(完整版)巧妙求和

合集下载

四上.8巧妙求和

四上.8巧妙求和

第八周:巧妙求和
通项公式: 第n项=首项+(项数-1)×公差 项数公式: 项数=(末项-首项)÷公差+1 求和公式: 总和=(首项+末项) ×项数÷2
例题一:求项数
有一个数列:4、10、16、22· · · · · · 52,
这个数列共有多少项?
分析: 项数=(末项-首项)÷公差+1 公差=10-4=6 末项=52 首项=4 项数=(末项-首项)÷公差+1 =(52-4)÷6+1 = 9(项)
练习4:求总和
总和=(首项+项数)×项数÷2 第1题:2+6+10+14+18+22 总和=(2+22)×6÷2=72 第2题: 5+10+15+20· · · · · · +195+200 项数=(200-5)÷(10-5)+1 =40 总和=(5+200)×40÷2 =4100
第3题:9+18+27+36· · · · · · +261+270
项数=(270-9)÷(18-9)+1 =30 总和=(9+270)×30÷2 =4185
例题五:求总和的应用
计算: (2+4+6+ · · · · · ·+100)- (1+3+5+ · · · · · ·+99) 减数 被减数 分析: 先分别求出被减数和减数 被减数 =(2+100)×50÷2 =2550 减数 =(1+99)×50÷2 =2500
第1题:1+2+3+4· · · · · · +49+50

四年级奥数题第8讲 巧妙求和(一)

四年级奥数题第8讲 巧妙求和(一)

第2讲巧妙求和(一)一、知识要点若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。

二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?练习1:1、等差数列中,首项=1,末项=39,公差=2.这个等差数列共有多少项?2、有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?练习2:1、一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2、求1,4,7,10……这个等差数列的第30项。

【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

练习3:计算下面各题。

(1)1+2+3+…+49+50(2)6+7+8+…+74+75【例题4】求等差数列2,4,6,…,48,50的和。

练习4:计算下面各题。

(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)练习5:用简便方法计算下面各题。

(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)三、课后作业1、已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?2、求等差数列2,6,10,14……的第100项。

小学奥数 数列求和 巧妙求和 含答案

小学奥数 数列求和  巧妙求和 含答案

第16讲巧妙求和一、知识要点某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。

如果是等差数列求和,才可用等差数列求和公式。

在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。

二、精讲精练【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。

这本书共有多少页?【思路导航】根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。

要求这本书共多少页也就是求出这列数的和。

这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解:(30+60)×11÷2=495(页)想一想:如果把“第11天”改为“最后一天”该怎样解答?练习1:1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。

这批零件共有多少个?2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。

最后一天读了50页恰好读完,这本书共有多少页?3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。

丽丽在这些天中学会了多少个英语单词?【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?【思路导航】开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。

所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。

练习2:1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。

巧妙求和

巧妙求和

巧妙求和(一)通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×公差÷2(1)、有一个数列,4、10、16、22……52,这个数列共多少项?等差数列中,首项=1,末项=39,公差=2。

这个数列共多少项?有一个等差数列,2、5、8、11……101,这个数列共多少项?已知等差数列,11、16、21、26……1001,这个数列共多少项?(2)、有一个等差数列:3、5、7、11、15……这个等差数列的第100项是多少?一等差数列,首项=3,公差=2,项数=10,求它的末项是多少?求等差数列,1、4、7、10……这个数列的第30项。

求等差数列,2、6、10、14……这个数列的第100项。

(3)、有这样的一列数,1、2、3、4、……99、100。

这列数各项相加的和是多少?6+7+8+9+……+75 100+99+98+……+61+609+18+27+36+......+261+270 (5)(2+4+6+......+100)-(1+3+5+ (99)1+2-3+4+5-6+7+8-9+……+58+59-60巧妙求和(二)(1)、刘俊读一本长篇小说,他第一天读30页,从第二天起,每天都比前一天多读3页,第11天读了60页,正好读完,这本书共多少页?刘师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第15天做了48个,正好做完。

这批零件共有多少个?胡茜读一本故事书,她第一天读了20页,从第二天起,每天都比前一天多读5页,最后一天读了50页恰好读完。

这本书共有多少页?丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个,丽丽在这些天学会了多少个单词?(2)、30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙,问一共有几把锁的钥匙搞乱了?有10只盒子,44只羽毛球。

小学奥数 巧妙求和 知识点+例题+练习 (分类全面)

小学奥数 巧妙求和 知识点+例题+练习 (分类全面)
例2、312+315+318+321+324
巩固(1) 21+23+25+27+29+31 (2) 108+128+148+168+188
例3、有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一两点钟敲2下,……二十四点钟敲24下,这个钟一昼夜敲多少下?
教学内容
巧妙求和、图形计数、容斥原理
教学目标
掌握巧妙求和、图形计数、容斥原理
重点
巧妙求和、图形计数、容斥原理
难点
巧妙求和、图形计数、容斥原理




课堂精讲
1、巧妙求和
例1、高斯求和
1+2+3+4+……+9+10=
巩固(1) 1+2+3+4+……+99+100 (2) 21+22+23+24+……+100
例4、计算991+992+993+994+995+996+997+998+999。
巩固:(1) 9997+9998+9999 (2) 100-1-3-5-7-9-11-13-15-17-19
课后作业
1、 1+2+3+4+5+……+20
2、48+50+52+54+56+58+60+62
3、体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?

举一反三 4年级 第8讲 巧妙求和

举一反三 4年级 第8讲 巧妙求和

答案
计算(2+4+6+…+100)-(1+3+5+…+99)
问题
答案
用简便方法计算下面各题。 (1)(2001+1999+1997+1995)- (2000+1998+1996+1994) (2)(2+4+6+…+2000)-(1+3+5+…+1999) (3)(1+3+5+…+1999)-(2+4+6+…+1998)
有一个数列:4,10,16,22.…,52.这个数列共有多少 项?
问题
答案
容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数, 可直接带入项数公式进行计算。 项数=(52-4)÷6+1=9,即这个数列共有9项
1.等差数列中,首项=1.末项=39,公差=2. 这个等差数列共有多少项? 2.有一个等差数列:2.5,8,11.…,101. 这个等差数列共有多少项? 3.已知等差数列11.16,21.26,…,1001. 这个等差数列共有多少项?
问题
2.求1.4,7,10……这个等差数列的第30项。
3.求等差数列2.6,10,14……的第100项。
答案
有这样一个数列:1.2.3.4,…, 99,100。请求出这个数列所有项 的和。
1+2+3+…+99+100=(1+100)×100÷2=5050
问题
答案
计算下面各题。 (1)1+2+3+…+49+50 (2)6+7+8+…+74+75 (3)100+99+98+…+61+60

小学四年级奥数巧妙求和

小学四年级奥数巧妙求和

四年级奥数专题巧妙求和(一)专题简析:若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

这一周学习“等差数列求和”。

需要记住三个非常重要的公式:“通项公式”、“项数公式”、“求和公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项?分析与解答:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习一1,等差数列中,首项=1,末项=39,公差=2,这个等差数列共有多少项?2,有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项?3,已知等差数列11,16,21,26,…,1001,这个等差数列共有多少项?例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少?分析与解答:这个等差数列的首项是3,公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399练习二1,一等差数列,首项=3,公差=2,项数=10,它的末项是多少?2,求1,4,7,10……这个等差数列的第30项。

3,求等差数列2,6,10,14……的第100项。

例3:有这样一个数列:1,2,3,4,…,99,100。

请求出这个数列所有项的和。

分析与解答:如果我们把1,2,3,4,…,99,100与列100,99,…,3,2,1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101,一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2,就是所求数列的和。

小三春2巧妙求和

小三春2巧妙求和

第二讲巧妙求和教室:姓名:【知识要点】聪明的数学家高斯小时候就非常巧妙地算出1+2+3+4+…+100的结果。

小高斯算得又快又准的方法就是巧妙求和。

【例题精讲】例1、(1)9+10+11+12+13+14(2)1+3+5+7+……+97+99例2、老师读一本小说,第一天读20页,从第二天起,每天读的页数都比前一天多5页,最后一天读75页,这本书共多少页?例3、100―2―4―6―8―10―12例4、100把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?例5、活动课上,三(1)班全班同学玩接力棒赛跑游戏,规定跑第一棒的同学跑30米,跑第二棒的跑32米,第三棒的跑34米……小明跑第九棒,他应跑多少米?例6、有一个挂钟,一点钟敲1下,两点钟敲2下,三点钟敲3下……十二点钟敲12下,每逢半点钟也敲一下。

问:这个挂钟一昼夜共敲多少下?【池中戏水】1、看谁算得又对又快:(1)1+3+5+7+9+11+13+15 (3)100+102+104+106+108(2)18+19+20+21+22+23+24+25 (4)98+95+92+89+86+83+802、比101小的所有偶数的和是多少?3、小龙读一本科幻书,第一天读18页,从第二天起,每天读的页数都比前一天多读2页,第30 天读76页正好读完。

这本书共多少页?4、有30把锁的钥匙不慎搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?5、李明在小学一年级是捐款10元,以后每年捐款数额都是前一年的2倍。

他在读小学的六年中共捐款多少元?【江中畅游】1、我们班级里的42个同学进行象棋比赛,如果用循环赛的方法决出冠军,一共要进行几场比赛?2、五个连续偶数的和是150,这五个偶数是哪几个数?3、有10只盒子,45只乒乓球,能不能把45只乒乓球放到盒子中去,使各个盒子里的乒乓球不相等?【海中冲浪】有30个数,第1个数是9,以后每个数都比前一个数大4。

(完整版)巧妙求和

(完整版)巧妙求和

第8讲巧妙求和(一)一、知识要点若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习1:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?【思路导航】这个等差数列的首项是3.公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399.练习2:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2.求1.4,7,10……这个等差数列的第30项。

3.求等差数列2.6,10,14……的第100项。

【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

第16讲 巧妙求和(二)

第16讲 巧妙求和(二)

第16讲巧妙求和一、知识要点某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。

如果是等差数列求和,才可用等差数列求和公式。

在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。

二、精讲精练【例题1】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。

这本书共有多少页?练习1:1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。

这批零件共有多少个?2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。

最后一天读了50页恰好读完,这本书共有多少页?【例题2】30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?练习2:1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。

一共有几把锁的钥匙搞乱了?【例题3】某班有51个同学,毕业时每人都和其他的每个人握一次手。

那么共握了多少次手?练习3:1.学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。

如果有21人参加比赛,一共要进行多少场比赛?2.在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。

那么一共握了多少次手?【例题4】求1 ~ 99 这99个连续自然数的所有数字之和。

练习4:1.求1~199这199个连续自然数的所有数字之和。

2.求1~999这999个连续自然数的所有数字之和。

【例题5】求1~209这209个连续自然数的全部数字之和。

练习5:1.求1~308连续自然数的全部数字之和。

2.求1~2009连续自然数的全部数字之和。

三、课后作业1.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。

12.四年级奥数思维训练 巧妙求和

12.四年级奥数思维训练  巧妙求和

12.四年级奥数思维训练巧妙求和
12.四年级奥数思维训练巧妙求和
四年级奥数思维训练精辟总结
在小学数学竞赛中,常出现一类有规律的数列求和问题,这种问题我们往往要小朋友
根据数列找出规律所在,并灵活运用公式以解决问题。

有如下规律:总和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1公差=(末项-首项)÷(项数-1)
一、试着练习
1.求和:
(1)8+9+10+11+12+13
(2)2+5+8+11+14+17+20
二、训练营
1、有10只盒子,44只乒乓球。

把这44只乒乓球放到盒子中,每个盒子中至少要放
一个球,能不能使每个盒子中的球数都不相同?
2.50把锁的钥匙弄乱了。

为了让每把锁都配备自己的钥匙,至少几次就足够了?
3、求所有两位数的和。

4.启明小学礼堂有30排座位。

从第一排开始,每排比前一排多2个座位,最后一排
有75个座位。

问:这个礼堂有多少个座位?。

巧妙求和

巧妙求和

巧妙求和(一)一、知识要点若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习1:1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?【思路导航】这个等差数列的首项是3.公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399.练习2:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2.求1.4,7,10……这个等差数列的第30项。

3.求等差数列2.6,10,14……的第100项。

【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

第8讲 巧妙求和 一

第8讲 巧妙求和 一

第2讲巧妙求和(一)一、知识要点若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1等差数列总和=(首项+末项)×项数÷2这个公式也叫做等差数列求和公式。

二、精讲精练【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?练习1:1、等差数列中,首项=1,末项=39,公差=2.这个等差数列共有多少项?2、有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?练习2:1、一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2、求1,4,7,10……这个等差数列的第30项。

【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

练习3:计算下面各题。

(1)1+2+3+…+49+50(2)6+7+8+…+74+75【例题4】求等差数列2,4,6,…,48,50的和。

练习4:计算下面各题。

(1)2+6+10+14+18+22(2)5+10+15+20+…+195+200【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)练习5:用简便方法计算下面各题。

(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+ (1999)三、课后作业1、已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?2、求等差数列2,6,10,14……的第100项。

巧妙求和(一)

巧妙求和(一)

巧妙求和一、知识要点在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1【例题1】:求1+2+3+4+……+99+100的和1、计算①1+2+3+4+5+……+199+200 ②1+3+5+7+9+……+97+992、1000-1-2-3-4-……-403、7000-2-4-6-……-100【例题2】有一个数列:4,10,16,22.…,52.这个数列共有多少项?练习2:1.等差数列中,首项=1.末项=39,公差=2. 2.有一个等差数列:2.5,8,11 (101)这个等差数列共有多少项?这个等差数列共有多少项?3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?【例题3】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?练习3:1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?2.求1.4,7,10……这个等差数列的第30项。

3.求等差数列2.6,10,14……的第100项。

【例题4】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

练习4:计算下面各题。

(1)1+2+3+…+49+50 (2)6+7+8+…+74+75 (3)100+99+98+…+61+60 【例题5】求等差数列2,4,6,…,48,50的和。

练习5:计算下面各题。

(1)2+6+10+14+18+22 (2)5+10+15+20+…+195+200 (3)9+18+27+36+…+261+270【例题6】计算(2+4+6+...+100)-(1+3+5+ (99)练习6:用简便方法计算下面各题。

(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)(2)(2+4+6+...+2000)-(1+3+5+...+1999)(3)(1+3+5+...+1999)-(2+4+6+ (1998)【例题7】刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。

苏教版四年级下册数学课件-6.2 巧妙求和 (共11张PPT)

苏教版四年级下册数学课件-6.2 巧妙求和 (共11张PPT)

1+2+3+ … +98+99+100=?
让我们从最简单的问题中寻找规律:
1+2+3+4+5+6+7+8+9+10=?
4
32
1
5
11 × 5 = 55
1+2+3 +… +98+99+100=?
让我们从最简单的问题中寻找规律:
1+2+3+4+5+6+7+8+9+10 =55
遇到新问题:
1+2+3+4+5+6+7+8+9 =45
9+8+7+6+5+4+3+2+1
11 11 11 111
00 00 00 000
10×9=90
90÷2=45
1+2+3+4+5+6+7+8+9+10 10+9+8+7+6+5+4+3+2+ 1
11 11 11 1 11 1 11 11 11 1 11 1
11×10÷2=55
1+2+3+4+5+6+7+8+9+10=55
(9+14)×6÷2
= 20×6÷2 = 120÷2 = 60
(2)1、3、5、7、9……97、99
(1+99)×50÷2 = 100×50÷2 = 5000÷2 = 2500
留问课后
(1)求出下面数列中各数的和。 4、6、8、10、12
(2)求出自然数中所有两位数的和。
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/3/202021/3/20Saturday, March 20, 2021
巧妙求和
高斯是德国数学家、科学家,他是近代数学奠
基者之一,和牛顿、阿基米德,被誉为有史以来的三 大数学家,有“数学王子”之称。

【小学四年级奥数讲义】巧妙求和(一)

【小学四年级奥数讲义】巧妙求和(一)

【小学四年级奥数讲义】巧妙求和(一)一、知要点若干个数排成一列称数列。

数列中的每一个数称一。

其中第一称首,最后一称末,数列中的个数称数。

从第二开始,后与其相的前之差都相等的数列称等差数列,后与前的差称公差。

在一章要用到两个非常重要的公式:“通公式”和“ 数公式”。

通公式:第n =首 +(数- 1)×公差数公式:数 =(末-首)÷公差+ 1 等差数列和 =(首 +末)× 数÷ 2 个公式也叫做等差数列求和公式。

二、精精【例 1】有一个数列:4,10,16,22.⋯,52.个数列共有多少?1:1、等差数列中,首 =1,末 =39,公差 =2. 个等差数列共有多少?2、有一个等差数列: 2.5 ,8,11. ⋯, 101. 个等差数列共有多少?【例 2】有一等差数列: 3.7 ,11.15 ,⋯⋯,个等差数列的第100 是多少?2:1、一等差数列,首 =3. 公差 =2. 数 =10,它的末是多少?2、求 1,4,7,10⋯⋯个等差数列的第30 。

【例 3】有一个数列: 1.2.3.4 ,⋯,99,100。

求出个数列所有的和。

3:算下面各。

(1)1+2+3+⋯+49+50(2)6+7+8+⋯+74+75【例 4】求等差数列 2,4,6,⋯, 48, 50 的和。

4:算下面各。

(1)2+6+10+14+18+22(2)5+10+15+20+⋯+195+200【例 5】算( 2+4+6+⋯+100)-( 1+3+5+⋯+99)5:用便方法算下面各。

(1)( 2001+1999+1997+1995)-( 2000+1998+1996+1994)(2)( 2+4+6+⋯+2000)-( 1+3+5+⋯+1999)三、后作1、已知等差数列11,16,21,26,⋯, 1001. 个等差数列共有多少?2、求等差数列 2,6,10,14⋯⋯的第 100 。

3、100+99+98+⋯+61+604、( 1+3+5+⋯+1999)-( 2+4+6+⋯+1998)5、100+95+90+⋯+15+10+56、4+7+10+13+⋯+298+301+298+⋯+13+10+7+47、 2013-2012+2011-2010+ ⋯+3-2+18、影院有座位若干排,第一排有25 个座位,以后每一排比前一排多 3 个座位,最后一排有94 个座位。

四年级奥数---巧妙求和二

四年级奥数---巧妙求和二

第8次课巧妙求和(二)
一、巩固练习
278x99 321x55+321x45
47x101-47 125x32x25
二、挑战新知
1、刘俊读一本长篇小说,他第一天读了30页,从第二天起,他每天读的页数都比前一天多3页,第11天读了60页,正好读完。

这本书共有多少页?
2、刘师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,第15 天做了48个,正好做完。

这批零件共有多少个?
3、胡茜读一本故事书,她第一天读了20页,从第二天起,她每天读的页数都比前一天多5页,最后一天读了50 页恰好读完。

这本书共有多少页?
4、丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学会1个,最后一天学会了16个。

这些天丽丽共学会了多少个单词?
5、30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,最多要试多少次?
6、有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,最多要试多少次?
7、平面上有10个点,没有3个点在同一直线上。

过这些点最多可以画出多少条直线?
8、有10只盒子、44只羽毛球。

能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球不相等?9、某班有51名同学,毕业时每人都和其他所有人握一次手,那么共握了多少次手?
10、学校进行乒乓球比赛,每个参赛选手都要和其他所有选手各赛一场,如果有21人参加比赛,一共要进行多少场比赛?
11、在一次同学聚会中,参加聚会的有43位同学和4位老师,每一位同学或老师都要和其他人握一次手,那么一共握了多少次手?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲巧妙求和(一)
一、知识要点
若干个数排成一列称为数列。

数列中的每一个数称为一项。

其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。

通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
二、精讲精练
【例题1】有一个数列:4,10,16,22.…,52.这个数列共有多少项?
【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。

项数=(52-4)÷6+1=9,即这个数列共有9项。

练习1:
1.等差数列中,首项=1.末项=39,公差=
2.这个等差数列共有多少项?
2.有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?
3.已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?
【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?
【思路导航】这个等差数列的首项是3.公差是4,项数是100。

要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。

第100项=3+4×(100-1)=399.
练习2:
1.一等差数列,首项=3.公差=
2.项数=10,它的末项是多少?
2.求1.4,7,10……这个等差数列的第30项。

3.求等差数列2.6,10,14……的第100项。

【例题3】有这样一个数列:1.2.3.4,…,99,100。

请求出这个数列所有项的和。

【思路导航】如果我们把1.2.3.4,…,99,100与列100,99,…,
3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。

1+2+3+…+99+100=(1+100)×100÷2=5050
上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:
等差数列总和=(首项+末项)×项数÷2
这个公式也叫做等差数列求和公式。

练习3:
计算下面各题。

(1)1+2+3+…+49+50
(2)6+7+8+…+74+75
(3)100+99+98+…+61+60
【例题4】求等差数列2,4,6,…,48,50的和。

【思路导航】这个数列是等差数列,我们可以用公式计算。

要求这一数列的和,首先要求出项数是多少:项数=(末项-首项)÷公差+1=(50-2)÷2+1=25
首项=2.末项=50,项数=25
等差数列的和=(2+50)×25÷2=650.
练习4:
计算下面各题。

(1)2+6+10+14+18+22
(2)5+10+15+20+…+195+200
(3)9+18+27+36+…+261+270
【例题5】计算(2+4+6+...+100)-(1+3+5+ (99)
【思路导航】容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。

进一步分析还可以发现,这两个数列其实是把1 ~ 100这100个数分成了奇数与偶数两个等差数列,每个数列都有50个项。

因此,我们也可以把这两个数列中的每一项分别对应相减,可得到50个差,再求出所有差的和。

(2+4+6+...+100)-(1+3+5+ (99)
=(2-1)+(4-3)+(6-5)+…+(100-99)
=1+1+1+…+1
=50
练习5:
用简便方法计算下面各题。

(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)
(2)(2+4+6+...+2000)-(1+3+5+ (1999)
(3)(1+3+5+...+1999)-(2+4+6+ (1998)。

相关文档
最新文档