人教版高中数学选修1-1教案:2.3.2 双曲线的简单几何性质
高中数学新课标人教A版选修1-1《2.2.2双曲线的简单几何性质》教案

上课时间第周星期第节课型课题 2.2.2双曲线的几何性质(一)
教学目的理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征
教学设想教学重点:双曲线的几何性质及初步运用.教学难点:双曲线的几何性质的理解撑握。
教学过程一、复习准备:
1.回顾双曲线的定义、标准方程(焦点在分别在x、y轴上)、,,
a b c间的关系?
2.写出满足下列条件的双曲线的标准方程:
①3,4
a b
==,焦点在x轴上;②焦点在y
轴上,焦距为8,2
a=;
3.前面我们学习了椭圆的哪些几何性质?
二、讲授新课:
1. 双曲线的几何性质:
由椭圆的哪些几何性质出发,引导学生类
比探究双曲线的几何性质;
①范围:标准方程可变为
22
22
1
x y
a b
-=,得知
2
2
1
x
a
≥,即x a x a
≥≤-
或;
双曲线在不等式x a x a
≥≤-
与所表示的区域内。
②对称性:如图2-25可知,双曲线关于x轴、y轴及原点都对称,原点是双曲线的对称中心。
③顶点:标准方程中,当0
y=时x a
=±,当0
x=时方程无实根;曲线与x轴的
交点
12
(,0),(,0)
A a A a
-叫做双曲线的顶点。
12
A A
叫做双曲线的实轴,以
12
(0,),(0,)
B b B b
-为端点
的线段
12
B B叫做双曲线的虚轴。
实轴与虚轴
等长的双曲线叫等轴双曲线。
选修1-1课件2.2.2 双曲线的简单几何性质

b b 2 2 解得y1 25 12 481 12 12 b 5 2 2 y2 13 12 b. 12 12 又塔高为 米, 所以y2 y1 55.即 55 5b b 481 55. 12 12 解得 : b 24.5(米).所以双曲线的 方程为 x y 1. 2 2 12 24.5
2
2
2 ; 渐近
线方程x y; 准线方程y 2 .
练习题:
1.求下列双曲线的实轴和虚轴的 长、顶点和焦点坐标、离心率、 渐近线方程和准线方程:
x y 4 1 49 25
2
2
y x 4 方程化为 1, 于是a 5, b 7, 25 49 c 25 49 74 , 2a 10, 2b 14; 顶 点坐标0, 5 , 0,5 ; 焦点坐标 0, 74 ,
叫做等轴双曲线 .
x
双曲线虚轴的变化对双曲线的影响:
性质4—渐近线
y B2
N x ,Y Q M(x,y)
b
A1
o a A2
x
b y x a
B1
b y x a
在第一象限内 双曲线方程化为 , b 2 2 y x a x a a 设M x , y 是双曲线上的任意一 b 点, N x ,Y 是直线y x上与M a b 有相同横坐标的点则Y x . , a
1 x
2
8 y 32
2
x y 1方程化为 1, 于是a 4 2 , 32 4 b 2, c 32 4 6, 2a 8 2 , 2b 4; 顶点坐标 4 2 ,0 , 4 2 ,0 ; 焦点坐 3 标6,0 , 6,0 ; e 2 ; 渐近线方程 4 2 16 y x; 准线方程x . 4 3
人教A版高中数学选修1-1 专题2.2.2双曲线的简单几何性质 教案

2.1.5 双曲线的简单几何性质一、教学目标:1.知识与技能(1)给定双曲线方程,能正确写出有关几何元素,包括顶点、焦点、实轴虚轴长、离心率、渐近线方程等,认识相关元素的内在联系.(2)给定相关几何元素,正确得出相应的双曲线方程.(3)理解离心率、渐近线对双曲线张口大小的影响,能正确说出其中的规律.2.过程与方法(1)在经历一个较完整的数学问题探求过程中,提高学生的观察猜想和验证能力.(2)在椭圆与双曲线性质的类比过程中,提高学生的归纳能力.(3)在几何性质探求过程中,培养学生曲线方程思想和意识.3.情感、态度与价值观培养学生主动探求知识、合作交流的意识,改变学习方式,改善数学学习信念.二、教学重点.难点重点:双曲线的几何性质及初步运用。
难点:双曲线的渐近线,离心率的讲解。
三、教学方法本节课主要通过数形结合,类比椭圆的几何性质,运用现代化教学手段,通过观察,分析,归纳出双曲线的几何性质,在教学过程中可采取设疑提问,重点讲解,归纳总结,引导学生积极思考,鼓励学生合作交流。
四、教学过程新课引入1.创设情境,引入课题(1)问题情景师问1:首先请同学们回忆一下我们是从哪些方面研究椭圆的?学生答:首先研究了椭圆的标准方程,接着研究了椭圆的几何性质.师问2:很好,那么类似地双曲线是否也具有一些几何性质呢?(引出本节课的内容)注:本节课主要是由椭圆的几何性质通过类比联想,归纳出类似于椭圆几何性质的双曲线的几何性质,故进行下面的复习回顾.五、自主学习1.范围以12222=-b y a x 为例,只有当|x |≥a 时,y 才有实数值,而在-a<x <a 之间没有图象,当|x |无限增大时,|y |也无限增大,因此曲线是无限伸展的,也就是说,双曲线12222=-by a x (a>0,b>0)在不等式组⎪⎩⎪⎨⎧〉+〉-≥0,0,ay bx ay bx a x 或⎪⎩⎪⎨⎧〈+〈--≤0,0,ay bx ay bx a x 所表示的区域内.双曲线的范围说明双曲线是非封闭曲线,而椭圆则是封闭曲线. 2.对称性分别用(x ,-y )、(-x ,y )及(-x ,-y )代替方程中的(x ,y ),方程都不改变,说明双曲线关于x 轴、y 轴、原点对称.因此双曲线是有心圆锥曲线,对称中心是原点,因此双曲线有两条对称轴,一个对称中心. 3.顶点与实虚轴双曲线只有两个顶点.12222=-by a x 的顶点是(a,0),(-a,0);当x =0时,y 2=-b 2无实数解,即与y 轴无交点.实轴长为2a ,虚轴长为2b.在这里,要注意实轴是焦点所在的轴,实轴长不一定大于虚轴长. 4.渐近线(1)双曲线的渐近线是画双曲线草图时所必须的,渐近线是x =±a,y =±b 围成矩形的对角线,它决定了双曲线的形状.(2)理解“渐近”两字的含义,当双曲线的各支向外延伸时,与这两条直线逐渐接近,接近的程度是无限的,也可以这样理解:当双曲线上的动点M 沿着双曲线无限远离双曲线的中心时,点M 到这条直线的距离逐渐变小而无限趋近于0.(3)焦点在x 轴上的双曲线12222=-b y a x 的渐近线方程是y =±x ab;焦点在y 轴上的双曲线12222=-b y a x 的渐近线方程是y =±x ab,或由02222=-b x a y (将1换成0)得到.(4)根据双曲线的标准方程求出它的渐近线方程的方法,最简单且实用的方法是:把双曲线标准方程中等号右边的1改成0,就得到了此双曲线的渐近线方程.(5)根据双曲线的渐近线方程求出双曲线的方程的方法.①与双曲线12222=-b y a x 有共同渐近线的双曲线的方程可表示为t b y a x =-2222(t≠0).②若双曲线的渐近线方程是y =±x a b,则双曲线的方程可表示为t by a x =-22225.离心率 e =ac,e >1,它决定双曲线的开口大小,e 越大,开口越大. (1)离心率的大小决定了渐近线斜率的大小,从而决定了双曲线的开口大小.∵a b =222a a c -=12-e ,∴e 越大,k =a b 越大.∴双曲线开口越大. (2)等轴双曲线的两渐近线互相垂直,离心率e =2. (3)求离心率是考查重点,常有以下方法 ①求a 、c 再求e =ac;②建立关于a 、c 的齐次方程;③寻找a 和e 的关系,再求e . 典型例题:例1:求双曲线22143x y -=的实轴长和虚轴长、焦点的坐标、离心率、渐近线方程.例2:求双曲线22916144y x -=的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.例3:求与双曲线221169x y -=共渐近线,且经过()3A -点的双曲线的标准方及离心率.例4: 已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为43,求双曲线的标准方程。
高中数学选修1,1《双曲线》教案

高中数学选修1,1《双曲线》教案高中数学选修1-1《双曲线》教案【一】教学准备教学目标教学目标: 1.能用与椭圆对比的方法分析并掌握双曲线的范围、对称性、顶点等几何性质;2.掌握双曲线的渐近线的概念和证明;3.明确双曲线标准方程中a、b、c的几何意义;4.能根据双曲线的几何性质确定双曲线的方程, 并解决简单问题.教学重难点教学重点: 双曲线的几何性质教学难点: 双曲线的渐近线教学过程教学过程:一、知识回顾:1. 双曲线的标准方程;2. 椭圆的几何性质及其研究方法.二、课堂新授:1. 要求学生按照研究椭圆几何性质的方法, 研究双曲线的几何性质.(1) 范围: 双曲线在不等式x≤-a与x≥a所表示的区域内.(2) 对称性: 双曲线关于每个坐标轴和原点都是对称的. 这时, 坐标轴是双曲线的对称轴, 原点是双曲线的对称中心. 双曲线的对称中心叫做双曲线的中心.(3) 顶点: 双曲线和它的对称轴有两个交点, 它们叫做双曲线的顶点.顶点坐标A1 (-a, 0), A2 (a, 0)① 线段A1A2叫做双曲线的实轴, 它的长等于2a, a叫做双曲线的实半轴长.② 双曲线与y轴没有交点, 取点B1 (0,-b)、 B2 (0, b), 线段B1B2叫做双曲线的虚轴, 它的长等于2b, b叫做双曲线的虚半轴长.(4) 离心率: 双曲线的焦距与实轴长的比e = , 叫做双曲线的离心率.双曲线的离心率的取值范围是(1, +∞).2. 双曲线的渐近线(1) 观察: 经过A2、A1作y轴的平行线x = ±a, 经过B2、B1作x 轴的平行线y = ±b, 四条直线围成一个矩形. 矩形的两条对角线所在直线的方程是y =±x, 观察可知: 双曲线的各支向外延伸时, 与这两条直线逐渐接近.(2) 证明: 取双曲线在第一象限内的部分进行证明. 这一部分的方程可写为高中数学选修1-1《双曲线》教案【二】教学准备教学目标1、熟练掌握曲线的方程和方程的曲线概念;2、掌握坐标法和解析几何的概念3、掌握根据已知条件求平面曲线方程的基本步骤;4、学会根据已知条件求简单的平面曲线的方程。
高中数学人教版选修1-1 2.2.2双曲线的简单几何性质 教案(系列三)

2.2.2 双曲线的简单几何性质(教师用书独具)●三维目标1.知识与技能(1)使学生理解和掌握双曲线的范围、对称性、顶点等性质.(2)理解渐近线的证明方法.(3)理解离心率和双曲线形状间的变化关系.2.过程与方法培养学生的观察能力、想象能力、数形结合能力和逻辑推理能力,以及类比的学习方法.3.情感、态度与价值观培养学生对待知识的科学态度和探索精神,而且能够运用运动的、变化的观点分析理解事物.●重点、难点重点:由方程导出性质及其应用.难点:渐近线的理解.从学生的认知水平来看,对渐近线分析方法的理解和掌握有一定的困难.同时渐进线概念如何顺应学生思维的自然呈现,是教法中的一个困惑.因此,将渐近线的呈现与分析设置为本课时的难点.为突破该难点,从“如何画双曲线草图”入手,分析作草图必须的条件,以“双曲线的走向”为切入口,通过复习反比例函数图象,以旧引新,使双曲线的概念自然呈现.并通过学生讨论与交流,充分暴露思维过程,完成分析和证明过程.(教师用书独具)●教学建议本节课宜采用的教学方法和手段:类比、启发、探索相结合的教学方法,体现学生的主体地位.●教学流程提出问题:类比椭圆的几何性质,你能得到双曲线的哪些几何性质?⇒引导观察双曲线图形,分析其几何性质,导出范围、对称性、顶点、离心率等几何性质.⇒通过引导学生回答所提问题,引出渐近线的概念,理解渐近线的特征.⇒通过例1及其变式训练,使学生掌握已知双曲线方程求几何性质的方法.⇒通过例2及其变式训练,使学生掌握由几何性质求双曲线标准方程的方法.⇒错误!⇒错误!⇒错误!(对应学生用书第32页)类比椭圆的几何性质,结合图象,你能得到双曲线x 2a 2-y 2b 2=1(a >0,b >0)的哪些几何性质?【提示】 范围、对称性、顶点、离心率、渐近线.椭圆中,离心率可以刻画椭圆的扁平程度,在双曲线中,离心率描述怎样的特征? 【提示】 双曲线的离心率描述双曲线“开口”的大小,离心率越大,双曲线的“开口”越大.1.双曲线的对称中心叫做双曲线的中心.2.实轴和虚轴等长的双曲线叫做等轴双曲线,其离心率e =2.(对应学生用书第32页)求双曲线25y 2-4x 2+100=0的实半轴长、虚半轴长、焦点坐标、顶点坐标、离心率、渐近线方程.【思路探究】【自主解答】 双曲线的方程25y 2-4x 2+100=0可化为x 225-y 24=1.∴实半轴长a =5,虚半轴长b =2,顶点坐标为(-5,0),(5,0). 由c =a 2+b 2=29,焦点坐标为(29,0),(-29,0). 离心率e =c a =295,渐近线方程y =±25x .1.已知双曲线的方程求其几何性质时,若不是标准形式的先化为标准方程,确定方程中a 、b 的对应值,利用c 2=a 2+b 2得到c ,然后确定双曲线的焦点位置,从而写出双曲线的几何性质.2.写渐近线方程时要特别注意焦点在x 轴上还是在y 轴上,以免写错.求双曲线16x 2-9y 2=-144的实轴长、虚轴长、焦点坐标、离心率、顶点坐标和渐近线方程.【解】 把方程16x 2-9y 2=-144化为标准方程得y 242-x 232=1,由此可知,实轴长2a =8,虚轴长2b =6,c =a 2+b 2=5. 焦点坐标为(0,-5),(0,5). 离心率e =c a =54.顶点坐标为(0,-4),(0,4). 渐近线方程为:y =±43x .双曲线的方程分别求适合下列条件的双曲线的标准方程.(1)虚轴长为12,离心率为54;(2)顶点间距离为6,渐近线方程为y =±32x ;(3)求与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2).【思路探究】 (1)双曲线的焦点位置确定了吗?如果不确定该怎么办?(2)与双曲线x 2-2y 2=2有公共渐近线的双曲线有什么特点?如何设出方程?【自主解答】 (1)设双曲线的标准方程为 x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0). 由题意知2b =12,c a =54且c 2=a 2+b 2,∴b =6,c =10,a =8,∴双曲线标准方程为x 264-y 236=1或y 264-x 236=1.(2)当焦点在x 轴上时,由b a =32且a =3得b =92.∴所求双曲线标准方程为x 29-4y 281=1.当焦点在y 轴上时,由a b =32且a =3得b =2.∴所求双曲线标准方程为y 29-x 24=1.(3)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=k ,将点(2,-2)代入得k=222-(-2)2=-2, ∴双曲线标准方程为y 22-x 24=1.1.利用待定系数法求双曲线方程应先“定形”(确定标准方程的形式),再“定量”(求出a ,b 的值).由于双曲线的标准方程有两种形式,因此,根据相关几何特征确定焦点的位置是很重要的,其次,在解题过程中应熟悉a ,b ,c ,e 等元素的几何意义及它们之间的联系,并注意方程思想的应用.2.若已知双曲线的渐近线方程为Ax ±By =0,为避免讨论,可设双曲线方程为A 2x 2-B 2y 2=λ(λ≠0)或x 2B 2-y 2A2=λ(λ≠0)的形式,从而使运算更简捷.3.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0).已知双曲线的一条渐近线方程是x -2y =0,且双曲线过点P (4,3),求双曲线的标准方程. 【解】 法一 ∵双曲线的一条渐近线方程为x -2y =0,当x =4时,y =2<y P =3. ∴双曲线的焦点在y 轴上.从而有a b =12,∴b =2a .设双曲线方程为y 2a 2-x 24a 2=1,由于点P (4,3)在此双曲线上, ∴9a 2-164a 2=1,解得a 2=5. ∴双曲线方程为y 25-x 220=1.法二 ∵双曲线的一条渐近线方程为x -2y =0, 即x 2-y =0,∴双曲线的渐近线方程为x 24-y 2=0. 设双曲线方程为x 24-y 2=λ(λ≠0),∵双曲线过点P (4,3),∴424-32=λ,即λ=-5.∴所求双曲线方程为x 24-y 2=-5,即y 25-x 220=1.分别求适合下列条件的双曲线的离心率.(1)双曲线的渐近线方程为y =±32x ;(2)双曲线x 2a 2-y 2b 2=1(0<a <b )的半焦距为c ,直线l 过(a,0),(0,b )两点,且原点到直线l 的距离为34c . 【思路探究】 (1)由渐近线方程能得到a 、b 、c 的关系吗?利用这种关系能求出离心率吗?(2)由题意你能得到关于a 、b 、c 的什么关系式? 【自主解答】 (1)若焦点在x 轴上,则b a =32,∴e =b 2a 2+1=132; 若焦点在y 轴上,则a b =32,即b a =23,∴e =b 2a 2+1=133. 综上可知,双曲线的离心率为132或133. (2)依题意,直线l :bx +ay -ab =0. 由原点到l 的距离为34c ,得ab a 2+b2=34c , 即ab =34c 2,∴16a 2b 2=3(a 2+b 2)2, 即3b 4-10a 2b 2+3a 4=0, ∴3(b 2a 2)2-10×b 2a 2+3=0.解得b 2a 2=13或b 2a 2=3.又∵0<a <b ,∴b 2a 2=3.∴e =1+b 2a2=2.求双曲线的离心率,通常先由题设条件得到a ,b ,c 的关系式,再根据c 2=a 2+b 2,直接求a ,c 的值.而在解题时常把c a 或b a 视为整体,把关系式转化为关于c a 或ba 的方程,解方程求之,从而得到离心率的值.在本题的(2)中,要注意条件0<a <b 对离心率的限制,以保证题目结果的准确性.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.【解】 设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a .∴|PF 1|=b 2a.由双曲线对称性,|PF 2|=|QF 2|且∠PF 2Q =90°. 知|F 1F 2|=12|PQ |=|PF 1|,∴b 2a=2c ,则b 2=2ac . ∴c 2-2ac -a 2=0,∴⎝⎛⎭⎫c a 2-2×ca-1=0. 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). ∴所求双曲线的离心率为1+ 2.(对应学生用书第35页)忽略点在双曲线上的位置致误已知双曲线方程为x 2-y 2=1,双曲线的左支上一点P (a ,b )到直线y=x 的距离是2,求a +b 的值.【错解】 ∵P (a ,b )到直线y =x 的距离是 2.故|a -b |2=2,∴a -b =±2. 又∵a 2-b 2=1,∴(a +b )(a -b )=1,∴a +b =±12.【错因分析】 错解中忽略了点P 在双曲线的左支上,此时,a -b <0,∴a -b =-2. 【防范措施】 由于双曲线有两支,解题时要特别留意所给点是在哪一支上,以防因判断不准导致增根产生.【正解】 ∵点P (a ,b )到直线y =x 的距离为2, 故|a -b |2=2,∴a -b =±2. 又∵P 在双曲线的左支上,故a -b <0,则有a -b =-2. 又∵a 2-b 2=1,即(a -b )(a +b )=1,∴a +b =-12.1.通过双曲线的方程可以讨论双曲线的几何性质,由双曲线的几何性质也可以得到双曲线的方程.2.双曲线的渐近线和离心率都可以描述其“张口”的大小、渐近线是双曲线特有的性质,应注意以下三点:(1)当焦点在x 轴上时,渐近线为y =±b a x ;当焦点在y 轴上时,渐近线为y =±abx .(2)当渐近线为y =b a x 时,可设双曲线标准方程为x 2a 2-y 2b 2=λ(λ≠0).(3)与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线标准方程可设为x 2a 2-y 2b2=λ(λ≠0).(对应学生用书第35页)1.中心在原点,实轴长为10,虚轴长为6的双曲线的标准方程是( ) A.x 225-y 29=1 B.x 225-y 29=1或y 225-x 29=1 C.x 2100-y 236=1 D.x 2100-y 236=1或y 2100-x 236=1 【解析】 由题意:a =5,b =3,且焦点不确定,应选B. 【答案】 B2.双曲线x 24-y 29=1的渐近线方程是( )A .y =±23xB .y =±49xC .y =±32xD .y =±94x【解析】 由题意,焦点在x 轴上,且a =2,b =3,故渐近线方程为y =±32x .【答案】 C3.下列曲线中离心率为62的是( ) A.x 22-y 24=1 B.x 24-y 22=1 C.x 24-y 26=1 D.x 24-y 210=1 【解析】 选项B 双曲线中a =2,b =2,∴c =6,e =62. 【答案】 B4.若双曲线的顶点在x 轴上,两顶点的距离为8,离心率是54,求双曲线的标准方程.【解】 由题设,设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0). ∵2a =8,∴a =4, 由e =54=ca ,得c =5,∴b 2=c 2-a 2=52-42=9.因此所求双曲线标准方程为x 216-y 29=1.一、选择题1.等轴双曲线的一个焦点是F 1(-6,0),则它的标准方程是( ) A.y 218-x 218=1 B.x 218-y 218=1 C.x 28-y 28=1 D.y 28-x 28=1 【解析】 设等轴双曲线方程为x 2a 2-y 2a 2=1(a >0).∴a 2+a 2=62,∴a 2=18. 故双曲线方程为x 218-y 218=1.【答案】 B2.(2012·湖南高考)已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 【解析】 由2c =10得c =5,∵点P (2,1)在直线y =b a x 上,∴2ba =1,又∵a 2+b 2=25,∴a 2=20,b 2=5,故双曲线的方程为x 220-y 25=1.【答案】 A3.(2013·泰安高二检测)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 522【解析】 ∵双曲线的焦点在x 轴上, ∴设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).又其一条渐近线过点(4,-2), ∴b a =24,∴a =2b . 因此c =a 2+b 2=5b . ∴离心率e =c a =52.【答案】 D4.(2013·天门高二检测)双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r=( )A. 3 B .2 C .3D .6【解析】 双曲线的渐近线方程为y =±22x ,圆心坐标为(3,0),由点到直线的距离公式与渐近线与圆相切得,圆心到渐近线的距离为r ,且r =|32+0|2+4= 3.【答案】 A5.(2013·临沂高二检测)双曲线x 2a 2-y 2b 2=1和椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【解析】 双曲线的离心率e 1=a 2+b 2a ,椭圆的离心率e 2=m 2-b 2m ,由e 1e 2=1得(a 2+b 2)(m 2-b 2)=a 2m 2,故a 2+b 2=m 2,因此三角形为直角三角形.【答案】 B 二、填空题6.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m =________. 【解析】 ∵2a =2,2b =2-1m,∴ -1m=2,4【答案】 -147.已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的焦点坐标为________,渐近线方程为________.【解析】 双曲线的焦点为(-4,0),(4,0),∴c =4, 离心率e =ca=2,∴a =2,∴b =c 2-a 2=2 3.∴双曲线方程为x 24-y 212=1.令x 24-y 212=0,得渐近线方程为3x ±y =0.【答案】 (±4,0)3x ±y =08.(2013·北京高二检测)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的取值范围为________.【解析】 由双曲线的定义有|PF 1|-|PF 2|=2a , 又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a .容易知道|PF 1|+|PF 2|≥|F 1F 2|,即103a ≥2c ,∴e ≤53,又e >1,故e ∈(1,53]. 【答案】 (1,53]三、解答题9.根据下列条件,求双曲线的标准方程.(1)与双曲线x 29-y 216=1有共同渐近线,且过点(-3,23);(2)与双曲线x 216-y 24=1有公共焦点,且过点(32,2).【解】 (1)设所求双曲线方程为x 29-y 216=λ(λ≠0),则由题意可知-29-3216=λ,解得λ=14.∴所求双曲线的标准方程为x 294-y 24=1.(2)设所求双曲线方程为x 216-k -y 24+k=1(16-k >0,4+k >0),∵双曲线过点(32,2),∴2216-k -224+k =1,解得k =4或k =-14(舍).∴所求双曲线的标准方程为x 212-y 28=1.10.双曲线x 2a 2-y 2b 2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,求双曲线离心率的取值范围.【解】 ∵l 的方程为:bx +ay -ab =0. 由点到直线距离公式且a >1,得 点(1,0)到直线l 的距离d 1=b a -a 2+b 2,点(-1,0)到直线l 的距离d 2=ba +a 2+b 2.s =d 1+d 2=2ab c ≥45c .即5a c 2-a 2≥2c 2,即5e 2-1≥2e 2, ∴4e 4-25e 2+25≤0,解得54≤e 2≤5,∵e >1,∴52≤e ≤ 5. 即e 的取值范围为[52,5]. 11.若原点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,求OP →·FP →的取值范围.【解】 由双曲线方程x 2a 2-y 2=1(a >0)知b =1.又F (-2,0),∴c =2. ∴a 2+1=c 2=4,∴a 2=3, ∴双曲线方程为x 23-y 2=1.设双曲线右支上点P (x ,y ),且x ≥ 3. OP →·FP →=(x ,y )·(x +2,y )=x 2+2x +y 2 =43x 2+2x -1=43⎝⎛⎭⎫x +342-74. ∵x ≥3,∴当x =3时,上式有最小值3+2 3.故OP→·FP→的取值范围为[3+23,+∞).(教师用书独具)已知双曲线x 2-y 2=4,直线l :y =k (x -1),试讨论实数k 的取值范围,使直线l 与双曲线有两个公共点;直线l 与双曲线有且只有一个公共点;直线l 与双曲线没有公共点.【解】 由⎩⎨⎧x 2-y 2=4y =k x -消去y ,得(1-k 2)x 2+2k 2x -k 2-4=0.(*)(1)当1-k 2=0,即k =±1时,直线l 与双曲线的渐近线平行,方程化为2x =5,故此时方程(*)只有一个实数解,即直线与双曲线相交,且只有一个公共点,交点在双曲线右支上.(2)当1-k 2≠0,即k ≠±1时,Δ=(2k 2)2-4(1-k 2)·(-k 2-4)=4(4-3k 2).①⎩⎨⎧ 4-3k 2>0,1-k 2≠0,即-233<k <233,且k ≠±1时,方程(*)有两个不同的实数解,即直线与双曲线有两个公共点.②⎩⎨⎧4-3k 2=0,1-k 2≠0,即k =±233时,方程(*)有两个相同的实数解,即直线与双曲线相交于一个公共点.综上所述:当-233<k <233,且k ≠±1时,直线l 与双曲线有两个公共点,当k =±1或k =±233时,直线l 与双曲线有且只有一个公共点,当k <-233或k >233时,直线l 与双曲线没有公共点.已知双曲线3x 2-y 2=3,直线l 过右焦点F 2,且倾斜角为45°,与双曲线交于A 、B 两点,试问A 、B 两点是否位于双曲线的同一支上?并求弦AB 的长.【解】 双曲线3x 2-y 2=3化为x 2-y 23=1,则a =1,b =3,c =2.∵直线l 过点F 2且倾斜角为45°, ∴直线l 的方程为y =x -2, 代入双曲线方程,得2x 2+4x -7=0. 设A (x 1,y 1)、B (x 2,y 2), ∵x 1·x 2=-72<0,∴A 、B 两点分别位于双曲线的左、右两支上. ∵x 1+x 2=-2,x 1·x 2=-72,∴|AB |=1+12|x 1-x 2|=2·x 1+x 22-4x 1x 2=2·-2--72=6.因此弦AB 的长为6.。
人教A版选修1-1教案:2.2.2双曲线的简单的几何性质(2)(含答案)

§2.2.2双曲线的简单的几何性质(2)【学情分析】:1、学生已经学习了双曲线的几何性质,能理解双曲线的几何性质并能运用双曲线的几何性质解决一些简单的问题;2、学生已学习了双曲线的定义及标准方程,会熟练地求双曲线的标准方程;【教学目标】:知识与技能1、进一步了解双曲线的标准方程和简单的几何性质;2、能运用双曲线的几何性质解决一些简单问题;过程与方法1、能用坐标法解决一些与双曲线有关的简单的几何问题和实际问题,理解坐标法的思路与步骤;2、了解直线与双曲线的位置关系问题一般求解策略与技巧,进一步体会数形结合的思想;情感态度与价值观通过运用双曲线有关知识解决实际问题,使学生充分认识数学的价值,从而培养学生学习数学的兴趣。
【教学重点】:双曲线的简单几何性质的运用【教学难点】:直线与双曲线的位置关系的求解技巧【教学过程设计】:教学环节教学活动设计意图一.复习1.双曲线的两种标准方程是什么?2.双曲线的几何性质有哪些?范围、对称性、顶点、离心率等。
通过复习,有利于学生在已有知识基础上开展学习;提出新问题,引发学习兴趣。
二.例题、练习1.例4:双曲线型冷却塔的外型,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12,上m 口半径为13,下口半径为25,高55,试选择m m m 适当的坐标系,求出此双曲线方程(精确到1)m 解:如图建立直角坐标系,设双曲线方程为,C (13,y ),B(25 , y-12222=-by a x 55),双曲线的几何性质的简单应用即(a +b )(a -b )=1d ==,∴|a -b |=2又P2||b a -2点在右支上,则有a >b ,∴a -b =2∴|a +b |×2=1,a +b =216.练习:已知双曲线中心在原点且一个焦点为F (,0)直线y=x -1与其相交于M 、N 两点,MN 中点7的横坐标为,则此双曲线的方程是( )32-A B 14322=-y x 13422=-y x C D 12522=-y x 15222=-y x 答案:D 解析设双曲线方程为2222221,7x y a b a b-=+=分别代入双曲线方程并相减即可1122(,),(,)M x y N x y 求解三、小结1. 解与圆锥曲线有关的实际问题的步骤与方法是怎样的?2.解直线与圆锥曲线的位置关系问题的一般解题思路与方法是怎样的?五、作业教科书习题2.2 B 组1、2、3练习与测试:1.若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程是__________.x y 3±=()0,10答案:1922=-y x 2.双曲线的左焦点为,为左支下半支上任意一点(异于顶点),则直线的斜率的变221x y -=F P PF 化范围是(目的:能够理解直线与双曲线的位置与双曲线的渐进线斜率有关)答案:(,0)(1,)-∞⋃+∞解析:画出图形,利用数形结合法求解。
人教A版高中数学选修1-1第二章 2.2.2双曲线的简单几何性质教学设计

2.2.2双曲线的简单几何性质教学设计一.教学目标(一)学习目标1.掌握双曲线的简单几何性质2.理解双曲线的渐近线及离心率的意义3.会求与已知双曲线有共同渐近线的双曲线的标准方程(二)重难点重点:掌握双曲线的简单几何性质难点:会求与已知双曲线有共同渐近线的双曲线的标准方程二.预习学案出现问题1.y的范围2.对于顶点的理解及顶点坐标找不准确3.a,b,c三者之间的关系与椭圆中的混淆4.渐近线方程没化成最简形式5.已知渐近线方程,不会求双曲线的方程教学活动:上课之前和学生讲述学案中出现的普遍问题,引起学生重视,上课认真听讲,解决易错问题。
二.设计思路三.教学流程1.复习引入1.双曲线的标准方程:焦点在x 轴:)0,0(12222>>=-b a b y a x ;焦点在y 轴:)0,0(12222>>=-b a bx a y2.a ,b ,c 的关系:222c b a +=3.椭圆的简单几何性质 范围,对称性,顶点,离心率教学活动:已经学习过双曲线的标准方程,以及椭圆的简单的几何性质,请同学们来回顾这些知识点,对学习的旧知识加以复习巩固,同时为新知识的学习做准备,利用多媒体工具的先进性,结合图像来演示。
2.讲授新知由双曲线方程)0,0(12222>>=-b a by a x ,类比椭圆的简单几何性质,推导、研究双曲线的性质:(1)范围、对称性、顶点(实轴、虚轴)、离心率由学生类比椭圆的几何性质,通过观察、证明、比较来得到双曲线的这四个简单的几何性质。
结论:范围:a x ≥或a x -≤;R y ∈;对称性:关于x 轴、y 轴和原点都是对称; 顶点:()0,1a A -,()0,2a A线段A 1A 2叫做双曲线的实轴,它的长为2a ,a 叫做实半轴长;线段B 1B 2叫做双曲线的虚轴,它的长为2b ,b 叫做双曲线的虚半轴长.离心率:类比椭圆,我们把双曲线的焦距与实轴长的比a ca c e ==22,叫做双曲线的离心率。
2. 3. 2双曲线的简单几何性质(1)教案(人教A版选修2-1)

§2.3.2双曲线的简单几何性质(1>学习目标1.理解并掌握双曲线的几何性质.,文P49~ P51找出疑惑之处)5658复习1:写出满足下列条件的双曲线的标准方程:①,焦点在轴上;②焦点在轴上,焦距为8,.复习2:前面我们学习了椭圆的哪些几何性质?二、新课导学:※学习探究问题1:由椭圆的哪些几何性质出发,类比探究双曲线的几何性质?范围:::对称性:双曲线关于轴、轴及都对称.顶点:< ),< ).实轴,其长为;虚轴,其长为.率:.离心渐近线:线的渐近线方程为:.双曲问题2:双曲线的几何性质?图形:范围:::对称性:双曲线关于轴、轴及都对称.顶点:< ),< )实轴,其长为;虚轴,其长为.离心率:.渐近线:双曲线的渐近线方程为:.新知:实轴与虚轴等长的双曲线叫双曲线.※典型例题例1求双曲线的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程.变式:求双曲线的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.例2求双曲线的标准方程:⑴实轴的长是10,虚轴长是8,焦点在x轴上;⑵离心率,经过点;⑶渐近线方程为,经过点.※动手试试练1.求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.练2.对称轴都在坐标轴上的等到轴双曲线的一个焦点是,求它的标准方程和渐近线方程.三、总结提升:※学习小结双曲线的图形、范围、顶点、对称性、离心率、渐近线.※知识拓展与双曲线有相同的渐近线的双曲线系方程式为学习评价※自我评价你完成本节导学案的情况为< ).A. 很好B. 较好C. 一般D. 较差※当堂检测<时量:5分钟满分:10分)计分:1.双曲线实轴和虚轴长分别是< ).A.、 B.、C.4、 D.4、2.双曲线的顶点坐标是< ).A. B. C. D.<)3.双曲线的离心率为< ).A.1 B. C. D.24.双曲线的渐近线方程是.5.经过点,并且对称轴都在坐标轴上的等轴双曲线的方程是.课后作业1.求焦点在轴上,焦距是16,的双曲线的标准方程.2.求与椭圆有公共焦点,且离心率的双曲线的方程.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图2-26)有什么指导意义?这些问题不要求学生回答,只引起学生类比联想.
接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么?
下面,我们来证明它:
双曲线在第一象限的部分可写成:
当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.
在其他象限内也可以证明类似的情况.
现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字母对调
长丰县实验高中2016 ~2017学年第一学期高二年级数学(文科)
集体备课教案
项目
内容
课题
2.3.2双曲线的几何性质
(共1课时)
修改与创新
教学
目标
知识与技能:理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能根据这些几何性质解决一些简单问题,从而培养我们的分析、归纳和推理等能力。
3.用几何画板展示双曲线的渐近线,使学生有直观的认识。
这时,教师指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变.
(五)典型例题剖析:
1.求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.
由此可知,实半轴长a=4,虚半轴长b=3.
焦点坐标是(0,-5),(0,5).
过程与方法:在与椭圆的性质的类比中获得双曲线的性质,进一步体会数形结合的思想,掌握利用方程研究曲线性质的基本方法。
情感、态度与价值观:通过本小节的学习,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题.
教学重、
难点
重点:双曲线的几何性质及初步运用.
难点:双曲线的渐近线方程的导出和论证.
这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精
再描几个点,就可以随后画出比较精确的双曲线.
(四)离心率(性质5)
由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:
变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.
板书设计
2.3.2双曲线的几何性质
1.范围、对称性
2.顶点
顶点:
特殊点:
实轴: 长为2a, a叫做半实轴长
虚轴: 长为2b,b叫做虚半轴长
3.渐近线
渐近线方程是 (
4.等轴双曲线
5.离心率
,范围: 。e越大它的开口就越阔
教学反思
1.让学生讨论,由图形和方程研究双曲线有哪几种对称性?
2.由离心率的定义如何说明离心率和双曲线开口大小的关系,并给出结论。
教学
准备
多媒体课件
教学过程
(一)复习提问引入新课
1.椭圆有哪些几何性质,是如何探讨的?
2.双曲线的两种标准方程是什么?
下面我们类比椭圆的几何性质来研究它的几何性质.
(二)类比联想得出性质(性质1~3)
引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,教师引导、启发、订正并板书).
(三)问题之中导出渐近线(性质4)