最新高三数学文一轮复习夯基提能习题第五章 平面向量 第三节 平面向量的数量积与平面向量应用举例及答案
高考数学一轮复习第五章平面向量5.3平面向量的数量积文
【步步高】(江苏专用)2017版高考数学一轮复习 第五章 平面向量5.3 平面向量的数量积 文1.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是[0,π]. 2.平面向量的数量积设a ,b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 (1)e ·a =a ·e =|a |cos θ. (2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a ||b |; 当a 与b 反向时,a ·b =-|a ||b |. 特别地,a ·a =|a |2或|a |=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a ||b |.4.平面向量数量积满足的运算律 (1)a·b =b·a ;(2)(λa )·b =a ·(λb )=λ(a·b )=λa·b (λ为实数); (3)(a +b )·c =a·c +b·c .5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离|AB |=|AB →|=x 2-x 12+y 2-y 12.(3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)向量在另一个向量方向上的投影为数量,而不是向量.( √ )(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (3)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形.( × ) (4)两个向量的夹角的范围是[0,π2].( × )(5)由a ·b =0可得a =0或b =0.( × ) (6)(a ·b )c =a (b ·c ).( × )1.已知向量a 与b 的夹角为30°,且|a |=1,|2a -b |=1,则|b |=________. 答案3解析 由题意可得a·b =|b |cos 30°=32|b |,4a 2-4a·b +b 2=1,即4-23|b |+b 2=1,由此求得|b |= 3.2.(2015·山东改编)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=________. 答案 32a 2解析 如图所示,由题意,得BC =a ,CD =a ,∠BCD =120°.BD 2=BC 2+CD 2-2BC ·CD ·cos 120°=a 2+a 2-2a ·a ×⎝ ⎛⎭⎪⎫-12=3a 2, ∴BD =3a .∴BD →·CD →=|BD →||CD →|cos 30° =3a 2×32=32a 2. 3.已知单位向量e 1,e 2的夹角为α,且cos α=13,若向量a =3e 1-2e 2,则|a |=________.答案 3解析 ∵|a |2=a ·a =(3e 1-2e 2)·(3e 1-2e 2)=9|e 1|2-12e 1·e 2+4|e 2|2=9-12×1×1×13+4=9.∴|a |=3.4.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案 90°解析 由AO →=12(AB →+AC →)可知点O 为BC 的中点,即BC 为圆O 的直径,又因为直径所对的圆周角为直角,所以∠BAC =90°,所以AB →与AC →的夹角为90°.5.(教材改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________. 答案 -2解析 由数量积的定义知,b 在a 方向上的投影为 |b |cos θ=4×cos 120°=-2.题型一 平面向量数量积的运算例1 (1)(2015·四川)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=________.(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________. 答案 (1)9 (2)1 1 解析 (1)AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9. (2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1, ∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.思维升华 (1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2解析 (1)由CP →=3PD →,得DP →=14DC →=14AB →,AP →=AD →+DP →=AD →+14AB →,BP →=AP →-AB →=AD →+14AB →-AB →=AD →-34AB →.因为AP →·BP →=2,所以(AD →+14AB →)·(AD →-34AB →)=2,即AD →2-12AD →·AB →-316AB →2=2.又因为AD →2=25,AB →2=64,所以AB →·AD →=22. (2)由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →) =(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.题型二 用数量积求向量的模、夹角 命题点1 求向量的模例2 (1)已知向量a ,b 均为单位向量,它们的夹角为π3,则|a +b |=________.(2)(2014·湖南)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.答案 (1) 3 (2)7+1解析 (1)因为向量a ,b 均为单位向量,它们的夹角为π3,所以|a +b |=a +b2=a 2+2a ·b +b 2=1+2cos π3+1= 3.(2)设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆.又O A →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3), ∴|OA →+OB →+OD →|=x -2+y +32.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为-2++32=7,故x -2+y +32的最大值为7+1.命题点2 求向量的夹角例3 (1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b的夹角为________.(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.答案 (1)π4 (2)⎝⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3 解析 (1)由(a -b )⊥(3a +2b )得(a -b )·(3a +2b )=0,即3a 2-a·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ, 即3|a |2-|a |·|b |·cos θ-2|b |2=0,∴83|b |2-223|b |2·cos θ-2|b |2=0,∴cos θ=22. 又∵0≤θ≤π,∴θ=π4.(2)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0, ∴4k -6-6<0,∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3. 思维升华 (1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是________. 答案 (1)223 (2) 6解析 (1)∵|a |= e 1-2e 22= 9+4-12×1×1×13=3,|b |=e 1-e 22=9+1-6×1×1×13=22,∴a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22 =9-9×1×1×13+2=8,∴cos β=83×22=223.(2)∵AB →·AC →=-1,∴|AB →|·|AC →|·cos 120°=-1, 即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.题型三 平面向量与三角函数例4 (2015·广东)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.(2015·怀化二模)已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sinα,5sin α-4cos α),α∈⎝ ⎛⎭⎪⎫3π2,2π,且OA →⊥OB →,则tan α的值为________. 答案 -43解析 由题意知6sin 2α+cos α·(5sin α-4cos α)=0,即6sin 2α+5sin αcos α-4cos 2α=0,上述等式两边同时除以cos 2α,得6tan 2α+5tan α-4=0,由于α∈⎝⎛⎭⎪⎫3π2,2π,则tan α<0,解得tan α=-43.6.向量夹角范围不清致误典例 (14分)若两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2所成的角为60°,若向量2t e 1+7e 2与向量e 1+t e 2所成的角为钝角,求实数t 的取值范围.易错分析 两个向量所成角的范围是[0,π],两个向量所成的角为钝角,容易误认为所成角π为钝角,导致所求的结果范围扩大. 规范解答解 设向量2t e 1+7e 2与向量e 1+t e 2的夹角为θ,由θ为钝角,知cos θ<0,故 (2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7<0,解得-7<t <-12.[5分] 再设向量2t e 1+7e 2与向量e 1+t e 2反向, 则2t e 1+7e 2=k (e 1+t e 2)(k <0),[8分]从而⎩⎪⎨⎪⎧2t =k ,7=tk ,且k <0,解得⎩⎪⎨⎪⎧t =-142,k =-14,即当t =-142时,两向量所成的角为π.[12分] 所以t 的取值范围是(-7,-142)∪(-142,-12).[14分] 温馨提醒 (1)两个非零向量的夹角范围为[0,π],解题时要注意挖掘题中隐含条件. (2)利用数量积的符号判断两向量的夹角取值范围时,应该注意向量夹角的取值范围,不要忽视两向量共线的情况.若a ·b <0,则〈a ,b 〉∈(π2,π];若a ·b >0,则〈a ,b 〉∈[0,π2).[方法与技巧]1.计算数量积的三种方法:定义法、坐标运算、数量积的几何意义,解题要灵活选用恰当的方法,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a |2=a 2,将模的运算转化为向量的数量积的运算. 3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧. [失误与防范]1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.两个向量的夹角为锐角,则有a ·b >0,反之不成立;两个向量夹角为钝角,则有a ·b <0,反之不成立.A 组 专项基础训练 (时间:40分钟)1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |=________. 答案 2 3解析 |a +b |2=|a |2+|b |2+2|a ||b |cos 60°=4+4+2×2×2×12=12,|a +b |=2 3.2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m =________.答案3解析 ∵a ·b =(1,3)·(3,m )=3+3m ,a ·b =12+32×32+m 2×cos π6,∴3+3m =12+32×32+m 2×cos π6,∴m = 3.3.设向量e 1,e 2是夹角为2π3的单位向量,若a =3e 1,b =e 1-e 2,则向量b 在a 方向上的投影为________. 答案 32解析 ∵向量e 1,e 2是夹角为2π3的单位向量,∴|e 1|=|e 2|=1,e 1·e 2=1×1×cos 2π3=-12.又|a |=|3e 1|=3,a·b =3e 1·(e 1-e 2)=3e 21-3e 1·e 2=3-3×⎝ ⎛⎭⎪⎫-12=92, ∴向量b 在a 方向上的投影为b·a |a |=923=32.4.如图,在△ABC 中,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →=________. 答案109解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝ ⎛⎭⎪⎫AC →+13CB →·⎝ ⎛⎭⎪⎫AB →+13BC →=⎝ ⎛⎭⎪⎫23AC→+13AB →·⎝ ⎛⎭⎪⎫13AC →+23AB →=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109. 5.△ABC 的外接圆圆心为O ,半径为2,OA →+AB →+AC →=0,且|OA →|=|AB →|,则CA →在CB →方向上的投影为________. 答案3解析 如图,设D 为BC 的中点,由OA →+AB →+AC →=0, 得AO →=2AD →,∴点A 、O 、D 共线且|AO →|=2|AD →|, 又O 为△ABC 的外心, ∴AO 为BC 的中垂线,∴|AC →|=|AB →|=|OA →|=2,|AD →|=1, ∴CA →与CB →的夹角为30°, ∴|CD →|=|CA →|cos 30°=3, ∴CA →在CB →方向上的投影为 3.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则PA →·(PB →+PC →)的值为________. 答案 -4解析 由题意得,AP =2,PM =1, 所以PA →·(PB →+PC →)=PA →·2PM → =2×2×1×cos 180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案 132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132. 8.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”“垂心”“内心”或“外心”).答案 垂心解析 ∵OA →·OB →=OB →·OC →,∴OB →·(OA →-OC →)=0,∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心.9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12, 又∵0≤θ≤π,∴θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin∠ABC =12×4×3×32=3 3. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ·n =-35. (1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35, 得cos(A -B )cos B -sin(A -B )sin B =-35, 所以cos A =-35. 因为0<A <π,所以sin A =1-cos 2 A = 1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得asin A =b sin B, 则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,则B =π4. 由余弦定理得(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35, 解得c =1,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22. B 组 专项能力提升(时间:20分钟)11.(2015·湖南改编)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|PA →+PB →+PC →|的最大值为________.答案 7解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,所以AC 为圆直径,故PA →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以PA →+PB →+PC →=(x -6,y ).故|PA →+PB →+PC →|=-12x +37,所以x =-1时有最大值49=7.12.在△ABC 中,A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ=________.答案 23解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB →2=4(λ-1)-λ=3λ-4=-2,即λ=23.13.如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在CD上,若AB →·AF →=2,则AE →·BF →的值是___________________________.答案 2解析 依题意得AE →·BF →=(AB →+BE →)·(AF →-AB →)=AB →·AF →-AB →2+BE →·AF →-BE →·AB →=2-2+1×2-0= 2.14.已知△ABC 中,BC →·CA →=CA →·AB →,|BA →+BC →|=2,且B ∈⎣⎢⎡⎦⎥⎤π3,2π3,则BA →·BC →的取值范围是____________.答案 ⎣⎢⎡⎦⎥⎤-2,23 解析 因为BC →·CA →=CA →·AB →,所以CA →·(BC →-AB →)=(BA →-BC →)·(BC →+BA →)=0,即BA →2=BC →2,可得AB =BC .由|BA →+BC →|=2,可得BA →2+2BA →·BC →+BC →2=4,设AB =BC =a ,则有2a 2+2a 2cos B=4⇒a 2=21+cos B .因为B ∈⎣⎢⎡⎦⎥⎤π3,2π3,可得cos B ∈⎣⎢⎡⎦⎥⎤-12,12,所以BA →·BC →=a 2cos B =2cos B 1+cos B =2-21+cos B ∈⎣⎢⎡⎦⎥⎤-2,23, 故答案为⎣⎢⎡⎦⎥⎤-2,23.15.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =2,向量m =(-1,1),n =⎝⎛⎭⎪⎫cos B cos C ,sin B sin C -22,且m⊥n . (1)求A ;(2)当sin B +cos ⎝ ⎛⎭⎪⎫7π12-C 取得最大值时,求B 和b . 解 (1)由m·n =-cos(B +C )-22=cos A -22=0,即cos A =22,又A ∈(0,π),得A =π4.(2)sin B +cos ⎝ ⎛⎭⎪⎫7π12-C =sin B +cos ⎝ ⎛⎭⎪⎫B -π6=32sin B +32cos B =3sin ⎝ ⎛⎭⎪⎫B +π6.又B ∈⎝ ⎛⎭⎪⎫0,3π4,所以当B =π3时,sin B +cos ⎝ ⎛⎭⎪⎫7π12-C 最大.由正弦定理b sin B =asin A ,得b =3,所以B =π3,b = 3.。
(旧教材适用)2023高考数学一轮总复习第五章平面向量第3讲平面向量的数量积及应用课件
m=-79, 联立①②,解得n=-73.
故选 D.
(2)(2022·陕西渭南模拟)已知向量A→B与A→C的夹角为 120°,且|A→B|=3,|A→C
→ →→ →→ |=2.若AP=λAB+AC,且AP⊥BC,则实数 λ 的值为
7 12
.
解析 因为A→P⊥B→C,所以A→P·B→C=0.又A→P=λA→B+A→C,B→C=A→C-A→B,
3.向量数量积的运算律 交换律 分配律
数乘结合律
a·b= □10 b·a (a+b)·c= □11 a·c+b·c (λa)·b=λ(a·b)= □12 a·(λb)
4.平面向量数量积的有关结论
已知非零向量 a=(x1,y1),b=(x2,y2),a 与 b 的夹角为 θ.
结论
几何表示
坐标表示
模
A. 5 B.3 5 C.4 5 D.2 5 答案 C
解析 由向量加法的平行四边形法则可知B→A+B→C=B→D,则原式=2|B→D |=2 42+22=4 5.故选 C.
(2)(2021·全国甲卷)若向量 a,b 满足|a|=3,|a-b|=5,a·b=1,则|b| = 32 .
解析 由|a-b|=5 得(a-b)2=25,即 a2-2a·b+b2=25,结合|a|=3,a·b =1,得 32-2×1+|b|2=25,所以|b|=3 2.
4.有关向量夹角的两个结论 (1)两个向量 a 与 b 的夹角为锐角,则有 a·b>0,反之不成立(因为 a 与 b 的夹角为 0 时也有 a·b>0). (2)两个向量 a 与 b 的夹角为钝角,则有 a·b<0,反之不成立(因为 a 与 b 的夹角为 π 时也有 a·b<0).
1.已知向量 a=(2,3),b=(3,2),则|a-b|=( ) A. 2 B.2 C.5 2 D.50 答案 A
新高考数学一轮复习:第5章 第3节 平面向量的数量积与平面向量应用举例
(对应学生用书第 94 ⻚)
1.向量的夹⻆
已知两个非零向量 a 和 b,作O→A=a,O→B=b,则∠ 夹⻆,向量夹⻆的范围是:[0,π].
2.平面向量的数量积
AOB 就是向量 a 与 b 的
设两个非零向量 a,b 的夹⻆为θ,则数量|a||b|·cos_θ叫做 a 与 b 的数量积, 定义
记作 a·b
4.已知向量 a=(1,m),b=(3,-2),且(a+b)⊥ b,则 m=________.
8 [∵ a=(1,m),b=(3,-2),
∴a+b=(4,m-2),由(a+b)⊥ b 可得
(a+b)·b=12-2m+4=16-2m=0,即 m=8.]
(对应学生用书第 95 ⻚) 考点 1 平面向量数量积的运算
4
4
=2 2.故A→D·A→C=A→D·(A→D+D→C)=|A→D|2+A→D·D→C=(2 2)2+2 2×2cos π=12. 4
法二:(坐标法)如图,建立平面直⻆坐标系 xAy. 依题意,可设点 D(m,m),
C(m+2,m),B(n,0),其中 m>0,n>0,则由A→B·A→C=
2A→B·A→D,得(n,0)·(m+2,m)=2(n,0)·(m,m),所以 n(m+2)=2nm,化简得 m=2.
影为________.
-2 [由数量积的定义知,b 在 a 方向上的投影为|b|cos θ=4×cos 120°=-2.]
3.已知|a|=2,|b|=6,a·b=-6 3,则 a 与 b 的夹⻆θ=________.
5π [cos θ= a·b =-6 3=- 3.
6
|a|·|b| 2×6
2
又因为 0≤θ≤π,所以θ=5π.] 6
近年高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例夯基提能作业本文(202
(北京专用)2019版高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例夯基提能作业本文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((北京专用)2019版高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例夯基提能作业本文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(北京专用)2019版高考数学一轮复习第五章平面向量第三节平面向量的数量积与平面向量应用举例夯基提能作业本文的全部内容。
第三节平面向量的数量积与平面向量应用举例A组基础题组1。
已知=(2,1),点C(—1,0),D(4,5),则向量在方向上的投影为( )A。
-B。
-3 C. D.32。
(2017北京东城二模)已知向量a=(1,2),b=(x,4),且a⊥b,那么x的值为( )A.—2 B。
-4 C.-8 D.-163.(2015北京通州一模)在正方形ABCD中,已知AB=3,E是CD的中点,则·等于( )A。
B。
6 C。
D。
4。
设向量a,b满足|a|=1,|a-b|=,a·(a—b)=0,则|2a+b|=( )A.2 B。
2C。
4 D.45。
(2018北京海淀期末)在△ABC中,AB=AC=1,D是AC边的中点,则·的取值范围是() A. B.C. D.6.(2017北京东城期末)△ABC的内角A,B,C所对的边分别为a,b,c,若a=5,b=7,c=8,则·等于。
7。
(2015北京朝阳一模)已知平面向量a,b满足|a|=|b|=1,a与b的夹角为60°,则a·(a+b)= .8.(2016北京西城二模)设平面向量a,b满足|a|=|b|=2,a·(a+b)=7,则向量a,b夹角的余弦值为.9。
高三数学一轮复习 第五章 平面向量 第三节 平面向量的数量积与平面向量应用举例夯基提能作业本 文-人
第三节平面向量的数量积与平面向量应用举例A组基础题组1.已知=(2,1),点C(-1,0),D(4,5),则向量在方向上的投影为( )A.-B.-3C.D.32.(2017某某某某期中)已知向量a=(1,m),b=(0,-2),且(a+b)⊥b,则m等于( )A.-2B.-1C.1D.23.(2017某某师大附中模拟)在直角三角形ABC中,角C为直角,且AC=BC=2,点P是斜边上的一个三等分点,则·+·=( )A.0B.4C.D.-4.设向量a,b满足|a|=1,|a-b|=,a·(a-b)=0,则|2a+b|=( )A.2B.2C.4D.45.(2016某某八校联考(二))已知向量a=(3,1),b=(1,3),c=(k,-2),若(a-c)∥b,则向量a与向量c的夹角的余弦值是( )A. B.C.- D.-6.设向量a=(m,1),b=(1,2),若|a+b|2=|a|2+|b|2,则m=.7.已知a=(λ,2λ),b=(3λ,2),如果a与b的夹角为锐角,则λ的取值X围是.8.如图,平行四边形ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且AM=AB,则·等于.9.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.(1)求a与b的夹角θ;(2)求|a+b|和|a-b|.10.在平面直角坐标系xOy中,已知向量m=,n=(sin x,cos x),x∈.(1)若m⊥n,求tan x的值;(2)若m与n的夹角为,求x的值.B组提升题组11.已知非零向量m,n满足4|m|=3|n|,cos<m,n>=.若n⊥(tm+n),则实数t的值为( )A.4B.-4C.D.-12.已知△ABC为等边三角形,AB=2,设点P,Q满足=λ,=(1-λ),λ∈R,若·=-,则λ=()A.B. C. D.13.若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则向量a+b与a-b的夹角为( )A.B. C. D.14.如图,菱形ABCD的边长为2,∠BAD=60°,M为DC的中点,若N为菱形内任意一点(含边界),则·的最大值为.15.已知在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(sin A,sin B),n=(cos B,cos A),m·n=sin 2C.(1)求角C的大小;(2)若sin A,sin C,sin B成等差数列,且·(-)=18,求c.16.已知向量a=,b=,实数k为大于零的常数,函数f(x)=a·b,x∈R,且函数f(x)的最大值为.(1)求k的值;(2)在△ABC中,a,b,c分别为内角A,B,C所对的边,若<A<π, f(A)=0,且a=2,求·的最小值.答案全解全析A组基础题组1.C 因为点C(-1,0),D(4,5),所以=(5,5),又=(2,1),所以向量在方向上的投影为||cos<,>===.2.D ∵a=(1,m),b=(0,-2),∴a+b=(1,m-2),又(a+b)⊥b,∴0×1-2(m-2)=0,即m=2.3.B 由题意不妨取=,则·+·=·(+)=(+)·(+)=·(+)=·(+)= ++·=×4+×4+0=4.故选B.4.B 由a·(a-b)=0,可得a·b=a2=1,由|a-b|=,可得(a-b)2=3,即a2-2a·b+b2=3,解得b2=4.故(2a+b)2=4a2+4a·b+b2=12,所以|2a+b|=2.5.A 由已知得a-c=(3-k,3),∵(a-c)∥b,∴3(3-k)-3=0,∴k=2,即c=(2,-2),∴cos<a,c>===.6.答案-2解析由|a+b|2=|a|2+|b|2得a·b=0,所以a⊥b,则m+2=0,所以m=-2.7.答案∪0,∪解析a与b的夹角为锐角,则a·b>0且a与b不共线,则解得λ<-或0<λ<或λ>,所以λ的取值X围是∪∪.8.答案 1解析因为=+=+,=+,所以·=·(+)=||2+||2+·=1+-·=-||·||·cos60°=-×1×2×=1.9.解析(1)由(2a-3b)·(2a+b)=4|a|2-4a·b-3|b|2=61及|a|=4,|b|=3得a·b=-6,∴cos θ===-.又θ∈[0,π],∴θ=.(2)|a+b|====.同理,|a-b|==.10.解析(1)∵m⊥n,∴m·n=0,故sin x-cos x=0,∴tan x=1.(2)∵m与n的夹角为,∴cos<m,n>===,故sin=.又x∈,∴x-∈,则x-=,即x=,故x的值为.B组提升题组11.B 因为n⊥(tm+n),所以tm·n+n2=0,所以m·n=-,又4|m|=3|n|,所以cos<m,n>===-=,所以t=-4.故选B.12.A 解法一:=-=(1-λ)-,=-=λ-.∵||=||=2,<,>=60°,∴·=||·||·cos 60°=2,又·=-,∴[(1-λ)-]·(λ-)=-,即λ||2+(λ2-λ-1)·+(1-λ)·||2=,所以4λ+2(λ2-λ-1)+4(1-λ)=,解得λ=.解法二:以点A为坐标原点,AB所在的直线为x轴,过点A且垂直于AB的直线为y轴,建立平面直角坐标系,则A(0,0),B(2,0),C(1,),∴=(2,0),=(1,),∴P(2λ,0),Q(1-λ,(1-λ)),∵·=-,∴(-1-λ,(1-λ))·(2λ-1,-)=-,化简得4λ2-4λ+1=0,∴λ=.13.D 由|a+b|=|a-b|可知a⊥b,设=b,=a,如图,作矩形ABCD,连接AC,BD,可知=a+b,=a-b,设AC与BD的交点为O,结合题意可知OA=OD=AD,∴∠AOD=,∴∠DOC=,又向量a+b与a-b的夹角为与的夹角,故所求夹角为,选D.14.答案9解析由平面向量的数量积的几何意义知,·等于与在方向上的投影之积,所以(·)max=·=·(+)=++·=9.15.解析(1)m·n=sin A·cos B+sin B·cos A=sin(A+B),在△ABC中,A+B=π-C,0<C<π,∴sin(A+B)=sin C,∴m·n=sin C,又m·n=sin 2C,∴sin 2C=sin C,∴cos C=,则C=.(2)由sin A,sin C,sin B成等差数列,可得2sin C=sin A+sin B,由正弦定理得2c=a+b.∵·(-)=18,∴·=18,即abcos C=18,ab=36.由余弦弦定理得c2=a2+b2-2abcos C=(a+b)2-3ab,∴c2=4c2-3×36,c2=36,∴c=6.16.解析(1)由题意知,f(x)=a·b=·=ksin·cos-kcos2=ksin-k·=-=sin-cos-=sin-.因为x∈R,所以f(x)的最大值为=,则k=1.(2)由(1)知, f(x)=sin-,所以f(A)=sin-=0,化简得sin=,因为<A<π,所以<-<,则-=,解得A=.因为cos A=-==,所以b2+c2+bc=40,则b2+c2+bc=40≥2bc+bc(当且仅当b=c时取等号), 所以bc≤=20(2-).则·=||||cos=-bc≥20(1-),所以·的最小值为20(1-).。
2023年高考数学一轮复习第五章平面向量与复数3平面向量的数量积练习含解析
平面向量的数量积考试要求 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与投影向量的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积,记作a ·b .3.平面向量数量积的几何意义设a ,b 是两个非零向量,它们的夹角是θ,e 与b 是方向相同的单位向量,AB →=a ,CD →=b ,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1—→,我们称上述变换为向量a 向向量b 投影,A 1B 1—→叫做向量a 在向量b 上的投影向量.记为|a |cos θe . 4.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c . 5.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.几何表示 坐标表示数量积 a·b =|a ||b |cos θa·b =x 1x 2+y 1y 2模|a |=a ·a|a |=x 21+y 21夹角cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0 a∥b 的充要条件a =λb (λ∈R )x 1y 2-x 2y 1=0|a ·b |与|a ||b |的关系|a ·b |≤|a ||b | (当且仅当a ∥b 时等号成立)|x 1x 2+y 1y 2|≤x 21+y 21x 22+y 22常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( × )(2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a ·b )·c =a ·(b ·c ).( × ) 教材改编题1.(多选)(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( ) A .0·a =0B .a ·b =b ·c ,则a =cC .a ·b =0⇒a ⊥bD .(a +b )·(a -b )=|a |2-|b |2答案 CD2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________.9解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0,故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =_________;a ·b =________. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0,a ·b =2×2+1×(-1)=3.(2)(2022·广州模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →| =4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.答案 -2 解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3,3则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝ ⎛⎭⎪⎫AD →+14AB →·⎝ ⎛⎭⎪⎫34AB →-AD →=12AB →·AD →-AD →2+316AB →2=12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3B .-2C .2D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+t -32=1,解得t =3, 所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos∠DBM =|BM →|2=1.思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________. 答案 -92解析 由已知可得(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=____________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°,所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144 =108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=1,3·3,432+42=1525=35. 教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e 1,e 2是两个单位向量,且|e 1+e 2|=3,则|e 1-e 2|=________. 答案 1解析 由|e 1+e 2|=3,两边平方, 得e 21+2e 1·e 2+e 22=3.又e 1,e 2是单位向量, 所以2e 1·e 2=1,所以|e 1-e 2|2=e 21-2e 1·e 2+e 22=1, 所以|e 1-e 2|=1.思维升华 (1)求平面向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解. (2)求平面向量的夹角的方法①定义法:cos θ=a·b|a ||b |,求解时应求出a ·b ,|a |,|b |的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |(其中a ≠0,b ≠0).跟踪训练2 (1)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉等于( ) A.73B.23C.79D.29答案 B解析 方法一 设a =(1,0),b =(0,1),则c =(7,2),∴cos〈a ,c 〉=a ·c |a ||c |=73,∴sin〈a ,c 〉=23. 方法二 a ·c =a ·(7a +2b ) =7a 2+2a ·b =7, |c |=7a +2b2=7a 2+2b 2+214a ·b =7+2=3,∴cos〈a ,c 〉=a ·c |a ||c |=71×3=73,∴sin〈a ,c 〉=23. (2)(多选)(2021·新高考全国Ⅰ)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( ) A .|OP 1—→|=|OP 2—→| B .|AP 1—→|=|AP 2—→| C.OA →·OP 3—→=OP 1—→·OP 2—→ D.OA →·OP 1—→=OP 2—→·OP 3—→ 答案 AC解析 由题意可知,|OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+-sin β2=1,所以|OP 1—→|=|OP 2—→|,故A 正确; 取α=π4,则P 1⎝ ⎛⎭⎪⎫22,22,取β=5π4,则P 2⎝ ⎛⎭⎪⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故B 错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β),所以OA →·OP 3—→=OP 1—→·OP 2—→,故C 正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA —→·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故D 错误. 题型三 平面向量的实际应用例5 (多选)(2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 ACD解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |221+cos θ.当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求:(1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2=12+2×1×6+22cos45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ, 则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+1+32+2×1×1+3cos θ,解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+1+32-⎝ ⎛⎭⎪⎫6+2222×1×1+3=32,∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A 出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10km/h ,水流速度的大小为|ν2|=6km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[]a +b2-a -b2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b ,则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线,则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则PA →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,PA →·PB →有最小值,即PA →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1B .2C.2D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c ,M 为AB 的中点,由极化恒等式有(a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°, 故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2=12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·石家庄模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·沈阳模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2, 所以|a -b |=|a -b |2=|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=a -b ·b|a -b ||b |=-|b |2233|b |·|b |=-32, 因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎪⎫255,-55或⎝ ⎛⎭⎪⎫-255,55B.⎝ ⎛⎭⎪⎫-255,-55或⎝ ⎛⎭⎪⎫255,55C.⎝⎛⎭⎪⎫255,55 D.⎝ ⎛⎭⎪⎫-255,55答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b62+-32=±⎝ ⎛⎭⎪⎫255,-55.5.(多选)(2022·盐城模拟)下列关于向量a ,b ,c 的运算,一定成立的有( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c ) C .a ·b ≤|a |·|b | D .|a -b |≤|a |+|b | 答案 ACD解析 根据数量积的分配律可知A 正确;选项B 中,左边为c 的共线向量,右边为a 的共线向量,故B 不正确; 根据数量积的定义,可知a ·b =|a ||b |cos 〈a ,b 〉≤|a |·|b |,故C 正确;|a -b |2=|a |2+|b |2-2a ·b =|a |2+|b |2-2|a ||b |·cos〈a ,b 〉≤|a |2+|b |2+2|a ||b |=(|a |+|b |)2,故|a -b |≤|a |+|b |,故D 正确.6.(多选)已知向量a =(2,1),b =(1,-1),c =(m -2,-n ),其中m ,n 均为正数,且(a -b )∥c ,则下列说法正确的是( ) A .a 与b 的夹角为钝角 B .向量a 在b 上的投影向量为22b C .2m +n =4 D .mn 的最大值为2 答案 CD解析 对于A ,向量a =(2,1),b =(1,-1), 则a·b =2-1=1>0, 又a ,b 不共线,所以a ,b 的夹角为锐角,故A 错误; 对于B ,向量a 在b 上的投影向量为a·b |b |·b |b |=12b ,B 错误;对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝ ⎛⎭⎪⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,D 正确.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方,得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=a -b2=a 2-2a ·b +b 2=1--1+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b , 所以AD →=12a +12b .(2)AB →·AD →=a ·⎝ ⎛⎭⎪⎫12a +12b=12a 2+12a·b =12×32+12×3×2×cos60°=6, 所以AB →·AD →=6.10.(2022·湛江模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n .(1)求函数f (x )的单调递增区间;(2)在Rt△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m·n =3sin x ·cos x +cos 2x -1 =32sin2x +12cos2x -12=sin ⎝⎛⎭⎪⎫2x +π6-12.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).(2)f (C )=sin ⎝ ⎛⎭⎪⎫2C +π6-12=0,sin ⎝ ⎛⎭⎪⎫2C +π6=12,又C ∈⎝ ⎛⎭⎪⎫0,π2,所以C =π3.在△ACD 中,CD =233,在△BCE 中,BE =22+⎝⎛⎭⎪⎫332-2×2×33×32=213.11.(2022·黄冈质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( ) A .12 B .-12 C .20 D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD → =AD →·BD →+DC →·BD →=|AD →||BD →|cos∠BDA -|DC →||BD →|cos∠BDC =|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰三角形D .三边均不相等的三角形 答案 A解析 AB→|AB →|,AC→|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC→|AC →|所在的直线为∠BAC 的平分线.因为⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, 所以∠BAC 的平分线垂直于BC , 所以AB =AC .又AB→|AB →|·AC→|AC →|=⎪⎪⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪⎪⎪AC →|AC →|·cos∠BAC =12, 所以cos∠BAC =12,∠BAC =60°.所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=102N ,则物体的重力大小为________N.答案 20解析 如图所示,∵|F 1|=|F 2|=102N , ∴|F 1+F 2|=102×2=20N , ∴物体的重力大小为20N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB 于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________. 答案 11120解析 设BE =x ,x ∈⎝ ⎛⎭⎪⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB , ∴∠BDE =30°,BD =2x ,DE =3x ,DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos0°+(1-2x )2=1, ∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝ ⎛⎭⎪⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.(多选)定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( ) A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≤|a |+1 答案 AD解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 正确.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n = (cos B ,cos A ),m ·n =sin2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c . 解 (1)m ·n =sin A cos B +sin B cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C , 所以m·n =sin C , 又m·n =sin2C ,所以sin2C =sin C ,cos C =12,又因为C ∈(0,π),故C =π3. (2)由sin A ,sin C ,sin B 成等差数列, 可得2sin C =sin A +sin B , 由正弦定理得2c =a +b .21 因为CA →·(AB →-AC →)=18, 所以CA →·CB →=18,即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。
高考数学一轮复习 第5章 平面向量与复数5.3平面向量的数量积及其应用练习(含解析)苏教版
课时作业25 平面向量的数量积及其应用一、填空题1.已知非零向量a ,b ,若|a |=|b |=1,且a ⊥b ,又知(2a +3b )⊥(k a -4b ),则实数k 的值为__________.2.已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b |的最大值是__________. 3.已知△ABC 中,AB u u u r =a ,AC u u u r =b ,a ·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC =__________.4.设向量a ,b 满足|a |=1,|a -b |=3,a ·(a -b )=0,则|2a +b |=__________.5.(2013届江苏徐州高三质检)如图,在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,CA =CB =2,若AB →·AE →+AC →·AF →=2,则EF →与BC →的夹角=__________.6.O 是平面α上一点,A ,B ,C 是平面α上不共线的三点,平面α内的动点P 满足OP →=OA →+λ(AB →+AC →),若λ=12,则PA →·(PB →+PC →)的值为__________. 7.(2012天津高考改编)已知△ABC 为等边三角形,AB =2.设点P ,Q 满足AP →=λAB →,AQ→=(1-λ)AC →,λ∈R .若BQ →·CP →=-32,则λ=__________. 8.平面向量OA →=(1,7),OB →=(5,1),OP →=(2,1),点M 为直线OP 上一动点,当MA →·MB →取最小值时,OM →的坐标为__________.9.设向量a 与b 的夹角为θ,定义a 与b 的“向量积”:a ×b 是一个向量,它的模|a ×b |=|a |·|b |·sin θ,若a =(-3,-1),b =(1,3),则|a ×b |=__________.二、解答题10.已知向量a =(1,2),b =(-2,m ),x =a +(t 2+1)b ,y =-k a +1tb ,m ∈R ,k ,t 为正实数.(1)若a ∥b ,求m ;(2)若a ⊥b ,求m ;(3)当m =1时,若x ⊥y ,求k 的最小值.11.(2012江苏徐州质检)已知向量a =(4,5cos α),b =(3,-4tan α),α∈⎝⎛⎭⎪⎫0,π2,a ⊥b ,求:(1)|a +b |;(2)cos ⎝⎛⎭⎪⎫α+π4的值. 12.(2012江苏南通启东中学高三期中考试)平面直角坐标系xOy 中,已知向量AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3),且AD →∥BC →.(1)求x 与y 之间的关系式;(2)若AC →⊥BD →,求四边形ABCD 的面积.参考答案一、填空题1.6 解析:由(2a +3b )·(k a -4b )=0,得2k -12=0,∴k =6.2.4 解析:|2a -b |=8+4sin θ-43cos θ=8+8sin(θ-60°), ∵θ∈ [0,180°],∴θ=150°时取最大值4.3.150° 解析:S △ABC =12|a ||b |sin∠BAC =154, ∴sin∠BAC =12. 又a ·b <0,∴∠BAC 为钝角.∴∠BAC =150°.4.2 3 解析:∵a ·(a -b )=0且|a |=1,∴a ·b =|a |2=1.∵|a -b |=3,即(a -b )2=3,a 2+b 2-2a ·b =3,从而b 2=4.故|2a +b |=(2a +b )2=4a 2+b 2+4ab =12=2 3. 5.π3 解析:AB u u u r ·AE u u u r +AC u u u r ·AF u u u r =AB u u u r ·(AB u u u r +BE u u u r )+AC u u u r ·(AB u u u r +BF u u u r )=1+AB u u u r ·BE u u u r +AC u u u r ·AB u u u r +AC u u u r ·BF u u u r .EF BC u u u r u u u r 与的夹角即为BF u u u r 与BC uuu r 的夹角. ∵BE u u u r =-BF u u u r , ∴AB AE AC AF +u u u r u u u r u u u r u u u r g g =1+(AC u u u r -AB u u u r )·BF u u u r +AC u u u r ·AB u u u r =1+BC uuu r ·BF u u u r +AC u u u r ·AB u u u r =2.而在等腰△ABC 中,作底边的高CD ,则在R t △ACD 中,由已知边长可得cos∠CAB =122=14. 设EF u u u r 与BC uuu r 的夹角为α, ∴1+|BC uuu r ||BF u u u r |cos α+|AC u u u r ||AB u u u r |cos∠CAB =2,从而cos α=12. 又0≤α<π,∴α=π3. 6.0 解析:由已知得OP uuu r -OA u u u r =λ(AB u u u r +AC u u u r ),即AP u u u r =λ(AB u u u r +AC u u u r ), 当λ=12时,AP u u u r =12(AB u u u r +AC u u u r ), ∴2AP u u u r =AB u u u r +AC u u u r , 即AP u u u r -AB u u u r =AC u u u r -AP u u u r ,∴BP u u u r =PC uuu r , ∴PB u u u r +PC uuu r =PB u u u r +BP u u u r =0, ∴PA u u u r ·(PB u u u r +PC uuu r )=PA u u u r ·0=0.7.12 解析:设AB u u u r =a ,AC u u u r =b ,则|a |=|b |=2,且〈a ,b 〉=π3. BQ uuu r =AQ uuu r -AB u u u r =(1-λ)b -a , CP u u u r =AP u u u r -AC u u u r =λa -b . BQ uuu r ·CP u u u r =[(1-λ)b -a ]·(λa -b )=[λ(1-λ)+1]a ·b -λa 2-(1-λ)b 2=(λ-λ2+1)×2-4λ-4(1-λ)=-2λ2+2λ-2=-32. 即(2λ-1)2=0,∴λ=12. 8.(4,2) 解析:M 在OP 上,则存在λ∈R 使OM u u u u r =λOP uuu r ,所以OM u u u u r =(2λ,λ). MA u u u r =OA u u u r -OM u u u u r =(1-2λ,7-λ),MB u u u r =OB uuu r -OM u u u u r =(5-2λ,1-λ). 所以MA u u u r ·MB u u u r =(1-2λ)(5-2λ)+(7-λ)(1-λ)=5λ2-20λ+12=5(λ-2)2-8. 所以当λ=2时,MA u u u r ·MB u u u r 有最小值-8, 此时OM u u u u r =(4,2).9.2 解析:∵|a |=|b |=2,a ·b =-23,∴cos θ=-232×2=-32. 又θ∈ [0,π],∴sin θ=12. ∴|a ×b |=2×2×12=2. 二、解答题10.解:(1)∵a ∥b ,∴1×m -(-2)×2=0.∴m =-4.(2)∵a ⊥b ,∴a ·b =0,即1×(-2)+2m =0.∴m =1.(3)当m =1时,a ·b =0.∵x⊥y ,∴x·y =0.则x·y =-k a 2+1t a ·b -k (t 2+1)a ·b +⎝ ⎛⎭⎪⎫t +1t b 2=0. ∵t >0,∴k =t +1t≥2,当t =1时取等号. ∴k 的最小值为2.11.解:(1)因为a ⊥b ,所以4×3+5cos α×(-4ta n α)=0.解得sin α=35, 又因为α∈⎝ ⎛⎭⎪⎫0,π2, 所以cos α=45,ta n α=sin αcos α=34. 所以a +b =(7,1),因此|a +b |=72+12=5 2.(2)cos ⎝ ⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=45×22-35×22=210. 12.解:(1)由题意得AD u u u r =AB u u u r +BC uuu r +CD uuu r =(x +4,y -2),BC uuu r =(x ,y ). 因为AD u u u r ∥BC uuu r ,所以(x +4)y -(y -2)x =0,即x +2y =0.① (2)由题意得AC u u u r =AB u u u r +BC uuu r =(x +6,y +1),BD u u u r =BC uuu r +CD uuu r =(x -2,y -3). 因为AC u u u r ⊥BD u u u r ,所以(x +6)(x -2)+(y +1)(y -3)=0,即x 2+y 2+4x -2y -15=0.②由①②得2,1,x y =⎧⎨=-⎩或6,3.x y =-⎧⎨=⎩当2,1x y =⎧⎨=-⎩时,AC u u u r =(8,0),BD u u u r =(0,-4),则S 四边形ABCD =12|AC u u u r ||BD u u u r |=16; 当6,3x y =-⎧⎨=⎩时,AC u u u r =(0,4),BD u u u r =(-8,0),则S 四边形ABCD =12|AC u u u r ||BD u u u r |=16. 所以,四边形ABCD 的面积为16.。
高考数学一轮复习 第5章 平面向量 第3节 平面向量的数量积及应用举例课时跟踪检测 理 新人教A版-
第三节 平面向量的数量积及应用举例A 级·基础过关 |固根基|1.已知两个非零向量a 与b 的夹角为θ,则“a ·b >0”是“θ为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由a ·b >0,可得到θ∈⎣⎢⎡⎭⎪⎫0,π2,不能得到θ∈⎝ ⎛⎭⎪⎫0,π2;而由θ∈⎝⎛⎭⎪⎫0,π2,可以得到a ·b >0.故选B .2.(2019届某某一中高三入学测试)已知向量a ,b 均为单位向量,若它们的夹角为60°,则|a +3b |等于( )A .7B .10C .13D .4解析:选C 依题意得a ·b =12,∴|a +3b |=a 2+9b 2+6a ·b =13,故选C .3.(2019届某某模拟)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m+n ),则实数t 的值为( )A .4B .-4C .94D .-94解析:选B 由n ⊥(t m +n )可得n ·(t m +n )=0,即t m ·n +n 2=0,所以t =-n 2m ·n=-n 2|m ||n |cos 〈m ,n 〉=-|n |2|m ||n |×13=-3|n ||m |.又4|m |=3|n |,∴t =-3×43=-4.故选B .4.(2019届东北联考)已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为( )A .3π4B .π4C .π3D .2π3解析:选C 因为(a +2b )·(5a -4b )=0,|a |=|b |=1, 所以6a ·b -8+5=0,即a ·b =12.又a ·b =|a ||b |cos θ=cos θ,所以cos θ=12.因为θ∈[0,π],所以θ=π3.故选C .5.(2019届某某模拟)在△ABC 中,AB =4,AC =3,AC →·BC →=1,则BC =( ) A . 3 B . 2 C .2D .3解析:选D 设∠A =θ, 因为BC →=AC →-AB →,AB =4,AC =3,所以AC →·BC →=AC →·(AC →-AB →)=AC →2-AC →·AB →=9-AC →·AB →=1,即AC →·AB →=8,所以cos θ=AC →·AB→|AC →||AB →|=83×4=23,所以BC =16+9-2×4×3×23=3.故选D .6.已知向量a ,b 满足|a |=1,(a +b )·(a -2b )=0,则|b |的取值X 围为( ) A .[1,2]B .[2,4]C .⎣⎢⎡⎦⎥⎤14,12 D .⎣⎢⎡⎦⎥⎤12,1 解析:选D 由题意知b ≠0,设向量a ,b 的夹角为θ,因为(a +b )·(a -2b )=a 2-a ·b -2b 2=0,又|a |=1,所以1-|b |cos θ-2|b |2=0,所以|b |cos θ=1-2|b |2.因为-1≤cos θ≤1,所以-|b |≤1-2|b |2≤|b |,所以12≤|b |≤1,所以|b |的取值X 围是⎣⎢⎡⎦⎥⎤12,1.故选D .7.(2020届某某调研)在Rt △ABC 中,∠C =π2,AC =3,取点D ,E ,使BD →=2DA →,AB →=3BE →,那么CD →·CA →+CE →·CA →=( )A .-6B .6C .-3D .3解析:选D 由BD →=2DA →,得CD →-CB →=2(CA →-CD →),得CD →=23CA →+13CB →.由AB →=3BE →,得CB →-CA→=3(CE →-CB →),得CE →=-13CA →+43CB →.因为∠C =π2,即CA →⊥CB →,所以CA →·CB →=0.所以CD →·CA →+CE →·CA →=⎝ ⎛⎭⎪⎫23CA →+13CB →·CA →+⎝ ⎛⎭⎪⎫-13CA →+43CB →·CA →=23CA →2-13CA →2=3,故选D .8.如图,BC ,DE 是半径为1的圆O 的两条直径,BF →=2FO →,则FD →·FE →的值是( )A .-34B .-89C .-14D .-49解析:选B 因为BF →=2FO →,r =1,所以|FO →|=13,所以FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO→2+FO →·(OE →+OD →)+OD →·OE →=⎝ ⎛⎭⎪⎫132+0-1=-89,故选B .9.(2019届某某市摸底联考)已知O 是△ABC 内一点,OA →+OB →+OC →=0,AB →·AC →=2且∠BAC=60°,则△OBC 的面积为( )A .33 B . 3 C .32D .23解析:选A ∵OA →+OB →+OC →=0,∴O 是△ABC 的重心,∴S △OBC =13S △ABC .∵AB →·AC →=2,∴|AB→|·|AC →|·cos ∠BAC =2.又∠BAC =60°,∴|AB →|·|AC →|=4,∴S △ABC =12|AB →|·|AC →|sin ∠BAC=3,∴△OBC 的面积为33,故选A . 10.(2020届某某摸底)已知a ,b 均为单位向量,若|a -2b |=3,则a 与b 的夹角为________.解析:由|a -2b |=3,得|a -2b |2=3,即a 2-4a ·b +4b 2=3,即1-4a ·b +4=3,所以a ·b =12,所以cos 〈a ,b 〉=a ·b |a |·|b |=12,所以〈a ,b 〉=π3.答案:π311.(2019届某某摸底调研)已知动直线l 与圆O :x 2+y 2=4相交于A ,B 两点,且|AB |=2,点C 为直线l 上一点,且满足CB →=52CA →,若M 是线段AB 的中点,则OC →·OM →的值为________.解析:解法一:动直线l 与圆O :x 2+y 2=4相交于A ,B 两点,连接OA ,OB ,因为|AB |=2,所以△AOB 为等边三角形,于是不妨设动直线l为y =3(x +2),如图所示,根据题意可得B (-2,0),A (-1,3),因为M 是线段AB 的中点,所以M ⎝ ⎛⎭⎪⎫-32,32.设C (x ,y ),因为CB →=52CA →,所以(-2-x ,-y )=52(-1-x ,3-y ),所以⎩⎪⎨⎪⎧-2-x =52(-1-x ),-y =52(3-y ),解得⎩⎪⎨⎪⎧x =-13,y =533,所以C ⎝ ⎛⎭⎪⎫-13,533,所以OC →·OM →=⎝ ⎛⎭⎪⎫-13,533·⎝ ⎛⎭⎪⎫-32,32=12+52=3.解法二:连接OA ,OB ,因为直线l 与圆O :x 2+y 2=4相交于A ,B 两点,|AB |=2,所以△AOB 为等边三角形.因为CB →=52CA →,所以OC →=OA →+AC →=OA →+23BA →=OA →+23OA →-23OB →=53OA →-23OB →.又M 为AB 的中点,所以OM →=12OA →+12OB →,且OA →与OB →的夹角为60°,则OC →·OM →=⎝ ⎛⎭⎪⎫53OA→-23OB →·⎝ ⎛⎭⎪⎫12OA →+12OB →=56OA →2-13OB →2+12|OA →||OB →|cos 60°=56×4-13×4+12×2×2×12=3. 答案:312.如图,已知O 为坐标原点,向量OA →=(3cos x ,3sin x ),OB →=(3cosx ,sin x ),OC →=(3,0),x ∈⎝⎛⎭⎪⎫0,π2.(1)求证:(OA →-OB →)⊥OC →;(2)若△ABC 是等腰三角形,求x 的值. 解:(1)证明:∵OA →-OB →=(0,2sin x ), ∴(OA →-OB →)·OC →=0×3+2sin x ×0=0, ∴(OA →-OB →)⊥OC →.(2)若△ABC 是等腰三角形,则AB =BC , ∴(2sin x )2=(3cos x -3)2+sin 2x , 整理得2cos 2x -3cos x =0, 解得cos x =0,或cos x =32. ∵x ∈⎝⎛⎭⎪⎫0,π2,∴cos x =32,即x =π6.B 级·素养提升 |练能力|13.(2019届某某市第一次联考)已知点O 是锐角三角形ABC 的外心,若OC →=mOA →+nOB →(m ,n ∈R ),则( )A .m +n ≤-2B .-2≤m +n <-1C .m +n <-1D .-1<m +n <0解析:选C 因为点O 是锐角三角形ABC 的外心,所以O 在三角形内部,则m <0,n <0.不妨设锐角三角形ABC 的外接圆的半径为1,因为OC →=mOA →+nOB →,所以OC →2=m 2OA →2+n 2OB →2+2mnOA →·OB →.设向量OA →,OB →的夹角为θ,则1=m 2+n 2+2mn cos θ<m 2+n 2+2mn =(m +n )2,所以m +n <-1或m +n >1(舍去),所以m +n <-1,故选C .14.已知点P 是圆x 2+y 2=4上的动点,点A ,B ,C 在以坐标原点O 为圆心的单位圆上运动,且AB →·BC →=0,则|PA →+PB →+PC →|的最大值为( )A .5B .6C .7D .8解析:选C 由A ,B ,C 三点在圆x 2+y 2=1上,且AB →·BC →=0,得AC 是该圆的直径.设PO →,OB →的夹角为θ,θ∈[0,π],则|PA →+PB →+PC →|=|2PO →+PB →|=|3PO →+OB →|=(3PO →+OB →)2=9|PO →|2+|OB →|2+6PO →·OB →=36+1+12cos θ=37+12cos θ,当θ=0时,|PA →+PB →+PC →|取得最大值7,故选C .15.在Rt △ABC 中,∠BCA =90°,CA =CB =1,P 是AB 边上的点,AP →=λAB →,若CP →·AB →≥PA →·PB →,则实数λ的最大值是( )A .1B .2-22C .22D .2+22解析:选A 以点C 为坐标原点,CA →,CB →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则C (0,0),A (1,0),B (0,1),所以AB →=(-1,1).因为点P 在线段AB 上,AP →=λAB →,所以AP →=(-λ,λ),所以P (1-λ,λ),所以CP →=(1-λ,λ),PB →=(λ-1,1-λ),λ∈[0,1].因为CP →·AB →≥PA →·PB →,所以(1-λ,λ)·(-1,1)≥(λ,-λ)·(λ-1,1-λ),化简得2λ2-4λ+1≤0,解得2-22≤λ≤2+22.因为λ∈[0,1],所以2-22≤λ≤1,所以λ的最大值是1.故选A .16.如图,在平行四边形ABCD 中,|AD →|=2,向量AD →在AB →方向上的投影为1,且BD →·DC →=0,点P 在线段CD 上,则PA →·PB →的取值X 围为________.解析:解法一:由题意知∠DAB =45°,且|AB →|=1,设|PD →|=x ,则0≤x ≤1,因为AP →=AD →+DP →,BP →=BC →+CP →=AD →+CP →,所以PA →·PB →=(-AD →-DP →)·(-AD →-CP →)=AD →2+AD →·CP →+AD →·DP →+DP →·CP →=2+2(1-x )cos 135°+2x cos 45°-x (1-x )=x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34∈[1,3].解法二:由题意可知,DB ⊥AB ,以B 为坐标原点,AB 及BD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系.由题意知B (0,0),A (-1,0),设P (x ,1),其中0≤x ≤1,则PA →·PB →=(-1-x ,-1)·(-x ,-1)=x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34∈[1,3].答案:[1,3]17.已知△ABC 的面积为24,点D ,E 分别在边BC ,AC 上,且满足CE →=3EA →,CD →=2DB →,连接AD ,BE 交于点F ,则△ABF 的面积为________.解析:解法一:如图,连接CF ,由于B ,F ,E 三点共线,因而可设CF →=λCB →+(1-λ)CE →.∵CE →=3EA →,CD =2DB →,∴CF →=32λCD →+34(1-λ)CA →.又A ,F ,D 三点共线,∴32λ+34(1-λ)=1,解得λ=13,∴CF →=13CB →+23CE →=13CB →+12CA →.∵AF→=CF →-CA →=13CB →-12CA →,FD →=CD →-CF →=13CB →-12CA →,∴F 为AD 的中点,因而S △ABF =12S △ABD =16S △ABC=4.解法二:如图,过D 作AC 的平行线,交BE 于H ,则由已知CD →=2DB →,得DH ═∥13CE ,又CE →=3EA →,因而DH ═∥EA ,△AEF ≌△DHF ,则F 为AD 的中点,因而S △ABF =12S △ABD =16S △ABC =4. 答案:4。
高考数学一轮复习第5章平面向量第3讲平面向量的数量积及应用课件文
12/11/2021
第二十四页,共三十八页。
(2)①因为 m=(cos B,cos C),n=(c,b-2a),m·n=0, 所以 ccosB+(b-2a)cos C=0,在△ABC 中,由正弦定理得 sin Ccos B+(sin B-2sin A)cos C=0, sin A=2sin Acos C,又 sin A≠0, 所以 cos C=12,而 C∈(0,π),所以 C=π3. ②由A→D=D→B知,C→D-C→A=C→B-C→D,
12/11/2021
第二十一页,共三十八页。
考点三 平面向量数量积的综合应用
(1)已知 x,y 满足yx≥+xy, ≤2,若O→A=(x,1),O→B=(2, x≥a,
y),且O→A·O→B的最大值是最小值的 8 倍,则实数 a 的值是
(D.81
12/11/2021
第二十二页,共三十八页。
12/11/2021
第八页,共三十八页。
(必修 4 P113A 组 T4 改编)平面上三个力 F1,F2,F3 作用于 一点且处于平衡状态,已知|F1|=1 N,|F2|= 2 N,F1 与 F2 的夹角为 45°,则 F3 的大小为________. 解析:根据物理中力的平衡原理有 F3+F1+F2=0, 所以|F3|2=|F1|2+|F2|2+2F1·F2 =12+( 2)2+2×1× 2×cos 45°=5. 所以|F3|= 5 N. 答案: 5 N
第五章 平面(píngmiàn)向量
第3讲 平面向量(xiàngliàng)的数量积及应用
12/11/2021
第一页,共三十八页。
1.平面向量的数量积 已知两个非零向量 a 与 b,它们的夹角为 θ,则数量|a||b|cos θ 叫做 a 与 b 的数量积(或内积),记作_a_·b_=___|a_||_b_|c_o_s_θ_____. 规定:零向量与任一向量的数量积为 0. 2.平面向量数量积的几何意义 数量积 a·b 等于 a 的长度|a|与 b 在 a 的方向上的投影_|b_|_c_o_s_θ___ 的乘积.
高考数学一轮复习第五章平面向量第3讲平面向量的数量
第3讲 平面向量的数量积一、选择题1.若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( ) A .4 B .3 C .2D .0解析 由a ∥b 及a ⊥c ,得b ⊥c , 则c ·(a +2b )=c ·a +2c ·b =0. 答案 D2.若向量a 与b 不共线,a ·b ≠0,且c =a -⎝⎛⎭⎪⎫a ·a a ·b b ,则向量a 与c 的夹角为( )A .0 B.π6 C.π3 D.π2解析 ∵a·c =a·⎣⎢⎡⎦⎥⎤a -⎝⎛⎭⎪⎫a·a a·b b=a·a -⎝ ⎛⎭⎪⎫a 2a·b a·b =a 2-a 2=0,又a ≠0,c ≠0,∴a⊥c ,∴〈a ,c 〉=π2,故选D.答案 D3.若向量a ,b ,c 满足a ∥b ,且a ⊥c ,则c ·(a +2b )= ( ). A .4B .3C .2D .0解析 由a ∥b 及a ⊥c ,得b ⊥c ,则c ·(a +2b )=c ·a +2c ·b =0. 答案 D4.已知△ABC 为等边三角形,AB =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-32,则λ等于( ).A.12B.1±22C.1±102D.-3±222解析 以点A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,则B (2,0),C (1,3),由AP →=λAB →,得P (2λ,0),由AQ →=(1-λ)AC →,得Q (1-λ,3(1-λ)),所以BQ →·CP →=(-λ-1,3(1-λ))·(2λ-1,-3)=-(λ+1)(2λ-1)-3×3(1-λ)=-32,解得λ=12.] 答案 A5.若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( ). A.2-1B .1C. 2D .2解析 由已知条件,向量a ,b ,c 都是单位向量可以求出,a 2=1,b 2=1,c 2=1,由a ·b =0,及(a -c )(b -c )≤0,可以知道,(a +b )·c ≥c 2=1,因为|a +b -c |2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c ,所以有|a +b -c |2=3-2(a ·c +b ·c )≤1, 故|a +b -c |≤1. 答案 B6.对任意两个非零的平面向量α和β,定义αβ=α·ββ·β.若平面向量a ,b 满足|a |≥|b |>0,a 与b 的夹角θ∈⎝ ⎛⎭⎪⎫0,π4,且a b 和b a 都在集合⎩⎨⎧⎭⎬⎫n 2| n ∈Z 中,则a b =( ).A.12B .1C.32 D.52解析 由定义αβ=α·ββ2可得b a =a ·b a 2=|a |·|b |cos θ|a |2=|b |cos θ|a |,由|a |≥|b |>0,及θ∈⎝ ⎛⎭⎪⎫0,π4得0<|b |cos θ|a |<1,从而|b |cos θ|a |=12,即|a |=2|b |cos θ.a b =a ·b b 2=|a |·|b |cos θ|b |2=|a |cos θ|b |=2cos 2θ,因为θ∈⎝⎛⎭⎪⎫0,π4,所以22<cos θ<1,所以12<cos 2θ<1,所以1<2cos 2θ<2.结合选项知答案为C.答案 C 二、填空题7. 已知向量a ,b 均为单位向量,若它们的夹角是60°,则|a -3b |等于________. 解析 ∵|a -3b |2=a 2-6a ·b +9b 2=10-6×cos60°=7,∴|a -3b |=7. 答案 78. 已知向量(3,2)a =-, (31,4)a m m =--,若a b ⊥,则m 的值为 .解析 ,3(31)(2)(4)0,1a b a b m m m ⊥∴⋅=-+--=∴= 答案 19. 如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________. 解析 以A 点为原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立直角坐标系xOy ,则AB →=(2,0),AE →=(2,1),设F (t,2),则AF →=(t,2). ∵AB →·AF →=2t =2,∴t =1,所以AE →·BF →=(2,1)·(1-2,2)= 2. 答案210.已知向量a ,b ,c 满足a +b +c =0,(a -b )⊥c ,a ⊥b ,若|a |=1,则|a |2+|b |2+|c |2的值是________.解析 由已知a ·c -b ·c =0,a ·b =0,|a |=1, 又a +b +c =0,∴a ·(a +b +c )=0,即a 2+a ·c =0, 则a ·c =b ·c =-1,由a +b +c =0,∴(a +b +c )2=0, 即a 2+b 2+c 2+2a ·b +2b ·c +2c ·a =0, ∴a 2+b 2+c 2=-4c ·a =4, 即|a |2+|b |2+|c |2=4. 答案 4 三、解答题11.已知向量a =(1,2),b =(2,-2). (1)设c =4a +b ,求(b ·c )a ; (2)若a +λb 与a 垂直,求λ的值; (3)求向量a 在b 方向上的投影. 解 (1)∵a =(1,2),b =(2,-2), ∴c =4a +b =(4,8)+(2,-2)=(6,6). ∴b ·c =2×6-2×6=0,∴(b ·c ) a =0a =0. (2) a +λb =(1,2)+λ(2,-2)=(2λ+1,2-2λ), 由于a +λb 与a 垂直,∴2λ+1+2(2-2λ)=0,∴λ=52.(3)设向量a 与b 的夹角为θ, 向量a 在b 方向上的投影为|a |cos θ. ∴|a |cos θ=a ·b |b |=1×2+-22+-2=-222=-22.12.在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.解 (1)由题设知AB →=(3,5),AC →=(-1,1),则 AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB →+AC →|=210,|AB →-AC →|=4 2. 故所求的两条对角线长分别为42,210.(2)由题设知OC →=(-2,-1),AB →-tOC →=(3+2t,5+t ). 由(AB →-tOC →)·OC →=0,得(3+2t,5+t )·(-2,-1)=0, 从而5t =-11,所以t =-115. 13.设两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.解 由已知得e 21=4,e 22=1,e 1·e 2=2×1×cos 60°=1.∴(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7. 欲使夹角为钝角,需2t 2+15t +7<0,得-7<t <-12.设2t e 1+7e 2=λ(e 1+t e 2)(λ<0),∴⎩⎪⎨⎪⎧2t =λ,7=t λ,∴2t 2=7.∴t =-142,此时λ=-14. 即t =-142时,向量2t e 1+7e 2与e 1+t e 2的夹角为π. ∴当两向量夹角为钝角时,t 的取值范围是 ⎝⎛⎭⎪⎫-7,-142∪⎝ ⎛⎭⎪⎫-142,-12.14. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知m =⎝⎛⎭⎪⎫cos 3A 2,sin 3A 2,n =⎝ ⎛⎭⎪⎫cos A 2,sin A 2,且满足|m +n |= 3.(1)求角A 的大小;(2)若|AC →|+|AB →|=3|BC →|,试判断△ABC 的形状. 解 (1)由|m +n |=3,得m 2+n 2+2m ·n =3, 即1+1+2⎝ ⎛⎭⎪⎫cos 3A 2cos A 2+sin 3A 2sin A 2=3, ∴cos A =12.∵0<A <π,∴A =π3.(2)∵|AC →|+|AB →|=3|BC →|,∴sin B +sin C =3sin A , ∴sin B +sin ⎝ ⎛⎭⎪⎫2π3-B =3×32,即32sin B +12cos B =32,∴sin ⎝⎛⎭⎪⎫B +π6=32.∵0<B <2π3,∴π6<B +π6<5π6,∴B +π6=π3或2π3,故B =π6或π2.当B =π6时,C =π2;当B =π2时,C =π6.故△ABC 是直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节平面向量的量积与平面向量应用举例
A组基础题组
1.已知=(2,1),点C(-1,0),D(4,5),则向量在方向上的投影为()
A.-
B.-3
C.
D.3
2.(2017山东临沂期中)已知向量a=(1,m),b=(0,-2),且(a+b)⊥b,则m等于()
A.-2
B.-1
C.1
D.2
3.(2017安徽师大附中模拟)在直角三角形ABC中,角C为直角,且AC=BC=2,点P是斜边上的一
个三等分点,则·+·=()
A.0
B.4
C.
D.-
4.设向量a,b满足|a|=1,|a-b|=,a·(a-b)=0,则|2a+b|=()
A.2
B.2
C.4
D.4
5.(2016湖北八校联考(二))已知向量a=(3,1),b=(1,3),c=(k,-2),若(a-c)∥b,则向量a与向量c的夹角的余弦值是()
A. B. C.- D.-
6.设向量a=(m,1),b=(1,2),若|a+b|2=|a|2+|b|2,则m=.
7.已知a=(λ,2λ),b=(3λ,2),如果a与b的夹角为锐角,则λ的取值范围是.
8.如图,平行四边形ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且AM=AB,则·等于.
9.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
(1)求a与b的夹角θ;
(2)求|a+b|和|a-b|.
10.在平面直角坐标系xOy中,已知向量m=,n=(sinx,cosx),x∈.
(1)若m⊥n,求tanx的值;
(2)若m与n的夹角为,求x的值.
B组提升题组
11.已知非零向量m,n满足4|m|=3|n|,cos<m,n>=.若n⊥(tm+n),则实t的值为()
A.4
B.-4
C.
D.-
12.已知△ABC为等边三角形,AB=2,设点P,Q满足=λ,=(1-λ),λ∈R,若·=-,则λ=()
A. B. C. D.
13.若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则向量a+b与a-b的夹角为()
A. B. C.D.
14.如图,菱形ABCD的边长为2,∠BAD=60°,M为DC的中点,若N为菱形内任意一点(含边界),则·的最大值为.
15.已知在△ABC中,角A,B,C的对边分别为a,b,c,向量m=(sinA,sinB),n=(cosB,cosA),m·n=sin2C.
(1)求角C的大小;
(2)若sinA,sinC,sinB成等差列,且·(-)=18,求c.
16.已知向量a=,b=,实k为大于零的常,函f(x)=a·b,x∈R,且函f(x)的最大值为.
(1)求k的值;
(2)在△ABC中,a,b,c分别为内角A,B,C所对的边,若<A<π,f(A)=0,且a=2,求·的最小值.
答案全解全析
A组基础题组
1.C因为点C(-1,0),D(4,5),所以=(5,5),又=(2,1),所以向量在方向上的投影为||cos<,>===.
2.D∵a=(1,m),b=(0,-2),
∴a+b=(1,m-2),
又(a+b)⊥b,∴0×1-2(m-2)=0,即m=2.
3.B由题意不妨取=,则
·+·=·(+)=(+)·(+)=·(+)=·(+)= ++·=×4+×4+0=4.故选B.
4.B由a·(a-b)=0,可得a·b=a2=1,由|a-b|=,可得(a-b)2=3,即a2-2a·b+b2=3,解得b2=4.故(2a+b)2=4a2+4a·b+b2=12,所以|2a+b|=2.
5.A由已知得a-c=(3-k,3),∵(a-c)∥b,
∴3(3-k)-3=0,∴k=2,即c=(2,-2),
∴cos<a,c>===.
6.答案-2
解析由|a+b|2=|a|2+|b|2得a·b=0,所以a⊥b,则m+2=0,所以m=-2.
7.答案∪0,∪
解析a与b的夹角为锐角,则a·b>0且a与b不共线,则解得λ<-或0<λ<或λ>,所以λ的取值范围是∪∪.
8.答案1
解析因为=+=+,
=+,
所以
·
=
·(
+
)=|
|2+|
|2+
·=1+-·=-|
|·|
|·cos60°
=-×1×2×=1.
9.解析 (1)由(2a-3b)·(2a+b)=4|a|2-4a ·b-3|b|2=61及|a|=4,|b|=3得a ·b=-6, ∴cosθ=
=
=-.
又θ∈0,π],∴θ=. (2)|a+b|= = ==.
同,|a-b|=
=.
10.解析 (1)∵m ⊥n ,∴m ·n=0, 故sinx-cosx=0,∴tanx=1. (2)∵m 与n 的夹角为,∴cos<m,n>==
=,
故sin =. 又x ∈
,∴x -∈
,则x-=,即x=,故x 的值为.
B 组 提升题组
11.B
因为
n ⊥(tm+n),所以
tm ·n+n 2=0,所以
m ·n=-,又
4|m|=3|n|,所以
cos<m,n>===-=,所以t=-4.故选B.
12.A 解法一=-=(1-λ)
-,=-=λ
-.
∵||=|
|=2,<
,
>=60°,∴·=||·|
|·cos60°=2,又
·=-,∴(1-λ)
-]·(λ
-)=-,
即λ|
|2+(λ2-λ-1)·+(1-λ)·|
|2=,所以4λ+2(λ2-λ-1)+4(1-λ)=,解得λ=.
解法二以点A 为坐标原点,AB 所在的直线为x 轴,过点A 且垂直于AB 的直线为y 轴,建立平面
直角坐标系,则A(0,0),B(2,0),C(1,
),∴
=(2,0),
=(1,
),
∴P(2λ,0),Q(1-λ,(1-λ)),∵·=-,∴(-1-λ,(1-λ))·(2λ-1,-)=-,简得4λ2-4λ+1=0,∴λ=.
13.D由|a+b|=|a-b|可知a⊥b,设=b,=a,如图,作矩形ABCD,连接AC,BD,可知
=a+b,=a-b,设AC与BD的交点为O,结合题意可知OA=OD=AD,∴∠AOD=,∴∠DOC=,又向量a+b与a-b的夹角为与的夹角,故所求夹角为,选D.
14.答案9
解析由平面向量的量积的几何意义知,·等于与在方向上的投影之积,所以
(·)max=·=·(+)=++·=9.
15.解析(1)m·n=sinA·cosB+sinB·cosA=sin(A+B),
在△ABC中,A+B=π-C,0<C<π,
∴sin(A+B)=sinC,
∴m·n=sinC,又m·n=sin2C,
∴sin2C=sinC,∴cosC=,则C=.
(2)由sinA,sinC,sinB成等差列,可得2sinC=sinA+sinB,
由正弦定得2c=a+b.
∵·(-)=18,∴·=18,
即abcosC=18,ab=36.
由余弦弦定得c2=a2+b2-2abcosC=(a+b)2-3ab,∴c2=4c2-3×36,c2=36,∴c=6.
16.解析(1)由题意知,f(x)=a·b=·=ksin·cos-kcos2=ksin-k·=-
=sin-cos-
=sin-.
因为x∈R,所以f(x)的最大值为=,则k=1.
(2)由(1)知,f(x)=sin-,
所以f(A)=sin-=0,
简得sin=,
因为<A<π,
所以<-<,
则-=,解得A=.
因为cosA=-==,
所以b2+c2+bc=40,
则b2+c2+bc=40≥2bc+bc(当且仅当b=c时取等号),所以bc≤=20(2-).
则·=||||cos=-bc≥20(1-),
所以·的最小值为20(1-).。