2020版高考江苏数学大一轮精准复习精练:14.2圆的方程含解析

合集下载

2020年高考江苏版高考数学 14.2 圆的方程

2020年高考江苏版高考数学  14.2 圆的方程

14.2 圆的方程挖命题【考情探究】5年考情考点内容解读考题示例考向关联考点预测热度2015江苏,10圆的标准方程直线与圆相切圆的方程1.圆的标准方程2.圆的一般方程2016江苏,18圆的标准方程、圆的一般方程直线方程、直线与圆的位置关系★★★分析解读 圆的方程是江苏高考的必考内容之一,最近几年很少有单独的试题考查圆的方程,通常和向量、直线、椭圆相结合,综合性比较强,以中档题的形式出现,不拘泥于填空题,有时候会出现在第17、18题,在复习中,也要注意以圆为背景的实际应用题.破考点【考点集训】考点 圆的方程1.(2018江苏天一中学月考)已知圆C 与直线y=x 及x-y-4=0都相切,圆心在直线y=-x 上,则圆C 的方程为 __________.答案 (x-1)2+(y+1)2=22.(2018江苏金陵中学周考)圆C 的圆心在x 轴上,并且经过点A(-1,1),B(1,3),若M(m,)在圆C 内,则m 6的取值范围为 . 答案 (0,4)3.(2018江苏金沙高级中学期中)设圆的方程是x 2+y 2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是 ____________. 答案 原点在圆外炼技法【方法集训】方法一 求圆的方程的方法1.已知圆C 的圆心在x 轴的正半轴上,点M(0,)在圆C 上,且圆心到直线2x-y=0的距离为,则圆C 的5455方程为 . 答案 (x-2)2+y 2=92.已知平面区域恰好被面积最小的圆C:(x-a)2+(y-b)2=r 2及其内部所覆盖,则圆C 的方程{x ≥0,y ≥0,x +2y -4≤0为 .答案 (x-2)2+(y-1)2=5方法二 与圆有关的最值问题的求解方法1.已知圆O:x 2+y 2=8,点A(2,0),动点M 在圆上,则∠OMA 的最大值为 . 答案 π42.已知M(m,n)为圆C:x 2+y 2-4x-14y+45=0上任意一点.(1)求m+2n 的最大值;(2)求的最大值和最小值.n -3m +2解析 (1)由题意可知x 2+y 2-4x-14y+45=0的圆心C 的坐标为(2,7),半径r=2.2设m+2n=t,将m+2n=t 看成直线方程,因为该直线与圆有公共点,所以圆心到直线的距离d=≤2,|2+2×7-t |12+222解得16-2≤t ≤16+2,1010所以所求的最大值为16+2.10(2)记点Q(-2,3).因为表示直线MQ 的斜率k,n -3m +2所以直线MQ 的方程为y-3=k(x+2),即kx-y+2k+3=0.由直线MQ 与圆C 有公共点,得≤2.|2k -7+2k +3|1+k22解得2-≤k ≤2+,所以的最大值为2+,最小值为2-.33n -3m +233过专题【五年高考】A 组 自主命题·江苏卷题组1.(2015江苏,10,5分)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 . 答案 (x-1)2+y 2=22.(2016江苏,18,16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M:x 2+y 2-12x-14y+60=0及其上一点A(2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x=6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B,C 两点,且BC=OA,求直线l 的方程;(3)设点T(t,0)满足:存在圆M 上的两点P 和Q,使得+=,求实数t 的取值范围.TA TP TQ解析 圆M 的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N 在直线x=6上,可设N(6,y 0).因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l ∥OA,所以直线l 的斜率为=2.4-02-0设直线l 的方程为y=2x+m,即2x-y+m=0,则圆心M 到直线l 的距离d==.|2×6-7+m |5|m +5|5因为BC=OA==2,而MC 2=d 2+,22+425(BC 2)2所以25=+5,解得m=5或m=-15.(m +5)25故直线l 的方程为2x-y+5=0或2x-y-15=0.(3)解法一:+=,即=-=,即||=||,TA TP TQ TA TQ TP PQ TA PQ 因为||=,又0<||≤10,TA (t -2)2+42PQ 所以0<≤10,解得t ∈[2-2,2+2].(t -2)2+422121对于任意t ∈[2-2,2+2],欲使=,此时0<||≤10,只需要作直线TA 的平行线,使圆心到直线2121TA PQ TA 的距离为,必然与圆交于P,Q 两点,此时||=||,25-|TA |24TA PQ 即=,TA PQ 因此对于任意t ∈[2-2,2+2],均满足题意.2121故t ∈[2-2,2+2].2121解法二:设P(x 1,y 1),Q(x 2,y 2).因为A(2,4),T(t,0),+=,TA TP TQ 所以①{x 2=x 1+2-t,y 2=y 1+4.因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.②将①代入②,得(x 1-t-4)2+(y 1-3)2=25.于是点P(x 1,y 1)既在圆M 上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤≤5+5,[(t +4)-6]2+(3-7)2解得2-2≤t ≤2+2.2121因此,实数t 的取值范围是[2-2,2+2].2121解后反思 1.根据已知条件求圆的方程,一般地,可采用两种不同的方法:一是待定系数法,即先根据条件用圆的标准式或一般式设出方程,再根据条件来确定参数的值;二是通过几何图形的性质来确定圆心的位置或坐标及半径,进而求得圆的方程.2.已知直线与圆相交来确定弦长的问题,通常要利用圆心到直线的距离d,圆的半径r 以及弦长l 之间的关系l=2来进行求解.r 2-d 2B 组 统一命题、省(区、市)卷题组考点 圆的方程1.(2018北京理改编,7,5分)在平面直角坐标系中,记d 为点P(cos θ,sin θ)到直线x-my-2=0的距离.当θ,m 变化时,d 的最大值为 . 答案 32.(2018天津文,12,5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 . 答案 x 2+y 2-2x=03.(2015课标Ⅰ,14,5分)一个圆经过椭圆+=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方x 216y24程为 .答案 +y 2=(x -32)22544.(2016北京改编,5,5分)圆(x+1)2+y 2=2的圆心到直线y=x+3的距离为 . 答案 25.(2016课标全国Ⅱ改编,6,5分)圆x 2+y 2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a= . 答案 -436.(2015课标Ⅱ改编,7,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y 轴于M,N 两点,则|MN|= . 答案 467.(2014课标全国Ⅱ,16,5分)设点M(x 0,1),若在圆O:x 2+y 2=1上存在点N,使得∠OMN=45°,则x 0的取值范围是 . 答案 [-1,1]8.(2018课标全国Ⅱ理,19,12分)设抛物线C:y 2=4x 的焦点为F,过F 且斜率为k(k>0)的直线l 与C 交于A,B 两点,|AB|=8.(1)求l 的方程;(2)求过点A,B 且与C 的准线相切的圆的方程.解析 (1)由题意得F(1,0),l 的方程为y=k(x-1)(k>0),设A(x 1,y 1),B(x 2,y 2).由得k 2x 2-(2k 2+4)x+k 2=0.{y =k (x -1),y 2=4x Δ=16k 2+16>0,故x 1+x 2=.2k 2+4k2所以|AB|=|AF|+|BF|=(x 1+1)+(x 2+1)=.4k 2+4k2由题设知=8,解得k=-1(舍去),或k=1,4k 2+4k2因此l 的方程为y=x-1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x 0,y 0),则解得或{y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16.{x 0=3,y 0=2{x 0=11,y 0=-6.因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.方法总结 有关抛物线的焦点弦问题,常用抛物线的定义进行转化求解,在求解过程中应注重利用根与系数的关系进行整体运算.一般地,求直线和圆的方程时,利用待定系数法求解.9.(2017课标全国Ⅲ,20,12分)已知抛物线C:y 2=2x,过点(2,0)的直线l 交C 于A,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P(4,-2),求直线l 与圆M 的方程.解析 (1)证明:设A(x 1,y 1),B(x 2,y 2),l:x=my+2.由可得y 2-2my-4=0,则y 1y 2=-4.{x =my +2,y 2=2x 又x 1=,x 2=,y 212y 222故x 1x 2==4.(y 1y 2)24因此OA 的斜率与OB 的斜率之积为·==-1,所以OA ⊥OB.y 1x 1y 2x 2-44故坐标原点O 在圆M 上.(2)由(1)可得y 1+y 2=2m,x 1+x 2=m(y 1+y 2)+4=2m 2+4.故圆心M 的坐标为(m 2+2,m),圆M 的半径r=.(m 2+2)2+m 2由于圆M 过点P(4,-2),因此 ·=0,AP BP 故(x 1-4)(x 2-4)+(y 1+2)(y 2+2)=0,即x 1x 2-4(x 1+x 2)+y 1y 2+2(y 1+y 2)+20=0.由(1)可得y 1y 2=-4,x 1x 2=4.所以2m 2-m-1=0,解得m=1或m=-.12当m=1时,直线l 的方程为x-y-2=0,圆心M 的坐标为(3,1),圆M 的半径为,圆M 的方程为(x-3)2+(y-101)2=10.当m=-时,直线l 的方程为2x+y-4=0,圆心M 的坐标为,圆M 的半径为,圆M 的方程为+12(94,-12)854(x -94)2=.(y +12)28516解后反思 直线与圆锥曲线相交问题,常联立方程,消元得到一个一元二次方程,然后利用根与系数的关系处理.以某线段为直径的圆的方程,也可以用该线段的两端点坐标(x 1,y 1)、(x 2,y 2)表示:(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0.C 组 教师专用题组1.(2010课标理,15,5分)过点A(4,1)的圆C 与直线x-y-1=0相切于点B(2,1),则圆C 的方程为 . 答案 (x-3)2+y 2=22.(2014陕西,12,5分)若圆C 的半径为1,其圆心与点(1,0)关于直线y=x 对称,则圆C 的标准方程为 . 答案 x 2+(y-1)2=13.(2015课标Ⅱ改编,7,5分)已知三点A(1,0),B(0,),C(2,),则△ABC 外接圆的圆心到原点的距离33为 . 答案 2134.(2014湖北文,17,5分)已知圆O:x 2+y 2=1和点A(-2,0),若定点B(b,0)(b ≠-2)和常数λ满足:对圆O 上任意一点M,都有|MB|=λ|MA|,则(1)b= ; (2)λ= . 答案 (1)- (2)12125.(2009江苏,18,14分)在平面直角坐标系xOy 中,已知圆C 1:(x+3)2+(y-1)2=4和圆C 2:(x-4)2+(y-5)2=4.(1)若直线l 过点A(4,0),且被圆C 1截得的弦长为2,求直线l 的方程;3(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解析 (1)设直线l 的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C 1到直线l 的距离d==1,22-(232)2由点到直线的距离公式,得=1,|-3k -1-4k |k 2+(-1)2化简得24k 2+7k=0,解得k=0或k=-,724故直线l 的方程为y=0或y=-(x-4),724即y=0或7x+24y-28=0.(2)设点P 坐标为(m,n),直线l 1、l 2的方程分别为y-n=k(x-m),y-n=-(x-m),1k 即kx-y+n-km=0,-x-y+n+m=0.1k 1k 因为直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C 1到直线l 1与圆心C 2到直线l 2的距离相等.故有=,|-3k -1+n -km |k 2+(-1)2|-4k -5+n +1k m |1k2+1化简得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5,由题意得或{2-m -n =0,m -n -3=0{m -n +8=0,m +n -5=0,解得或{m =52,n =-12{m =-32,n =132,故点P 的坐标为或.(-32,132)(52,-12)【三年模拟】一、填空题(每小题5分,共40分)1.(2019届江苏启东中学月考)若圆C 的半径为1,圆心在第一象限,且与直线4x-3y=0和x 轴都相切,则该圆的标准方程为 . 答案 (x-2)2+(y-1)2=12.(2019届江苏淮阴中学期初)已知圆C 的圆心是直线x-y+1=0与x 轴的交点,且圆C 与直线x+y+3=0相切,则圆C 的方程是 . 答案 (x+1)2+y 2=23.(2019届江苏清江中学质检)设P 是圆(x-3)2+(y+1)2=4上的动点,Q 是直线x=-3上的动点,则|PQ|的最小值为 . 答案 44.(2018江苏南京期中)过点P(1,1)的直线,将区域{(x,y)|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为 . 答案 x+y-2=05.(2018江苏苏州中学月考)设A(-3,0),B(3,0)为两定点,动点P 到A 点的距离与到B 点的距离之比为1∶2,则点P 的轨迹所围成的面积是 . 答案 16π6.(2019届江苏常州五中周考)直线l 1:y=x+a,l 2:y=x+b 将单位圆C:x 2+y 2=1分成长度相等的四段弧,则a 2+b 2= . 答案 27.(2018江苏南通、扬州、淮安、宿迁、泰州、徐州六市二调)在平面直角坐标系xOy 中,若动圆C 上的点都在不等式组表示的平面区域内,则面积最大的圆C 的标准方程为 . {x ≤3,x -3y +3≥0,x +3y +3≥0答案 (x-1)2+y 2=48.(2019届江苏南通中学质检)在△ABC 中,|BC|=6,|AB|=2|AC|,则△ABC 面积的最大值为 . 答案 12二、解答题(共30分)9.(2019届江苏平潮中学月考)已知方程x 2+y 2-2x-4y+m=0.(1)若此方程表示圆,求实数m 的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M,N 两点,且OM ⊥ON(O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.解析 (1)由D 2+E 2-4F>0得(-2)2+(-4)2-4m>0,解得m<5.(2)设M(x 1,y 1),N(x 2,y 2),由x+2y-4=0得x=4-2y.将x=4-2y 代入x 2+y 2-2x-4y+m=0得5y 2-16y+8+m=0,所以y 1+y 2=,y 1y 2=.1658+m5因为OM ⊥ON,所以·=-1,y 1x 1y 2x 2即x 1x 2+y 1y 2=0.因为x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2,所以x 1x 2+y 1y 2=16-8(y 1+y 2)+5y 1y 2=0,即(8+m)-8×+16=0,解得m=.16585(3)设圆心C 的坐标为(a,b),则a=(x 1+x 2)=,b=(y 1+y 2)=,半径r=|OC|=,所以所求圆的方程为12451285455(x -45)2+=.(y -85)216510.(2019届江苏白蒲中学期中)如图,已知圆O 的直径AB=4,定直线l 到圆心的距离为4,且直线l 垂直于直线AB.点P 是圆O 上异于A,B 的任意一点,直线PA,PB 分别交l 于M,N 两点.(1)若∠PAB=30°,求以MN 为直径的圆的方程;(2)当点P 变化时,求证:以MN 为直径的圆必过圆O 内的一定点.解析 易得A(-2,0),B(2,0),☉O 的方程为x 2+y 2=4,直线l 的方程为x=4.(1)当点P 在x 轴上方时,因为∠PAB=30°,所以点P 的坐标为(1,),3所以l AP :y=(x+2),33l BP :y=-(x-2).3将x=4分别代入得M(4,2),N(4,-2),33所以线段MN 的中点坐标为(4,0),|MN|=4.3所以以MN 为直径的圆的方程为(x-4)2+y 2=12.同理,当点P 在x 轴下方时,所求圆的方程仍是(x-4)2+y 2=12.综上,以MN 为直径的圆的方程为(x-4)2+y 2=12.(2)证明:设点P 的坐标为(x 0,y 0),则y 0≠0,所以+=4(y 0≠0),x 20y 20所以=4-.y 20x 20易知l PA :y=(x+2),y 0x 0+2l PB :y=(x-2),y 0x 0-2将x=4分别代入得y M =,y N =,6y 0x 0+22y 0x 0-2所以M ,N ,(4,6y 0x 0+2)(4,2y 0x 0-2)所以|MN|==,|6y 0x 0+2-2y 0x 0-2|4|x 0-4||y 0|线段MN 的中点坐标为.(4,-4(x 0-1)y 0)以MN 为直径的圆O'截x 轴所得的线段长为24(x 0-4)2y 20-16(x 0-1)2y 2=4|y 0|12-3x 2==4.43|y 0|4-x 203则圆O'与x 轴的两交点坐标分别为(4-2,0),(4+2,0).33又(4-2)2=28-16<4,33)2=28+16>4,33所以圆O'必过圆O 内定点(4-2,0).3。

上海市2020〖苏科版〗高三数学复习试卷 解析几何圆的方程

上海市2020〖苏科版〗高三数学复习试卷 解析几何圆的方程

上海市2020年〖苏科版〗高三数学复习试卷解析几何圆的方程一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。

)1.【北京市西城区高三上学期期末】若坐标原点在圆22()()4x m y m的内部,则实数m的取值范围是()(A)11m(B)33m(C)22m(D)22 22m2.【宁德市普通高中毕业班第二次质量检查】经过圆22(2)1x y-+=的圆心且与直线210x y-+=平行的直线方程是A.240x y--=B.240x y-+=C.220x y+-=D.220x y++=3. 【高考2,理7】过三点(1,3)A,(4,2)B,(1,7)C-的圆交y轴于M,N两点,则||MN=( )A.26 B.8 C.46 D.104.【潍坊市高三3月模拟考试】若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为( )(A)22(2)(2)3x y-+±= (B)22(2)(3x y-+±=(C)22(2)(2)4x y-+±= (D)22(2)(4x y-+=5. 【烟台市高三上学期期末】若点11P (,)为圆0622=-+x y x 的弦MN 的中点,则弦MN 所在直线方程为( ) A .032=-+y x B .012=+-y x C .032=-+y x D .012=--y x6.【题】已知圆C 的圆心在x 轴上,且经过(5,2),(1,4)A B -两点,则圆C 的方程是( )A.22(2)17x y ++=B.22(2)13x y -+=C.22(1)20x y -+=D.22(1)40x y ++=7. 【青岛市高三下学期第二次模拟考】已知圆22:440C x y x y +--=与x 轴相交于,A B 两点,则弦AB 所对的圆心角的大小为 ( ) A .6πB .3π C .2π D .23π 8.【日照市高三3月第一次模拟考试】若()()222,1125P x y --+=为圆的弦AB 的中点,则直线AB 的方程是( ) A.30x y --= B.230x y +-= C.10x y +-=D.250x y --=9.【.重庆卷理】在圆22260x y x y +--=内,过点(0,1)E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 ( ) A .52B .102C.152D.20210.【湖北卷文】过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分两部分,使这两部分的面积之差最大,则该直线的方程为 ( ) A.x+y-2=0 B .y -1=0 C.x-y =0 D.x +3y-4=0 11.【改编自湖北卷(文)】已知圆O :225x y +=,直线l :cos sin 1x y θθ+=( )π02θ<<.设圆O 上到直线l 的距离等于1的点的个数为k ,则k =( ).A.1B.2C.3D.412.【广东华附、省实、广雅、深中高三上学期期末】已知圆C :2221()()64x a y a -+-=(a ∈R),则下列命题:①圆C 上的点到()1,0的最短距离的最小值为78;②圆C 上有且只有一点P 到点1,08⎛⎫⎪⎝⎭的距离与到直线38x =-的距离相等;③已知3,08A ⎛⎫ ⎪⎝⎭,在圆C 上有且只有一点P ,使得以AP 为直径的圆与直线18x =相切.真命题的个数为( ) A .0B. 1C. 2D. 3二、填空题(本大题共4小题,每小题5分,共20分。

2020版高考数学一轮复习课后限时集训42圆的方程含解析理

2020版高考数学一轮复习课后限时集训42圆的方程含解析理

课后限时集训(四十二)(建议用时:60分钟) A 组 基础达标一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1A [设圆心为(0,a ), 则-2+-a2=1,解得a =2,故圆的方程为x 2+(y -2)2=1.故选A.]2.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( )A .(-∞,-2)∪⎝ ⎛⎭⎪⎫23,+∞ B.⎝ ⎛⎭⎪⎫-23,0C .(-2,0)D.⎝⎛⎭⎪⎫-2,23 D [方程化简为⎝ ⎛⎭⎪⎫x +a 22+(y +a )2=1-a -3a 24表示圆,则1-a -3a 24>0,解得-2<a <23.]3.(2019·广东六校模拟)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4 D [设所求圆的圆心为(a ,b ),则⎩⎪⎨⎪⎧b 2=33×a +22,b a -2=-3,∴⎩⎨⎧a =1,b =3,∴圆的方程为(x -1)2+(y -3)2=4.]4.(2019·湖南长沙模拟)圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( )A .1+ 2B .2C .1+22D .2+2 2A [将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1,选A.]5.(2019·山西晋中模拟)半径为2的圆C 的圆心在第四象限,且与直线x =0和x +y =22均相切,则该圆的标准方程为( )A .(x -1)2+(y +2)2=4 B .(x -2)2+(y +2)2=2 C .(x -2)2+(y +2)2=4 D .(x -22)2+(y +22)2=4C [设圆心坐标为(2,-a )(a >0),则圆心到直线x +y =22的距离d =|2-a -22|2=2,所以a =2,所以该圆的标准方程为(x -2)2+(y +2)2=4,故选C.]二、填空题6.圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的取值范围为________.(0,4) [设圆心为C (a,0),由|CA |=|CB |得 (a +1)2+12=(a -1)2+32.所以a =2. 半径r =|CA |=+2+12=10.故圆C 的方程为(x -2)2+y 2=10.由题意知(m -2)2+(6)2<10,解得0<m <4.]7.若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是________.(x -2)2+⎝ ⎛⎭⎪⎫y +322=254[由已知可设圆心为(2,b ),由22+b 2=(1-b )2=r 2, 得b =-32,r 2=254.故圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.]8.(2018·宜昌模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.(0,-1) [圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1.所以,当k =0时圆C 的面积最大,此时圆C 坐标为(0,-1).]三、解答题9.求适合下列条件的圆的方程.(1)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2); (2)过三点A (1,12),B (7,10),C (-9,2).[解] (1)法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧b =-4a ,-a 2+-2-b2=r 2,|a +b -1|2=r ,解得a =1,b =-4,r =2 2. 所以圆的方程为(x -1)2+(y +4)2=8.法二:过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =-2+-4+2=22,所以所求圆的方程为(x -1)2+(y +4)2=8.(2)设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则⎩⎪⎨⎪⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0.解得D =-2,E =-4,F =-95.所以所求圆的方程为x 2+y 2-2x -4y -95=0.10.如图,等腰梯形ABCD 的底边AB 和CD 长分别为6和26,高为3.(1)求这个等腰梯形的外接圆E 的方程;(2)若线段MN 的端点N 的坐标为(5,2),端点M 在圆E 上运动,求线段MN 的中点P 的轨迹方程.[解] (1)由已知可知A (-3,0),B (3,0),C (6,3),D (-6,3),设圆心E (0,b ). 由|EB |=|EC |,得(0-3)2+(b -0)2=(0-6)2+(b -3)2, 解得b =1,r 2=(0-3)2+(1-0)2=10, 所以圆的方程为x 2+(y -1)2=10.(2)设P (x ,y ),由已知得M (2x -5,2y -2), 代入x 2+(y -1)2=10, 得(2x -5)2+(2y -3)2=10,化简得⎝ ⎛⎭⎪⎫x -522+⎝ ⎛⎭⎪⎫y -322=52.B 组 能力提升1.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1A [设M (x 0,y 0)为圆x 2+y 2=4上任一点,PM 中点为Q (x ,y ),则⎩⎪⎨⎪⎧x =x 0+42,y =y 0-22,∴⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.代入圆的方程得(2x -4)2+(2y +2)2=4, 即(x -2)2+(y +1)2=1.]2.(2019·辽宁锦州月考)如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是( )A .(-3,-1)∪(1,3)B .(-3,3)C .[-1,1]D .[-3,-1]∪[1,3]D [圆(x -a )2+(y -a )2=8的圆心(a ,a )到原点的距离为|2a |,半径r =22,由圆(x -a )2+(y -a )2=8上总存在点到原点的距离为2,得22-2≤|2a |≤22+2,∴1≤|a |≤3,解得1≤a ≤3或-3≤a ≤-1.∴实数a 的取值范围是[-3,-1]∪[1,3].故选D.]3.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点,则点M 的轨迹方程为________.(x -1)2+(y -3)2=2 [圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ). 由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0. 即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以点M 的轨迹方程是(x -1)2+(y -3)2=2.]4.已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 和点A ,与y 轴交于点O和点B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. [解] (1)因为圆C 过原点O ,所以|OC |2=t 2+4t2.设圆C 的方程是(x -t )2+⎝ ⎛⎭⎪⎫y -2t 2=t 2+4t 2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,所以S △OAB =12|OA |·|OB |=12×|2t |×⎪⎪⎪⎪⎪⎪4t =4,即△OAB 的面积为定值. (2)因为|OM |=|ON |,|CM |=|CN |, 所以OC 垂直平分线段MN . 因为k MN =-2,所以k OC =12.所以2t =12t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),|OC |=5, 此时,C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点. 符合题意,此时,圆C 的方程为(x -2)2+(y -1)2=5. 当t =-2时,圆心C 的坐标为(-2,-1), |OC |=5,此时C 到直线y =-2x +4的距离d =95> 5. 圆C 与直线y =-2x +4不相交, 所以t =-2不符合题意,舍去. 所以圆C 的方程为(x -2)2+(y -1)2=5. 即为x 2+y 2-4x -2y =0.。

高考数学一轮复习 圆的方程课件 苏教

高考数学一轮复习 圆的方程课件 苏教
答案:x2+y2+2x-4y=0
5.圆C:x2+y2-2x-4y+4=0的圆心到直线3x+4y+4=0 的距离d=________.
解析:∵x2+y2-2x-4y+4=0, ∴(x-1)2+(y-2)2=1, 圆心(1,2)到直线 3x+4y+4=0 的距离 d=|3×1+324+×422+4|=3
答案: (x-2)2+(y+2)2=1
3.(2011·苏州模拟)若过点A(-2,0)的圆C与直线3x-4y+ 7=0相切于点B(-1,1),则圆C的半径长等于_____.
解析:设所求圆的圆心为(a,b),则ba- +11=-43,①
又 AB 中点为-32,12, 直线 AB 斜率为 1,所以ba- +1232=-1,②
(3)圆C必过定点(0,1),(-2,1), 证明如下:将(0,1)代入圆C的方程,得左边=02+ 12+2×0-(b+1)×1+b=0,右边=0,所以圆C 必过定点(0,1); 同理可证圆C必过定点(-2,1).
已知⊙C 过点 P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0) 关于直线 x+y+2=0 对称. (1)求⊙C 的方程; (2)设 Q 为⊙C 上的一个动点,求 PQ ·MQ 的最小值; (3)过点 P 作两条相异直线分别与⊙C 相交于 A,B,且直线 PA 和直线 PB 的倾斜角互补,O 为坐标原点,试判断直线 OP 和 AB 是否平行?请说明理由.
同理,xB=k2+1+2kk-2 1,所以 kAB=xyBB- -yxAA =-kxB-xB1--xAkxA-1=2k-xkB-xBx+A xA=1=kOP, 所以直线 AB 和 OP 一定平行.
直线与圆的位置关系相结合考查利用待定系数法求圆 的方程是命题热点,多以填空题形式出现,属中低档题.

2020版高考江苏数学大一轮精准复习精练:14.2圆的方程含解析

2020版高考江苏数学大一轮精准复习精练:14.2圆的方程含解析

14.2圆的方程挖命题【考情探究】分析解读圆的方程是江苏高考的必考内容之一,最近几年很少有单独的试题考查圆的方程,通常和向量、直线、椭圆相结合,综合性比较强,以中档题的形式出现,不拘泥于填空题,有时候会出现在第17、18题,在复习中,也要注意以圆为背景的实际应用题.破考点【考点集训】考点圆的方程1.(2018江苏天一中学月考)已知圆C与直线y=x及x-y-4=0都相切,圆心在直线y=-x上,则圆C的方程为__________.答案(x-1)2+(y+1)2=22.(2018江苏金陵中学周考)圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,)在圆C内,则m的取值范围为.答案(0,4)3.(2018江苏金沙高级中学期中)设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是____________.答案原点在圆外炼技法【方法集训】方法一求圆的方程的方法1.已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为.答案(x-2)2+y2=9恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为.2.已知平面区域-答案(x-2)2+(y-1)2=5方法二与圆有关的最值问题的求解方法1.已知圆O:x2+y2=8,点A(2,0),动点M在圆上,则∠OMA的最大值为.答案2.已知M(m,n)为圆C:x2+y2-4x-14y+45=0上任意一点.(1)求m+2n的最大值;(2)求-的最大值和最小值.解析(1)由题意可知x2+y2-4x-14y+45=0的圆心C的坐标为(2,7),半径r=2.设m+2n=t,将m+2n=t看成直线方程,因为该直线与圆有公共点,所以圆心到直线的距离d=2,解得16-2t16+2,所以所求的最大值为16+2.(2)记点Q(-2,3).因为-表示直线MQ的斜率k,所以直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0.由直线MQ与圆C有公共点,得-2.解得2-k2+,所以-的最大值为2+,最小值为2-.过专题【五年高考】A组自主命题·江苏卷题组1.(2015江苏,10,5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.答案(x-1)2+y2=22.(2016江苏,18,16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.解析圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d==.因为BC=OA==2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)解法一:+=,即=-=,即||=||,因为||=-,又0<||10,所以0<-10,解得t∈[2-2,2+2].对于任意t∈[2-2,2+2],欲使=,此时0<||10,只需要作直线TA的平行线,使圆心到直线的距离为,必然与圆交于P,Q两点,此时||=||,即=,因此对于任意t∈[2-2,2+2],均满足题意.故t∈[2-2,2+2].解法二:设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),+=,所以①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-55+5,解得2-2t2+2.因此,实数t的取值范围是[2-2,2+2].解后反思 1.根据已知条件求圆的方程,一般地,可采用两种不同的方法:一是待定系数法,即先根据条件用圆的标准式或一般式设出方程,再根据条件来确定参数的值;二是通过几何图形的性质来确定圆心的位置或坐标及半径,进而求得圆的方程.2.已知直线与圆相交来确定弦长的问题,通常要利用圆心到直线的距离d,圆的半径r以及弦长l之间的关系l=2-来进行求解.B组统一命题、省(区、市)卷题组考点圆的方程1.(2018北京理改编,7,5分)在平面直角坐标系中,记d为点P(cos θ,sin θ)到直线x-my-2=0的距离.当θ,m变化时,d的最大值为.答案 32.(2018天津文,12,5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.答案x2+y2-2x=03.(2015课标Ⅰ,14,5分)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.答案-+y2=4.(2016北京改编,5,5分)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为.答案5.(2016课标全国Ⅱ改编,6,5分)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=.答案-6.(2015课标Ⅱ改编,7,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=.答案47.(2014课标全国Ⅱ,16,5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.答案[-1,1]8.(2018课标全国Ⅱ理,19,12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解析(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0),设A(x1,y1),B(x2,y2).由-得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去),或k=1,因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则解得或-因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.方法总结有关抛物线的焦点弦问题,常用抛物线的定义进行转化求解,在求解过程中应注重利用根与系数的关系进行整体运算.一般地,求直线和圆的方程时,利用待定系数法求解.9.(2017课标全国Ⅲ,20,12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解析(1)证明:设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为·=-=-1,所以OA⊥OB.故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10. 当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为-,圆M的半径为,圆M的方程为-+=.解后反思直线与圆锥曲线相交问题,常联立方程,消元得到一个一元二次方程,然后利用根与系数的关系处理.以某线段为直径的圆的方程,也可以用该线段的两端点坐标(x1,y1)、(x2,y2)表示:(x-x1)(x-x2)+(y-y1)(y-y2)=0.C组教师专用题组1.(2010课标理,15,5分)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为. 答案(x-3)2+y2=22.(2014陕西,12,5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.答案x2+(y-1)2=13.(2015课标Ⅱ改编,7,5分)已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为.答案4.(2014湖北文,17,5分)已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则(1)b=;(2)λ=.答案(1)-(2)5.(2009江苏,18,14分)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.解析(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d=-=1,由点到直线的距离公式,得---=1,化简得24k2+7k=0,解得k=0或k=-,故直线l的方程为y=0或y=-(x-4),即y=0或7x+24y-28=0.(2)设点P坐标为(m,n),直线l1、l2的方程分别为y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有=--,化简得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5,由题意得---或--解得或故点P的坐标为-或-.【三年模拟】一、填空题(每小题5分,共40分)1.(2019届江苏启东中学月考)若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程为.答案(x-2)2+(y-1)2=12.(2019届江苏淮阴中学期初)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C 的方程是.答案(x+1)2+y2=23.(2019届江苏清江中学质检)设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为.答案 44.(2018江苏南京期中)过点P(1,1)的直线,将区域{(x,y)|x2+y24}分为两部分,使得这两部分的面积之差最大,则该直线的方程为.答案x+y-2=05.(2018江苏苏州中学月考)设A(-3,0),B(3,0)为两定点,动点P到A点的距离与到B点的距离之比为1∶2,则点P 的轨迹所围成的面积是.答案16π6.(2019届江苏常州五中周考)直线l1:y=x+a,l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=.答案 27.(2018江苏南通、扬州、淮安、宿迁、泰州、徐州六市二调)在平面直角坐标系xOy中,若动圆C上的点都在不等式组-表示的平面区域内,则面积最大的圆C的标准方程为.答案(x-1)2+y2=48.(2019届江苏南通中学质检)在△ABC中,|BC|=6,|AB|=2|AC|,则△ABC面积的最大值为.答案12二、解答题(共30分)9.(2019届江苏平潮中学月考)已知方程x2+y2-2x-4y+m=0.(1)若此方程表示圆,求实数m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解析(1)由D2+E2-4F>0得(-2)2+(-4)2-4m>0,解得m<5.(2)设M(x1,y1),N(x2,y2),由x+2y-4=0得x=4-2y.将x=4-2y代入x2+y2-2x-4y+m=0得5y2-16y+8+m=0,所以y1+y2=,y1y2=.因为OM⊥ON,所以·=-1,即x1x2+y1y2=0.因为x1x2=(4-2y1)(4-2y2)=16-8(y1+y2)+4y1y2,所以x1x2+y1y2=16-8(y1+y2)+5y1y2=0,即(8+m)-8 +16=0,解得m=.(3)设圆心C的坐标为(a,b),则a=(x1+x2)=,b=(y1+y2)=,半径r=|OC|=,所以所求圆的方程为-+-=.10.(2019届江苏白蒲中学期中)如图,已知圆O的直径AB=4,定直线l到圆心的距离为4,且直线l垂直于直线AB.点P是圆O上异于A,B的任意一点,直线PA,PB分别交l于M,N两点.(1)若∠PAB=30°,求以MN为直径的圆的方程;(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点.解析易得A(-2,0),B(2,0),☉O的方程为x2+y2=4,直线l的方程为x=4.(1)当点P在x轴上方时,因为∠PAB=30°,所以点P的坐标为(1,),所以l AP:y=(x+2),l BP:y=-(x-2).将x=4分别代入得M(4,2),N(4,-2),所以线段MN的中点坐标为(4,0),|MN|=4.所以以MN为直径的圆的方程为(x-4)2+y2=12.同理,当点P在x轴下方时,所求圆的方程仍是(x-4)2+y2=12.综上,以MN为直径的圆的方程为(x-4)2+y2=12.(2)证明:设点P的坐标为(x0,y0),则y0≠0,所以+=4(y0≠0),所以=4-.易知l PA:y=(x+2),(x-2),l PB:y=-将x=4分别代入得y M=,y N=,-所以M,N,-所以|MN|=-=-,-线段MN的中点坐标为-.以MN为直径的圆O'截x轴所得的线段长为2---===4.则圆O'与x轴的两交点坐标分别为(4-2,0),(4+2,0). 又(4-2)2=28-16<4,(4+2)2=28+16>4,所以圆O'必过圆O内定点(4-2,0).。

2020版高考数学(江苏版)新攻略总复习课标通用练习:第九章-第三节 圆的方程

2020版高考数学(江苏版)新攻略总复习课标通用练习:第九章-第三节 圆的方程

第三节圆的方程课时作业练1.若点(2a,a+1)在圆x2+(y-1)2=5的内部,则a的取值范围是.答案-1<a<1解+析∵点(2a,a+1)在圆x2+(y-1)2=5的内部,∴(2a)2+a2<5,解得-1<a<1.2.若方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则实数a的取值范围是.答案-2<a<解+析由题意可得a2+4a2-4(2a2+a-1)>0,化简得3a2+4a-4<0,解得-2<a<.3.如果实数x、y满足x2+y2-8x+8=0,那么的最大值为.答案1解+析整理配方,得(x-4)2+y2=8,所以圆心坐标为(4,0),半径为2.代数式的几何意义是圆上的点与原点连线的斜率,设=k,即y=kx,当直线y=kx与圆相切时,斜率取最大值或最小值,此时=2,解得k=±1,故的最大值是1.4.已知动点M到定点(8,0)的距离等于M到(2,0)的距离的2倍,那么动点M的轨迹方程是.答案x2+y2=16解+析设M(x,y),则(-)=2(-),化简得x2+y2=16.5.(2019江苏泰州高三模拟)圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4)、B(0,-2),则圆C的方程为.答案(x-2)2+(y+3)2=5解+析圆心是线段AB的垂直平分线和直线2x-y-7=0的交点,则圆心为C(2,-3),r=|CA|==,则圆C的方程为(x-2)2+(y+3)2=5.6.已知圆C:x2+y2+mx-4=0上存在两点A、B关于直线x-y+3=0对称,则实数m的值是. 答案6解+析因为圆上两点A、B关于直线x-y+3=0对称,所以直线x-y+3=0过圆心-,.从而-+3=0,即m=6.7.圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程为.答案(x-2)2+(y-1)2=1解+析圆(x-1)2+(y-2)2=1的圆心坐标为(1,2),此点关于直线y=x对称的点的坐标为(2,1),两圆关于直线y=x对称,故它们的圆心关于直线y=x对称,半径相等,因此所求圆的圆心坐标为(2,1),半径为1,则所求圆的方程为(x-2)2+(y-1)2=1.8.(2018江苏泰州中学高三月考)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是.答案(x-2)2+=解+析由题意知圆心在直线x=2上,设圆心坐标为(2,b),又圆C与直线y=1相切,所以=|b-1|,解得b=-,则半径为,则圆C的方程为(x-2)2+=.9.(2019江苏南通中学高三模拟)在平面直角坐标系xOy中,直线ax+y-2a=0与圆x2+y2=1交于A,B 两点,若弦AB的中点的横坐标为,则实数a的取值集合为.答案-,解+析设弦AB的中点为C,则由题意知C点坐标为,,且点C和圆心O的连线与弦AB垂直,则kOC ·kAB=-1,即4a·(-a)=-1,a=±,故实数a的取值集合为-,.10.若曲线C:x2+y2+2ax-4ay+5a2-4=0上所有的点均在第二象限内,则实数a的取值范围是.答案(2,+∞)解+析曲线C:x2+y2+2ax-4ay+5a2-4=0可化为(x+a)2+(y-2a)2=4,故曲线C是圆心为(-a,2a),半径为2的圆.若曲线C上所有的点均在第二象限内,则--,,解得a>2.11.已知△ABC的顶点坐标分别是A(-1,0),B(2,),C(1,-2),O为坐标原点.(1)求△ABC外接圆的方程;(2)设P为△ABC外接圆上任意一点,求|OP|的最大值和最小值.解+析(1)设△ABC外接圆的方程为x2+y2+Dx+Ey+F=0,代入A,B,C的坐标,得-,, -,解得-,,-所以△ABC外接圆的方程为x2+y2-2x-3=0.(2)设圆上任意一点P(x0,y),则+-2x-3=0,所以|OP|2=+=2x+3.又△ABC外接圆的标准方程为(x-1)2+y2=4,所以x∈[-1,3].所以|OP|2的最小值为1,最大值为9.所以|OP|的最小值为1,最大值为3.12.已知曲线C:x2+y2-4mx+2my+20m-20=0.(1)求证:对任意m∈R,曲线C恒过一定点;(2)求证:当m≠2时,曲线C是一个圆,且圆心在一条定直线上.证明(1)曲线C的方程可化为(x2+y2-20)+m(-4x+2y+20)=0,由-,-解得,-,∴对任意m∈R,曲线C恒过一定点(4,-2).(2)令D=-4m,E=2m,F=20m-20,∴D2+E2-4F=16m2+4m2-80m+80=20(m-2)2.∵m≠2,∴D2+E2-4F>0.∴曲线C是一个圆.设圆心坐标为(x,y),由,-消去m得x+2y=0,即圆心在定直线x+2y=0上.13.(2018江苏泰州阶段检测)已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B 两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.解+析(1)圆C的方程可化为x2+(y-4)2=16,所以圆心为C(0,4),半径为4.设M(x,y),则=(x,y-4),=(2-x,2-y).由题设知·=0,故x(2-x)+(y-4)(2-y)=0,即(x-1)2+(y-3)2=2.由于点P在圆C的内部,所以M的轨迹方程是(x-1)2+(y-3)2=2.(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM因为ON的斜率为3,所以l的斜率为-,故l的方程为y=-x+.又|OM|=|OP|=2,O到l的距离为,|PM|=,所以△POM的面积为.基础滚动练(滚动循环夯实基础)1.设集合A=[-1,0],B=-,∈,则A∪B=.答案[-1,2]解+析集合B=(0,2],则A∪B=[-1,2].2.已知平面向量a=(2,-1),向量b=(1,1),向量c=(-5,1).若(a+kb)∥c,则实数k的值为.答案解+析因为a+kb=(2+k,-1+k),所以由(a+kb)∥c得2+k=-5(-1+k),解得k=.3.(2019江苏淮安淮海中学高三模拟)若圆锥的侧面展开图是半径为5、圆心角为的扇形,则该圆锥的体积为.答案12π解+析该圆锥的母线长为5,设底面圆的半径为r,则2πr=6π,r=3,则圆锥的高为4,体积为π×32×4=12π.4.若实数x,y满足约束条件-,--,,则目标函数z=2x+y的最小值为.答案1解+析约束条件对应的平面区域是以点(1,0)、(0,1)、(3,4)为顶点的三角形,当直线y=-2x+z 经过点(0,1)时,z取得最小值1.5.(2019江苏宿迁模拟)在△ABC中,AB=,AC=1,∠B=30°,△ABC的面积为,则∠C=.答案60°6.已知函数f(x)=x2-ax+1-a在区间(0,1)上有两个不同的零点,则实数a的取值范围是.答案(2-2,1)解+析由题意可得,-(-),-,解得2-2<a<1.7.已知函数f(x)=-(),-(),若存在两个不相等的实数x1,x2,使得f(x1)=f(x2),则实数a的取值范围是.答案[0,+∞)解+析若函数f(x)单调,则只能单调递减,此时,⇒a<0,由题意可知该函数不单调,则实数a的取值范围是a≥08.(2018江苏兴化第一中学高三月考)如图,在四棱锥P-ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD,AC交BD于O,锐角△PAD所在平面⊥底面ABCD,PA⊥BD,点Q在侧棱PC上,且PQ=2QC.求证:(1)PA∥平面QBD;(2)BD⊥AD证明(1)如图,连接OQ,因为AB∥CD,AB=2CD,所以AO=2OC.又PQ=2QC,所以PA∥OQ 又OQ⊂平面QBD,PA⊄平面QBD,所以PA∥平面QBD.(2)在平面PAD内过P作PH⊥AD,交AD于H,因为侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PH⊂平面PAD,所以PH⊥平面ABCD.又BD⊂平面ABCD,所以PH⊥BD 又PA⊥BD,且AP∩PH=P,PH⊂平面PAD,PA⊂平面PAD,所以BD⊥平面PAD.又AD⊂平面PAD,所以BD⊥AD。

2020版数学新攻略江苏专用大一轮精练:第二章 1-第一节 函数的概念及其表示 Word版含解析

2020版数学新攻略江苏专用大一轮精练:第二章 1-第一节 函数的概念及其表示 Word版含解析

第一节函数的概念及其表示课时作业练1.(2019盐城高三模拟)函数f(x)=ln(1-)的定义域为.答案(2,3]解析要使函数f(x)=ln(1-)有意义,则解得2<x≤3,故该函数的定义域为(2,3].2.函数f(x)=的值域为.答案(-∞,1]解析当x≤0时, f(x)=2x∈(0,1];当x>0时, f(x)=-x2+1∈(-∞,1),所以该函数的值域为(-∞,1].3.已知f(+1)=x+2,则f(x)= .答案x2-1(x≥1)解析令+1=t,t≥1,则=t-1,将=t-1代入f(+1)=x+2中,得f(t)=t2-1(t≥1),∴f(x)=x2-1(x≥1).4.(2018江苏扬州高三调研)已知函数y=f(x+1)的定义域是[-2,3],则y=f(2x-1)的定义域是.答案解析x∈[-2,3]⇒x+1∈[-1,4],则2x-1∈[-1,4],解得x∈.5.已知函数f(x)=若f(2-a)>f(2a),则实数a的取值范围是.答案解析作出函数f(x)的图象(图略),可得函数f(x)在R上递增,又f(2-a)>f(2a),所以2-a>2a,解得a<.6.已知函数f(x)=的定义域是一切实数,则实数m的取值范围是.答案[0,4]解析由题意可得mx2+mx+1≥0对一切实数x恒成立,当m=0时满足;当m≠0时,有解得0<m≤4.综上可得实数m的取值范围是[0,4].7.定义在R上的函数f(x)满足f(x)=则f(3)= .答案-2解析由题意可得f(3)=f(2)-f(1)=f(1)-f(0)-f(0)+f(-1)=f(0)-f(-1)-2f(0)+f(-1)=-f(0)= 4=-2.-log28.已知f(x)=若f(a)=1,则f(f(a-1))= .答案或1解析由f(a)=1得或解得a=0或1.当a=0时, f(f(a-1))=f(f(-1))=f=;当a=1时, f(f(a-1))=f(f(0))=f(1)=1.9.(2019江苏丹阳高级中学高三模拟)已知函数f(x)与g(x)的图象关于原点对称,且它们的图象拼成如图所示的“Z”形折线ABOCD,不含A(0,1),B(1,1),O(0,0),C(-1,-1),D(0,-1)五个点,则满足题意的函数f(x)的一个解析式为.答案f(x)=(答案不唯一)解析由题图可知,线段OC与线段OB是关于原点对称的,线段CD与线段BA也是关于原点对称的,又f(x)与g(x)的图象关于原点对称,所以f(x)=(答案不唯一).10.若函数f(x)=则不等式f(f(x))<2的解集为.答案(-∞,1-ln 2)解析当f(x)≥1时, f( f(x))=[ f(x)]3+f(x)≥2,所以f(f(x))<2无解;当f(x)<1时,f( f(x))=2e f(x)-1<2,则f(x)<1,当x≥1时, f(x)=x3+x≥2,此时f(x)<1无解,当x<1时,f(x)=2e x-1<1,则x<1+ln=1-ln 2,综上可得不等式f( f(x))<2的解集为(-∞,1-ln 2).11.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式: f(x)>2x+5.解析(1)设二次函数的解析式为f(x)=ax2+bx+c(a≠0).∵f(0)=1,∴c=1.把f(x)的解析式代入f(x+1)-f(x)=2x中,得a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,∴2ax+a+b=2x,∴a=1,b=-1,∴f(x)=x2-x+1.(2)f(x)>2x+5即x2-x+1>2x+5,即x2-3x-4>0,解得x<-1或x>4.故原不等式的解集为{x|x<-1或x>4}.12.设函数f(x)=且f(-2)=3, f(-1)=f(1).(1)求f(x)的解析式;(2)在如图所示的直角坐标系中画出f(x)的图象.解析(1)由f(-2)=3, f(-1)=f(1)得解得a=-1,b=1,所以f(x)=(2)y=f(x)的图象如下.基础滚动练(滚动循环夯实基础)1.命题“∃x0∈,cos x>sin x”的否定是.答案∀x∈,cos x≤sin x2.(2019扬州高三模拟)已知集合A={-1,2,3},B={x|x(x-3)<0},则A∩B=. 答案{2}3.(2018江苏南通中学高三考前冲刺)函数y=ln(1-2x)的定义域为.答案(-∞,0)解析要使函数y=ln(1-2x)有意义,则1-2x>0,解得x<0,故函数的定义域为(-∞,0).4.(2019江苏三校高三模拟)设集合A=[-1,0],B=,则A∪B=.答案[-1,2]解析因为x2-1≥-1,所以0<≤2,则B=(0,2],又A=[-1,0],所以A∪B=[-1,2].5.若命题“∃x∈R,x2+2mx+m≤0”是假命题,则实数m的取值范围是.答案(0,1)解析因为命题“∃x∈R,x2+2mx+m≤0”是假命题,所以其否定“∀x∈R,x2+2mx+m>0”是真命题,则Δ=4m2-4m<0,解得0<m<1.6.“M>N”是“log2M>log2N”成立的条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)答案必要不充分7.已知p:|x-a|<4;q:(x-2)(3-x)>0.若 p是 q的充分不必要条件,则a的取值范围是.答案-1≤a≤6解析若 p是 q的充分不必要条件,则p是q的必要不充分条件,又p:a-4<x<a+4,q:2<x<3,所以且两个等号不能同时成立,解得-1≤a≤6.8.已知集合A={1,2,3,k},B={4,7,a4,a2+3a},其中a∈N*,k∈N*, f:x→y=3x+1,x∈A,y∈B是从定义域A到值域B的一个函数,求a,k的值.解析由题意得1→4,2→7,3→10,k→3k+1,又a∈N*,∴a4≠10,∴a2+3a=10,解得a=2(舍去-5),所以a4=16,所以3k+1=16,∴k=5.。

2020届高考数学复习好题精选 圆的方程 精品

2020届高考数学复习好题精选 圆的方程 精品

圆的方程1.(2020·重庆高考)( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:由题意知圆心为(0,2),则圆的方程为x 2+(y -2)2=1.答案:A2.(2020·辽宁高考)已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 ( )A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=2解析:由圆心在直线x +y =0上.不妨设为C (a ,-a ).∴r =|a -(-a )|2=|a -(-a )-4|2, 解得a =1,r = 2.∴C :(x -1)2+(y +1)2=2.答案:B3.若圆x 2+y 2+(a 2-1)x +2ay -a =0关于直线x -y +1=0对称,则实数a 的值为________.解析:依题意知直线x -y +1=0经过圆x 2+y 2+(a 2-1)x +2ay -a =0的圆心(-a 2-12,-a ),所以-a 2-12+a +1=0,解得a =3或a =-1, 当a =-1时,方程x 2+y 2+(a 2-1)x +2ay -a =0不能表示圆,所以只能取a =3. 答案:34.若圆x 2+(y -1)2=10恒成立,则实数m 的取值范围是________.解析:据题意圆x 2+(y -1)2=1上所有的点都在直线x +y +m ≥0的右上方.∴⎩⎪⎨⎪⎧1+m ≥0,|1+m |2≥1. ∴m 的取值范围是m ≥-1+ 2.答案:m ≥-1+ 2 5.若实数x 、y 满足(x -2)2+y 2=3,则y x 的最大值为________. 解析:y x =y -0x -0,即连结圆上一点与坐标原点的直线的斜率,因此y x的最值即为过原点的直线与圆相切时该直线的斜率.设y x =k ,则kx -y =0.由|2k |1+k 2=3,得k =±3, 结合图形可得(y x )max =3,(y x)min =- 3. 答案: 36.(2020·上海高考)点 ( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:设圆上任一点坐标为(x 0,y 0),则20x +20y =4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2, 代入20x +20y =4中得(x -2)2+(y +1)2=1. 答案:A7.从原点O 引圆(x -m )2+(y -3)2=m 2+4的切线y =kx ,当m 变化时,切点P 的轨迹方程是( )A .x 2+y 2=4(x ≠0)B .(x -3)2+y 2=4(x ≠0)C .(x -1)2+(y -3)2=5(x ≠0)D .x 2+y 2=5(x ≠0)解析:圆心为C (m,3),设点P (x ,y )(x ≠0),则|OP |2+|PC |2=|OC |2,∴x 2+y 2+m 2+4=m 2+32,故所求方程为x 2+y 2=5(x ≠0).答案:D8.以双曲线y 2-x 23=1的右焦点为圆心,离心率为半径的圆的方程是 ( ) A .(x -2)2+y 2=4 B .x 2+(y -2)2=2C .(x -2)2+y 2=2D .x 2+(y -2)2=4解析:双曲线的右焦点的坐标为(0,2),离心率e =2.∴圆的方程为x 2+(y -2)2=4.答案:D9.(2020·南通调研)已知A (x 1,y 1)、B (x 2,y 2)是圆x 2+y 2=2上两点,O 为坐标原点,且∠AOB =120°,则x 1x 2+y 1y 2=________.解析:OA u u u r =(x 1,y 1),OB u u u r =(x 2,y 2),〈OA u u u r ,OB u u u r 〉=120°,则x 1x 2+y 1y 2=OA u u u r ·OB u u u r =|OA u u u r |·|OB ―→|cos120°=2×(-12)=-1. 答案:-110.已知以点C (t ,2t)(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程. 解:(1)证明:设圆的方程为x 2+y 2+Dx +Ey =0, 由于圆心C (t ,2t ),∴D =-2t ,E =-4t, 令y =0得x =0或x =-D =2t ,∴A (2t,0),令x =0得y =0或y =-E =4t ,∴B (0,4t ), ∴S △OAB =12|OA |·|OB |=12·|2t |·|4t|=4(定值). (2)∵OM =ON ,∴O 在MN 的垂直平分线上,而MN 的垂直平分线过圆心C ,∴k OC =12,∴2t t =12,解得t =2或t =-2, 而当t =-2时,直线与圆C 不相交,∴t =2,∴D =-4,E =-2,∴圆的方程为x 2+y 2-4x -2y =0.11.(2020·青岛二检)已知圆M 过两点A (1,-1),B (-1,1),且圆心M 在x +y -2=0上.(1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A 、B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为:(x -a )2+(y -b )2=r 2(r >0),根据题意得:⎩⎪⎨⎪⎧ (1-a )2+(-1-b )2=r 2(-1-a )2+(1-b )2=r 2a +b -2=0,解得:a =b =1,r =2,故所求圆M 的方程为:(x -1)2+(y -1)2=4.(2)由题知,四边形P AMB 的面积为S =S △P AM +S △PBM =12|AM ||P A |+12|BM ||PB |. 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |,而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =|3×1+4×1+8|32+42=3, 所以四边形P AMB 面积的最小值为S =2|PM |2-4=232-4=2 5.。

2020版江苏高考数学名师大讲坛一轮复习教程学案 第43课__圆的方程(含解析)

2020版江苏高考数学名师大讲坛一轮复习教程学案 第43课__圆的方程(含解析)

第43课 圆 的 方 程1. 掌握圆的标准方程和圆的一般方程,理解方程中各字母参数的实际意义.2. 能根据已知条件合理选择圆的方程的形式,并运用待定系数法求出圆的方程. 注重数形结合的思想方法,并灵活运用平面几何的知识解决有关圆的问题.3. 会进行圆的标准方程与一般方程的互相转化,熟练掌握配方法的应用.1. 阅读:必修2第107~110页.2. 解悟:①圆的标准方程和一般方程的结构有什么特征?其中各参数有怎样的含义?②方程x 2+y 2+Dx +Ey +F =0表示圆需要什么条件?③圆的标准方程和一般方程如何转化?3. 践习:在教材空白处,完成必修2第111页练习第3、4、5题.基础诊断1. 若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则实数a 的值为 -1 ;若方程x 2+y 2+4mx -2y +5m =0表示圆,则实数m 的取值范围为 ⎝⎛⎭⎫-∞,14∪(1,+∞) . 解析:若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则⎩⎪⎨⎪⎧a 2=a +2≠0,⎝⎛⎭⎫2a a +22-4aa +2>0,解得a =-1.若x 2+y 2+4mx -2y +5m =0表示圆,则4m 2-5m +1>0,解得m<14或m>1.2. 已知A ,B 两点的坐标分别为(0,4),(4,6),则以AB 为直径的圆的标准方程为 (x -2)2+(y -5)2=5 . 解析:由题意得,圆心即AB 的中点(2,5),半径为12AB =12(0-4)2+(4-6)2=5,故以AB 为直径的圆的方程为(x -2)2+(y -5)2=5.3. 已知圆过点(1,2),圆心在y 轴上,半径为1,则该圆的方程为 x 2+(y -2)2=1 W.解析:设圆心坐标为(0,b),则由题意知(0-1)2+(b -2)2=1,得b =2,故圆的方程为x 2+(y -2)2=1.4. 如果点P(1,1)在圆(x -a)2+(y -a)2=4的内部,那么实数a 解析:由题意得(1-a)2+(1-a)2<4,解得1-2<a<1+ 2.范例导航 考向❶ 确定圆的方程例1 分别求满足下列条件的圆的方程:(1) 已知圆过两点A(3,1),B(-1,3),且它的圆心在直线3x -y -2=0上; (2) 经过三点A(1,-1),B(1,4),C(4,-2);(3) 已知圆C :x 2+y 2+4x -12y +39=0,直线l :3x -4y +5=0,求圆C 关于直线l 对称的圆的方程. 解析:(1) 设所求圆的圆心C(a ,b),因为CA =CB =r ,点C 在直线3x -y -2=0上,所以⎩⎪⎨⎪⎧(a -3)2+(b -1)2=(a +1)2+(b -3)2,3a -b -2=0,解得a =2,b =4,r =10.故所求圆的方程为(x -2)2+(y -4)2=10.(2) 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,因为该圆经过三点A(1,-1),B(1,4),C(4,-2),分别代入,得⎩⎪⎨⎪⎧D -E +F =-2,D +4E +F =-17,4D -2E +F =-20,解得⎩⎪⎨⎪⎧D =-7,E =-3,F =2,故所求圆的方程为x 2+y 2-7x -3y +2=0.(3) 由已知得,圆C 的圆心为C(-2,6),半径为1. 设圆D 与圆C 关于直线l 对称,设D(a ,b),则有 ⎩⎪⎨⎪⎧3·a -22-4·b +62+5=0,b -6a +2=-43,解得⎩⎪⎨⎪⎧a =4,b =-2, 故所求圆的方程为(x -4)2+(y +2)2=1.圆经过点A(2,-3)和B(-2,-5). (1) 若圆的面积最小,求圆C 的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程. 解析:(1) 要使圆的面积最小,则AB 为圆的直径, 圆心C(0,-4),半径r =12AB =5,所以圆C 的方程为x 2+(y +4)2=5. (2) 因为k AB =12,AB 的中点为(0,-4),所以AB 中垂线方程为2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2,所以圆心为(-1,-2),则半径r =10,所以所求的圆的方程为(x +1)2+(y +2)2=10. 考向❷ 含参的圆的方程问题例2 已知圆C 的方程x 2+y 2-2ax +2y +a +1=0.(1) 若圆C 上任意点A 关于直线l :x +2y -5=0的对称点也在圆上,求实数a 的值; (2) 求圆心C 到直线ax +y -a 2=0距离的取值范围. 解析:(1) 将圆C 的方程配方得(x -a)2+(y +1)2=a 2-a.由题意知圆心C(a ,-1)在直线l :x +2y -5=0上,即a -2-5=0,所以a =7. (2) 由圆方程可知, a 2-a >0,解得a >1或a <0.由方程得圆心C (a ,-1)到直线ax +y -a 2=0的距离d =|a 2-1-a 2|a 2+1=1a 2+1.因为a >1或a <0,所以a 2+1>1,所以0<d <1,所以所求距离的取值范围为(0,1).已知圆C 经过不同的三点P(m ,0),Q(2,0),R(0,1),且CP 的斜率为-1. (1) 求圆C 的方程;(2) 过原点O 作两条互相垂直的直线l 1,l 2,且l 1交圆C 于E ,F 两点,l 2交圆C 于G ,H 两点,求四边形EGFH 面积的最大值.解析:(1) 设圆C 的方程为x 2+y 2+Dx +Ey +F =0,则点C ⎝⎛⎭⎫-D 2,-E 2. 因为圆C 经过不同的三点P(m ,0),Q(2,0),R(0,1),且CP 的斜率为-1,所以⎩⎪⎨⎪⎧1+E +F =0,4+2D +F =0,-D 2=2+m 2,-E2-0-D 2-m=-1,解得⎩⎪⎨⎪⎧D =1,E =5,F =-6,m =-3,故圆C 的方程为x 2+y 2+x +5y -6=0.(2) 由(1)得圆心C ⎝⎛⎭⎫-12,-52,R =52,设圆心C 到直线l 1,l 2的距离分别为d 1,d 2, 则d 21+d 22=OC 2=132. 又因为⎝⎛⎭⎫EF 22+d 21=R 2,⎝⎛⎭⎫GH 22+d 22=R 2, 两式相加,得EF 2+GH 2=74≥2EF·GH ,当且仅当EF =GH =37时取等号, 所以S 四边形EGFH =12EF·GH ≤372,即四边形EGFH 面积最大为372.【备用题】 已知点(x ,y)在圆(x -2)2+(y +3)2=1上.求:(1) x +y 的最大值和最小值; (2) yx 的最大值和最小值;(3) x 2+y 2的取值范围.答案:(1) x +y 的最大值为2-1,最小值为-2-1. (2) y x 的最大值为-2+233,最小值为-2-233.(3) x 2+y 2的取值范围是[14-213,14+213].自测反馈1. 当m = 2 时,方程mx 2+my 2-4(m -1)x +4y =0表示的圆的面积最小.解析:因为mx 2+my 2-4(m -1)x +4y =0,化为标准方程为⎣⎡⎦⎤x -2(m -1)m 2+⎝⎛⎭⎫y +2m 2=4(m -1)2+4m 2,所以R 2=4(m 2-2m +2)m 2=4⎝⎛⎭⎫2m 2-2m +1=8⎝⎛⎭⎫1m -122+2,当1m -12=0,即m =2时,R 2取最小值,此时圆的面积最小. 2. 已知点P(2,1)在圆C :x 2+y 2+ax -2y +b =0上,P 关于直线x +y -1=0对称的点也在圆C 上,则圆C 的圆心坐标为 (0,1) ,半径为 2 .解析:由题意知圆心C ⎝⎛⎭⎫-a 2,1在直线x +y -1=0上,所以-a2+1-1=0,得a =0,所以圆心C(0,1),半径r=(2-0)2+(1-1)2=2.3. 已知圆C的方程为(x-a)2+(y-b)2=r2(r>0),下列结论正确的是①②③W.(填序号)①当a2+b2=r2时,圆C必过原点;②当a=r时,圆C与y轴相切;③当b=r时,圆C与x轴相切;④当b<r 时,圆C与x轴相交.解析:①②③正确;当b<r时,圆心到x轴的距离为|b|,只有当|b|<r时,圆与x轴相交,而b<r不能保证|b|<r,故④错.4. 已知圆C:x2+(y+4)2=4,点A(-2,0),B(2,0),P(x,y)是圆C上的任意一点,则PA2+PB2的取值范围为[16,80]W.解析:PA2+PB2=(x+2)2+y2+(x-2)2+y2=2(x2+y2)+8.又因为P(x,y)是圆C上的任意一点,设x2+y2=r2,则r∈[OC-2,OC+2],即r∈[2,6],所以x2+y2∈[4,36],所以PA2+PB2∈[16,80].1. 熟练掌握圆的标准方程和圆的一般方程,熟练掌握由圆的标准方程和一般方程求圆心和半径.2. 不在同一条直线上的三个点确定一个圆,同样用代数方法(方程)研究圆时,确定一个圆需要三个独立的条件,反映在圆的标准方程中,有三个参数a,b,r;反映在圆的一般方程中也有三个参数D,E,F.在求圆的方程时要根据具体条件选择适当的形式通过待定系数法解方程(组)得到.3. 你还有哪些体悟,写下来:。

(江苏专用)2020版高考数学大一轮复习第九章平面解析几何9.3圆的方程教案(含解析)

(江苏专用)2020版高考数学大一轮复习第九章平面解析几何9.3圆的方程教案(含解析)

§9.3圆的方程考情考向分析以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题.题型主要以填空题为主,要求相对较低,但内容很重要,在解答题中也会出现.圆的定义与方程概念方法微思考1.如何确定圆的方程?其步骤是怎样的?提示确定圆的方程的主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系有几种?如何判断?提示点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆.( ×)(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.( √)(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( √)(4)方程x2+2ax+y2=0一定表示圆.( ×)(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.( √)题组二教材改编2.[P111练习T4]圆x2+y2-4x+6y=0的圆心坐标是________.答案(2,-3)解析由(x-2)2+(y+3)2=13,知圆心坐标为(2,-3).3.[P111习题T1(3)]已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的标准方程为________________.答案(x-2)2+y2=10解析设圆心坐标为(a,0),易知(a-5)2+(-1)2=(a-1)2+(-3)2,解得a=2,∴圆心为(2,0),半径为10,∴圆C的标准方程为(x-2)2+y2=10.题组三 易错自纠4.若方程x 2+y 2+mx -2y +3=0表示圆,则m 的取值范围是________________. 答案 (-∞,-22)∪(22,+∞)解析 将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝ ⎛⎭⎪⎫x +m 22+(y -1)2=m 24-2.由其表示圆可得m 24-2>0,解得m <-22或m >2 2.5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 答案 -1<a <1解析 ∵点(1,1)在圆内, ∴(1-a )2+(a +1)2<4,即-1<a <1.6.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是________________. 答案 (x -2)2+(y -1)2=1解析 由于圆心在第一象限且与x 轴相切,可设圆心为(a ,1)(a >0), 又圆与直线4x -3y =0相切, ∴|4a -3|5=1,解得a =2或a =-12(舍去). ∴圆的标准方程为(x -2)2+(y -1)2=1.题型一 圆的方程例1求经过点A (-2,-4),且与直线l :x +3y -26=0相切于点B (8,6)的圆的方程. 解 方法一 设圆心为C ,所求圆的方程为x 2+y 2+Dx +Ey +F =0, 则圆心C ⎝ ⎛⎭⎪⎫-D 2,-E 2,∴k CB =6+E28+D 2.∵圆C 与直线l 相切,∴k CB ·k l =-1, 即6+E28+D 2·⎝ ⎛⎭⎪⎫-13=-1.①又有(-2)2+(-4)2-2D -4E +F =0, ② 又82+62+8D +6E +F =0.③联立①②③,可得D =-11,E =3,F =-30, ∴所求圆的方程为x 2+y 2-11x +3y -30=0. 方法二 设圆的圆心为C ,则CB ⊥l , 可得CB 所在直线的方程为y -6=3(x -8), 即3x -y -18=0.①由A (-2,-4),B (8,6),得AB 的中点坐标为(3,1). 又k AB =6+48+2=1,∴AB 的垂直平分线的方程为y -1=-(x -3), 即x +y -4=0.②由①②联立,解得⎩⎪⎨⎪⎧x =112,y =-32.即圆心坐标为⎝ ⎛⎭⎪⎫112,-32.∴所求圆的半径r =⎝ ⎛⎭⎪⎫112-82+⎝ ⎛⎭⎪⎫-32-62=1252, ∴所求圆的方程为⎝⎛⎭⎪⎫x -1122+⎝ ⎛⎭⎪⎫y +322=1252.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值; ②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 跟踪训练1(1)(2018·如皋模拟)已知圆C 过点(2,3),且与直线x -3y +3=0相切于点(0,3),则圆C 的方程为________________. 答案 (x -1)2+y 2=4解析 设圆心为(a ,b ),半径为r , 则⎩⎪⎨⎪⎧b -3a×33=-1,(a -2)2+(b -3)2=a 2+(b -3)2,解得a =1,b =0,则r =2, 即所求圆的方程为(x -1)2+y 2=4.(2)一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________.答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0 解析 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27,圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2,则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=(a -b )22+7,即2r 2=(a -b )2+14.① 由于所求圆与y 轴相切,∴r 2=a 2,② 又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .①圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线y =x 的距离为d =⎪⎪⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F ).②又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2在直线x -3y =0上,∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧ D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.题型二 与圆有关的最值问题例2已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线在y 轴上的截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1,解得t =2-1或t =-2-1. ∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233,∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法. ①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题. 跟踪训练2已知实数x ,y 满足方程x 2+y 2-4x +1=0. 求:(1)y x的最大值和最小值; (2)y -x 的最大值和最小值; (3)x 2+y 2的最大值和最小值. 解 原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.(1)y x 的几何意义是圆上一点与原点连线的斜率,所以设y x=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值和最小值,此时|2k -0|k 2+1=3,解得k =± 3.所以y x的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,其在y 轴上的截距b 取得最大值和最小值,此时|2-0+b |2=3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.(3)如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为(2-0)2+(0-0)2=2, 所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.题型三 与圆有关的轨迹问题例3已知Rt△ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,且BC ,AC 斜率均存在, 所以k AC ·k BC =-1, 又k AC =y x +1,k BC =y x -3,所以y x +1·yx -3=-1, 化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知CD =12AB =2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0), 将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: ①直接法:直接根据题目提供的条件列出方程. ②定义法:根据圆、直线等定义列方程. ③几何法:利用圆的几何性质列方程.④相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.跟踪训练3设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹.解 如图,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y2, 线段MN 的中点坐标为⎝⎛⎭⎪⎫x 0-32,y 0+42.因为平行四边形的对角线互相平分,所以x 2=x 0-32,y 2=y 0+42,整理得⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4,又点N (x 0,y 0)在圆x 2+y 2=4上, 所以(x +3)2+(y -4)2=4.所以点P 的轨迹是以(-3,4)为圆心,2为半径的圆,直线OM 与轨迹相交于两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285,不符合题意,舍去,所以点P 的轨迹为(x +3)2+(y -4)2=4,除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285.1.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________. 答案 (-2,-4)解析 由题意得a 2=a +2,a =-1或2. 当a =-1时方程为x 2+y 2+4x +8y -5=0,即(x +2)2+(y +4)2=25,圆心为(-2,-4),半径为5;当a =2时方程为4x 2+4y 2+4x +8y +10=0,⎝ ⎛⎭⎪⎫x +122+(y +1)2=-54不表示圆.2.已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为__________. 答案 (0,-1)解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1,所以当k =0时,圆C 的面积最大,此时圆心C 的坐标为(0,-1).3.若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是__________________.答案 (x -2)2+⎝ ⎛⎭⎪⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |, 解得m =-32.所以圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.4.已知圆C :x 2+y 2-2x +4y +1=0,那么与圆C 有相同的圆心,且经过点(-2,2)的圆的方程是______________. 答案 (x -1)2+(y +2)2=25解析 设出要求的圆的方程为(x -1)2+(y +2)2=r 2,再代入点(-2,2),可以求得圆的半径为5.5.已知圆M 与直线3x -4y =0及3x -4y +10=0都相切,圆心在直线y =-x -4上,则圆M 的方程为________. 答案 (x +3)2+(y +1)2=1解析 到直线3x -4y =0及3x -4y +10=0的距离都相等的直线方程为3x -4y +5=0,联立方程组⎩⎪⎨⎪⎧3x -4y +5=0,y =-x -4,解得⎩⎪⎨⎪⎧x =-3,y =-1,又两平行线之间的距离为2,所以所求圆的半径为1,从而圆M 的方程为(x +3)2+(y +1)2=1.6.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是________________. 答案 x 2+y 2-10y =0解析 根据题意,设圆心坐标为(0,r ),半径为r , 则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0. 7.圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是________________. 答案 (x -1)2+(y -3)2=4解析 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ), 则有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.8.如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是________________. 答案 [-3,-1]∪[1,3]解析 圆(x -a )2+(y -a )2=8的圆心(a ,a )到原点的距离为|2a |,半径r =22, 由圆(x -a )2+(y -a )2=8上总存在点到原点的距离为2,得22-2≤|2a |≤22+2,∴1≤|a |≤3,解得1≤a ≤3或-3≤a ≤-1. ∴实数a 的取值范围是[-3,-1]∪[1,3].9.平面内动点P 到两点A ,B 的距离之比为常数λ(λ>0,且λ≠1),则动点P 的轨迹叫做阿波罗尼斯圆,若已知A (-2,0),B (2,0),λ=12,则此阿波罗尼斯圆的方程为____________________. 答案 x 2+y 2+203x +4=0解析 由题意,设P (x ,y ),则(x +2)2+y2(x -2)2+y2=12, 化简可得x 2+y 2+203x +4=0.10.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________. 答案 (x -2)2+(y +1)2=1解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧2x =x 0+4,2y =y 0-2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2,代入x 20+y 20=4中,得(x -2)2+(y +1)2=1.11.已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上, (1)求yx的最大值和最小值; (2)求x +y 的最大值和最小值.解 方程x 2+y 2-6x -6y +14=0可变形为(x -3)2+(y -3)2=4,则圆C 的半径为2. (1)(转化为斜率的最值问题求解)yx表示圆上的点P 与原点连线的斜率,显然当PO (O 为原点)与圆C 相切时,斜率最大或最小,如图所示.设切线方程为y =kx ,即kx -y =0,由圆心C (3,3)到切线的距离等于圆C 的半径, 可得|3k -3|k 2+1=2,解得k =9±2145.所以y x 的最大值为9+2145,最小值为9-2145.(2)(转化为截距的最值问题求解)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,显然当动直线y =-x +b 与圆C 相切时,b 取得最大值或最小值,如图所示.由圆心C (3,3)到切线x +y =b 的距离等于圆C 的半径,可得|3+3-b |12+12=2, 即|b -6|=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2.12.已知点A (-3,0),B (3,0),动点P 满足PA =2PB . (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求QM 的最小值.解 (1)设点P 的坐标为(x ,y ), 则(x +3)2+y 2=2(x -3)2+y 2.化简可得(x -5)2+y 2=16,此方程即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图所示.由题意知直线l 2是此圆的切线, 连结CQ ,则QM =CQ 2-CM 2=CQ 2-16, 当QM 最小时,CQ 最小,此时CQ ⊥l 1,CQ =|5+3|2=42, 则QM 的最小值为32-16=4.13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =PB 2+PA 2,其中A (0,1),B (0,-1),则d 的最大值为________.答案 74解析 设P (x 0,y 0),d =PB 2+PA 2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74.14.已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55,且圆C 被x 轴分成的两段弧长之比为3∶1,则圆C 的方程为__________________________. 答案 (x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2解析 设圆C 的方程为(x -a )2+(y -b )2=r 2,则点C 到x 轴、y 轴的距离分别为|b |,|a |.由题意可知⎩⎪⎨⎪⎧r 2=2b 2,r 2=a 2+1,|a -2b |5=55,∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧a =1,b =1,r 2=2.故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.15.若圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称,则2a +6b的最小值是________. 答案323解析 由圆x 2+y 2+4x -12y +1=0知,其标准方程为(x +2)2+(y -6)2=39, ∵圆x 2+y 2+4x -12y +1=0关于直线ax -by +6=0(a >0,b >0)对称, ∴该直线经过圆心(-2,6),即-2a -6b +6=0, ∴a +3b =3(a >0,b >0), ∴2a +6b =23(a +3b )⎝ ⎛⎭⎪⎫1a +3b =23⎝ ⎛⎭⎪⎫1+3a b +3b a +9≥23⎝⎛⎭⎪⎫10+23a b ·3b a =323, 当且仅当3b a =3ab,即a =b 时取等号.16.已知动点P (x ,y )满足x 2+y 2-2|x |-2|y |=0,O 为坐标原点,求x 2+y 2的最大值. 解x 2+y 2表示曲线上的任意一点(x ,y )到原点的距离.当x ≥0,y ≥0时,x 2+y 2-2x -2y =0化为()x -12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y <0时,x 2+y 2+2x +2y =0化为()x +12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x ≥0,y <0时,x 2+y 2-2x +2y =0化为()x -12+()y +12=2,曲线上的点到原点的距离的最大值为2×2=22,当x <0,y ≥0时,x 2+y 2+2x -2y =0化为()x +12+()y -12=2,曲线上的点到原点的距离的最大值为2×2=2 2.综上可知,x2+y2的最大值为2 2.21。

江苏专版2020版高考数学一轮复习第九章解析几何第三节圆与方程教案理含解析苏教版

江苏专版2020版高考数学一轮复习第九章解析几何第三节圆与方程教案理含解析苏教版

第三节圆与方程1.圆的定义及方程点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系:(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. [小题体验]1.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是________.解析:将圆的一般方程化成标准方程,得(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,即0+a2+0+12>2a ,所以原点在圆外.答案:原点在圆外2.圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________. 解析:设圆心C 的坐标为(a ,b ),则a =-1+12=0,b =2+42=3,故圆心C (0,3).半径r =12AB =12[1--1]2+4-22= 2.所以圆C 的标准方程为x 2+(y -3)2=2. 答案:x 2+(y -3)2=23.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是________. 解析:因为点(1,1)在圆(x -a )2+(y +a )2=4的内部,所以(1-a )2+(1+a )2<4. 即a 2<1,故-1<a <1. 答案:(-1,1)对于方程x 2+y 2+Dx +Ey +F =0表示圆时易忽视D 2+E 2-4F >0这一成立条件.[小题纠偏]若点(1,-1)在圆x 2+y 2-x +y +m =0外,则m 的取值范围是________.解析:由题意可知⎩⎪⎨⎪⎧-12+12-4m >0,1+-12-1-1+m >0,解得0<m <12.答案:⎝ ⎛⎭⎪⎫0,12考点一 圆的方程基础送分型考点——自主练透[题组练透]1.(2019·东台中学检测)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的标准方程为________.解析:设圆心坐标为(a,0),则a -52+-12=a -12+-32,解得a=2,∴圆心为(2,0),半径为10,∴圆C 的标准方程为(x -2)2+y 2=10.答案:(x -2)2+y 2=102.(2018·徐州模拟)若圆C 的半径为1,点C 与点(2,0)关于点(1,0)对称,则圆C 的标准方程为____________.解析:因为点C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得C (0,0),所以所求圆的标准方程为x 2+y 2=1.答案:x 2+y 2=13.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的标准方程为____________. 解析:因为AB :x +y -2=0(0≤x ≤2), 所以A (0,2),B (2,0),AB =0-22+2-02=2 2.所以点A ,B 的中点为(1,1),故所求圆的标准方程为(x -1)2+(y -1)2=2. 答案:(x -1)2+(y -1)2=24.(2019·盐城中学测试) 圆经过点A (2,-3)和B (-2,-5).(1)若圆的面积最小,求圆的方程;(2)若圆心在直线x -2y -3=0上,求圆的方程. 解:(1)要使圆的面积最小,则AB 为圆的直径, 所以圆心为(0,-4),半径r =12AB =5,所以所求圆的方程为x 2+(y +4)2=5. (2)因为k AB =12,AB 的中点为(0,-4),所以直线AB 的中垂线方程为y +4=-2x ,即2x +y +4=0,解方程组⎩⎪⎨⎪⎧2x +y +4=0,x -2y -3=0,得⎩⎪⎨⎪⎧x =-1,y =-2.所以圆心为(-1,-2).根据两点间的距离公式得半径r =10, 因此所求圆的方程为(x +1)2+(y +2)2=10.[谨记通法]1.求圆的方程的2种方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.2.确定圆心位置的3种方法(1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上. (3)两圆相切时,切点与两圆圆心共线.[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质. 考点二 与圆有关的最值问题 题点多变型考点——多角探明[锁定考向]与圆有关的最值问题是命题的热点内容,它着重考查数形结合与转化思想. 常见的命题角度有: (1)斜率型最值问题; (2)截距型最值问题;(3)距离型最值问题.[题点全练]角度一:斜率型最值问题1.(2019·涞水月考)已知实数x ,y 满足方程(x -3)2+(y -3)2=6,求y x的最大值与最小值.解:方程(x -3)2+(y -3)2=6表示以(3,3)为圆心,6为半径的圆.yx的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值, 此时|3k -3|k 2+1=6,解得k =3±2 2.所以y x的最大值为3+22,最小值为3-2 2. 角度二:截距型最值问题2.(2018·东海高级中学测试)已知实数x ,y 满足(x -2)2+(y +1)2=1,则2x -y 的最大值为________.解析:令b =2x -y ,当直线2x -y =b 与圆相切时,b 取得最值. 由|2×2+1-b |5=1,解得b =5±5,所以2x -y 的最大值为5+ 5. 答案:5+ 53.(2019·启东模拟)已知非负实数x ,y 满足x ≠y ,且x 2+y 2x +y≤4,则S =y -2x 的最小值是________.解析:由x 2+y 2x +y≤4,得x 2+y 2≤4(x +y ),移项配方得(x -2)2+(y -2)2≤8,此不等式表示以C (2,2)为圆心,以22为半径的圆及其内部在第一象限与x 轴、y 轴正半轴的部分(除去y =x ).将S =y -2x 变形为y =2x +S ,当直线l :y =2x +S 与圆相切于第一象限时,S 取得最小值,由圆的切线性质,圆心C (2,2)到l 的距离等于半径长,即|2+S |5=22,解得S =-2-210(S =-2+210舍去).故S =y -2x 的最小值是-2-210.答案:-2-210 角度三:距离型最值问题4.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求x 2+y 2的最大值和最小值.解:如图所示,x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为2-02+0-02=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.[通法在握]与圆有关的最值问题的3种常见转化法 (1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题. (2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.[演练冲关]1.(2019·淮安检测)已知x ,y 满足x 2+y 2-4x -6y +12=0,则x 2+y 2的最小值为________.解析:x 2+y 2-4x -6y +12=0可化为(x -2)2+(y -3)2=1,则圆心坐标为(2,3),圆的半径r =1.因为x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在圆心与原点连线与圆的两个交点处取得最值,又圆心到原点的距离为2-02+3-02=13,所以x 2+y 2的最小值为(13-1)2=14-213.答案:14-2132.在平面直角坐标系xOy 中,点A (-1,0),B (1,0).若动点C 满足AC =2BC ,则△ABC 的面积的最大值是________.解析:设C (x ,y ),则(x +1)2+y 2=2(x -1)2+2y 2,化简得(x -3)2+y 2=8.其中y ≠0,从而S △ABC =12×2×|y |≤22,即△ABC 的面积的最大值是2 2.答案:2 2考点三 圆的方程的简单应用重点保分型考点——师生共研 [典例引领](2018·扬州调研)设△ABC 顶点坐标A (0,a ),B (-3a ,0),C (3a ,0),其中a >0,圆M 为△ABC 的外接圆.(1)求圆M 的方程;(2)当a 变化时,圆M 是否过某一定点,请说明理由.解:(1)设圆M 的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0). 因为圆M 过点A (0,a ),B (-3a ,0),C (3a ,0),所以⎩⎨⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得⎩⎪⎨⎪⎧D =0,E =3-a ,F =-3a .所以圆M 的方程为x 2+y 2+(3-a )y -3a =0.(2)因为圆M 的方程可化为(x 2+y 2+3y )-(3+y )a =0.由⎩⎪⎨⎪⎧x 2+y 2+3y =0,3+y =0,解得x =0,y =-3.所以圆M 过定点(0,-3).[由题悟法]圆的方程是一个二元二次方程,所以有时候我们可从函数和方程的角度对其相关问题进行分析,也可利用方程中x ,y 的取值范围来确定有关函数的值或范围.[即时应用]已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求P Q ―→·M Q ―→的取值范围.解:(1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2. (2)设Q(x ,y ),则x 2+y 2=2,且P Q ―→·M Q ―→=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2. 令x =2cos θ,y =2sin θ,所以P Q ―→·M Q ―→=x +y -2=2(sin θ+cos θ)-2 =2sin ⎝⎛⎭⎪⎫θ+π4-2, 所以P Q ―→·M Q ―→的取值范围为[-4,0].一抓基础,多练小题做到眼疾手快1.若圆的半径为3,圆心与点(2,0)关于点(1,0)对称,则圆的标准方程为________. 答案:x 2+y 2=92.在平面直角坐标系xOy 中,设点P 为圆O :x 2+y 2+2x =0上任意一点,点Q(2a ,a +3)(a ∈R),则线段P Q 长度的最小值为________.解析:圆O :x 2+y 2+2x =0,即 (x +1)2+y 2=1,表示以(-1,0)为圆心、半径为1的圆,则点Q(2a ,a +3)到圆心(-1,0)的距离d =2a +12+a +32=5a 2+10a +10=5a +12+5,所以当a =-1时,d 取得最小值为5,故线段P Q 长度的最小值为5-1.答案:5-13.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为________. 解析:由半径r =12D 2+E 2-4F =124a 2+4b 2=2得,a 2+b 2=2.所以点(a ,b )到原点的距离d =a 2+b 2=2. 答案:24.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.解析:根据题意得点(1,0)关于直线y =x 对称的点(0,1)为圆心, 又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1. 答案:x 2+(y -1)2=15.(2019·兴化月考)经过点(2,0)且圆心是直线x =2与直线x +y =4的交点的圆的标准方程为________.解析:由⎩⎪⎨⎪⎧x =2,x +y =4得⎩⎪⎨⎪⎧x =2,y =2,即两直线的交点坐标为(2,2),则圆心坐标为(2,2).又点(2,0)在圆上,所以半径r =2,则圆的标准方程为(x -2)2+(y -2)2=4.答案:(x -2)2+(y -2)2=46.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线 x =-3上的动点,则P Q 的最小值为________.解析:如图所示,圆心M (3,-1)与定直线x =-3的最短距离为M Q =3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.答案:4二保高考,全练题型做到高考达标1.(2019·无锡调研)设两条直线x +y -2=0,3x -y -2=0的交点为M ,若点M 在圆 (x -m )2+y 2=5内,则实数m 的取值范围为________.解析:联立⎩⎪⎨⎪⎧x +y -2=0,3x -y -2=0,解得⎩⎪⎨⎪⎧x =1,y =1,则M (1,1),由交点M 在圆(x -m )2+y 2=5的内部,可得(1-m )2+1<5,解得-1<m <3. 故实数m 的取值范围为(-1,3). 答案:(-1,3)2.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析:设y -1x -2=k ,则k 表示点P (x ,y )与点(2,1)连线的斜率.过两点连线的直线方程为kx -y +1-2k =0,当该直线与圆相切时,k 取得最大值与最小值,由|2k |k 2+1=1,解得k =±33.答案:33,-333.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为________________.解析:由题意知x -y =0 和x -y -4=0之间的距离为|4|2=22,所以r = 2.又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由x +y =0和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.答案:(x -1)2+(y +1)2=24.(2018·苏州期末)在平面直角坐标系xOy 中,已知过点A (2,-1)的圆C 和直线x +y =1相切,且圆心在直线y =-2x 上,则圆C 的标准方程为________________.解析:根据题意,设圆C 的圆心为(m ,-2m ),半径为r ,则⎩⎪⎨⎪⎧m -22+-2m +12=r 2,|m -2m -1|2=r ,解得m =1,r =2,所以圆C 的方程为(x -1)2+(y +2)2=2. 答案:(x -1)2+(y +2)2=25.已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m =________.解析:因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.答案:-16.在平面直角坐标系xOy 内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为________.解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2,解得a <-2,故实数a 的取值范围为(-∞,-2).答案:(-∞,-2)7.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意可知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π4 8.(2018·滨海中学检测)已知点P (0,2)为圆C :(x -a )2+(y -a )2=2a 2外一点,若圆C 上存在点Q ,使得∠CP Q =30°,则正数a 的取值范围是________.解析:由圆C :(x -a )2+(y -a )2=2a 2,得圆心为C (a ,a ),半径r =2a ,∴CP =a 2+a -22,设过P 的一条切线与圆的切点是T ,则CT =2a ,当Q 为切点时,∠CP Q 最大.∵圆C 上存在点Q 使得∠CP Q =30°,∴CTCP ≥sin 30°,即2a a 2+a -22≥12, 整理可得3a 2+2a -2≥0,解得a ≥7-13或a ≤-7-13(舍去).又点 P (0,2)为圆C :(x -a )2+(y -a )2=2a 2外一点,∴a 2+(2-a )2>2a 2,解得a <1.故正数a 的取值范围是⎣⎢⎡⎭⎪⎫7-13,1. 答案:⎣⎢⎡⎭⎪⎫7-13,1 9.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且CD =410.(1)求直线CD 的方程;(2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2).则直线CD 的方程为y -2=-(x -1),即x +y -3=0.(2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.①又因为直径CD =410,所以PA =210,所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧ a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.10.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点.(1)求m +2n 的最大值;(2)求n -3m +2的最大值和最小值. 解:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22,设m +2n =t ,将m +2n =t 看成直线方程,因为该直线与圆有公共点,所以圆心到直线的距离d =|2+2×7-t |12+22≤22, 解上式得,16-210≤t ≤16+210,所以所求的最大值为16+210.(2)记点Q(-2,3),因为n -3m +2表示直线M Q 的斜率k , 所以直线M Q 的方程为y -3=k (x +2),即kx -y +2k +3=0.由直线M Q 与圆C 有公共点,得|2k -7+2k +3|1+k2≤2 2. 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3. 三上台阶,自主选做志在冲刺名校1.(2019·宁海中学模拟)如果直线2ax -by +14=0(a >0,b >0)和函数f (x )=mx +1+1(m >0,m ≠1)的图象恒过同一个定点,且该定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,那么b a 的取值范围是________.解析:函数f (x )=m x +1+1的图象恒过点(-1,2),代入直线2ax -by +14=0,可得-2a -2b +14=0,即a +b =7.∵定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,∴a 2+b 2≤25.设b a=t ,则b =at ,代入a +b =7,可得a =71+t ,b =7t 1+t ,代入a 2+b 2≤25,可得()1+t 2×⎝ ⎛⎭⎪⎫71+t 2≤25,∴12t 2-25t +12≤0,∴34≤t ≤43.故b a 的取值范围是⎣⎢⎡⎦⎥⎤34,43. 答案:⎣⎢⎡⎦⎥⎤34,43 2.(2018·启东中学检测)已知点A (0,2)为圆M :x 2+y 2-2ax -2ay =0(a >0)外一点,圆M 上存在点T ,使得∠MAT =45°,则实数a 的取值范围是________.解析:圆M 的方程可化为(x -a )2+(y -a )2=2a 2.圆心为M (a ,a ),半径为2a . 当A ,M ,T 三点共线时,∠MAT =0°最小, 当AT 与圆M 相切时,∠MAT 最大.圆M 上存在点T ,使得∠MAT =45°,只需要当∠MAT 最大时,满足45°≤∠MAT <90°即可. MA =a -02+a -22=2a 2-4a +4, 此时直线AT 与圆M 相切,所以sin ∠MAT =MTMA =2a 2a 2-4a +4.因为45°≤∠MAT <90°,所以22≤sin∠MAT <1, 所以22≤2a 2a 2-4a +4<1, 解得3-1≤a <1.答案:[3-1,1)3.如图所示,一隧道内设双行线公路,其截面由一段圆弧和一个长方形构成.已知隧道总宽度AD 为6 3 m ,行车道总宽度BC 为211m ,侧墙EA ,FD 高为2 m ,弧顶高MN 为5 m.(1)建立直角坐标系,求圆弧所在的圆的方程;(2)为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5 m .请计算车辆通过隧道的限制高度是多少.解:(1)以EF 所在直线为x 轴,MN 所在直线为y 轴,1 m 为单位长度建立如图所示的平面直角坐标系.则E (-33,0),F (33,0),M (0,3).由于所求圆的圆心在y 轴上,所以设圆的方程为x 2+(y -b )2=r 2,因为F (33,0),M (0,3)都在圆上, 所以⎩⎨⎧ 332+b 2=r 2,02+3-b 2=r 2,解得b =-3,r 2=36. 所以圆的方程是x 2+(y +3)2=36.(2)设限高为h ,作CP ⊥AD 交圆弧于点P ,则CP =h +0.5.将点P的横坐标x=11代入圆的方程,得11+(y+3)2=36,解得y=2或y=-8(舍去).所以h=CP-0.5=(y+DF)-0.5=(2+2)-0.5=3.5(m).答:车辆的限制高度为3.5 m.。

2020版高考数学一轮复习课后限时集训42圆的方程(含解析)理

2020版高考数学一轮复习课后限时集训42圆的方程(含解析)理

课后限时集训(四十二)(建议用时:60分钟) A 组 基础达标一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1A [设圆心为(0,a ), 则-2+-a2=1,解得a =2,故圆的方程为x 2+(y -2)2=1.故选A.]2.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( )A .(-∞,-2)∪⎝ ⎛⎭⎪⎫23,+∞ B.⎝ ⎛⎭⎪⎫-23,0C .(-2,0)D.⎝⎛⎭⎪⎫-2,23 D [方程化简为⎝ ⎛⎭⎪⎫x +a 22+(y +a )2=1-a -3a 24表示圆,则1-a -3a 24>0,解得-2<a <23.]3.(2019·广东六校模拟)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4 D [设所求圆的圆心为(a ,b ),则⎩⎪⎨⎪⎧b 2=33×a +22,b a -2=-3,∴⎩⎨⎧a =1,b =3,∴圆的方程为(x -1)2+(y -3)2=4.]4.(2019·湖南长沙模拟)圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( )A .1+ 2B .2C .1+22D .2+2 2A [将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1,选A.]5.(2019·山西晋中模拟)半径为2的圆C 的圆心在第四象限,且与直线x =0和x +y =22均相切,则该圆的标准方程为( )A .(x -1)2+(y +2)2=4 B .(x -2)2+(y +2)2=2 C .(x -2)2+(y +2)2=4 D .(x -22)2+(y +22)2=4C [设圆心坐标为(2,-a )(a >0),则圆心到直线x +y =22的距离d =|2-a -22|2=2,所以a =2,所以该圆的标准方程为(x -2)2+(y +2)2=4,故选C.]二、填空题6.圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的取值范围为________.(0,4) [设圆心为C (a,0),由|CA |=|CB |得 (a +1)2+12=(a -1)2+32.所以a =2. 半径r =|CA |=+2+12=10.故圆C 的方程为(x -2)2+y 2=10.由题意知(m -2)2+(6)2<10,解得0<m <4.]7.若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是________.(x -2)2+⎝ ⎛⎭⎪⎫y +322=254[由已知可设圆心为(2,b ),由22+b 2=(1-b )2=r 2, 得b =-32,r 2=254.故圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y +322=254.]8.(2018·宜昌模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.(0,-1) [圆C 的方程可化为⎝ ⎛⎭⎪⎫x +k 22+(y +1)2=-34k 2+1.所以,当k =0时圆C 的面积最大,此时圆C 坐标为(0,-1).]三、解答题9.求适合下列条件的圆的方程.(1)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2); (2)过三点A (1,12),B (7,10),C (-9,2).[解] (1)法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧b =-4a ,-a 2+-2-b2=r 2,|a +b -1|2=r ,解得a =1,b =-4,r =2 2. 所以圆的方程为(x -1)2+(y +4)2=8.法二:过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =-2+-4+2=22,所以所求圆的方程为(x -1)2+(y +4)2=8.(2)设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则⎩⎪⎨⎪⎧1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0.解得D =-2,E =-4,F =-95.所以所求圆的方程为x 2+y 2-2x -4y -95=0.10.如图,等腰梯形ABCD 的底边AB 和CD 长分别为6和26,高为3.(1)求这个等腰梯形的外接圆E 的方程;(2)若线段MN 的端点N 的坐标为(5,2),端点M 在圆E 上运动,求线段MN 的中点P 的轨迹方程.[解] (1)由已知可知A (-3,0),B (3,0),C (6,3),D (-6,3),设圆心E (0,b ). 由|EB |=|EC |,得(0-3)2+(b -0)2=(0-6)2+(b -3)2, 解得b =1,r 2=(0-3)2+(1-0)2=10, 所以圆的方程为x 2+(y -1)2=10.(2)设P (x ,y ),由已知得M (2x -5,2y -2), 代入x 2+(y -1)2=10, 得(2x -5)2+(2y -3)2=10,化简得⎝ ⎛⎭⎪⎫x -522+⎝ ⎛⎭⎪⎫y -322=52.B 组 能力提升1.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1A [设M (x 0,y 0)为圆x 2+y 2=4上任一点,PM 中点为Q (x ,y ),则⎩⎪⎨⎪⎧x =x 0+42,y =y 0-22,∴⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.代入圆的方程得(2x -4)2+(2y +2)2=4, 即(x -2)2+(y +1)2=1.]2.(2019·辽宁锦州月考)如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是( )A .(-3,-1)∪(1,3)B .(-3,3)C .[-1,1]D .[-3,-1]∪[1,3]D [圆(x -a )2+(y -a )2=8的圆心(a ,a )到原点的距离为|2a |,半径r =22,由圆(x -a )2+(y -a )2=8上总存在点到原点的距离为2,得22-2≤|2a |≤22+2,∴1≤|a |≤3,解得1≤a ≤3或-3≤a ≤-1.∴实数a 的取值范围是[-3,-1]∪[1,3].故选D.]3.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点,则点M 的轨迹方程为________.(x -1)2+(y -3)2=2 [圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x,2-y ). 由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0. 即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以点M 的轨迹方程是(x -1)2+(y -3)2=2.]4.已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 和点A ,与y 轴交于点O和点B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. [解] (1)因为圆C 过原点O ,所以|OC |2=t 2+4t2.设圆C 的方程是(x -t )2+⎝ ⎛⎭⎪⎫y -2t 2=t 2+4t 2,令x =0,得y 1=0,y 2=4t;令y =0,得x 1=0,x 2=2t ,所以S △OAB =12|OA |·|OB |=12×|2t |×⎪⎪⎪⎪⎪⎪4t =4,即△OAB 的面积为定值. (2)因为|OM |=|ON |,|CM |=|CN |, 所以OC 垂直平分线段MN . 因为k MN =-2,所以k OC =12.所以2t =12t ,解得t =2或t =-2.当t =2时,圆心C 的坐标为(2,1),|OC |=5, 此时,C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点. 符合题意,此时,圆C 的方程为(x -2)2+(y -1)2=5. 当t =-2时,圆心C 的坐标为(-2,-1), |OC |=5,此时C 到直线y =-2x +4的距离d =95> 5. 圆C 与直线y =-2x +4不相交, 所以t =-2不符合题意,舍去. 所以圆C 的方程为(x -2)2+(y -1)2=5. 即为x 2+y 2-4x -2y =0.。

江苏高考复习圆的方程专题练习(带答案)

江苏高考复习圆的方程专题练习(带答案)

江苏高考复习圆的方程专题练习(带答案)当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆,以下是江苏高考复习圆的方程专题练习,请考生认真练习。

一、填空题1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[解析] 设圆心C(a,b)(a0,b0),由题意得b=1.又圆心C到直线4x-3y=0的距离d==1,解得a=2或a=-(舍).所以该圆的标准方程为(x-2)2+(y-1)2=1.[答案] (x-2)2+(y-1)2=12.(南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.[解析] 因为点P关于直线x+y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解得a=0,所以圆心坐标为(0,1).[答案] (0,1)3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.[答案] (x-1)2+(y+4)2=84.(江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y|的最小值为________.[解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,y=-3+sin ,则|2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________.[解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号.[答案] 96.(南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.[解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1,而直线AB过P点,所以直线AB的方程为y-2=-(x-1),即x+y-3=0.[答案] x+y-3=07.(泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a=________.[解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2+a-1)0,解得-20)关于直线x+y+2=0对称.(1)求圆C的方程;(2)设Q为圆C上的一个动点,求的最小值.[解] (1)设圆心C(a,b),由题意得解得则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2,故圆C的方程为x2+y2=2.(2)设Q(x,y),则x2+y2=2,=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2.令x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,所以的最小值为-4.10.已知圆的圆心为坐标原点,且经过点(-1,).(1)求圆的方程;(2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b 的值;(3)求直线l2:x-y+2=0被此圆截得的弦长.[解] (1)已知圆心为(0,0),半径r==2,所以圆的方程为x2+y2=4.(2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=4.(3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2=2.江苏高考复习圆的方程专题练习及答案的所有内容就是这些,更多精彩内容请持续关注。

(江苏专用)2020版高考数学总复习第九章第三节圆的方程课件苏教版

(江苏专用)2020版高考数学总复习第九章第三节圆的方程课件苏教版
x
所以设 y =k,即y=kx.
x
当直线y=kx与圆相切时,斜率k取最大值或最小值,此时 | 2k 0 |= 3 ,解得k k2 1
=± 3 .
所以 xy 的最大值为 3 ,最小值为- 3.
(2)y-x可看作是直线y=x+b在y轴上的截距,如图b,当直线y=x+b与圆相切
时,纵截距b取得最大值或最小值,此时 | 2 0 b | = 3,解得b=-2± 6 .
0(m>0,n>0)得m+n=7,m>0,n>0.又由定点(-1,2)始终落在圆(x-m+1)2+(y+n-
2)2=25的内部,得m2+n2<25,令 n =t,t>0,则n=mt,代入m+n=7(m>0,n>0)中得
m
m= 7 1 t
,代入m2+n2<25得

1
7
t
2

+
(2,-3),连接C'1C2,与x轴交于点P,连接PC1,易知|PC1|+|PC2|的最小值为
|C'1C2|=5 2 ,则|PM|+|PN|的最小值为5 2-4. 方法技巧 圆的几何性质在求解长度或距离的最值问题中具有重要应用,如圆上的 点到圆外一条定直线的距离的最大值、最小值分别等于圆心到直线的 距离加上、减去圆的半径.
2
所以y-x的最大值为-2+ 6 ,最小值为-2- 6 . (3)x2+y2表示圆上的一点与原点距离的平方,如图c,由平面几何知识及题 意知,在x轴与圆的两个交点处取得最大值和最小值. 又圆心到原点的距离为2, 所以x2+y2的最大值是(2+ 3 )2=7+4 3, x2+y2的最小值是(2- 3 )2=7-4 3 .

2020版高考数学新增分大一轮新高考专用精练:第九章第3讲 圆的方程含解析

2020版高考数学新增分大一轮新高考专用精练:第九章第3讲 圆的方程含解析

第3讲 圆的方程一、选择题1.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( )A.x 2+y 2=2 B.x 2+y 2=2C.x 2+y 2=1D.x 2+y 2=4解析 AB 的中点坐标为(0,0),|AB |==2,[1-(-1)]2+(-1-1)22∴圆的方程为x 2+y 2=2.答案 A2.(2017·漳州模拟)圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为( )A.(x -2)2+(y -1)2=1 B.(x +1)2+(y -2)2=1C.(x +2)2+(y -1)2=1D.(x -1)2+(y +2)2=1解析 已知圆的圆心C (1,2)关于直线y =x 对称的点为C ′(2,1),∴圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(x -2)2+(y -1)2=1,故选A.答案 A3.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则实数a 的取值范围是( )A.(-∞,-2)∪B.(23,+∞)(-23,0)C.(-2,0)D.(-2,23)解析 方程为+(y +a )2=1-a -表示圆,则1-a ->0,解得-2(x +a 2)23a 243a 24<a <.23答案 D4.(2017·淄博调研)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A.(x -2)2+(y +1)2=1B.(x -2)2+(y +1)2=4C.(x +4)2+(y -2)2=4D.(x +2)2+(y -1)2=1解析 设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则解{x =4+x 02,y =-2+y 02,)得因为点Q 在圆x 2+y 2=4上,所以x +y =4,即(2x -4)2+(2y +2)2{x 0=2x -4,y 0=2y +2.)2020=4,化简得(x -2)2+(y +1)2=1.答案 A5.(2015·全国Ⅱ卷)已知三点A (1,0),B (0,),C (2,),则△ABC 外接圆的33圆心到原点的距离为( )A. B. C. D.5321325343解析 由点B (0,),C (2,),得线段BC 的垂直平分线方程为x =1,①33由点A (1,0),B (0,),得线段AB 的垂直平分线方程为3y -=,②3233(x -12)联立①②,解得△ABC 外接圆的圆心坐标为,(1,233)其到原点的距离为 =.故选B.12+(233)2213答案 B 二、填空题6.若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是________.解析 设圆心C 坐标为(2,b )(b <0),则|b |+1=.解得b =-,半径r =|b |+14+b 232=,故圆C 的方程为:(x -2)2+=.52(y +32)2 254答案 (x -2)2+=(y +32)2 2547.(2017·广州模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为________.解析 圆C 的方程可化为+(y +1)2=-k 2+1.所以,当k =0时圆C 的(x +k 2)234面积最大.答案 (0,-1)8.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.解析 过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k CM ==1,1-02-1∴最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0.答案 x +y -1=0三、解答题9.已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程.解 l 2平行于x 轴,l 1与l 3互相垂直.三交点A ,B ,C 连线构成直角三角形,经过A ,B ,C 三点的圆就是以AB 为直径的圆.解方程组得所以点A 的坐标是(-{x -2y =0,y +1=0){x =-2,y =-1.)2,-1).解方程组得{2x +y -1=0,y +1=0){x =1,y =-1.)所以点B 的坐标是(1,-1).线段AB 的中点坐标是,(-12,-1)又|AB |==3.(-2-1)2+(-1+1)2故所求圆的标准方程是+(y +1)2=.(x +12)2 9410.在△ABC 中,已知|BC |=2,且=m ,求点A 的轨迹方程,并说明轨迹是|AB ||AC |什么图形.解 如图,以直线BC 为x 轴、线段BC 的中点为原点,建立直角坐标系.则有B (-1,0),C (1,0),设点A 的坐标为(x ,y ).由=m ,得=m .整理得(m 2-1)x 2+(m 2-1)y 2-|AB ||AC |(x +1)2+y 2(x -1)2+y 22(m 2+1)x +(m 2-1)=0.①当m 2=1时,m =1,方程是x =0,轨迹是y 轴.当m 2≠1时,对①式配方,得+y 2=.(x -m 2+1m 2-1)24m 2(m 2-1)2所以,点A 的轨迹是以为圆心,为半径的圆(除去圆与BC 的(m 2+1m 2-1,0)2m |m 2-1|交点).11.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则+的最小值为( )1a 2bA.1B.5C.4D.3+222解析 由题意知圆心C (2,1)在直线ax +2by -2=0上,∴2a +2b -2=0,整理得a +b =1,∴+=(+)(a +b )=3++1a 2b 1a 2b b a 2a b≥3+2 =3+2,b a ×2ab2当且仅当=,即b =2-,a =-1时,等号成立.b a 2ab22∴+的最小值为3+2.1a 2b2答案 D 12.已知平面区域恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2{x ≥0,y ≥0,x +2y -4≤0)及其内部所覆盖,则圆C 的方程为________.解析 由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.∵△OPQ 为直角三角形,∴圆心为斜边PQ 的中点(2,1),半径r ==,|PQ |25因此圆C 的方程为(x -2)2+(y -1)2=5.答案 (x -2)2+(y -1)2=513.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|PA |2,其中A (0,1),B (0,-1),则d 的最大值为________.解析 设P (x 0,y 0),d =|PB |2+|PA |2=x +(y 0+1)2+x +(y 0-1)2=2(x +y )+2.x 20202020+y 为圆上任一点到原点距离的平方,∴(x +y )max =(5+1)2=36,∴d max =74.20202020答案 7414.(2016·江苏卷)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得+=,求实数tTA → TP → TQ →的取值范围.解 (1)圆M 的方程化为标准形式为(x -6)2+(y -7)2=25,圆心M (6,7),半径r =5,由题意,设圆N 的方程为(x -6)2+(y -b )2=b 2(b >0),且=b +5.(6-6)2+(b -7)2解得b =1,∴圆N 的标准方程为(x -6)2+(y -1)2=1.(2)∵k OA =2,∴可设直线l 的方程为y =2x +m ,即2x -y +m =0.又|BC |=|OA |==2,22+425由题意,圆M 的圆心M (6,7)到直线l 的距离为d ===2,52-(|BC |2)225-55即=2,解得m =5或m =-15.|2×6-7+m |22+(-1)25∴直线l 的方程为2x -y +5=0或2x -y -15=0.(3)由+=,则四边形AQPT 为平行四边形,TA → TP → TQ →又∵P ,Q 为圆M 上的两点,∴|PQ |≤2r =10.(t-2)2+42∴|TA|=|PQ|≤10,即≤10,2121解得2-2≤t≤2+2.2121故所求t的范围为[2-2,2+2].。

2020版高考数学一轮复习课时训练(四十八)圆的方程(含解析)新人教A版(2021-2022学年)

2020版高考数学一轮复习课时训练(四十八)圆的方程(含解析)新人教A版(2021-2022学年)

课时跟踪检测(四十八) 圆的方程一、题点全面练1.圆(x-3)2+(y-1)2=5关于直线y=-x对称的圆的方程为( )A.(x+3)2+(y-1)2=5ﻩ B.(x-1)2+(y-3)2=5C.(x+1)2+(y+3)2=5ﻩ D.(x-1)2+(y+3)2=5解析:选 C 由题意知,所求圆的圆心坐标为(-1,-3),半径为错误!未定义书签。

,所以所求圆的方程为(x+1)2+(y+3)2=5,故选C.2.已知三点A(1,0),B(0,错误!未定义书签。

),C(2,错误!未定义书签。

),则△ABC 外接圆的圆心到原点的距离为()A。

错误!未定义书签。

ﻩ B.\f(21)3C。

错误!未定义书签。

D。

错误!未定义书签。

解析:选B设圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),∴错误!∴错误!未定义书签。

∴△ABC外接圆的圆心为错误!未定义书签。

,故△ABC外接圆的圆心到原点的距离为错误!=错误!未定义书签。

3.(2019·成都模拟)若抛物线y=x2-2x-3与坐标轴的交点在同一个圆上,则由交点确定的圆的方程为()A.x2+(y-1)2=4ﻩ B.(x-1)2+(y-1)2=4C.(x-1)2+y2=4ﻩ D.(x-1)2+(y+1)2=5解析:选 D 抛物线y=x2-2x-3关于直线x=1对称,与坐标轴的交点为A(-1,0),B(3,0),C(0,-3),设圆心为M(1,b),半径为r,则|MA|2=|MC|2=r2,即4+b2=1+(b+3)2=r2,解得b=-1,r=\r(5),∴由交点确定的圆的方程为(x-1)2+(y+1)2=5,故选D.4.(2019·银川模拟)若圆C与y轴相切于点P(0,1),与x轴的正半轴交于A,B两点,且|AB|=2,则圆C的标准方程是( )A.(x+2)2+(y+1)2=2ﻩB。

(x+1)2+(y+2)2=2C.(x-\r(2))2+(y-1)2=2ﻩD.(x-1)2+(y-错误!未定义书签。

(江苏专版)2020版高考数学一轮复习课时跟踪检测(四十二)圆与方程文(含解析)苏教版

(江苏专版)2020版高考数学一轮复习课时跟踪检测(四十二)圆与方程文(含解析)苏教版

课时跟踪检测(四十二) 圆与方程一抓基础,多练小题做到眼疾手快1.若圆的半径为3,圆心与点(2,0)关于点(1,0)对称,则圆的标准方程为________. 答案:x 2+y 2=92.在平面直角坐标系xOy 中,设点P 为圆O :x 2+y 2+2x =0上任意一点,点Q(2a ,a +3)(a ∈R),则线段P Q 长度的最小值为________.解析:圆O :x 2+y 2+2x =0,即 (x +1)2+y 2=1,表示以(-1,0)为圆心、半径为1的圆,则点Q(2a ,a +3)到圆心(-1,0)的距离d =2a +12+a +32=5a 2+10a +10=5a +12+5,所以当a =-1时,d 取得最小值为5,故线段P Q 长度的最小值为5-1.答案:5-13.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为________. 解析:由半径r =12D 2+E 2-4F =124a 2+4b 2=2得,a 2+b 2=2.所以点(a ,b )到原点的距离d =a 2+b 2=2. 答案:24.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.解析:根据题意得点(1,0)关于直线y =x 对称的点(0,1)为圆心,又半径r =1,所以圆C 的标准方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=15.(2019·兴化月考)经过点(2,0)且圆心是直线x =2与直线x +y =4的交点的圆的标准方程为________.解析:由⎩⎪⎨⎪⎧x =2,x +y =4得⎩⎪⎨⎪⎧x =2,y =2,即两直线的交点坐标为(2,2),则圆心坐标为(2,2).又点(2,0)在圆上,所以半径r =2,则圆的标准方程为(x -2)2+(y -2)2=4.答案:(x -2)2+(y -2)2=46.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线 x =-3上的动点,则P Q 的最小值为________.解析:如图所示,圆心M (3,-1)与定直线x =-3的最短距离为M Q =3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.答案:4二保高考,全练题型做到高考达标1.(2019·无锡调研)设两条直线x +y -2=0,3x -y -2=0的交点为M ,若点M 在圆(x -m )2+y 2=5内,则实数m 的取值范围为________.解析:联立⎩⎪⎨⎪⎧x +y -2=0,3x -y -2=0,解得⎩⎪⎨⎪⎧x =1,y =1,则M (1,1),由交点M 在圆(x -m )2+y 2=5的内部,可得(1-m )2+1<5,解得-1<m <3. 故实数m 的取值范围为(-1,3). 答案:(-1,3)2.已知点P (x ,y )在圆x 2+(y -1)2=1上运动,则y -1x -2的最大值与最小值分别为________.解析:设y -1x -2=k ,则k 表示点P (x ,y )与点(2,1)连线的斜率.过两点连线的直线方程为kx -y +1-2k =0,当该直线与圆相切时,k 取得最大值与最小值,由|2k |k 2+1=1,解得k =±33.答案:33,-333.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为________________.解析:由题意知x -y =0 和x -y -4=0之间的距离为|4|2=22,所以r = 2.又因为x +y =0与x -y =0,x -y -4=0均垂直,所以由x +y =0和x -y =0联立得交点坐标为(0,0),由x +y =0和x -y -4=0联立得交点坐标为(2,-2),所以圆心坐标为(1,-1),圆C 的标准方程为(x -1)2+(y +1)2=2.答案:(x -1)2+(y +1)2=24.(2018·苏州期末)在平面直角坐标系xOy 中,已知过点A (2,-1)的圆C 和直线x +y =1相切,且圆心在直线y =-2x 上,则圆C 的标准方程为________________.解析:根据题意,设圆C 的圆心为(m ,-2m ),半径为r ,则⎩⎪⎨⎪⎧m -22+-2m +12=r 2,|m -2m -1|2=r ,解得m =1,r =2,所以圆C 的方程为(x -1)2+(y +2)2=2. 答案:(x -1)2+(y +2)2=25.已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P ,Q 关于直线l 对称,则m =________.解析:因为曲线x 2+y 2+2x -6y +1=0是圆(x +1)2+(y -3)2=9,若圆(x +1)2+(y -3)2=9上存在两点P ,Q 关于直线l 对称,则直线l :x +my +4=0过圆心(-1,3),所以-1+3m +4=0,解得m =-1.答案:-16.在平面直角坐标系xOy 内,若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为________.解析:圆C 的标准方程为(x +a )2+(y -2a )2=4,所以圆心为(-a,2a ),半径r =2,故由题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2,解得a <-2,故实数a 的取值范围为(-∞,-2).答案:(-∞,-2)7.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意可知,圆的半径r =12k 2+4-4k 2=124-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1,所以直线方程为y =-x +2,则有tan α=-1,又α∈[0,π),故α=3π4.答案:3π48.(2018·滨海中学检测)已知点P (0,2)为圆C :(x -a )2+(y -a )2=2a 2外一点,若圆C 上存在点Q ,使得∠CP Q =30°,则正数a 的取值范围是________.解析:由圆C :(x -a )2+(y -a )2=2a 2,得圆心为C (a ,a ),半径r =2a , ∴CP =a 2+a -22,设过P 的一条切线与圆的切点是T , 则CT =2a ,当Q 为切点时,∠CP Q 最大. ∵圆C 上存在点Q 使得∠CP Q =30°, ∴CT CP≥sin 30°,即2aa 2+a -22≥12,整理可得3a 2+2a -2≥0,解得a ≥7-13或a ≤-7-13(舍去). 又点 P (0,2)为圆C :(x -a )2+(y -a )2=2a 2外一点,∴a 2+(2-a )2>2a 2,解得a <1. 故正数a 的取值范围是⎣⎢⎡⎭⎪⎫7-13,1.答案:⎣⎢⎡⎭⎪⎫7-13,19.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且CD =410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0. ①又因为直径CD =410, 所以PA =210, 所以(a +1)2+b 2=40. ②由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 10.已知M (m ,n )为圆C :x 2+y 2-4x -14y +45=0上任意一点. (1)求m +2n 的最大值; (2)求n -3m +2的最大值和最小值. 解:(1)因为x 2+y 2-4x -14y +45=0的圆心C (2,7),半径r =22, 设m +2n =t ,将m +2n =t 看成直线方程, 因为该直线与圆有公共点, 所以圆心到直线的距离d =|2+2×7-t |12+22≤22, 解上式得,16-210≤t ≤16+210, 所以所求的最大值为16+210. (2)记点Q(-2,3), 因为n -3m +2表示直线M Q 的斜率k , 所以直线M Q 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 由直线M Q 与圆C 有公共点, 得|2k -7+2k +3|1+k2≤2 2.可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3. 三上台阶,自主选做志在冲刺名校1.(2019·宁海中学模拟)如果直线2ax -by +14=0(a >0,b >0)和函数f (x )=mx +1+1(m >0,m ≠1)的图象恒过同一个定点,且该定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,那么b a的取值范围是________.解析:函数f (x )=mx +1+1的图象恒过点(-1,2),代入直线2ax -by +14=0,可得-2a -2b +14=0,即a +b =7.∵定点始终落在圆(x -a +1)2+(y +b -2)2=25的内部或圆上,∴a 2+b 2≤25.设ba=t ,则b =at ,代入a +b =7,可得a =71+t ,b =7t 1+t ,代入a 2+b 2≤25,可得()1+t 2×⎝ ⎛⎭⎪⎫71+t 2≤25,∴12t 2-25t +12≤0,∴34≤t ≤43.故b a 的取值范围是⎣⎢⎡⎦⎥⎤34,43. 答案:⎣⎢⎡⎦⎥⎤34,43 2.(2018·启东中学检测)已知点A (0,2)为圆M :x 2+y 2-2ax -2ay =0(a >0)外一点,圆M 上存在点T ,使得∠MAT =45°,则实数a 的取值范围是________.解析:圆M 的方程可化为(x -a )2+(y -a )2=2a 2. 圆心为M (a ,a ),半径为2a .当A ,M ,T 三点共线时,∠MAT =0°最小, 当AT 与圆M 相切时,∠MAT 最大. 圆M 上存在点T ,使得∠MAT =45°,只需要当∠MAT 最大时,满足45°≤∠MAT <90°即可.MA =a -02+a -22=2a 2-4a +4,此时直线AT 与圆M 相切, 所以sin ∠MAT =MT MA=2a 2a 2-4a +4.因为45°≤∠MAT <90°,所以22≤sin∠MAT <1, 所以22≤2a 2a 2-4a +4<1, 解得3-1≤a <1. 答案:[3-1,1)3.如图所示,一隧道内设双行线公路,其截面由一段圆弧和一个长方形构成.已知隧道总宽度AD 为6 3 m ,行车道总宽度BC 为211 m ,侧墙EA ,FD 高为2 m ,弧顶高MN 为5 m.(1)建立直角坐标系,求圆弧所在的圆的方程;(2)为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5 m .请计算车辆通过隧道的限制高度是多少.解:(1)以EF 所在直线为x 轴,MN 所在直线为y 轴,1 m 为单位长度建立如图所示的平面直角坐标系.则E (-33,0),F (33,0),M (0,3).由于所求圆的圆心在y 轴上, 所以设圆的方程为x 2+(y -b )2=r 2, 因为F (33,0),M (0,3)都在圆上,所以⎩⎨⎧332+b 2=r 2,02+3-b 2=r 2,解得b =-3,r 2=36.所以圆的方程是x 2+(y +3)2=36. (2)设限高为h ,作CP ⊥AD 交圆弧于点P , 则CP =h +0.5.将点P 的横坐标x =11代入圆的方程,得11+(y +3)2=36,解得y =2或y =-8(舍去).所以h =CP -0.5=(y +DF )-0.5=(2+2)-0.5=3.5(m). 答:车辆的限制高度为3.5 m.。

2020版高考数学(理)新精准大一轮课标通用版刷好题练能力:第九章 3 第3讲 圆的方程 含解析

2020版高考数学(理)新精准大一轮课标通用版刷好题练能力:第九章 3 第3讲 圆的方程 含解析

[基础题组练]1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A.设圆心为(0,a ),则(1-0)2+(2-a )2=1, 解得a =2,故圆的方程为x 2+(y -2)2=1.故选A.2.以M (1,0)为圆心,且与直线x -y +3=0相切的圆的方程是( ) A .(x -1)2+y 2=8 B .(x +1)2+y 2=8 C .(x -1)2+y 2=16D .(x +1)2+y 2=16解析:选A.因为所求圆与直线x -y +3=0相切,所以圆心M (1,0)到直线x -y +3=0的距离即为该圆的半径r ,即r =|1-0+3|2=2 2.所以所求圆的方程为:(x -1)2+y 2=8.故选A.3.方程|x |-1=1-(y -1)2所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆 D .两个半圆解析:选D.由题意得⎩⎪⎨⎪⎧(|x |-1)2+(y -1)2=1,|x |-1≥0,即⎩⎪⎨⎪⎧(x -1)2+(y -1)2=1,x ≥1或⎩⎪⎨⎪⎧(x +1)2+(y -1)2=1,x ≤-1. 故原方程表示两个半圆.4.(2019·山西晋中模拟)半径为2的圆C 的圆心在第四象限,且与直线x =0和x +y =22均相切,则该圆的标准方程为( )A .(x -1)2+(y +2)2=4B .(x -2)2+(y +2)2=2C .(x -2)2+(y +2)2=4D .(x -22)2+(y +22)2=4解析:选C.设圆心坐标为(2,-a )(a >0),则圆心到直线x +y =22的距离d =|2-a -22|2=2,所以a =2,所以该圆的标准方程为(x -2)2+(y +2)2=4,故选C.5.已知P (x ,y )是圆x 2+(y -3)2=a 2(a >0)上的动点,定点A (2,0),B (-2,0),△P AB 的面积的最大值为8,则a 的值为( )A .1B .2C .3D .4解析:选A.要使△P AB 的面积最大,只要点P 到直线AB 的距离最大. 由于AB 的方程为y =0,圆心(0,3)到直线AB 的距离为d =3, 故P 到直线AB 的距离的最大值为3+a .再根据AB =4,可得△P AB 面积的最大值为12·AB ·(3+a )=2(3+a )=8,所以a =1,故选A.6.圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3), 若M (m ,6)在圆C 内,则m 的范围为________. 解析:设圆心为C (a ,0),由|CA |=|CB |得 (a +1)2+12=(a -1)2+32.所以a =2. 半径r =|CA |=(2+1)2+12=10. 故圆C 的方程为(x -2)2+y 2=10.由题意知(m -2)2+(6)2<10,解得0<m <4. 答案:(0,4)7.圆(x -3)2+(y -1)2=5关于直线y =-x 对称的圆的方程为________.解析:由题意知,所求圆的圆心坐标为(-1,-3),所以所求圆的方程为(x +1)2+(y +3)2=5. 答案:(x +1)2+(y +3)2=58.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点,则点M 的轨迹方程为________________.解析:圆C 的方程可化为x 2+(y -4)2=16, 所以圆心为C (0,4),半径为4.设M (x ,y ),则CM →=(x ,y -4),MP →=(2-x ,2-y ). 由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0. 即(x -1)2+(y -3)2=2.由于点P 在圆C 的内部,所以点M 的轨迹方程是(x -1)2+(y -3)2=2. 答案:(x -1)2+(y -3)2=29.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又因为直径|CD |=410,所以|P A |=210, 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3,b =6,或⎩⎪⎨⎪⎧a =5,b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.10.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k 2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16, 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.[综合题组练]1.(应用型)自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,PQ 的长度等于点P 到原点O 的距离,则点P 的轨迹方程为( )A .8x -6y -21=0B .8x +6y -21=0C .6x +8y -21=0D .6x -8y -21=0解析:选D.由题意得,圆心C 的坐标为(3,-4),半径r =2,如图.因为|PQ |=|PO |,且PQ ⊥CQ , 所以|PO |2+r 2=|PC |2,所以x 2+y 2+4=(x -3)2+(y +4)2,即6x -8y -21=0,所以点P 的轨迹方程为6x -8y -21=0,故选D.2.(创新型)设点P 是函数y =-4-(x -1)2的图象上的任意一点,点Q (2a ,a -3)(a ∈R ),则|PQ |的最小值为( )A.855-2B. 5C.5-2D.755-2解析:选C.如图所示,点P 在半圆C (实线部分)上,且由题意知,C (1,0),点Q 在直线l :x -2y -6=0上.过圆心C 作直线l 的垂线,垂足为点A ,则|CA |=5,|PQ |min =|CA |-2=5-2.故选C.3.(2019·台州模拟)一个圆的圆心在直线y =2x 上,且与x 轴的正半轴相切,被y 轴截得的弦长为23,则该圆的标准方程为________.解析:根据题意,要求圆的圆心在直线y =2x 上,设其圆心为(m ,2m ), 又由其与x 轴的正半轴相切,则m >0,则半径r =2m , 则圆的标准方程为(x -m )2+(y -2m )2=4m 2,又由该圆被y 轴截得的弦长为23,则有4m 2=3+m 2, 解可得:m =±1,又由m >0,则m =1, 则该圆的标准方程为(x -1)2+(y -2)2=4. 答案:(x -1)2+(y -2)2=44.(应用型)(2019·厦门模拟)设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A →·PB →的最大值为________.解析:由题意,知P A →=(2-x ,-y ),PB →=(-2-x ,-y ),所以P A →·PB →=x 2+y 2-4,由于点P (x ,y )是圆上的点,故其坐标满足方程x 2+(y -3)2=1,故x 2=-(y -3)2+1,所以P A →·PB →=-(y -3)2+1+y 2-4=6y -12.易知2≤y ≤4,所以,当y =4时,P A →·PB →的值最大,最大值为6×4-12=12.答案:125.(应用型)已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求实数m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐标原点),求m 的值; (3)在(2)的条件下,求以MN 为直径的圆的方程.解:(1)由D 2+E 2-4F >0得(-2)2+(-4)2-4m >0,解得m <5.(2)设M (x 1,y 1),N (x 2,y 2),由x +2y -4=0得x =4-2y ;将x =4-2y 代入x 2+y 2-2x -4y +m =0得5y 2-16y +8+m =0,所以y 1+y 2=165,y 1y 2=8+m 5.因为OM ⊥ON ,所以y 1x 1·y 2x 2=-1,即x 1x 2+y 1y 2=0.因为x 1x 2=(4-2y 1)(4-2y 2)=16-8(y 1+y 2)+4y 1y 2,所以x 1x 2+y 1y 2=16-8(y 1+y 2)+5y 1y 2=0,即(8+m )-8×165+16=0,解得m =85.(3)设圆心C 的坐标为(a ,b ),则a =12(x 1+x 2)=45,b =12(y 1+y 2)=85,半径r =|OC |=455,所以所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 6.(创新型)在平面直角坐标系xOy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由. (2)求证:过A ,B ,C 三点的圆过定点.解:由曲线Γ:y =x 2-mx +2m (m ∈R ),令y =0,得x 2-mx +2m =0. 设A (x 1,0),B (x 2,0),则可得Δ=m 2-8m >0,x 1+x 2=m ,x 1x 2=2m . 令x =0,得y =2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC →·BC →=0,得x 1x 2+4m 2=0,即2m +4m 2=0,所以m =0或m =-12.由Δ>0得m <0或m >8,所以m =-12,此时C (0,-1),AB 的中点M ⎝⎛⎭⎫-14,0即圆心,半径r =|CM |=174, 故所求圆的方程为⎝⎛⎭⎫x +142+y 2=1716. (2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0, 将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0,整理得x 2+y 2-y -m (x +2y -2)=0.令⎩⎪⎨⎪⎧x 2+y 2-y =0,x +2y -2=0,可得⎩⎪⎨⎪⎧x =0,y =1或⎩⎨⎧x =25,y =45,故过A ,B ,C 三点的圆过定点(0,1)和⎝⎛⎭⎫25,45.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14.2圆的方程挖命题【考情探究】分析解读圆的方程是江苏高考的必考内容之一,最近几年很少有单独的试题考查圆的方程,通常和向量、直线、椭圆相结合,综合性比较强,以中档题的形式出现,不拘泥于填空题,有时候会出现在第17、18题,在复习中,也要注意以圆为背景的实际应用题.破考点【考点集训】考点圆的方程1.(2018江苏天一中学月考)已知圆C与直线y=x及x-y-4=0都相切,圆心在直线y=-x上,则圆C的方程为__________.答案(x-1)2+(y+1)2=22.(2018江苏金陵中学周考)圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,)在圆C内,则m的取值范围为.答案(0,4)3.(2018江苏金沙高级中学期中)设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是____________.答案原点在圆外炼技法【方法集训】方法一求圆的方程的方法1.已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为.答案(x-2)2+y2=9恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为.2.已知平面区域-答案(x-2)2+(y-1)2=5方法二与圆有关的最值问题的求解方法1.已知圆O:x2+y2=8,点A(2,0),动点M在圆上,则∠OMA的最大值为.答案2.已知M(m,n)为圆C:x2+y2-4x-14y+45=0上任意一点.(1)求m+2n的最大值;(2)求-的最大值和最小值.解析(1)由题意可知x2+y2-4x-14y+45=0的圆心C的坐标为(2,7),半径r=2.设m+2n=t,将m+2n=t看成直线方程,因为该直线与圆有公共点,所以圆心到直线的距离d=≤2,解得16-2≤t≤16+2,所以所求的最大值为16+2.(2)记点Q(-2,3).因为-表示直线MQ的斜率k,所以直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0.由直线MQ与圆C有公共点,得-≤2.解得2-≤k≤2+,所以-的最大值为2+,最小值为2-.过专题【五年高考】A组自主命题·江苏卷题组1.(2015江苏,10,5分)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.答案(x-1)2+y2=22.(2016江苏,18,16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.解析圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.=2.(2)因为直线l∥OA,所以直线l的斜率为--设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d==.因为BC=OA==2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)解法一:+=,即=-=,即||=||,因为||=-,又0<||≤10,所以0<-≤10,解得t∈[2-2,2+2].对于任意t∈[2-2,2+2],欲使=,此时0<||≤10,只需要作直线TA的平行线,使圆心到直线的距离为-,必然与圆交于P,Q两点,此时||=||,即=,因此对于任意t∈[2-2,2+2],均满足题意.故t∈[2-2,2+2].解法二:设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),+=,所以-①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤--≤5+5,解得2-2≤t≤2+2.因此,实数t的取值范围是[2-2,2+2].解后反思 1.根据已知条件求圆的方程,一般地,可采用两种不同的方法:一是待定系数法,即先根据条件用圆的标准式或一般式设出方程,再根据条件来确定参数的值;二是通过几何图形的性质来确定圆心的位置或坐标及半径,进而求得圆的方程.2.已知直线与圆相交来确定弦长的问题,通常要利用圆心到直线的距离d,圆的半径r以及弦长l之间的关系l=2-来进行求解.B组统一命题、省(区、市)卷题组考点圆的方程1.(2018北京理改编,7,5分)在平面直角坐标系中,记d为点P(cos θ,sin θ)到直线x-my-2=0的距离.当θ,m变化时,d的最大值为.答案 32.(2018天津文,12,5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.答案x2+y2-2x=03.(2015课标Ⅰ,14,5分)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.答案-+y2=4.(2016北京改编,5,5分)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为.答案5.(2016课标全国Ⅱ改编,6,5分)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=.答案-6.(2015课标Ⅱ改编,7,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=.答案47.(2014课标全国Ⅱ,16,5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.答案[-1,1]8.(2018课标全国Ⅱ理,19,12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解析(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0),设A(x1,y1),B(x2,y2).由-得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去),或k=1,因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则--解得或-因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.方法总结有关抛物线的焦点弦问题,常用抛物线的定义进行转化求解,在求解过程中应注重利用根与系数的关系进行整体运算.一般地,求直线和圆的方程时,利用待定系数法求解.9.(2017课标全国Ⅲ,20,12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解析(1)证明:设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为·=-=-1,所以OA⊥OB.故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10. 当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为-,圆M的半径为,圆M的方程为-+=.解后反思直线与圆锥曲线相交问题,常联立方程,消元得到一个一元二次方程,然后利用根与系数的关系处理.以某线段为直径的圆的方程,也可以用该线段的两端点坐标(x1,y1)、(x2,y2)表示:(x-x1)(x-x2)+(y-y1)(y-y2)=0.C组教师专用题组1.(2010课标理,15,5分)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为. 答案(x-3)2+y2=22.(2014陕西,12,5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.答案x2+(y-1)2=13.(2015课标Ⅱ改编,7,5分)已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为.答案4.(2014湖北文,17,5分)已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则(1)b=;(2)λ=.答案(1)-(2)5.(2009江苏,18,14分)在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.解析(1)设直线l的方程为y=k(x-4),即kx-y-4k=0.由垂径定理,得圆心C1到直线l的距离d=-=1,由点到直线的距离公式,得---=1,-化简得24k2+7k=0,解得k=0或k=-,故直线l的方程为y=0或y=-(x-4),即y=0或7x+24y-28=0.(2)设点P坐标为(m,n),直线l1、l2的方程分别为y-n=k(x-m),y-n=-(x-m),即kx-y+n-km=0,-x-y+n+m=0.因为直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,两圆半径相等.由垂径定理,得圆心C1到直线l1与圆心C2到直线l2的距离相等.故有----=--,化简得(2-m-n)k=m-n-3或(m-n+8)k=m+n-5,由题意得----或--解得-或-故点P的坐标为-或-.【三年模拟】一、填空题(每小题5分,共40分)1.(2019届江苏启东中学月考)若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程为.答案(x-2)2+(y-1)2=12.(2019届江苏淮阴中学期初)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C 的方程是.答案(x+1)2+y2=23.(2019届江苏清江中学质检)设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为.答案 44.(2018江苏南京期中)过点P(1,1)的直线,将区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为.答案x+y-2=05.(2018江苏苏州中学月考)设A(-3,0),B(3,0)为两定点,动点P到A点的距离与到B点的距离之比为1∶2,则点P 的轨迹所围成的面积是.答案16π6.(2019届江苏常州五中周考)直线l1:y=x+a,l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2=.答案 27.(2018江苏南通、扬州、淮安、宿迁、泰州、徐州六市二调)在平面直角坐标系xOy中,若动圆C上的点都在不等式组-表示的平面区域内,则面积最大的圆C的标准方程为.答案(x-1)2+y2=48.(2019届江苏南通中学质检)在△ABC中,|BC|=6,|AB|=2|AC|,则△ABC面积的最大值为.答案12二、解答题(共30分)9.(2019届江苏平潮中学月考)已知方程x2+y2-2x-4y+m=0.(1)若此方程表示圆,求实数m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解析(1)由D2+E2-4F>0得(-2)2+(-4)2-4m>0,解得m<5.(2)设M(x1,y1),N(x2,y2),由x+2y-4=0得x=4-2y.将x=4-2y代入x2+y2-2x-4y+m=0得5y2-16y+8+m=0,所以y1+y2=,y1y2=.因为OM⊥ON,所以·=-1,即x1x2+y1y2=0.因为x1x2=(4-2y1)(4-2y2)=16-8(y1+y2)+4y1y2,所以x1x2+y1y2=16-8(y1+y2)+5y1y2=0,即(8+m)-8×+16=0,解得m=.(3)设圆心C的坐标为(a,b),则a=(x1+x2)=,b=(y1+y2)=,半径r=|OC|=,所以所求圆的方程为-+-=.10.(2019届江苏白蒲中学期中)如图,已知圆O的直径AB=4,定直线l到圆心的距离为4,且直线l垂直于直线AB.点P是圆O上异于A,B的任意一点,直线PA,PB分别交l于M,N两点.(1)若∠PAB=30°,求以MN为直径的圆的方程;(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点.解析易得A(-2,0),B(2,0),☉O的方程为x2+y2=4,直线l的方程为x=4.(1)当点P在x轴上方时,因为∠PAB=30°,所以点P的坐标为(1,),所以l AP:y=(x+2),l BP:y=-(x-2).将x=4分别代入得M(4,2),N(4,-2),所以线段MN的中点坐标为(4,0),|MN|=4.所以以MN为直径的圆的方程为(x-4)2+y2=12.同理,当点P在x轴下方时,所求圆的方程仍是(x-4)2+y2=12.综上,以MN为直径的圆的方程为(x-4)2+y2=12.(2)证明:设点P的坐标为(x0,y0),则y0≠0,所以+=4(y0≠0),所以=4-.易知l PA:y=(x+2),(x-2),l PB:y=-将x=4分别代入得y M=,y N=,-所以M,N,-所以|MN|=-=-,-线段MN的中点坐标为--.以MN为直径的圆O'截x轴所得的线段长为2---=-=-=4.则圆O'与x轴的两交点坐标分别为(4-2,0),(4+2,0). 又(4-2)2=28-16<4,(4+2)2=28+16>4,所以圆O'必过圆O内定点(4-2,0).。

相关文档
最新文档