即-x >0,函数f (x )是奇函数,则f (x )=-f (-x )=-[2(-x )2-(-x )]=-(2x 2+x )=-2x 2-x .综上所述,f (x )=⎩⎨⎧2x2-x ,x>0,0,x =0,-2x2-x ,x<0.(2)函数f (x )的图象如图所示.。

2019-2020学年高中数学(人教A版必修一)教师用书:第1章 1.3.1 第2课时 函数的最大(小)值 Word版含解析

2019-2020学年高中数学(人教A版必修一)教师用书:第1章 1.3.1 第2课时 函数的最大(小)值 Word版含解析

第2课时 函数的最大(小)值1.理解函数的最大(小)值的概念及其几何意义.(重点)2.了解函数的最大(小)值与定义区间有关,会求一次函数、二次函数及反比例函数在指定区间上的最大(小)值.(重点、难点)[基础·初探]教材整理 函数的最大(小)值阅读教材P 30至“例3”以上部分,完成下列问题.1.函数f (x )=1x ,x ∈[-1,0)∪(0,2]( ) A .有最大值12,最小值-1 B .有最大值12,无最小值 C .无最大值,有最小值-1D .无最大值,也无最小值【解析】 函数f (x )=1x 在[-1,0)上单调递减,在(0,2]上也单调递减,所以无最大值,也无最小值,故选D.【答案】 D2.函数f (x )=x 2-2x +2,x ∈[-1,2]的最小值为________;最大值为________.【解析】 因为f (x )=x 2-2x +2=(x -1)2+1,x ∈[-1,2],所以f (x )的最小值为f (1)=1,最大值为f (-1)=5.【答案】 1 5[小组合作型]【精彩点拨】 先把y =x -|x -1|化成分段函数的形式,再画出其图象,并由图象求值域. 【自主解答】 y =x -|x -1|=⎩⎨⎧1,x≥12x -1,x<1,画出该函数的图象如图所示.由图可知,函数y =x -|x -1|的值域为(-∞,1].1.函数的最大值、最小值分别是函数图象的最高点、最低点的纵坐标.对于图象较容易画出来的函数,可借助于图象直观的求出其最值,但画图时要求尽量精确.2.利用图象法求函数最值的一般步骤作图象→找图象的最高点和最低点→确定最高点和最低点的纵坐标→确定最值[再练一题]1.已知函数f (x )=错误!(1)在如图1-3-2给定的直角坐标系内画出f (x )的图象; (2)写出f (x )的单调递增区间及值域. 【导学号:97030053】图1-3-2【解】 (1)图象如图所示:(2)由图可知f (x )的单调递增区间为[-1,0),(2,5],值域为[-1,3].求函数f (x )=x +4x 在[1,4]上的最值.【精彩点拨】 先利用单调性的定义判断函数的单调性,再根据单调性求最值即可. 【自主解答】 设1≤x 1<x 2≤2,则f (x 1)-f (x 2)=x 1+4x1-x 2-4x2=x 1-x 2+错误!=(x 1-x 2)·⎝ ⎛⎭⎪⎫1-4x1x2=(x 1-x 2)x1x2-4x1x2=错误!. ∵1≤x 1<x 2≤2,∴x 1-x 2<0,x 1x 2-4<0,x 1x 2>0,∴f (x 1)>f (x 2),∴f (x )是减函数. 同理f (x )在(2,4]上是增函数.∴当x =2时,f (x )取得最小值4,当x =1或x =4时,f (x )取得最大值5.函数的单调性与其最值的关系1.若函数f(x)在闭区间[a,b]上是减函数,则f(x)在闭区间[a,b]上的最大值为f(a),最小值为f(b).2.若函数f(x)在闭区间[a,b]上是增函数,则f(x)在闭区间[a,b]上的最大值为f(b),最小值为f(a).3.求函数的最值时一定要注意所给的区间是闭区间还是开区间,若是开区间,则不一定有最大值或最小值.[再练一题]2.已知函数f(x)=1x-2,(1)判断f(x)在[3,5]上的单调性,并证明;【导学号:97030054】(2)求f(x)在[3,5]上的最大值和最小值.【解】(1)f(x)在[3,5]上为减函数.证明:任取x1,x2∈[3,5],有x1<x2,∴f(x1)-f(x2)=1x1-2-1x2-2=错误!.∵x1<x2,∴x2-x1>0.又∵x1,x2∈[3,5],∴(x1-2)(x2-2)>0,∴错误!>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴f(x)在[3,5]上是减函数.(2)∵f(x)在[3,5]上是减函数,∴f(x)在[3,5]上的最大值为f(3)=1,f(x)在[3,5]上的最小值为f(5)=1 3.某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x 元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y 表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).(1)求函数y =f (x )的解析式及定义域;(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元? 【精彩点拨】 (1)函数y =f (x )=出租自行车的总收入-管理费;当x ≤6时,全部租出;当6<x ≤20时,每提高1元,租不出去的就增加3辆,所以要分段求出解析式;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值. 【自主解答】 (1)当x ≤6时,y =50x -115,令50x -115>0,解得x >2.3. ∵x ∈N ,∴3≤x ≤6,且x ∈N .当6<x ≤20时,y =[50-3(x -6)]x -115=-3x 2+68x -115, 综上可知y =⎩⎨⎧50x -115,3≤x≤6,x ∈N-3x2+68x -115,6<x≤20,x ∈N.(2)当3≤x ≤6,且x ∈N 时,∵y =50x -115是增函数,∴当x =6时,y m ax =185元. 当6<x ≤20,x ∈N 时,y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113,∴当x =11时,y m ax =270元.综上所述,当每辆自行车日租金定在11元时才能使日净收入最多,为270元.1.本题建立的是分段函数模型,分段求出各段的最大值,两段中的最大值即为所求,其中求一次函数的最值应用单调性,求二次函数的最值则应用配方法.2.解决实际应用问题,首先要理解题意,然后建立数学模型转化成数学模型解决;分清各种数据之间的关系是正确构造函数关系式的关键.[再练一题]3.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足R (x )=错误!假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)工厂生产多少台产品时,可使盈利最多? 【解】 (1)由题意得G (x )=2.8+x . ∵R (x )=错误! ∴f (x )=R (x )-G (x ) =错误!(2)当x >5时,函数f (x )递减, ∴f (x )<f (5)=3.2(万元).当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6(万元).所以当工厂生产4百台时,可使盈利最大为3.6万元.[探究共研型]探究1 函数f (x )=x 1,0],[-1,2],[2,3]上的最大值和最小值分别是什么?【提示】 函数f (x )=x 2-2x +2的图象开口向上,对称轴为x =1.(1)因为f (x )在区间[-1,0]上单调递减,所以f (x )在区间[-1,0]上的最大值为f (-1)=5,最小值为f (0)=2.(2)因为f (x )在区间[-1,1]上单调递减,在[1,2]上单调递增,则f (x )在区间[-1,2]上的最小值为f (1)=1,又因为f (-1)=5,f (2)=2,f (-1)>f (2),所以f (x )在区间[-1,2]上的最大值为f (-1)=5.(3)因为f (x )在区间[2,3]上单调递增,所以f (x )在区间[2,3]上的最小值为f (2)=2,最大值为f (3)=5.探究2 你能说明二次函数f (x )=ax 2+bx +c 的单调性吗?若求该函数f (x )在[m ,n ]上的最值,应考虑哪些因素?【提示】 当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递减,在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递增;当a <0时,f (x )在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递增.若求二次函数f (x )在[m ,n ]上的最值,应考虑其开口方向及对称轴x =-b2a 与区间[m ,n ]的关系.已知函数f (x )=x 2-ax +1, (1)求f (x )在[0,1]上的最大值;(2)当a =1时,求f (x )在闭区间[t ,t +1](t ∈R )上的最小值. 【精彩点拨】 (1)根据二次函数图象的对称性求函数的最大值.(2)根据函数在区间[t ,t +1]上的单调性分三种情况讨论,分别求出f (x )的最小值. 【自主解答】 (1)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,所以区间[0,1]的哪一个端点离对称轴远,则在哪个端点取到最大值,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ; 当a 2>12,即a >1时,f (x )的最大值为f (0)=1.(2)当a =1时,f (x )=x 2-x +1,其图象的对称轴为x =12, ①当t ≥12时,f (x )在其上是增函数,∴f (x )min =f (t )=t 2-t +1; ②当t +1≤12,即t ≤-12时,f (x )在其上是减函数, ∴f (x )min =f (t +1)=⎝ ⎛⎭⎪⎫t +122+34=t 2+t +1;③当t <12<t +1,即-12<t <12时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12上单调递减,在⎣⎢⎡⎦⎥⎤12,t +1上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12=34.探求二次函数的最值问题,要根据函数在已知区间上的单调性求解,特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,如果二者的位置关系不确定,那么就应对其位置关系进行分类讨论来确定函数的最值.[再练一题]4.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.【导学号:97030055】【解】f(x)=(x-a)2-1-a2,对称轴为x=a.(1)当a<0时,由图①可知,f(x)在区间[0,2]上是增函数,所以f(x)min=f(0)=-1,f(x)m ax=f(2)=3-4a.(2)当0≤a≤1时,由图②可知,对称轴在区间[0,2]内,所以f(x)min=f(a)=-1-a2,f(x)m ax =f(2)=3-4a.(3)当1<a≤2时,由图③可知,对称轴在区间[0,2]内,所以f(x)min=f(a)=-1-a2,f(x)m ax =f(0)=-1.(4)当a>2时,由图④可知,f(x)在[0,2]上为减函数,所以f(x)min=f(2)=3-4a,f(x)m ax=f(0)=-1.1.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为( )A.3,5 B.-3,5C.1,5 D.5,-3【解析】因为f(x)=-2x+1(x∈[-2,2])是单调递减函数,所以当x=2时,函数的最小值为-3.当x=-2时,函数的最大值为5.【答案】 B2.函数y=x2-2x,x∈[0,3]的值域为( )A.[0,3] B.[-1,0]C.[-1,+∞) D.[-1,3]【解析】∵函数y=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,函数y取得最小值为-1,当x=3时,函数取得最大值为3,故函数的值域为[-1,3],故选D.【答案】 D3.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是( )【导学号:97030056】A.2 B.-2C.2或-2 D.0【解析】由题意,a≠0,当a>0时,有(2a+1)-(a+1)=2,解得a=2;当a<0时,有(a +1)-(2a+1)=2,解得a=-2.综上知a=±2.【答案】 C4.函数f(x)=6-x-3x在区间[2,4]上的最大值为________.【解析】∵6-x在区间上是减函数,-3x在区间上是减函数,∴函数f(x)=6-x-3x在区间上是减函数,∴f(x)m ax=f(2)=6-2-3×2=-4.【答案】-45.已知函数f(x)=2x-1(x∈[2,6]).(1)判断函数f(x)的单调性,并证明;(2)求函数的最大值和最小值.【解】(1)函数f(x)在x∈[2,6]上是增函数.证明:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则f(x1)-f(x2)=2x1-1-2x2-1=错误!=错误!.由2≤x1<x2≤6,得x2-x1>0,(x1-1)(x2-1)>0,于是f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)=2x-1是区间[2,6]上的减函数.(2)由(1)可知,函数f(x)=2x-1在区间[2,6]的两个端点处分别取得最大值与最小值,即在x=2时取得最大值,最大值是2,在x=6时取得最小值,最小值是0.4.。

高中数学学案 输入语句输出语句和赋值语句

高中数学学案 输入语句输出语句和赋值语句

1.2 基本算法语句1.2.1 输入语句、输出语句和赋值语句学习目标核心素养1.理解输入语句、输出语句、赋值语句的格式与作用.(重点、易混点)2.能够将程序框图转化为“算法”语句.(难点) 1.通过算法语句的学习,培养数学抽象素养.2.借助程序语句的编写,提升逻辑推理素养.1.输入、输出语句(1)输入、输出语句输入语句、输出语句分别与程序框图中的输入、输出框对应,用来输入和输出信息.(2)输入、输出语句的格式及功能名称格式功能输入语句INPUT “提示内容”;变量,其中“提示内容”一般是提示用户输入什么样的信息把程序中新输入的值赋给变量输出语句PRINT“提示内容”;表达式在计算机的屏幕上输出常量、变量的值和系统信息2.赋值语句(1)赋值语句和程序框图中表示赋值的处理框对应,用来给变量赋值.(2)赋值语句的格式及功能赋值语句变量=表达式将表达式所代表的值赋给变量,一般先计算“=”右边表达式的值,然后把这个值赋给“=”左边的变量思考:赋值号与等号有何区别?[提示](1)赋值号与等号意义不同,若把“=”看作等号,则N=N+1不成立,看成赋值号则成立.(2)赋值号两边的内容不能对调.(3)虽然赋值语句具有计算与赋值的作用,但不能利用它进行代数式的演算.1.下列关于赋值语句的说法错误的是( )A.赋值语句先计算出赋值号右边的表达式的值B.赋值语句是把左边变量的值赋给赋值号右边的表达式C.赋值语句是把右边表达式的值赋给赋值号左边的变量D.赋值语句中的“=”和数学中的“=”不一样B[赋值语句的作用是把右边表达式的值赋给赋值号左边的变量.]2.在INPUT语句中,如果同时输入多个变量,变量之间的分隔符是( )A.逗号B.分号C.空格D.引号A[在算法语句中,同时输入多个变量,变量之间用逗号隔开.]3.下列给出的输入、输出语句正确的是( )①输入语句:INPUT a,b,c,d,e;②输入语句:INPUT X=1;③输出语句:PRINT A=4;④输出语句:PRINT 10,3*2,2/3.A.①②B.②③C.③④D.①④D[①④正确,②③中对变量赋值是错误的.]4.下面一段程序执行后的结果是________.10[先把2赋给A,然后把A*2赋给A,即A变为4,再把A+6赋给A,故A为10.]输入、输出语句①INPUT2,3,4②INP UT x=2③INPUT x④INPUT x,y,z⑤INPUT“a=”;a⑥INPUT“a=”;5*5⑦INPUT a,b,c,(2)当x的值为5时,“PRINT“x=”;x”在屏幕上的输出结果为( )A.5=5 B.5C.5=x D.x=5(1)③④⑤(2)D [(1)序号正误理由①×输入语句不能直接输入常量②×输入语句不能输入表达式③√这是最常见的输入方式,一般在某一程序之前,用来输入下面的程序运行所需要的变量值④√这是一个输入多个变量的表达方式,即对三个变量进行赋值,每个变量之间用“,”隔开⑤√程序上机运行后,若输入5,则屏幕显示a=5⑥×输入语句没有运算功能,输入语句要求输入的值只能是一个常数,不能是一个表达式⑦×输入语句末尾不带任何符号(2)PRINT语句可将用双引号引起来的字符串显示在屏幕上,从而应输出x=5.]输入、输出语句中的注意点1输入语句没有计算功能,只能输入常量;而输出语句有计算功能,可以输出常量、变量或表达式的值以及字符2“提示内容”和变量之间用分号隔开,若输入出多个数,各数之间应用逗号隔开,“提示内容”可以省略.3程序中运算符号要规范,输出语句不能输出一个等式,这是易错点.[跟进训练]1.有以下程序:程序执行后的结果是( )A.5 5 B.3 3C.A=5 B=5 D.A=3 B=3C[该程序运行过程中A,B的值变化如下:A=3,B=5;A=5,B=5;所以程序执行后的结果是A=5,B =5.]赋值语句【例2】(1)下列赋值语句正确的是( )A.M=a+1 B.a+1=MC.M-1=a D.M-a=1(2)读如下两个程序,完成下列问题.程序a:程序b:①程序a的运行结果为________.②若程序a,b运行结果相同,则程序b输入的值为________.(1)A (2)①6②0[(1)a+1=M中,赋值号的左边是表达式,故B错误;M-1=a中,赋值号的左边是表达式,故C错误;M-a=1中,赋值号的左边是表达式,故D错误.只有A:M=a+1是正确的赋值语句.(2)赋值语句给变量赋值时,变量的值总是最后一次所赋的值,故程序a中x的值最后为6.要使程序b 中y的值为6,即x2+6=6,故x=0.即输入的x的值为0.]赋值语句的几种常见形式1赋予变量常数值,如a=1.2赋予变量其他变量或表达式的值,如b=a,b=2a+1.3变量自身的值在原值上加常数或变量,如i=i+1,i=i+S.[跟进训练]2.设A=10,B=20,则可以实现A,B的值互换的程序是( )C[A中程序执行后A=B=10,B中程序执行后A=B=10,C中程序执行后A=20,B=10,D中程序执行后A=B=10.]程序框图与程序语言的转化【例3】读下面的程序,根据程序画出程序框图.思路点拨:根据语句的意义及结构特点画程序框图[解] 程序框图如图所示:编写程序的步骤1根据问题要求构思算法分析.2把算法分析转化为程序框图,即画出程序框图.3把程序框图转化为程序.,要注意转化过程中基本结构与相应语句的对应.熟练后可直接写出程序.[跟进训练]3.根据下列程序框图写出其相应的程序.[解] 程序如下:1.需输入信息时用INPUT语句,需输出信息时用 PRINT语句,当变量需要的数据较少或给变量赋予算式时,用赋值语句,当变量需要输入多组数据且程序重复使用时,使用输入语句较好.2.赋值语句是一个程序必不可少的重要组成部分,使用赋值语句,一定要注意其格式要求,不能利用赋值语句进行代数式计算等.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)语句INPUT只能给一个变量赋值.( )(2)输出语句可以输出数值计算的结果.( )(3)赋值语句中的“=”和数学中的“=”作用一样.( )[答案](1)×(2)√(3)×2.赋值语句N=N+1的意义是( )A.N等于N+1B.N+1等于NC.将N的值赋给N+1D.将N的原值加1再赋给N,即N的值增加1D[赋值语句N=N+1的意义是:将N的原值加1后再赋给N,即N的值增加1.]3.下面程序运行后,输出的结果为________.4 1[运行程序得,a=1+3=4,b=4-3=1.]4.把如图的程序框图转化为算法语句.[解]。

高中数学 1.3.1+2 赋值语句 输入输出语句同步教学课件

高中数学 1.3.1+2 赋值语句 输入输出语句同步教学课件

教 师 备 课 资 源
菜单
SJ ·数学 必修3







分 析

2.过程与方法:(1)让学生充分地感知、体验应用计算机
辨 析
教 学
解决数学问题的方法;并能初步操作、模仿.(2)通过模仿、



案 设
操作、探索的过程,体会算法的基本思想和基本语句的用途.
双 基



3.情感、态度和价值观:(1)通过对三种语句的学习、发 标
易 错 易 误 辨 析
当 堂 双 基 达 标
课 时 作 业
教 师 备 课 资 源
教 学 教 法 分 析
教 学 方 案 设 计
课 前 自 主 导 学
课 堂 互 动 探 究
菜单
演示结束
SJ ·数学 必修3
易 错 易 误 辨 析
当 堂 双 基 达 标
课 时 作 业
教 师 备 课 资 源
SJ ·数学 必修3
菜单
SJ ·数学 必修3

学 教
伪代码
易 错





【问题导思】
辨 析

学 方
算法是一种数学语言,如何用更简洁的语句表述算法?
当 堂




【提示】 利用伪代码.
基 达

课 前
伪代码是介于 自然 语言和 计算机 语言之间的文字和


主 导
符号,是表达算法的简单而实用的好方法.
时 作


课 堂 互 动 探 究

自 展有条理的思考、表达的能力、提高逻辑思维能力.

2019-2020学年高中数学(苏教版 选修2-2)教师用书:第1章 1.3.3 最大值与最小值 Word版含答案

2019-2020学年高中数学(苏教版 选修2-2)教师用书:第1章 1.3.3 最大值与最小值 Word版含答案

1.3.3最大值与最小值1.会求在指定区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(重点) 2.掌握含参数的最值问题的讨论.(难点)3.掌握函数的极值与最值的联系与区别.(易混点)[基础·初探]教材整理函数的最大(小)值与导数阅读教材P32“例1”以上部分,完成下列问题.1.函数的最大值与最小值.(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数f(x)在定义域上的最大值.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x0)为函数f(x)在定义域上的最小值.函数的最大(小)值是相对函数定义域整体而言的,如果存在最大(小)值,那么函数的最大(小)值惟一.2.利用导数求函数的最值求可导函数f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的极值;(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值.1.判断正误:(1)函数的最大值一定是函数的极大值.( )(2)开区间上的单调连续函数无最值.( )(3)函数f(x)在区间[a,b]上的最大值和最小值一定在两个端点处取得.( )【答案】(1)×(2)√(3)×2.函数f(x)=2x-cos x在(-∞,+∞)上________.(填序号)①无最值;②有极值;③有最大值;④有最小值.【解析】f′(x)=2+sin x>0恒成立,所以f(x)在(-∞,+∞)上单调递增,无极值,也无最值.【答案】①[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_______________________________________________解惑:_______________________________________________疑问2:_______________________________________________解惑:_______________________________________________疑问3:_______________________________________________解惑:_______________________________________________[小组合作型](1)f(x)=x3-12x2-2x+5,x∈[-2,2];(2)f(x)=e-x-e x,x∈[0,1].【精彩点拨】首先利用函数求极值,再比较极值与端点值的大小,确定最值.【自主解答】(1)f′(x)=3x2-x-2=(3x+2)(x-1),令f′(x)=0,得x1=-23,x2=1.当x变化时,f′(x),f(x)变化情况如下表:(2)f ′(x )=⎝ ⎛⎭⎪⎪⎫1ex ′-(e x )′=-1ex -e x=-1+e2x ex .当x ∈[0,1]时,f ′(x )<0恒成立, 即f (x )在[0,1]上是减函数.故当x =1时,f (x )有最小值f (1)=1e -e ;当x =0时,f (x )有最大值f (0)=e -0-e 0=0.求函数最值的四个步骤 (1)求函数的定义域;(2)求f ′(x ),解方程f ′(x )=0; (3)列出关于x ,f (x ),f ′(x )的变化表; (4)求极值、端点值,确定最值.[再练一题]1.(2016·盐城质检)函数y =x +2cos x 在区间⎣⎢⎢⎡⎦⎥⎥⎤0,π2上的最大值是________.【导学号:01580015】【解析】 ∵y ′=1-2sin x ,x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,令y ′=0,得x =π6.由于f (0)=2,f ⎝ ⎛⎭⎪⎪⎫π6=π6+3,f ⎝ ⎛⎭⎪⎪⎫π2=π2,∴函数的最大值为π6+3.【答案】 π6+3已知函数f (x )=ax 3-6ax 2+b ,x∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值.【精彩点拨】 首先求出f ′(x ).然后讨论a 的正负,根据函数f (x )的单调性得出用a ,b 表示的函数的最值,从而列出关于a ,b 的方程组,求a ,b .【自主解答】 由题设知a ≠0,否则f (x )=b 为常函数,与题设矛盾. 求导得f ′(x )=3ax 2-12ax =3ax (x -4), 令f ′(x )=0,得x 1=0,x 2=4(舍去).(1)当a >0,且x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减f (0)=b =3. 又f (-1)=-7a +3,f (2)=-16a +3<f (-1), ∴f (2)=-16a +3=-29,解得a =2.(2)当a <0时,同理可得,当x =0时,f (x )取得极小值b ,也就是函数在[-1,2]上的最小值,∴f (0)=b =-29.又f (-1)=-7a -29, f (2)=-16a -29>f (-1),∴f (2)=-16a -29=3,解得a =-2. 综上可得,a =2,b =3或a =-2,b =-29.1.本题的解题关键是利用函数的单调性确定某些极值就是函数的最值,同时由于系数a的符号对函数的单调性有直接的影响,且最值也受a的符号的影响,因此需要对a的符号进行分类讨论.2.已知函数的最值求参数问题属于逆向探究题型,解决该类问题的基本方法是待定系数法,列出关于参数的方程(组),从而求出参数的值,但在用参数表示最值时,需要根据参数的情况分类讨论.[再练一题]2.设23<a<1,函数f(x)=x3-32ax2+b在区间[-1,1]上的最大值为1,最小值为-62,求该函数的解析式.【导学号:01580016】【解】f′(x)=3x2-3ax,令f′(x)=0,得x=0或x=a.当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增当x=a时,f(x)取得极小值-a32+b,而f(0)>f(a),又f(1)>f(-1),故只需比较f(0)与f(1),f(-1)与f(a)的大小.因为f(0)-f(1)=32a-1>0,所以f(x)的最大值为f(0)=b,所以b=1.又因为f (-1)-f (a )=12(a +1)2(a -2)<0,所以f (x )的最小值为f (-1)=-1-32a +b=-32a ,所以-32a =-62,所以a =63.故所求函数的解析式是f (x )=x 3-62x 2+1. [探究共研型]如图1-3-6为y =f (x图1-3-6探究1 观察[a ,b ]上函数y =f (x )的图象,试找出它的极大值、极小值. 【提示】 f (x 1),f (x 3)为函数的极大值,f (x 2),f (x 4)为函数的极小值. 探究2结合图象判断,函数y =f (x )在区间[a ,b ]上是否存在最大值,最小值?若存在,分别为多少?【提示】 存在.f (x )最小值=f (a ),f (x )最大值=f (x 3).探究3 函数y =f (x )在[a ,b ]上的最大(小)值一定是其极值吗? 【提示】 不一定.也可能是区间端点的函数值.设函数f (x )=tx 2+2t 2x +t -1(x ∈R ,t >0). (1)求f (x )的最小值h (t );(2)若h (t )<-2t +m 对t ∈(0,2)恒成立,求实数m 的取值范围.【精彩点拨】(1)利用配方法,即可求出二次函数f(x)的最小值h(t);(2)构造函数g(t)=h(t)-(-2t+m),只需使g(t)在(0,2)上的最大值小于零即可求得m的取值范围.【自主解答】(1)∵f(x)=t(x+t)2-t3+t-1(x∈R,t>0),∴当x=-t时,f(x)取最小值f(-t)=-t3+t-1,即h(t)=-t3+t-1.(2)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:单调递增单调递减∴g(t)在(0,2)h(t)<-2t+m在(0,2)内恒成立等价于g(t)<0在(0,2)内恒成立,即等价于1-m<0.∴m的取值范围为(1,+∞).1.涉及到不等式恒成立、不等式能成立的问题时,一般需转化为函数最值来解决.若不等式中含参数,则可考虑分离参数,以求避免分类讨论.2.不等式恒成立、能成立常见的转化策略(1)a>f(x)恒成立⇔a>f(x)最大值,a<f(x)恒成立⇔a<f(x)最小值;(2)f(x)>g(x)+k恒成立⇔k<[f(x)-g(x)]最小值;(3)f(x)>g(x)恒成立⇔f(x)最小值>g(x)最大值;(4)a>f(x)能成立⇔a>f(x)最小值,a<f(x)能成立⇔a<f(x)最大值.[再练一题]3.上例(2)若改为“存在t∈[0,2],使h(t)<-2t+m成立”,则实数m的取值范围如何求解?【解】令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:单调 递增单调递减存在t ∈[0,2],使h (t )<-2t +m 成立, 等价于g (t )的最小值g (2)<0. ∴-3-m <0,∴m >-3,所以实数m 的取值范围为(-3,+∞).[构建·体系]1.函数y =x -sin x ,x ∈⎣⎢⎢⎡⎦⎥⎥⎤π2,π的最大值是________.【解析】 ∵y ′=1-cos x ≥0,∴y =x -sin x 在⎣⎢⎢⎡⎦⎥⎥⎤π2,π上是增函数,∴y 最大值=π.【答案】 π2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是________.【导学号:01580017】【解析】 f ′(x )=3x 2-6x =3x (x -2). 令f ′(x )=0得x 1=0,x 2=2(舍去). 当x ∈[-1,0)时,f ′(x )>0,f (x )递增; 当x ∈(0,1],f ′(x )<0,f (x )递减; ∴x =0时,f (x )取最大值2. 【答案】 23.函数f (x )=12e x(sin x +cos x )在区间⎣⎢⎢⎡⎦⎥⎥⎤0,π2上的值域为________ .【解析】 ∵x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,∴f ′(x )=e x cos x ≥0,∴f (0)≤f (x )≤f ⎝ ⎛⎭⎪⎪⎫π2,即12≤f (x )≤12·e π2.【答案】 ⎣⎢⎢⎡⎦⎥⎥⎤12,12e π24.已知函数f (x )=m ⎝ ⎛⎭⎪⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的取值范围是________.【解析】 由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2ln x ,即m 2<ln xx 在[1,e]上有解,令h (x )=ln xx ,则h ′(x )=1-ln xx2,当1≤x ≤e 时,h ′(x )≥0,∴在[1,e]上,h (x )≥h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,2e .【答案】 ⎝⎛⎦⎥⎥⎤-∞,2e5.已知a 为实数,f (x )=(x 2-4)·(x -a ). (1)求导数f ′(x );(2)若f ′(-1)=0,求f (x )在[-2,2]上的最大值和最小值. 【解】 (1)由原式得f (x )=x 3-ax 2-4x +4a , ∴f ′(x )=3x 2-2ax -4. (2)由f ′(-1)=0,得a =12,此时有f (x )=(x 2-4)·⎝ ⎛⎭⎪⎪⎫x -12,f ′(x )=3x 2-x -4.由f ′(x )=0,得x =43或x =-1.又f ⎝ ⎛⎭⎪⎪⎫43=-5027,f (-1)=92,f (-2)=0,f (2)=0,∴f (x )在[-2,2]上的最大值为92,最小值为-5027.我还有这些不足:(1)_______________________________________________ (2)_______________________________________________ 我的课下提升方案:(1)_______________________________________________ (2)_______________________________________________。

高中数学一章算法初步1.2基本算法语句1.2.1赋值输入和输出语句

高中数学一章算法初步1.2基本算法语句1.2.1赋值输入和输出语句

1.2.1 赋值、输入和输出语句预习课本P16~20,思考并完成以下问题(1)赋值语句的格式和作用分别是什么?(2)输入、输出语句的格式和作用又分别是什么?[新知初探]1.赋值语句定义用来表明赋给某一个变量一个具体的确定值的语句格式变量名=表达式作用赋值语句中的“=”号,称做赋值号,赋值语句的作用是先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值2.输入、输出语句名称一般格式作用输入语句a=input(" ")(1)把程序和初始数据分开(2)可输入数值、单个或多个字符输出语句print(%io(2),a,b,c)参数%io(2)表示在屏幕上输出[小试身手]1.下列赋值语句中错误的是( )A.N=N+2 B.M=M*MC.A=B=C D.D=3答案:C2.下列基本算法语句中书写格式正确的是( )A.input 2 015 B.input x=2 015C.y=y*y+1 D.5=x答案:C3.输出计算结果a,表示为__________________________________________________.答案:print(%io(2),a)输入、输出语句及赋值语句的功能[典例]1a =5;b =3;c =a +b /2;d =c*c ;print %io 2,d ;2a =1;b =2;c =a +b ;b =a +c -b ;print %io 2,c ,b ,a;[解] (1)因为a =5,b =3,c =a +b2=4,d =c 2=16,所以输出结果为16.(2)因为a =1,b =2,c =a +b =3, 所以b =a +c -b =1+3-2=2. 故输出结果依次为a =1,b =2,c =3.(1)根据给出的算法语句写结果,应抓住输入、输出语句和赋值语句的特点,按语句的计算、赋值功能依次执行.(2)注意在Scilab 语言中常见运算符号的书写方式,明确它们的运算规则:先乘除,后加减;乘幂优先于乘除;函数优先于乘幂;同级运算从左向右按顺序进行;括号内的运算最优先.[活学活用]如果输入“82,92,90”.下面程序的功能是________,输出结果为________. x =input(”成绩1=”); y =input(”成绩2=”); z =input(”成绩3=”); t =x +y +z ; s =t/3;print(%io(2),s ,t);解析:输入考试成绩,输出三科总分和平均分. 答案:输出总分和平均分 264,88用赋值、输入、输出语句写算法程序[典例求图中阴影部分的面积.[解] 程序如下:R=input”输入圆的半径R”;a=sqrt 2*R;S1=%pi*R*R;S2=a*a;S =S1-S2;print%io2,S;1.编写程序解决具体问题的一般步骤(1)设计并用自然语言写出解决问题的算法.(2)用程序框图表示算法.(3)将程序框图转化为算法语句即得程序.2.由程序框图写出程序的方法顺序结构的程序框图只需利用输入语句、输出语句和赋值语句即可完成.其中输入、输出框对应输入语句和输出语句,处理框对应赋值语句.[活学活用]根据程序框图,写出程序.解:程序如下:赋值、输入、输出语句在现实生活中的应用[典例] 在一次数学考试中,小明,小亮,小强的成绩分别为a,b,c,后来发现统计错了.小亮的成绩记在了小明的名下,小强的成绩记在了小亮的名下,而小明的成绩记在小强的名下了.设计程序更正成绩单,并输出.[解] 程序如下:a=input”a=”;b=input”b=”;c=input”c=”;x=a;a=c;c=b;b=x;print%io2,c,b,a;编写程序解决实际应用题的步骤(1)审清题意,恰当设未知数.(2)建立数学模型,把实际问题转化为数学问题.(3)根据数学模型,设计算法分析.(4)根据算法分析,画出程序框图.(5)根据程序框图,利用输入、输出语句及赋值语句等编写程序.[活学活用]经过市场调查分析,2016年第一季度内,某地区对某件商品的需求量为12 000件,为保证商品不脱销,商家在月初时将商品按相同的量投入市场,已知年初商品的库存量为50 000件,用S表示商品的库存量,设计一个程序,求出第一季度结束时商品的库存量.解:列出如下列所示每月库存量的变化情况:月份一月二月三月库存S 46 000 42 000 38 000 程序如下:S=50 000;S=S-4 000;S=S-4 000;S=S-4 000;print%io2,S;[层级一学业水平达标]1.下列输入、输出、赋值语句中正确的是( )A.a=input(”a=”)B.print(%io(2),a;b;c)C.10=BD.A=B=-5解析:选A A正确;B错误,print语句中变量之间用“,”隔开,而不是“;”;C 错误,赋值语句中“=”号左边只能是变量名,不能是数值;D错误,一个赋值语句只能给一个变量赋值,不能出现两个或两个以上的赋值号.2.执行下面的程序后,输出的a,b的值是( )a=1;b=3;a=a+b;b=a-b;print%io2,a,b;A.1,3 B.4,1C.4,-2 D.1,4解析:选B由赋值语句的意义知,执行a=a+b后,a的值变为1+3=4,执行b=a-b后,b=4-3=1,故选B.3.下列程序若输出的结果为4,则输入的x值可能是____________________________.解析:由题意可得x2+2x+1=4,解得x=1或x=-3.答案:1或-34.读如下两个程序,完成下列题目.程序甲:x=1;x=x*2;x=x*3;print%io2,x;程序乙:x=input”x=”;y=x*x+6;print%io2,y;(1)程序甲的运行结果为________.(2)若程序甲、乙运行结果相同,则程序乙输入的值为________.解析:赋值语句给变量赋值时,变量的值总是最后一次所赋的值,故程序甲中x的值最后为6.要使程序乙中y的值为6,即x2+6=6,故x=0,即输入的x的值为0.答案:(1)6 (2)0[层级二应试能力达标]1.“x=3*5”,“x=x+1”是某一程序中的先后相邻的两个语句,那么下列说法中,正确的是()①“x=3*5”的意思是“x=3*5=15”.此式与算术中的式子是一样的;②x=3*5是将数值15赋给x;③“x=3*5”可以写为“3*5=x”;④“x=x+1”语句在执行时“=”右边x的值是15,执行后左边x的值是16.A.①③B.②④C.①④D.②解析:选B 程序中的等号与算术中的不一样,且在给变量赋值时,赋值号的左边是变量,右边是数值或表达式,左右两边不能交换位置,故①③错.2.以下程序运行后输出结果是( )A.58 B.88C.13 D.85解析:选D ∵x=58,a为58除以10的整数商,∴a=5.又∵b为58除以10的余数,∴b=8.∴x=10×8+5=85.3.以下程序的含义是( )A.求x3+3x2-24x+30=0的根B.输入x后,输出y=x3+3x2-24x+30的值C.求一般三次函数值的程序D.y=x3+3x2-24x+30的作图程序解析:选B本题考查对输入语句x=input(”x=”),赋值语句y=x^3+3]4.给出下列程序:x1=input”x1=”;y1=input”y1=”;x2=input”x2=”;y2=input”y2=”;a=x1-x2;m=a^2;b=y1-y2;n=b^2;s=m+n;d=sqrt s;print%io2,d;此程序的功能为( )A.求点到直线的距离B.求两点之间的距离C.求一个多项式函数的值D.求输入的值的平方和解析:选B 输入的四个实数可作为两个点的坐标,程序中的a,b分别表示两个点的横、纵坐标之差,而m,n分别表示两点横纵坐标之差的平方;s是横、纵坐标之差的平方和,d是平方和的算术平方根,即两点之间的距离,最后输出此距离.5.运行程序:A =2;A =A*5;A =A +8;print %io 2,A ;输出结果为________.解析:首先将2赋给变量A ,然后将2×5的结果再赋给A ,最后这个新的数10加上8,就得到输出的A 的值18.答案:186.已知A (x 1,y 1),B (x 2,y 2)是平面上的两点,试设计一个程序,输入A ,B 两点的坐标,输出其中点的坐标,现已给出程序的一部分,试在横线上填上适当的语句,把程序补充完整.x1=input ”x1=”;y1=input ”y1=”;x2=input ”x2=”;y2=input ”y2=”;; ;x y解析:根据题意可知程序中缺中点坐标,由中点坐标公式x =x 1+x 22,y =y 1+y 22可得中点坐标.答案:x =(x1+x2)/2;y =(y1+y2)/2 7.已知一段程序如下:若输入的是3,则运行结果是________. 解析:由"N=M",得N=3;由"M=2*6",得M=12;由"P=(M*N)/2",得P=18;由"Q=3*P",得Q=54.答案:54,18,3,128.根据下列程序框图写出程序. 解:程序如下:9.某工种按工时计算工资,每月总工资=每月劳动时间(小时)×每小时工资,从总工资中扣除10%作公积金,剩余的为应发工资,请编写一个输入劳动时间和每小时工资数就能输出应发工资的程序,并画出程序框图.解:算法分析.S1 输入每月劳动时间t和每小时工资a.S2 求每月总工资y=每月劳动时间t×每小时工资a. S3 求应发工资z=每月总工资y×(1-10%).S4 输出应发工资z.程序框图如图所示.程序如下:。

2019-2020学年高中数学(人教B版 选修2-2)教师用书:第1章 导数及其应用 1.3.1

2019-2020学年高中数学(人教B版 选修2-2)教师用书:第1章 导数及其应用 1.3.1

1.3导数的应用1.3.1利用导数判断函数的单调性1.理解导数与函数的单调性的关系.(易混点)2.掌握利用导数判断函数单调性的方法.(重点)3.会用导数求函数的单调区间.(重点、难点)[基础·初探]教材整理函数的单调性与导数之间的关系阅读教材P24,完成下列问题.用函数的导数判定函数单调性的法则(1)如果在(a,b)内,________,则f(x)在此区间是增函数,(a,b)为f(x)的单调增区间;(2)如果在(a,b)内,________,则f(x)在此区间是减函数,(a,b)为f(x)的单调减区间.【答案】f′(x)>0 f′(x)<0判断(正确的打“√”,错误的打“×”)(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )【答案】(1)×(2)×(3)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型](1)函数y=f(图1-3-1①函数y=f(x)的定义域是[-1,5];②函数y=f(x)的值域是(-∞,0]∪[2,4];③函数y=f(x)在定义域内是增函数;④函数y=f(x)在定义域内的导数f′(x)>0.其中正确的序号是( )A.①②B.①③C.②③D.②④(2)设函数f(x)在定义域内可导,y=f(x)的图象如图1-3-2所示,则导函数y=f′(x)的图象可能为( )图1-3-2【精彩点拨】研究一个函数的图象与其导函数图象之间的关系时,注意抓住各自的关键要素,对于原函数,要注意其图象在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数,则应注意其函数值在哪个区间内大于零,在哪个区间内小于零,并分析这些区间与原函数的单调区间是否一致.【自主解答】(1)由图象可知,函数的定义域为[-1,5],值域为(-∞,0]∪[2,4],故①②正确,选A.(2)由函数的图象可知:当x<0时,函数单调递增,导数始终为正;当x>0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.【答案】(1)A (2)D1.利用导数判断函数的单调性比利用函数单调性的定义简单的多,只需判断导数在该区间内的正负即可.2.通过图象研究函数单调性的方法(1)观察原函数的图象重在找出“上升”“下降”产生变化的点,分析函数值的变化趋势;(2)观察导函数的图象重在找出导函数图象与x轴的交点,分析导数的正负.[再练一题]1.(1)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不正确的是( )A B C D(2)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )A B C D【解析】(1)A,B,C均有可能;对于D,若C1为导函数,则y=f(x)应为增函数,不符合;若C2为导函数,则y=f(x)应为减函数,也不符合.(2)因为y=f(x)的导函数在区间[a,b]上是增函数,则从左到右函数f(x)图象上的点的切线斜率是递增的.【答案】(1)D (2)A求函数f(x)=x+ax(a≠0)的单调区间.【精彩点拨】求出导数f′(x),分a>0和a<0两种情况.由f′(x)>0求得单调增区间,由f′(x)<0求得单调减区间.【自主解答】f(x)=x+ax的定义域是(-∞,0)∪(0,+∞),f′(x)=1-a x2.当a>0时,令f′(x)=1-ax2>0,解得x>a或x<-a;令f′(x)=1-ax2<0,解得-a<x<0或0<x<a;当a<0时,f′(x)=1-ax2>0恒成立,所以当a>0时,f(x)的单调递增区间为(-∞,-a)和(a,+∞);单调递减区间为(-a,0)和(0,a).当a<0时,f(x)的单调递增区间为(-∞,0)和(0,+∞).利用导数求函数单调区间的步骤1.确定函数f(x)的定义域.2.求导数f′(x).3.由f′(x)>0(或f′(x)<0),解出相应的x的范围.当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0时,f(x)在相应区间上是减函数.4.结合定义域写出单调区间.[再练一题]2.(1)函数f(x)=e x-e x,x∈R的单调递增区间为( ) 【导学号:05410017】A.(0,+∞) B.(-∞,0)C.(-∞,1) D.(1,+∞)(2)函数f(x)=ln x-x的单调递增区间是( )A.(-∞,1) B.(0,1)C .(0,+∞)D .(1,+∞)【解析】 (1)∵f ′(x )=(e x -e x )′=e x -e , 由f ′(x )=e x -e>0,可得x >1.即函数f (x )=e x -e x ,x ∈R 的单调增区间为 (1,+∞),故选D.(2)函数的定义域为(0,+∞),又f ′(x )=1x -1, 由f ′(x )=1x -1>0,得0<x <1,所以函数f (x )=ln x -x 的单调递增区间是(0,1),故选B. 【答案】 (1)D (2)B[探究共研型]探究1 【提示】 由已知得f ′(x )=3x 2-a , 因为f (x )在(-∞,+∞)上是单调增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立,因为3x 2≥0,所以只需a ≤0. 又因为a =0时,f ′(x )=3x 2≥0, f (x )=x 3-1在R 上是增函数,所以a ≤0.探究2 若函数f (x )=x 3-ax -1的单减区间为(-1,1),如何求a 的取值范围. 【提示】 由f ′(x )=3x 2-a , ①当a ≤0时,f ′(x )≥0, ∴f (x )在(-∞,+∞)上为增函数. ②当a >0时,令3x 2-a =0,得x =±3a3, 当-3a 3<x <3a3时,f ′(x )<0. ∴f (x )在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数, ∴f (x )的单调递减区间为⎝⎛⎭⎪⎫-3a 3,3a 3,∴3a3=1,即a=3.已知关于x的函数y=x3-ax+b.(1)若函数y在(1,+∞)内是增函数,求a的取值范围;(2)若函数y的一个单调递增区间为(1,+∞),求a的值.【精彩点拨】(1)函数在区间(1,+∞)内是增函数,则必有y′≥0在(1,+∞)上恒成立,由此即可求出a的取值范围.(2)函数y的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a 的值.【自主解答】y′=3x2-a.(1)若函数y=x3-ax+b在(1,+∞)内是增函数.则y′=3x2-a≥0在x∈(1,+∞)时恒成立,即a≤3x2在x∈(1,+∞)时恒成立,则a≤(3x2)最小值.因为x>1,所以3x2>3.所以a≤3,即a的取值范围是(-∞,3].(2)令y′>0,得x2>a3.若a≤0,则x2>a3恒成立,即y′>0恒成立,此时,函数y=x3-ax+b在R上是增函数,与题意不符.若a>0,令y′>0,得x>a3或x<-a3.因为(1,+∞)是函数的一个单调递增区间,所以a3=1,即a=3.1.解答本题注意:可导函数f(x)在(a,b)上单调递增(或单调递减)的充要条件是f′(x)≥0(或f′(x)≤0)在(a,b)上恒成立,且f′(x)在(a,b)的任何子区间内都不恒等于0.2.已知f(x)在区间(a,b)上的单调性,求参数范围的方法(1)利用集合的包含关系处理f(x)在(a,b)上单调递增(减)的问题,则区间(a,b)是相应单调区间的子集;(2)利用不等式的恒成立处理f(x)在(a,b)上单调递增(减)的问题,则f′(x)≥0(f′(x)≤0)在(a,b)内恒成立,注意验证等号是否成立.[再练一题]3.将上例(1)改为“若函数y在(1,+∞)上不单调”,则a的取值范围又如何?【解】y′=3x2-a,当a<0时,y′=3x2-a>0,函数在(1,+∞)上单调递增,不符合题意.当a>0时,函数y在(1,+∞)上不单调,即y′=3x2-a=0在区间(1,+∞)上有根.由3x2-a=0可得x=a3或x=-a3(舍去).依题意,有a3>1,∴a>3,所以a的取值范围是(3,+∞).[构建·体系]1.函数y=f(x)的图象如图1-3-3所示,则导函数y=f′(x)的图象可能是( )图1-3-3【解析】∵函数f(x)在(0,+∞),(-∞,0)上都是减函数,∴当x>0时,f′(x)<0,当x<0时,f′(x)<0.【答案】 D2.已知函数f (x )=x +ln x ,则有( ) A .f (2)<f (e)<f (3) B .f (e)<f (2)<f (3) C .f (3)<f (e)<f (2)D .f (e)<f (3)<f (2)【解析】 因为在定义域(0,+∞)上,f ′(x )=12x+1x >0,所以f (x )在(0,+∞)上是增函数,所以有f (2)<f (e)<f (3).故选A.【答案】 A3.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.【解析】 f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2. 【答案】 (1,2)4.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________. 【解析】 f ′(x )=错误!,由题意得f ′(x )≤0在(-2,+∞)内恒成立,∴解不等式得a ≤12,但当a =12时,f ′(x )=0恒成立,不合题意,应舍去,所以a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 【答案】 ⎝ ⎛⎭⎪⎫-∞,125.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 h (x )=ln x -12ax 2-2x ,x ∈(0,+∞), 所以h ′(x )=1x -ax -2. 因为h (x )在[1,4]上单调递减, 所以x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 即a ≥1x2-2x 恒成立,所以a ≥G (x )最大值,而G (x )=⎝ ⎛⎭⎪⎫1x -12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )最大值=-716(此时x =4),所以a ≥-716. 当a =-716时,h ′(x )=1x +716x -2=16+7x2-32x 16x=错误!. 因为x ∈[1,4], 所以h ′(x )=错误!≤0, 即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。

高中数学 第一章 算法初步 1.3.1-1.3.2 赋值语句和输入、输出语句教案 苏教版必修3(2

高中数学 第一章 算法初步 1.3.1-1.3.2 赋值语句和输入、输出语句教案 苏教版必修3(2

高中数学第一章算法初步1.3.1-1.3.2 赋值语句和输入、输出语句教案苏教版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章算法初步1.3.1-1.3.2 赋值语句和输入、输出语句教案苏教版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章算法初步1.3.1-1.3.2 赋值语句和输入、输出语句教案苏教版必修3的全部内容。

1.3.1~1。

3.2 赋值语句和输入、输出语句教学目标:1.通过实例,使学生理解三种基本的算法语句(输入语句、输出语句和赋值语句)的表示方法、结构和用法.2.能初步应用这种基本的算法语句表示算法,编写类BASIC程序.3.进一步体会算法的基本思想,学会有条理地、清晰地表达解决问题的步骤,提高逻辑思维能力.教学重点:1.输入语句、输出语句和赋值语句的表示方法、结构和用法.2.用这三种基本的算法语句表示算法.教学难点:理解输入语句、输出语句和赋值语句的表示方法、结构和用法.教学方法:1.通过实例,发展对解决具体问题的过程与步骤进行分析的能力.2.通过模仿、操作、探索,经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力.3.在解决具体问题的过程中学习三种基本语句,感受算法的重要意义.教学过程:一、问题情境问题1 已知我班某学生上学期期末考试语文、数学和英语学科成绩分别为80,100,89,试设计适当的算法求出这名学生三科的平均分.二、学生活动1.学生讨论,教师引导学生写出算法并画出流程图. 流程图:2.怎样将以上算法转换成计算机能理解的语言呢?下面我们将通过伪代码学习基本的算法语句.三、建构教学1.伪代码: 伪代码是介于自然语言和计算机语言之间的文字和符号,是表达算法的简单而实用的好方法.为了今后能学好计算机语言,我们在伪代码中将使用一种计算机语言“BASIC 语言”的关键词.2.赋值语句:赋值语句是将表达式所代表的值赋给变量的语句.例如:“x y ←”表示将y 的值赋给x ,其中x 是一个变量,y 是一个与x 同类型的变量或表达式.说明:①赋值语句中的赋值号“←”的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;②赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或表达式; ③对于一个变量可以多次赋值.3.输入、输出语句:输入、输出语句分别用“Input ”(或者“Read ”)和“Print ”来描述数据的输入和输出.(1)输入语句与赋值语句的区别在于:赋值语句可以将一个代数表达式的值赋于一个变算法:S1 a ←80 S2 b ←100量,而输入语句由于要求输入的值只能是具体的常数,不能是函数、变量或表达式,因此输入语句只能将读入的具体数据赋给变量.(2)输出语句的主要作用是:①输出常量、变量的值和系统信息;②输出数值计算的结果. 例如:可以将问题1中的算法改进为求任意三门功课的平均值的算法.流程图:说明:输入语句“Read a ,b ”表示输入的数据依次送给a ,b ;“Print A ”表示输出运算结果A .四、数学运用1.例题.例1 写出求23x =时多项式3273511x x x +-+的值的算法.算法1322373511x p x x ←←+-+算法223((73)5)11x p x x x ←←+-+ 说明 ①以上两种算法,算法1要做6次乘法,算法2只要做3次乘法,由此可见,算法的好坏会影响运算速度;②算法2称为“秦九韶算法",其算法特点是:通过一次式的反复计算,逐步得出高次多项式的值;对于一个n 次多项式,只要做n 次乘法和n 次加法.伪代码: Read a ,b ,c A ←(a +b +c )/3附:秦九韶(1202—1261年),字道古,普州安岳(今四川安岳)人.他是我国古代最有成就的数学家之一.著有数学名著《数书九章》(又名数学九章》).该书共十八卷,分为大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易等九大类,每类用九个例题全书共八十一题)来阐明各种算法.这部中世纪的数学杰作,许多方面都有创造,而书中最突出的成就是“大衍求一术"和高次方程的数值解法“正负开方术”,是具有世界意义的成就.例2 “鸡兔同笼”是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”请你先列出解决这个问题的方程组,并设计一个解二元一次方程组的通用算法,并画出流程图,写出伪代码.解 设有x 只鸡,y 只兔子,则352494x y x y +=⎧⎨+=⎩. 设二元一次方程组为1111221222,(0),a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩用消元法解得2112122112211221b c b c x a b a b a c a c y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩, 因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可输出,x y 的值.2.练习:课本第18页 练习1题.五、要点归纳与方法小结本节课学习了以下内容:赋值语句、输入语句、输出语句的结构和作用.开始结束。

2019_2020学年高中数学第1章常用逻辑用语的命题的否定讲义苏教版选修2_1

2019_2020学年高中数学第1章常用逻辑用语的命题的否定讲义苏教版选修2_1

1.2 简单的逻辑联结词(不作要求)1.3 全称量词与存在量词1.3.1 量词1.3.2 含有一个量词的命题的否定学习目标核心素养1.理解全称量词与存在量词的意义,能准确地利用全称量词和存在量词叙述简单的数学内容.(重点)2.能判定全称命题和存在性命题的真假.(难点)3.了解对含有一个量词的命题的否定的意义,能正确地对含有一个量词的命题进行否定.(易错点)1.通过对含有量词的命题的否定,培养逻辑推理素养.2.借助含量词的命题的真假求参数问题,提升数学运算素养.1.全称量词和全称命题全称量词“所有”、“任意”、“每一个”等表示全体的量词在逻辑中称为全称量词符号表示∀全称命题含有全称量词的命题称为全称命题符号表示∀x∈M,p(x)存在量词“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词符号表示∃存在性命题含有存在量词的命题称为存在性命题符号表示∃x∈M,p(x)写成相应命题的形式.(2)“不等式(m+1)x2-(m-1)x+3(m-1)<0对任意实数x恒成立”是存在性命题还是全称命题?请改写成相应命题的形式.[提示] (1)是存在性命题,可改写为“∃x∈R,使ax2+2x+1=0”(2)是全称命题,可改写成:“∀x∈R,(m+1)x2-(m-1)x+3(m-1)<0”.3.全称命题和存在性命题的否定1.下列命题中为全称命题的是( ) A .至少有一个自然数是2的倍数 B .存在小于零的整数 C .方程3x =2有实数根 D .无理数是小数D [D 中“无理数”指的是所有的无理数.] 2.下列语句是存在性命题的是( ) A .整数n 是2和7的倍数 B .存在整数n ,使n 能被11整除 C .x >7D .∀x ∈M ,p (x )成立B [B 选项中有存在量词“存在”,故B 项是存在性命题,A 和C 不是命题,D 是全称命题.]3.下列四个命题中的真命题为( ) A .∃x ∈Z,1<4x <3 B .∃x ∈Z,5x +1=0 C .∀x ∈R ,x 2-1=0 D .∀x ∈R ,x 2+x +2>0D [当x ∈R 时,x 2+x +2=⎝ ⎛⎭⎪⎫x +122+74>0,故选D.]4.已知命题p :∀x ∈R ,sin x ≤1,则命题p 的否定是________.∃x ∈R ,sin x >1 [命题p 是全称命题,其否定应为存在性命题,即綈p :∃x ∈R ,sinx >1.]两种命题的概念及真假判断【例1(1)∀x ∈N,2x +1是奇数;(2)存在一个x ∈R ,使1x -1=0; (3)能被5整除的整数末位数是0; (4)有一个角α,使sin α>1[解] (1)是全称命题,因为∀x ∈N,2x +1都是奇数,所以该命题是真命题. (2)是存在性命题.因为不存在x ∈R ,使1x -1=0成立,所以该命题是假命题. (3)是全称命题.因为25能被5整除,但末位数不是0,因此该命题是假命题. (4)是存在性命题,因为∀α∈R ,sin α∈[-1,1],所以该命题是假命题.1.判断命题是全称命题还是存在性命题的方法 (1)分析命题中是否含有量词; (2)分析量词是全称量词还是存在量词;(3)若命题中不含量词,要根据命题的意义去判断. 2.全称命题与存在性命题真假的判断方法(1)要判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中每个元素x ,证明p (x )都成立;如果在集合M 中找到一个元素x ,使得p (x )不成立,那么这个全称命题就是假命题.(2)要判定存在性命题“∃x ∈M ,p (x )”是真命题,只需在集合M 中找到一个元素x ,使p (x )成立即可;如果在集合M 中,使p (x )成立的元素x 不存在,那么这个存在性命题就是假命题.1.(1)以下四个命题既是存在性命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2B [A 中锐角三角形的内角是锐角或钝角是全称命题;B 中x =0时,x 2=0,所以B 既是存在性命题又是真命题;C 中因为3+(-3)=0,所以C 是假命题;D 中对于任一个负数x ,都有1x<0,所以D 是假命题.](2)下列命题中,真命题是( ) A .∃x ∈⎣⎢⎡⎦⎥⎤0,π2,sin x +cos x ≥2B .∀x ∈(3,+∞),x 2>2x +1 C .∃x ∈R ,x 2+x =-1D .∀x ∈⎝ ⎛⎭⎪⎫π2,π,tan x >sin x B [(1)对于选项A ,sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,∴此命题不成立;对于选项B ,x 2-2x -1=(x -1)2-2,当x >3时,(x -1)2-2>0,∴此命题成立;对于选项C ,x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴x 2+x =-1对任意实数x 都不成立,∴此命题不成立;对于选项D ,当x ∈⎝ ⎛⎭⎪⎫π2,π时,tan x <0,sin x >0,命题显然不成立.故选B.]含有一个量词的命题的否定x x 2x A .∀x ∉R ,x 2≠x B .∀x ∈R ,x 2=x C .∃x ∉R ,x 2≠x D .∃x ∈R ,x 2=x(2)写出下列命题的否定,并判断其真假: ①p :∀x ∈R ,x 2-x +14≥0;②p :所有的正方形都是菱形; ③p :至少有一个实数x ,使x 3+1=0.[思路探究] 先判定命题是全称命题还是存在性命题,再针对不同的形式加以否定. (1)D [原命题的否定为∃x ∈R ,x 2=x ,故选D.] (2)[解] ①綈p :∃x ∈R ,x 2-x +14<0,假命题.因为∀x ∈R ,x 2-x +14=⎝ ⎛⎭⎪⎫x -122≥0恒成立.②綈p :至少存在一个正方形不是菱形,假命题. ③綈p :∀x ∈R ,x 3+1≠0,假命题. 因为x =-1时,x 3+1=0.对全称命题和存在性命题进行否定的步骤与方法1.确定类型:是存在性命题还是全称命题.2.改变量词:把全称量词换为恰当的存在量词;把存在量词换为恰当的全称量词. 3.否定结论:原命题中“是”“有”“存在”“成立”等改为“不是”“没有”“不存在”“不成立”等.提醒:无量词的全称命题要先补回量词再否定.2.(1)命题“∃x ∈(0,+∞),ln x =x -1”的否定是( ) A .∀x ∈(0,+∞),ln x ≠x -1 B .∀x ∉(0,+∞),ln x =x -1 C .∃x ∈(0,+∞),ln x 0≠x 0-1 D .∃x ∉(0,+∞),ln x 0=x 0-1A [存在性命题的否定是全称命题,故原命题的否定是∀x ∈(0,+∞),ln x ≠x -1.] (2)写出下列命题的否定,并判断其真假.①p :不论m 取何实数,方程x 2+x -m =0必有实数根; ②q: 存在一个实数x ,使得x 2+x +1≤0; ③r :等圆的面积相等,周长相等; ④s :对任意角α,都有sin 2α+cos 2α=1.[解] ①这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0有 实数根”,其否定形式是綈p :“存在实数m ,使得x 2+x -m =0没有实数根”.注意到当Δ=1+4m <0时,即m <-14时,一元二次方程没有实数根,所以綈p 是真命题.②这一命题的否定形式是綈q :“对所有的实数x ,都有x 2+x +1>0”,利用配方法可以证得綈q 是真命题.③这一命题的否定形式是綈r :“存在一对等圆,其面积不相等或周长不相等”,由平面几何知识知綈r 是假命题.④这一命题的否定形式是綈s :“存在α∈R ,sin 2α+cos 2α≠1”,由于命题s 是真命题,所以綈s 是假命题.由命题的真假确定参数的范围1.若含参数的命题p 是假命题,如何求参数的取值范围? 提示:先求綈p ,再求参数的取值范围.2.全称命题和存在性命题与恒成立问题和存在性问题有怎样的对应关系?提示:全称命题与恒成立问题对应,存在性命题与存在性问题对应.【例3】 (1)若命题p “∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围是________.(2)已知命题p :∃x ∈R,9x -3x-a =0,若命题p 是真命题,求实数a 的取值范围. [思路探究] (1)先求綈p ,再求参数的取值范围. (2)令3x=t ,看作一元二次方程有解问题.(1) [-22,22] [綈p :∀x ∈R,2x 2-3ax +9≥0为真命题. 则Δ=9a 2-72≤0,解得-22≤a ≤22] (2)解:设3x=t ,由于x ∈R ,则t ∈(0,+∞),则9x-3x-a =0⇔a =(3x )2-3x⇔a =t 2-t ,t ∈(0,+∞),设f (t )=t 2-t ,t ∈(0,+∞),则f (t )=⎝ ⎛⎭⎪⎫t -122-14,当t =12时,f (t )min =-14,则函数f (t )的值域是⎣⎢⎡⎭⎪⎫-14,+∞,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫-14,+∞.母题探究:1.若将本例题(2)条件“∃x ∈R ”,改为“∃x ∈[0,1]”,其他不变,试求实数a 的取值范围.[解] 设3x=t ,x ∈[0,1],∴t ∈[1,3].a =t 2-t ,∵t 2-t =⎝ ⎛⎭⎪⎫t -122-14,∴a =t 2-t 在t ∈[1,3]上单调递增.∴t 2-t ∈[]0,6.即a 的取值范围是[]0,6.2.将本例题(2)换为“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m 是真命题”,试求m 的最小值.[解] 由已知可得m ≥tan x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π4恒成立.设f (x )=tan x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π4,显然该函数为增函数,故f (x )的最大值为f ⎝ ⎛⎭⎪⎫π4=tan π4=1,由不等式恒成立可得m ≥1,即实数m的最小值为1.应用两种命题求参数范围的两类题型1.全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以可以利用代入体现集合中相应元素的具体性质中求解;也可以根据函数等数学知识来解决.2.存在性命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表述.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.1.判断命题是全称命题还是存在性命题,主要是看命题中是否含有全称量词或存在量词,有些全称命题不含全称量词,可以根据命题涉及的意义去判断.2.要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.3.要确定一个存在性命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该存在性命题是假命题.4.对含有一个量词的命题的否定要注意以下问题:(1)确定命题类型,是全称命题还是存在性命题.(2)改变量词:把全称量词改为恰当的存在量词;把存在量词改为恰当的全称量词.(3)否定结论:原命题中的“是”“有”“存在”“成立”等分别改为“不是”“没有”“不存在”“不成立”等.(4)无量词的全称命题要先补回量词再否定.1.判断(正确的打“√”,错误的打“×”)(1)命题“对数函数都是单调函数”是全称命题.( )(2)命题“有些菱形是正方形”是全称命题.( )(3)命题:∀x∈R,x2-3x+3>0的否定是∀x∉R,x2-3x+3≤0.()[答案] (1)√(2)×(3)×2.命题“所有能被2整除的数都是偶数”的否定是( )A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数D[全称命题的否定为相应的存在性命题,即将“所有”变为“存在”,并且将结论进行否定.]3.命题p:∃x∈R,x2+2x+5<0是________(填“全称命题”或“存在性命题”),它是________命题(填“真”或“假”),它的否定为綈p:________.存在性命题假∀x∈R,x2+2x+5≥0[命题p:∃x∈R,x2+2x+5<0是存在性命题.因为x2+2x+5=(x+1)2+4>0恒成立,所以命题p为假命题.命题p的否定为:∀x∈R,x2+2x+5≥0.]4.判断下列命题是全称命题还是存在性命题,并判断其真假;(1)对某些实数x,有2x+1>0;(2)∀x∈{3,5,7},3x+1是偶函数;(3)∃x∈Q,x2=3[解] (1)命题中含有存在量词“某些”,因此是存在性命题,真命题.(2)命题中含有全称量词的符号“∀”,因此是全称命题.把3,5,7分别代入3x+1,得10,16,22,都是偶数,因此,该命题是真命题.(3)命题中含有存在量词的符号“∃”,因此是存在性命题.由于使x2=3成立的实数只有±3,且它们都不是有理数,因此,没有一个有理数的平方等于3,所以该命题是假命题.。

2019-2020学年新教材高中数学第一章集合与常用逻辑用语1.3.1并集与交集

2019-2020学年新教材高中数学第一章集合与常用逻辑用语1.3.1并集与交集

第1课时 并集与交集1.理解并集、交集的概念.2.会用符号、Venn图和数轴表示并集、交集.3.会求简单集合的并集和交集.1.并集的概念及表示2.交集的概念及表示温馨提示:(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.3.并集、交集的运算性质并集的运算性质交集的运算性质A∪B=B∪A A∩B=B∩AA∪A=A A∩A=AA∪∅=A A∩∅=∅1.已知下列集合:A={x|x2-1=0},B={x∈N|1≤x≤4},C={-1,1,2,3,4}.(1)集合A与集合B各有几个元素?(2)若将集合A与集合B的元素放在一起,构成一个新的集合是什么?(3)集合C中的元素与集合A,B有什么关系?[答案] (1)A有2个元素,B有4个元素(2){-1,1,2,3,4}(3)集合A、B中的元素属于集合C2.判断正误(正确的打“√”,错误的打“×”)(1)A∪B表示由集合A和集合B中元素共同组成的集合.( )(2)A∩B是由属于A且属于B的所有元素组成的集合.( )(3)并集定义中的“或”就是“和”.( )(4)若A∩B=C∩B,则A=C.( )[答案] (1)× (2)√ (3)× (4)×题型一并集的运算【典例1】 (1)若集合A={0,1,2,3},B={1,2,4},则集合A∪B等于( ) A.{0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}(2)已知集合P={x|x<3},Q={x|-1≤x≤4},那么P∪Q等于( )A.{x|-1≤x<3}B.{x|-1≤x≤4}C.{x|x≤4}D.{x|x≥-1}[思路导引] 由并集的定义,结合数轴求解.[解析] (1)A∪B={0,1,2,3,4},选A.(2)在数轴上表示两个集合,如图.∴P∪Q={x|x≤4}.选C.[答案] (1)A (2)C 求集合并集的2种方法(1)定义法:若是用列举法表示的数集,可以根据并集的定义直接观察或用Venn图表示出集合运算的结果.(2)数形结合法:若是用描述法表示的数集,可借助数轴分析写出结果,此时要注意当端点不在集合中时,应用“空心点”表示.[针对训练]1.已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是( ) A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}[解析] ∵A={1,-2},B={-2,3},∴A∪B={1,-2,3}.[答案] C2.若集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=________.[解析] 将-3<x≤5,x<-5或x>5在数轴上表示出来.则M∪N={x|x<-5或x>-3}.[答案] {x|x<-5或x>-3}题型二交集的运算【典例2】 (1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于( )A.{x|0≤x≤2}B.{x|1≤x≤2}C.{x|0≤x≤4}D.{x|1≤x≤4}(2)设A={x∈N|1≤x≤5},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}[思路导引] 既属于集合A,又属于集合B的所有元素组成的集合,借助图示方法求解.[解析] (1)在数轴上表示出集合A与B,如下图.则由交集的定义可得A∩B={x|0≤x≤2}.选A.(2)A={x∈N|1≤x≤5}={1,2,3,4,5},B={x∈R|x2+x-6=0}={-3,2},图中阴影部分表示的是A∩B,∴A∩B={2}.选A.[答案] (1)A (2)A 求集合交集的2个注意点(1)求两集合的交集时,首先要化简集合,使集合的元素特征尽量明朗化,然后根据交集的含义写出结果.(2)在求与不等式有关的集合的交集运算中,应重点考虑数轴分析法,直观清晰.[针对训练]3.若A={0,1,2,3},B={x|x=3a,a∈A},则A∩B=( )A.{1,2}B.{0,1}C.{0,3}D.{3}[解析] ∵A ={0,1,2,3},B ={x |x =3a ,a ∈A },∴B ={0,3,6,9},∴A ∩B ={0,3}.[答案] C4.设A ={(x ,y )|x +y =0},B ={(x ,y )|x -y =4},则A ∩B =________.[解析] A ∩B ={(x ,y )|x +y =0且x -y =4}=Error!,解方程组Error!得Error!∴A ∩B ={(2,-2)}.[答案] {(2,-2)}题型三由集合的并集、交集求参数【典例3】 (1)设集合A ={x |-1<x <a },B ={x |1<x <3}且A ∪B ={x |-1<x <3},求a 的取值范围.(2)已知集合A ={x |-3<x ≤4},B ={x |2-k ≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.[思路导引] (1)画出数轴求解.(2)若A ∪B =A ,则B ⊆A ;若A ∩B =A ,则A ⊆B .[解] (1)如下图所示,由A ∪B ={x |-1<x <3}知,1<a ≤3.(2)∵A ∪B =A ,∴B ⊆A .若B =∅,则2-k >2k -1,得k <1;若B ≠∅,则Error!解得1≤k ≤.52综上所述,k ≤.52[变式] 本例(2)若将“A ∪B =A ”改为“A ∩B =A ”,其他条件不变,求k 的取值范围.[解] ∵A ∩B =A ,∴A ⊆B .∴Error!解得k ≥5. 由集合交集、并集的性质解题的策略、方法及注意点(1)策略:当题目中含有条件A∩B=A或A∪B=B,解答时常借助于交集、并集的定义及集合间的关系去分析,将A∩B=A转化为A⊆B,A∪B=B转化为A⊆B.(2)方法:借助数轴解决,首先根据集合间的关系画出数轴,然后根据数轴列出关于参数的不等式(组),求解即可,特别要注意端点值的取舍.(3)注意点:当题目条件中出现B⊆A时,若集合B不确定,解答时要注意讨论B=∅的情况.[针对训练]5.已知M={1,2,a2-3a-1},N={-1,a,3},M∩N={3},求实数a的值.[解] ∵M∩N={3},∴3∈M,3∈N.∴a2-3a-1=3,即a2-3a-4=0,解得a=-1或a=4,当a=-1时,N={-1,-1,3},与元素的互异性矛盾.所以a≠-1.当a=4时,N={-1,4,3},适合题意.综上,a=4.6.设集合A={x|x2-3x+2=0},集合B={x|x2-4x+a=0,a为常数},若A∪B=A,求实数a的取值范围.[解] 由已知得A={1,2},∵A∪B=A,∴B⊆A,∴集合B有两种情况:B=∅或B≠∅.①当B=∅时,方程x2-4x+a=0无实根.∴Δ=16-4a<0,∴a>4.②当B≠∅时,若Δ=0,则有a=4,此时B={2}⊆A满足条件;若Δ>0,则1,2是方程x2-4x+a=0的两根,但由根与系数的关系知矛盾,∴Δ>0不成立,∴当B≠∅时,a=4.综上可知,a的取值范围是{a|a≥4}.课堂归纳小结1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“可兼”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由两个集合A,B的所有元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值能否取到.1.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( )A .{2}B .{2,3}C .{-1,2,3}D .{1,2,3,4}[解析] 因为A ∩C ={1,2},所以(A ∩C )∪B ={1,2,3,4},选D.[答案] D2.集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M 等于( )A .{1,2}B .{0,1,2}C .{x |0≤x ≤3}D .{x |0≤x <3}[解析] 由已知得P ={0,1,2},M ={x |-3≤x ≤3},故P ∩M ={0,1,2}.[答案] B3.已知集合A ={x |x >2或x <0},B ={x |-<x <},则( )55A .A ∩B =∅B .A ∪B =R C .B ⊆AD .A ⊆B[解析] ∵A ={x |x >2或x <0},B ={x |-<x <},∴A ∩B ={x |-<x <0或2<x <},5555A ∪B =R .故选B.[答案] B4.设集合M ={x |-3≤x <7},N ={x |2x +k ≤0},若M ∩N ≠∅,则实数k 的取值范围为________.[解析] 因为N ={x |2x +k ≤0}=Error!,且M ∩N ≠∅,所以-≥-3⇒k ≤6.k2[答案] k ≤65.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0},(1)当m =2时,求M ∩N ,M ∪N .(2)当M ∩N =M 时,求实数m 的值.[解] (1)由题意得M ={2}.当m =2时,N ={x |x 2-3x +2=0}={1,2},则M ∩N ={2},M ∪N ={1,2}.(2)∵M∩N=M,∴M⊆N.∵M={2},∴2∈N.∴2是关于x的方程x2-3x+m=0的解,即4-6+m=0,解得m=2.由(1)知,M∩N={2}=M,适合题意,故m=2.课后作业(四)复习巩固一、选择题1.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=( )A.{x|x≥-1}B.{x|x≤2}C.{x|0<x≤2}D.{x|-1≤x≤2}[解析] 借助数轴易得A∪B={x|x≥-1}.[答案] A2.若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=( )A.{x|-3<x<2}B.{x|-5<x<2}C.{x|-3<x<3}D.{x|-5<x<3}[解析] 由交集的定义知A∩B={x|-5<x<2}∩{x|-3<x<3}={x|-3<x<2}.故选A.[答案] A3.A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则右图中阴影部分表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}[解析] 注意到集合A中的元素为自然数,因此A={1,2,3,4,5,6,7,8,9,10},而B={-3,2},因此阴影部分表示的是A∩B={2},故选A.[答案] A4.设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于( )A.{1,2}B.{1,5}C.{2,5}D.{1,2,5}[解析] ∵A∩B={2},∴2∈A,2∈B,∴a+1=2,∴a=1,b=2,即A={1,2},B={2,5},∴A∪B={1,2,5},故选D.[答案] D5.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是( ) A.a<2B.a>-2C.a>-1D.-1<a≤2[解析] ∵A={x|-1≤x<2},B={x|x<a},要使A∩B≠∅,借助数轴可知a>-1.[答案] C二、填空题6.满足{0,1}∪A={0,1,2}的所有集合A的个数为________.[解析] 由{0,1}∪A={0,1,2}可知A={2}或A={0,2}或A={1,2}或A={0,1,2},共4个.[答案] 47.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为________.[解析] 集合A的含义是被3除余2的正整数组成的集合,在集合B中,8,14被3除余2,故A∩B={8,14},其中有2个元素.[答案] 28.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若A∩B=B,则实数m的取值范围是________.[解析] 由A∩B=B得B⊆A.①当B=∅时,即m+1≥2m-1,解得m≤2.②当B≠∅时,Error!解得2<m≤4.综上可知,m的取值范围是m≤4.[答案] m≤4三、解答题9.已知集合A={x|-2<x<4},B={x|x-m<0}.(1)若A∩B=∅,求实数m的取值范围;(2)若A∩B=A,求实数m的取值范围.[解] (1)∵A={x|-2<x<4},B={x|x<m},又A∩B=∅,∴m≤-2.(2)∵A ={x |-2<x <4},B ={x |x <m },由A ∩B =A ,得A ⊆B ,∴m ≥4.10.设集合A ={-2},B ={x |ax +1=0,a ∈R },若A ∪B =A ,求a 的值.[解] ∵A ∪B =A ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B =,{-1a }∴-∈A ,即有-=-2,得a =.1a 1a 12综上,a =0或a =.12综合运用11.设S ={x |x <-1或x >5},T ={x |a <x <a +8},若S ∪T =R ,则实数a 应满足( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a >-1D .a <-3或a >-1[解析] 在数轴上表示集合S ,T 如图所示.因为S ∪T =R ,由数轴可得Error!解得-3<a <-1.故选A.[答案] A12.设A ={x |-3≤x ≤3},B ={y |y =-x 2+t }.若A ∩B =∅,则实数t 的取值范围是( )A .t <-3B .t ≤-3C .t >3D .t ≥3[解析] 因为B ={y |y ≤t },又因为A ∩B =∅,且A ={x |-3≤x ≤3},所以t <-3.[答案] A13.设集合A ={x |-1≤x ≤2},B ={x |-1<x ≤4},C ={x |-3<x <2},且集合A ∩(B ∪C )={x |a ≤x ≤b },则a =________,b =________.[解析] ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ).∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}.∴a =-1,b =2.[答案] -1 214.高一某班60名同学参加跳远和铅球测试,及格人数分别为40人和31人,这两项均不及格的人数有4人,则两项都及格的人数为________.[解析] 设所求人数为x ,则由题意知(40+31)-x +4=60,解得x =15.[答案] 1515.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1或x >16}.(1)若A ∩B =∅,求实数a 的取值范围;(2)若A ⊆(A ∩B ),求实数a 的取值范围.[解] (1)若A =∅,则A ∩B =∅成立.此时2a +1>3a -5,即a <6.若A ≠∅,如图:则Error!解得6≤a ≤7.经检验a =6,a =7符合题意.综上,满足条件A ∩B =∅的实数a 的取值范围是a ≤7.(2)因为A ⊆(A ∩B ),所以A ∩B =A ,即A ⊆B .显然A =∅满足条件,此时a <6.若A ≠∅,如图,则Error!或Error!由Error!解得a 无解;由Error!解得a >.152综上,满足条件A ⊆(A ∩B )的实数a 的取值范围是a <6或a >.152。

1.3.1-1.3.2赋值语句(2014年人教A版数学必修三导学案)

1.3.1-1.3.2赋值语句(2014年人教A版数学必修三导学案)
【课堂检测】
1.已知一个正三棱柱的底面边长为 ,高为 ,用输入、输入语句和赋值语句表示计算这个正三棱柱的体积的算法.
2.已知三角形的三边长分别为 , , ,借助三角形的面积公式:

用输入、输出语句和赋值语句表示计算三角形面积的一个算法.
【课后巩固】
1.伪代码是介于____________________和____________________之间的文字和符号.
课题:1.3.1—1.3.2赋值语句;输入、输出语句
班级:姓名:学号:第学习小组
【学习目标】
1、理解赋值语句的含义,进一步体会算法的基本思想.
2、理解赋值语句、输入输出语句中的变量与表达式的含义.
【课前预习】
1.赋值语句:
2.输入、输出语句:
【课堂研讨】
例1、用伪代码写出求 时,多项式 的值的算法.
算法1:
算法2:
秦九韶算法:
例2、试设计一个解二元一次方程组的算法,并解决“鸡兔同笼”问题:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何”.
例3编写一个程序,计算一个学生的数学、语文、英语三科的平均成绩.
【学后反思】
课题:1.3.1—1.3.2赋值语句;输入、输出语句检测案
班级:姓名:学号:第学习小组
2.赋值语句就是赋予某一个变化量一个具体的数值.变化量只能写在“←”的边,
值写在“←”的边.(填写“左”或“右”)
3.用输入语句表示输入的数据依次送给 , ,
用输出语句表示输出运算结果 .
4.写出下列程序的运行结果:
, ,
(1)(2)
ቤተ መጻሕፍቲ ባይዱ输出结果为____________.
输出结果为_________.
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学第一章§1.3.1-1.3.2赋值语句输入、输
出语句配套训练苏教版必修3
一、基础过关
1.按照下面的程序运行的结果是________.
A←1
A←A×2
A←A×3
A←A×4
A←A×5
Print A
2.算法开始
a←2;
a←4;
a←a+a;
输出a的值;
算法结束
执行结果:________.
3.下面所示的伪代码执行后,若输入2,5,输出结果为________.
Read a,b
m←a
a←b
b←m
Print a,b
4.下面这个伪代码的输出结果是________.
A←10
A←A+15
Print A
5. 下面一段伪代码执行后的结果是________. A ←2 A ←A ×2
A ←A +6
Print A
6. 一伪代码如下:
a ←2
b ←5
c ←a +b
a ←c +4
Print a ,b
该伪代码的输出结果为______________.
7. 用赋值语句写出下面的伪代码,并画出流程图:摄氏温度C 为23.5℃,将它转换成华氏
温度F ,并输出.已知F =95
C +32. 8. 写出伪代码:已知底面半径和高,求圆柱体表面积.(π取3.14)
二、能力提升
9. 下列伪代码执行后结果为3,则输入的x 值可能为________.
Read x
y ←x 2+2x
Print y
10.下列给出的赋值语句中正确的是________.(填序号)
①4←M ;②M ←-M ;③B ←A ←3;④x +y ←0.
11.下列伪代码执行后,变量a ,b 的值分别为______.
a ←15
b ←20
a ←a +b
b ←a -b
a ←a -b
Print a ,b
12.用伪代码写出求用长度为L 的细铁丝分别围成一个正方形和一个圆时所围成的正方形和
圆的面积.要求输入L 的值,输出正方形和圆的面积,并画出流程图.(π取3.14)
三、探究与拓展
13.给出如图所示流程图,写出相应的伪代码.
答案
1.120 2.8 3.5,2 4.25 5.10 6.11,5
7.解 伪代码如下: 流程图如图所示.
8. 解 Read R ,H A ←2×3.14RH
B ←3.14R 2
S ←A +2B
Print S
9.1或-3 10.② 11.20,15
12.解 由题意知,正方形的边长为L 4,面积S 1=L 216
; 圆的半径为r =L
2π,面积S 2=π(L
2π)2=L 2
4π. 因此伪代码如下:
Read L
S 1←L 2/16
S
2←L 2
Print S 1,S 2
流程图:
13.解伪代码为:Read x,y
x←x/2
y←3y
Print x,y
x←x-y
y←y-1
Print x,y。

相关文档
最新文档