三角变换的技巧,方法(老师)

合集下载

三角函数变换的技巧与方法

三角函数变换的技巧与方法

三角函数变换的技巧与方法三角函数是数学中非常重要的概念,在求解各类问题时都会用到。

而三角函数之间的变换则是解决三角函数相关问题的重要技巧之一、下面将介绍一些常见的三角函数变换方法。

方法一:和差角公式三角函数的和差角公式是非常重要的三角函数变换公式。

根据和差角公式,我们可以将一个三角函数的和差表达式转化为两个三角函数的乘积表达式。

具体公式如下:1. sin(A ± B) = sinAcosB ± cosAsinB2. cos(A ± B) = cosAcosB ∓ sinAsinB3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)通过使用和差角公式,我们可以将复杂的三角函数表达式转化为简单的三角函数乘积表达式,从而便于求解和化简。

方法二:倍角公式倍角公式是三角函数变换中另一个重要的公式。

根据倍角公式,我们可以将一个三角函数的角度变为原来的2倍。

具体公式如下:1. sin2A = 2sinAcosA2. cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A3. tan2A = (2tanA) / (1 - tan^2A)方法三:半角公式半角公式是将一个角的角度变为原来的1/2的公式。

具体公式如下:1. sin(A/2) = ±√[(1 - cosA) / 2]2. cos(A/2) = ±√[(1 + cosA) / 2]3. tan(A/2) = √[(1 - cosA) / (1 + cosA)]方法四:和差化积公式和差化积公式是将一个三角函数的和差化为积的公式。

具体公式如下:1. sinA + sinB = 2sin((A + B)/2)cos((A - B)/2)2. sinA - sinB = 2cos((A + B)/2)sin((A - B)/2)3. cosA + cosB = 2cos((A + B)/2)cos((A - B)/2)4. cosA - cosB = -2sin((A + B)/2)sin((A - B)/2)方法五:积化和差公式积化和差公式是将两个三角函数的积化为和差的公式。

三角函数“角变换”的六种常用技巧

三角函数“角变换”的六种常用技巧

ʏ童昌立角变换 是三角变换的核心, 角变换 的六种常用技巧是:互余角或互补角的转化,非特殊角向特殊角的转化,半角与倍角的转化,复角与单角的转化,结论式中的角与条件式中的角的转化,引入辅助角㊂下面举例分析,供大家学习与提高㊂技巧一:互余角或互补角的转化例1 (1)已知c o s α-π4=45,αɪ0,π4,则c o s α+π4=㊂(2)已知s i n π3-α=14,则c o sπ3+2α=㊂(1)由αɪ0,π4,可得α-π4ɪ-π4,0 ㊂因为c o s α-π4 =45,所以s i n α-π4 =-35,所以s i n π4-α =35㊂故c o s α+π4 =s i n π2-α+π4 =s i n π4-α =35㊂(2)由s i n π3-α =14,可得c o s π6+α =c o s π2-π3-α=s i n π3-α =14,所以c o s π3+2α =c o s 2π6+α =2c o s 2π6+α -1=2ˑ116-1=-78㊂评注:利用π4+α=π2-π4-α,π3+α=π2-π6-α ,π6+α=π2-π3-α 的转化是解题的关键㊂技巧二:非特殊角向特殊角的转化例2 (多选题)下列式子结果为3的是( )㊂A .2s i n 35ʎc o s 25ʎ+c o s 35ʎc o s 65ʎB .1+t a n 15ʎ1-t a n 15ʎC .t a n 75ʎ1-t a n 275ʎD .t a n 25ʎ+t a n 35ʎ+3t a n 25ʎt a n35ʎ对于A ,2(s i n 35ʎc o s 25ʎ+c o s 35ʎc o s65ʎ)=2(s i n35ʎ㊃c o s 25ʎ+c o s 35ʎs i n 25ʎ)=2s i n 60ʎ=3㊂对于B ,1+t a n 15ʎ1-t a n 15ʎ=t a n 45ʎ+t a n 15ʎ1-t a n 45ʎt a n 15ʎ=t a n 60ʎ=3㊂对于C ,t a n 75ʎ1-t a n 275ʎ=12ˑ2t a n 75ʎ1-t a n 275ʎ=12ˑt a n150ʎ=-36㊂对于D ,t a n25ʎ+t a n 35ʎ+3t a n25ʎt a n35ʎ=t a n60ʎ(1-t a n 25ʎt a n 35ʎ)+3t a n25ʎt a n35ʎ=3-3t a n 25ʎt a n 35ʎ+3t a n 25ʎt a n 35ʎ=3㊂应选A B D ㊂评注:特殊角的三角函数值是同学们熟悉的㊂利用非特殊角向特殊角转化是解答本题的突破口㊂技巧三:半角与倍角的转化例3 (1)3c o s 15ʎ-4s i n 215ʎc o s15ʎ=( )㊂A.2 B .3C .6D .23(2)s i n 50ʎ(1+3t a n 10ʎ)=㊂(1)原式=3c o s15ʎ-2s i n 15ʎ㊃2s i n 15ʎc o s 15ʎ=3c o s 15ʎ-2s i n15ʎs i n30ʎ=3c o s15ʎ-01 知识结构与拓展 高一数学 2022年12月Copyright ©博看网. All Rights Reserved.s i n 15ʎ=2c o s (30ʎ+15ʎ)=2㊂应选A ㊂(2)原式=s i n 50ʎ(c o s 10ʎ+3s i n 10ʎ)c o s 10ʎ=s i n 50ʎ㊃2s i n 40ʎc o s 10ʎ=2s i n 50ʎc o s 50ʎc o s 10ʎ=s i n 100ʎc o s 10ʎ=c o s 10ʎc o s 10ʎ=1㊂评注:对于形如 c o s α,c o s 2α,c o s 4α的化简与求值问题,就要想到二倍角公式和辅助角公式的应用㊂技巧四:复角与单角的转化例4 已知s i n (2023π+θ)=13,则所给三角函数式:c o s (π+θ)c o s θ㊃[c o s (π-θ)-1]+c o s (θ-2π)s i n θ-3π2c o s (θ-π)-s i n 3π2+θ的值为㊂因为s i n (2023π+θ)=-s i n θ=13,所以s i n θ=-13㊂所以原式=-c o s θ-c o s θ㊃(1+c o s θ)+c o s θ-c o s 2θ+c o s θ=11+c o s θ+11-c o s θ=21-c o s 2θ=2s i n 2θ=2-132=18㊂评注:对于诱导公式2k π+α(k ɪZ ),πʃα,-α,π2ʃα的变换,每用一次公式,都要注意三角函数值的符号㊂技巧五:结论式中的角与条件式中的角的转化例5 已知α,β均为锐角,且c o s (α+β)=-513,s i n β+π3 =35,则c o s α+π6=( )㊂A.3365 B .6365C .-3365D .-6365因为α,β均为锐角,且c o s (α+β)=-513,s i n β+π3=35,所以α+βɪπ2,π ,β+π3ɪπ3,5π6,所以s i n α+β =1213,c o s β+π3 ɪ-32,12㊂易得c o s β+π3 =ʃ45,其中c o s β+π3 =45>12舍去㊂故c o s α+π6 =c o s (α+β)-β+π3 +π2 =-s i n (α+β)-β+π3 =-1213ˑ-45 +-513ˑ35=3365㊂应选A ㊂评注:三角公式中的角α,β可以是任意角,既能看成是单角,也能看成是复角㊂在运用公式时,要特别注意 条件角 与 结论角 之间可能存在的和差关系㊂常见的角的变换有15ʎ=45ʎ-30ʎ=60ʎ-45,α=(α+β)-β,α=α+β2+α-β2,2α=(α+β)+(α-β)=π4+α-π4-α,β=α+β2-α-β2等㊂技巧六:引入辅助角例6 已知函数f (x )=5s i n x -12c o s x ,当x =x 0时,f (x )有最大值13,则t a n x 0=㊂因为函数f (x )=5s i n x -12c o s x =13s i n (x -θ),其中θ由t a n θ=125确定㊂因为当x =x 0时,函数f (x )有最大值13,所以x 0-θ=π2+2k π(k ɪZ ),所以x 0=θ+π2+2k π(k ɪZ ),所以t a n x 0=t a n θ+π2+2k π=ta n θ+π2=s i n θ+π2 c o s θ+π2=c o s θ-s i n θ=-1t a n θ=-512㊂评注:形如a s i n x +b c o s x 的求值问题,可考虑利用辅助角公式来解决㊂a s i n x +b c o s x =a 2+b 2si n (x +θ),其中θ由t a n θ=ba确定㊂作者单位:湖北省恩施市第三高级中学(责任编辑 郭正华)11知识结构与拓展高一数学 2022年12月Copyright ©博看网. All Rights Reserved.。

三角函数换角技巧

三角函数换角技巧

高一数学必修四辅导资料三角变换的技巧与方法知识要求:1、熟悉各公式在恒等变形中的作用,才能在解决各种总题时,合理选择公式,灵活运用公式,提高分析和解决有关三角问题的能力。

2、常用的技巧有:○1角的变换;○2函数名称变换;○3常数代换;○4幂的变换;○5公式变形;○6结构变形;○7消元法;○8思路变化; 变换技巧与方法归纳:1、切割化弦:就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,这样可有利于问例1:求证:ααααααcos sin 11sec -tan 1-sec tan +=++2、“1”的代换:在三角函数中,“1”的代换有:1cos sin ,45,1cot tan 122o =+=∙=αααα等,在具体的三角变换过程中将“1”作某种合适的变形,往往能收到意想不到的效果。

例2:已知2cos sin sin -1,1-tan tan 2++=ααααα求的值;例3:已知ααααcos2sin2-1,25tan -1tan 1求+=+的值;例4:已知tanx1sin2xx 2cos 0,3cosx 6sinx -sinxcosx x cos -x 2sin 222++=++求的值;3、分拆与配凑:“凑角法”是解三角题的常用技巧,解题时首先要分析已知条件和结论中各种角例5:设)cos(,,02,32)-2sin(,91)2-cos(βαπβπαπβαβα+<<<<==求的值;例6:已知)sin(,135)43sin(,53)-4cos(43440βαβπαππαππβ+=+=求,<<,<<的值;例7:(1997年全国高考题)oooo o o sin8sin15-cos7sin8cos15sin7+的值为 。

4、引入辅助角:ϕϕθθθ这里辅助角可化为),sin(b a bcos asin 22+++所在的象限由a,b 的符号确定,ab tan =ϕϕ角的值由确定。

进行三角恒等变换的三个技巧

进行三角恒等变换的三个技巧

解题宝典在解答三角函数问题时,经常需对三角函数式进行三角恒等变换,这就要求同学们熟练掌握一些进行三角恒等变换的技巧,以便能顺利化简三角函数式、求出三角函数式的值.那么怎样合理进行三角恒等变换呢?可以从以下三个方面进行.一、变换角当进行三角恒等变换时,首先要仔细观察已知角和所求角之间的差别,并建立两角之间的联系,如互余、互补、半角、倍角等,然后利用诱导公式、二倍角公式、两角的和差公式等求解.在进行角的变换时,还可将已知角、所求角与特殊角,如π6、π4、π3等建立联系,然后利用这些特殊角的函数值进行求解.例1.已知cos æèöøα+π4=35,π2≤α<3π2,求cos(2α+π4)的值.分析:先观察题目中的角可发现,已知角α+π4与所要求的角2α+π4之间相差一个α,可以找到一个关系:2æèöøα+π4−π4=2α+π4,用二倍角公式和诱导公式求出sin 2æèöøα+π4和cos 2æèöøα+π4的值,最后根据余弦的两角和公式cos ()α−β=cos α∙cos β+sin α∙sin β求出cos æèöø2α+π4的值.解:由于π2≤α<3π2,所以3π4≤α+π4<7π4,又因为cos æèöøα+π4=35>0,可知3π2≤α+π4<7π4,因此sin æèöøα+π4=−45,所以sin 2æèöøα+π4=2sin æèöøα+π4cos æèöøα+π4=−2425,cos 2æèöøα+π4=2cos 2æèöøα+π4−1=−725,因此cos æèöø2α+π4=cos éëêùûú2æèöøα+π4−π4=cos 2æèöøα+π4cos π4+sin 2æèöøα+π4sin π4=.二、变换函数名称有些三角函数式中的函数名称并不相同,此时,我们需变换函数的名称,如将正切、余切转化为正弦、余弦,将正弦化为余弦,将余弦化为正弦,等等,以达到统一函数名称的目的.在变换函数名称的过程中,常用到的公式有诱导公式sin ()2k π+α=sin α()k ∈Z 、cos ()2k π+α=cos α()k ∈Z 、tan ()2k π+α=tan α(k ∈Z),重要关系式tan α=sin αcos α、sin 2α+cos 2α=1、辅助角公式a sin α+b cos α=a 2+b 2sin (α+φ)等.例2.化简2cos 2α−12tan æèöøπ4−αsin 2æèöøπ4+α.分析:这个式子中既含有正切函数也有正弦、余弦函数,我们第一步就是要想办法将正切函数转变为正弦函数.观察式子中角的特点,可发现æèöøπ4−α+æèöøπ4+α=π2,根据角的特征,可以利用诱导公式将函数式转化成函数名称一致的式子.解:原式=cos 2α2sin æèöøπ4−αcos æèöøπ4−αsin 2éëêùûúπ2−æèöøπ4−α=cos 2α2sin æèöøπ4−αcos æèöøπ4−α=cos 2αsin æèöøπ2−2α=1.三、变换幂的次数有些三角函数式中幂的次数不相同,此时,我们要对其作升幂或者降幂处理,以便使函数式中的次数相同.“升幂”可以通过二倍角公式cos 2α=cos 2α−sin 2α=2cos 2α−1=1−2sin 2α、tan 2α=2tan α1−tan 2α来实现,“降幂”可以通过二倍角公式sin 2α=2sin αcos α及变形式sin 2α=1−cos 2α2,cos 2α=1+cos 2α2.sin 2α=1−cos 2α2,cos 2α=1+cos 2α2来达到目的.例3.已知tan α=−13,求sin α−cos 2α1+cos 2α的值.分析:由于已知tan α=−13,目标式中含有正弦函数和余弦函数,且含有二次式,可以先利用二倍角公式把2α转变为α,使幂的次数统一,即将所求的式子转化为关于sin α、cos α的齐次式,然后依据tan α=sin αcos α,将目标式中的分子、分母同时除以cos 2α,得到只含有tan α的分式,将tan α=−13代入求解即可得到答案.解:原式=2sin αcos α−cos 2α2cos 2α=2sin α−cos α2cos α=tan α−12=−56.总而言之,在进行三角恒等变换时最重要的就是要做到“变异为同”,灵活使用各种三角函数公式,将角、函数名称、幂的次数不同的式子转化为角、函数名称、次数相同的式子.在解题的过程中,同学们要熟记各种三角函数公式,并灵活使用,根据角、函数名称、幂的特点合理进行变换,以实现“变异为同”.(作者单位:山东省聊城第一中学)41Copyright©博看网 . All Rights Reserved.。

三角恒等变换的方法与技巧

三角恒等变换的方法与技巧

三角恒等变换的方法与技巧三角恒等变换是三角函数中的主要部分,是培养学生等价转化与化归思想、逻辑思维能力、知识的联系性与灵活性的重要内容。

下面举例说明三角恒等变换的方法与技巧。

一、变角角是研究三角函数问题的切入点.若表达式中出现了较多相异的角,必须对比分析变换对象与变换目标,其余的角都朝目标角转化.这是三角变换最基本的策略。

例1.已知cos(α-■)=-■,sin(■-β)=■(■<α<π,0<β<■)求cos(α+β)的值解析:由已知得■ <α-■<π,-■<■-β<■∴sin(α-■)=■,cos(■-β)=■∴cos■=cos[(α-■)-(■-β)]=cos(α-■)cos(■-β)+sin(α-■)sin(■-β)=-■∴cos(α+β)=2cos2■-1=-■点评:(α-■)-(■-β)=■ α+β=2·■注意角的拼凑、拆分,倍、半的相对性。

二、变函数名称若表达式中函数种类较多,变形困难,应尽量减少函数种类.这是恒等变换的又一策略。

例2.已知锐角α,β满足tan(α-β)=sin2β,求证:2tan2β=tanα+tanβ解析:∵sin2β=■∴■= ■t anα=■∴tanα+tanβ=■=2tan2β点评:弦化切,同一为切,正用、逆用公式.三、变结构对较复杂的表达式,一般先变形结论,再寻找由条件得到的有用结论,合理选择公式,建立差异间联系,解决问题。

例3.已知cos(■+x)=■,■<x<■,求■的值解析:■=■=■= 2sinxcosx·■=2sinxcosx·tan(■+x)由■<x<■得■<x+■<2π,又cos(■+x)=■∴sin(■+x)=-■,tan(■+x)=-■cosx=cos[(■+x)-■]=-■,sinx=-■∴■=-■点评:在综合变角、变名的基础上,首先对所求复杂式子结构恒等变形,再结合已知条件,寻找目标。

学生简单的三角恒等变换复习资料(教室)

学生简单的三角恒等变换复习资料(教室)

三角恒等变换一、复习要点:1.熟记以下公式:2.三角恒等变换:常用的数学思想方法技巧如下:(1)角的变换:在三角化简、求值、证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差、倍半、互补、互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变换如:①2α是 的二倍;4α是 的二倍;α是 的二倍;2α是 二倍; 3α是 的二倍;3α是 的二倍;22πα±是 的二倍.②()ααββ=+-; ③()424πππαα+=--;④2()()()()44ππααβαβαα=++-=+--等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。

如在三角函数中正余弦是基础,通常切化弦,变异名为同名.(3)常数代换:在三角函数运算、求值、证明中,有时需要将常数转化为三角函数值,例如常数“1”的代换变形有:221sin cos sin90tan 45αα=+=︒=︒.(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。

常用降幂公式有: , .降幂并非绝对,有时 要升幂,常用升幂公式有: , .(5)sin cos a b αα+= = ;(其中sin ϕ= ;c o s ϕ= .)积互化,特殊值与特殊角的三角函数互化.二、应用:(一)求值:1.已知,αβ都是锐角,45sin,cos()513ααβ=+=,求sinβ的值.2.已知35123cos(),sin(),(,),(0,)45413444πππππαβαβ-=+=-∈∈,求sin()αβ+的值.3.已知13cos(),cos()55αβαβ+=-=,求tan tanαβ的值.4.已知11cos cos,sin sin23αβαβ+=+=,求cos()αβ-的值.5.已知,αβ都是锐角,1tan,sin7αβ==,求tan(2)αβ+的值.6.(1)若34παβ+=,求(1tan)(1tan)αβ--的值;(2)求值:tan20tan40tan120tan20tan40︒+︒+︒︒︒(3)tan 20tan 4020tan 40︒+︒+︒︒的值是 .7.(1)已知33cos ,52πθπθ=-<<,求2(sin cos )22θθ-的值;(2)已知445sin cos 9θθ+=,求sin 2θ的值.8. 化简(1)1sin10cos10-︒︒(2)tan 70cos10201)︒︒︒-(三)综合应用9.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π2<φ<π2)一个周期的图象如图所示.(1)求函数f(x)的表达式;(2)若f(α)+f(α-π3)=2425,且α为△ABC的一个内角,求sinα+cosα的值.练习一.))9. 在△ABC ABC的形状一定是()A. 等腰三角形等腰直角三角形 D. 等边三角形10. 要使斜边一定的直角三角形周长最大,它的一个锐角应是(A. 30°B. 45°C. 60°D.11.(1+tan21°)(1+tan20°)(1+tan25°)(1+tan24°)的值是()A.2 B.4 C.8 D.1612. )二.13. 。

三角恒等变换与解题技巧

三角恒等变换与解题技巧

三角恒等变换与解题技巧三角恒等变换是解决三角函数相关问题的重要方法之一,通过巧妙地变换三角函数的表达式,可以简化计算、化简复杂的式子、推导出新的关系等。

在解题过程中,合理应用三角恒等变换可以帮助我们降低难度、提高效率。

本文将介绍三角恒等变换的基本概念、常用公式以及解题技巧,以帮助读者更好地理解和运用三角恒等变换。

一、基本概念三角恒等变换是指通过等式的变换,将一个三角函数表达式变为与之等价的另一个表达式。

通常,三角恒等变换会使得原先复杂的式子简化或转化成更易处理的形式,从而方便我们求解问题。

三角恒等变换的基本思想是利用三角函数之间的相互关系以及已知恒等式,将三角函数表达式转换为其他函数的组合或者其他三角函数的形式。

二、常用公式以下是一些常用的三角恒等变换公式:1. 余弦的平方与正弦的平方恒等变换:cos^2θ + sin^2θ = 12. 二倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θ3. 和差角公式:sin(α + β) = sinαcosβ + cosαsinβsin(α - β) = sinαcosβ - cosαsinβcos(α + β) = cosαcosβ - sinαsinβcos(α - β) = cosαcosβ + sinαsinβ4. 倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θ= 2cos^2θ - 1 = 1 - 2sin^2θ5. 平方和与平方差公式:sin^2θ + cos^2θ = 1sin^2θ - cos^2θ = sin^2θ / cos^2θ以上只是一部分常用的三角恒等变换公式,通过合理运用这些公式,我们可以将复杂的三角函数式子转化为简单易解的形式,为解题提供便利。

三、解题技巧1. 利用三角恒等变换化简式子在解决问题时,我们常常会遇到需要化简复杂的三角函数式子的情况。

三角恒等变换教案(教师用)

三角恒等变换教案(教师用)
例8、【给值求角】(1)已知 , ,且 ,求 的值
(2)若 且 , ,求 的值。
(答: ).
例9、【给值求取值范围】
1.若 求 的取值范围。
2. ห้องสมุดไป่ตู้求 的取值范围
针对性练习二
1、已知 则 的值等于()
(A) (B) (C) (D)
2、已知 则 值等于()
(A) (B) (C) (D)
3、化简:
答案:1·B 2·C
知识框架
一、两角和与差的正弦、余弦、正切公式
二、倍角的正弦、余弦、正切公式
1、二倍角公式:
2、二倍角公式的变形
(1)升幂:(2)降幂:
三、三角恒等变换的常见形式
1、三角恒等变换中常见的三种形式:化简、求值、证明
(1)三角函数式的化简常见的方法为化切为弦、利用诱导公式、同角三角函数的基本关系及和(差)角公式、倍角公式等进行转化求解。
巩固作业
1、若 ,求 的值。
2、已知在 中, ,求cosA的值。
3、已知 的最值。
4、已知 , ,则 的最大值为______,最小值为______.
5、若 的取值范围是
[0 , ]
难题、易错题部分
1、 中, ,则 =_______
2、已知函数y=sin( x+ )与直线y= 的交点中距离最近的两点距离为 ,那么此函数的周期是()
三角恒等变换
课题
三角恒等变换
教学目标
1、掌握和差角公式、二倍角公式的推导方法与记忆技巧,并能熟练运用此类公式。
2、能够熟练进行三角恒等变换(如:化简、求值)
重点、难点
重点:三角恒等变换;难点:三角恒等变换的应用
考点及考试要求
1、两角和与差的正弦、余弦、正切公式。

三角恒等变换技巧

三角恒等变换技巧

三角恒等变换技巧三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益 · 一、 切割化弦“切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想. 【例1】证明:ααααααααcot tan cos sin 2cot cos tan sin22+=++证明:左边ααααααααcos sin 2sin cos cos cos sin sin 22+⋅+⋅=ααααααααααααc o s s i n 1c o s s i n )c o s (s i n c o s s i n c o s c o s s i n 2s i n 2224224=+=++=右边ααααααααααcos sin 1cos sin cos sin sin cos cos sin 22=+=+= ∴左边~右边.原等式得证.点评“切割化弦”是将正切、余切、正割、余割函数均用正弦、余弦函数表示,这是一种常用的、有效的解题方法.当涉及多种名称的函数时,常用此法减少函数的种类.【例2】 已知θ同时满足b a b a b a 2sec cos 2cos sec 22=-=-θθθθ和,且b a ,均不为零,试求“b a ,”b 的关系.解:⎪⎩⎪⎨⎧=-=-②① b a b a b a 2sec cos 2cos sec 22θθθθ显然0cos ≠θ,由①×θ2cos +②×θcos 得: 0cos 2cos 22=+θθb a ,即0cos =+b a θ又0≠a ,∴ab-=θcos 代入①得a a b b a 2223=+0)(222=-⇔b a ∴22b a =点评 本例是化弦在解有关问题时的具体运用,其中正割与余弦、余割与正弦之间的倒数关系是化弦的通径.【例3】 化简)10tan 31(50sin 00+解:原式=000000010cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin +⋅=+ 110cos 80sin 10cos 10cos 40sin 210cos )1030sin(250sin 000000000===+⋅=点评 这里除用到化切为弦外,其他化异角函数为同角函数等也是常用技巧. 二、 角的拆变在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角的相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为ββα-+)(;α2可变为)()(βαβα-++;βα-2可变为αβα+-)(;α可视为2α的倍角;)45(0α±可视为)290(0α+的半角等等.【例4】(2005年全国卷)设α为第四象限角,若513sin 3sin =αα,则=α2tan _______. 解: 513tan 1tan 3tan 2tan tan 2tan sin 2cos cos 2sin sin 2cos cos 2sin sin 3sin 22=+-=-+=-+=αααααααααααααααα ∴91tan 2=α 又∵α为第四象限角 ∴31tan -=α∴43tan 1tan 22tan 2-=-=ααα 点评这里将α3写成αα+2,将α写成αα-2是解题的切人点.根据三角表达式的结构特征,寻求它与三角公式间的相互关系是解题的关键.【例5】已知锐角α、β满足)cos(2csc sin βααβ+=,2πβα≠+,求βtan 的最大值及β的值。

9种常用三角恒等变换技巧总结

9种常用三角恒等变换技巧总结

9种常用三角恒等变换技巧总结三角恒等变换是数学中常用的一种技巧,在解决三角函数相关问题时非常有用。

下面总结了九种常见的三角恒等变换技巧。

1.倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)这些公式可以用于将一个三角函数中的角度变为它的倍角,从而简化计算。

2.半角公式:sin(θ/2) = ±√((1 - cosθ) / 2)cos(θ/2) = ±√((1 + cosθ) / 2)tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))这些公式可以用于将一个三角函数中的角度变为它的半角,从而简化计算。

3.和差公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)这些公式可以用于将两个角度的三角函数变成一个角度的三角函数,从而简化计算。

4.和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)cosA - cosB = -2sin((A+B)/2)sin((A-B)/2)这些公式可以用于将和或差的三角函数转化为乘积的三角函数,从而简化计算。

5.积化和差公式:sinAcosB = 1/2(sin(A+B) + sin(A-B))cosAsinB = 1/2(sin(A+B) - sin(A-B))cosAcosB = 1/2(cos(A+B) + cos(A-B))sinAsinB = -1/2(cos(A+B) - cos(A-B))这些公式可以用于将乘积的三角函数转化为和或差的三角函数,从而简化计算。

进行三角恒等变换的技巧

进行三角恒等变换的技巧

思路探寻步骤,不管是求三角函数的值、证明某个结论,都需要进行三角恒等变换.些进行三角恒等变换的技巧是很有必要的.角恒等变换主要是对三角函数式中的角、幂、常数进行变换.下面,三角变换的一些技巧.一、对角进行变换若题设中含有多个不同的角,换,建立已知角与所求角的之间的联系,用诱导公式、两角和差的正余弦公式、将已知角逐步朝着所求角靠拢.同时,角的范围和三角函数值,角函数值.例1.若cos(α-β)=-45,cos(α+β)=1213π),α+β∈(3π2,2π),求cos 2α的值.解析:观察所求角和已知角的差异,系2α=(α+β)+(α-β).和的余弦公式进行三角恒等变换.解:cos 2α=cos[(α+β)+(α-β)]=cos(α-β)cos(α-β)-sin(α+β)sin(α-β)又α-β∈(π2,π),α+β∈(3π2,2π),由已知易得sin(α-β)=35,sin(α+β)=-315代入上式可得cos 2α=-3365.二、对函数名称进行变换我们需要对函数的名称进行变换,同角的三角函数关系式:cos 2α+sin 2α=1、tan 二倍角公式、有“切化弦”或“弦化切”.例2.若3sin α+cos α=0,求cos 2解析:由于3sin α+cos α=0,可得tan α么我们需利用关系式sin2α+cos 2α=1和tan αcos 2α+sin2α用tan α表示出来.解:cos 2α+sin2α=cos 2α+sin 2αcos 2α+sin 2α,将上式的分子、分母同时除以cos 2α,得.三、对幂进行变换有些函数式中幂的次数不统一,一般需将高次的幂变换为低次的幂.常用到的公式有cos2α=2cos 2α-1=1-2sin 2α、tan 2α=2tan α1-tan 2α、cos 2α+sin 2α=1.例3.已知sinα-cosα=12,求sin 3α-cos 3α的值.解析:由于已知式与目标式的次数存在较大的差异,将目标式降次是首要任务.可利用cos 2α=2cos 2α-1=1-2sin 2α和cos 2α+sin 2α=1来进行变换.解:因为(sin α-cos α)2=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α,所以sin αcos α=38,故sin 3α-cos 3α=(sin α-cos α)(sin 2α+cos 2α+sin αcos α)=(sin α-cos α)(1+sin αcos α)=12×(1+38)=1116.四、对常数进行变换对常数进行变换是进行三角恒等变换的常用技巧.常见的变换有1=cos 2α+sin 2α、sin30°=12、sin45°=、sin60°=、sin90°=tan45°=1.这样通过对常数进行变换,可将三角函数式转化为可利用公式进行化简的式子.例4.已知cos α=-13,α是第二象限角,且sin(α+β)=1,求cos(2α+β)的值.解:由cos α=-13,且α是第二象限角,可得sin α=,由于sin(α+β)=1,所以α+β=2k π+π2(k ∈Z ),故cos (2α+β)=cos[(α+β)+α]=cos (2k π+π2+α)=cos (π2+α)=-sin α=-.因为已知条件sin(α+β)=1比较特殊,所以可直接求出α+β的值,将其整体代入求解,便把复杂的三角求值问题变为求特殊角的值的问题.此解法与常规方法不同,但效果很好.总之,进行三角函数恒等变换,需要仔细分析三角函数式的结构特点,选择恰当的公式将三角函数式化成单角、项数尽可能少、次数尽可能低、结构尽可能简单的三角函数式,这样便能快速求得问题的答案.(作者单位:福建省龙岩市长汀县第一中学)Copyright©博看网 . All Rights Reserved.。

三角恒等变换的技巧

三角恒等变换的技巧

三角恒等变换的技巧三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考.技巧一:式的变换-→两式相加减,平方相加减例1已知11cos sin ,sin cos 23αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36αβαβ+-= 化简得,59sin()72βα-=-,即59sin()72αβ-= 【方法评析】式的变换包括:(1)tan(α±β)公式的变用;(2)齐次式;(3) “1”的运用(1±sin α, 1±cos α凑完全平方);(4)两式相加减,平方相加减;(5)一串特殊的连锁反应(角成等差,连乘).技巧二:角的变换→已知角与未知角的转化例2已知7sin()2425παα-==,求sin α及tan()3πα+. 解:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ① 由题设条件,应用二倍角余弦公式得,故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α,于是3tan 4α=-故3tan()3πα-++=== 【方法评析】(1)本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到;(2)在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形.技巧三:合一变换---辅助角公式例3设关于x的方程sin 0x x a ++=在(0,2)π内有相异二解βσ和.求a 的取值范围.解:∵1sin 2(sin )2sin()23x x x x x π=+=+,∴方程化为sin()32a x π+=-.∵方程sin 0x x a ++=在(0,2)π内有相异二解,∴sin()sin 332x ππ+≠=. 又sin()13x π+≠± (和1±时仅有一解),∴122a a <≠且-,即2a a <≠且∴ a的取值范围是(2,(3,2)--. 【方法评析】要注意三角函数实根个数与普通方程的区别,这里不能忘记(0,2)π这一条件. 例4 若cos 2sin αα+=求tan α的值.解: 方法一:(“1”的运用)将已知式两端平方得方法二:(合一变换)()αϕ+=1tan 2ϕ=, 再由()sin 1αϕ+=-知,()22k k παϕπ+=-∈Z ,所以22k παπϕ=--, 所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭方法三:(式的变换)令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =,即sin 2cos 0αα-=,故tan 2α=.方法四:(与单位圆结合)我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得5x y ⎧=-⎪⎪⎨⎪=⎪⎩,从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩求解实质上是一致的.方法评析:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目,背景是熟悉的,但要解决这个问题还需要学生具有相当的知识迁移能力.有关三角恒等变换的一般解题思路为“五遇六想”,即:遇正切,想化弦;遇多元,想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.。

三角恒等变换的常见技巧(师)

三角恒等变换的常见技巧(师)

三角恒等变换的常见技巧一、核心技巧方法1、三角恒等变换中的“统一”思想:三角恒等变换的主要目的是异名化同名、异次化同次、异角化同角、异构化同构,即化异为同,也就是将待证式左右两边统一为一个形式,或将条件中的角、函数式表达为问题中的角或函数式,达到以已知表达未知的目的。

基本切入点是统一角,往往从统一角入手便能全面达到化异为同的目的。

2、统一思想的应用——引入辅助角:对x b x a y cos sin +=型函数式的性质的研究,我们常常引入辅助角ϕ。

即化ab x b a x b x a y =++=+=ϕϕtan ),sin(cos sin 22,然后将该式与基本三角函数x A sin y =进行比照研究。

“位置相同,地位平等”是处理原则。

3、统一思想的应用——拆、拼角,如()()()()22β-α+β+α=αβ-β+α=αβ+β+α=β+α,,等等;4、统一思想的应用——弦切互化,如利用万能公式,把正余弦化为正切等等;对关于正余弦函数的齐次式的处理也属于“弦化切”技巧;5、统一思想的应用——公式变、逆用,主要做法是将三角函数式或其一部分整理成公式的一部分,然后利用公式的这一部分与另一部分的等量关系代入6、代换思想的应用——关于正余弦对等式的处理,常以21t x cos x sin ,t x cos x sin 2-==+代入,把函数式化为关于t 的函数式进行研究;另外,三角代换也是处理函数最值、值域等问题的重要技巧。

二、考点解析与典型例题考点一 引入辅助角研究三角函数的性质例1. 设f (x )=asin x ω+bcos x ω(0,,>ωb a )的周期为π且最大值f (12π)=4; 1)求ω、a 、b 的值;2)若α、β为f (x )=0的两个根(α、β终边不共线), 求tan (α+β)的值。

【解】1)ab x b a x f =++=ϕϕωtan ),sin()(22,则 ⎪⎩⎪⎨⎧===ω⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎩⎪⎨⎧==ϕ=ω⇒⎪⎪⎭⎪⎪⎬⎫=ϕ+ωππ=ωπ=+⇒=+=π=π32b 2a 23a b tan 21)12sin(24b a 4b a )12(f )x (f ,)x (f 2222max 周期为由上可知:)32sin(4)(π+=x x f ,令26320)(ππππk x k x x f +-=⇒=+⇒=因为α、β终边不共线,故33)tan(2123=+⇒++-=+βαππβαk考点二 拆、拼角例2. 已知cos 91)2(-=-βα,sin 32)2(=-βα,且,20,2πβπαπ<<<<求.2cos βα+【分析】观察已知角和所求角,可作出)2()2(2βαβαβα---=+的配凑角变换,然后利用余弦的差角公式求角。

三角变换的常用技巧方法

三角变换的常用技巧方法

三角变换的若干策略安徽 明师1、角的变换策略三角化简、求值与证明中,往往会出现较多相异的角,这时可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获解。

常用的角的变换有:15=4530-=60-45=302,ββαα-)(+=,)-()(2βαβαα++==)-4(-)4(απαπ+,)-4(-24αππαπ=+等。

例1:化简:分析:观察本题特点,从整体上考虑要达到化简的目的,将 变换为是关键一步,此步完成了,解此题就变为通途了。

解2、“同名函数”变换策略三角变形中,常常需要变不同名函数为同名函数。

通常是化切、割为弦,变异名为同名。

例2:求证:ααααααcos sin 11sec tan 1sec tan +=+--+分析:左右两边三角函数名称不同,利用“切、割化弦”,统一函数种类。

证明:左边=1cos 1cos sin 1cos 1cos sin +--+αααααα=ααααcos 1sin cos 1sin +--+=1)cos (sin cos )1(sin 222-+-+αααα =ααααcos sin 2sin 2sin 22+=ααcos sin 1+=右边。

3.“1”的变换策略在三角变换中,“1”的变换有:1=ααααααααααsin csc cos sec tan sec cot tan cos sin 2222⋅=⋅=-=⋅=+=0090sin 45tan =,等等。

在具体变换中,要根据题目的不同特征选择不同的变换方式。

例3:已知:11tan tan -=-αα,求2cos sin sin 2++ααα的值。

解:由已知得,21tan =α,∴ 2cos sin sin 2++ααα=ααααααα22222cos sin )cos (sin 2cos sin sin ++++ =αααααα2222cos sin cos 2cos sin sin 3+++ =1tan 2tan tan 322+++ααα=12122121322+)(++)(⨯=513。

三角恒等变换

三角恒等变换

综合练习题
● 题目:求证 sin(α + β) = sinαcosβ + cosαsinβ 解析:利用三角函数的加法公式,将左边展开,与右边进行比 较,得出结论。
● 解析:利用三角函数的加法公式,将左边展开,与右边进行比较,得出结论。
● 题目:已知 cos(α + β) = 1/3,cos(α - β) = 2/3,求 tanαtanβ 的值 解析:利用三角函数的加法公式和减法 公式,将已知条件代入,解出 tanαtanβ 的值。
公式形式:sin(x+y)=sinxcosy+cosxsiny 公式证明:利用三角函数的和差化积公式证明 应用场景:在三角函数图像变换、求解三角函数方程等问题中广泛应用 注意事项:使用时需要注意x、y的取值范围,避免出现错误的结果
三角恒等变换的 技巧和方法
代数恒等变换方法
代数恒等变换的定义和性质
交流电分析:在交流电 的分析中,三角恒等变 换用于计算交流电的相 位和幅度,以及进行电 路分析。
振动分析:三角恒等变 换用于描述简谐振动的 合成与分解,以及分析 复杂振动的模式。
光学应用:在光学中, 三角恒等变换用于描述 光的干涉和衍射现象, 以及分析光学仪器的性 能。
三角恒等变换在实际问题中的应用
三角函数在解析几何中的应用,例如求解极坐标方程、圆和椭圆的参数方程等。
三角函数在求解微分方程中的应用,例如求解振动问题、波动问题等。 三角恒等变换在信号处理中的应用,例如傅里叶变换、拉普拉斯变换等。 三角恒等变换在复数运算中的应用,例如求解复数方程、进行复数运算等。
三角恒等变换的 注意事项和易错 点
● 解析:利用三角函数的加法公式和减法公式,将已知条件代入,解出 tanαtanβ 的值。

进行三角恒等变换的几个技巧

进行三角恒等变换的几个技巧

很多三角函数题目侧重于考查三角恒等变换的技巧.进行三角恒等变换的关键是选择合适的公式或变形式,将三角函数式中的角、函数名称、幂等进行灵活的转化,从而顺利化简三角函数式,求出三角函数式的值.下面,笔者介绍几个进行三角恒等变换的技巧,以供大家参考.一、拆角与补角有些三角函数式中的角不相同,就需要运用拆角与补角的技巧,将题目中的角进行转化.在转化角时,要先联系已知条件和所求目标,将角进行拆分、拼凑,再灵活运用诱导公式、二倍角公式、两角的和差公式等进行变换.例1.已知cos (α+π4)=35,π2≤α≤3π2,求cos (2α+π4)的值.解:由于π2≤α≤3π2,所以3π4≤α+π4≤7π4,因为cos (α+π4)=35>0,可知3π2≤α+π4≤7π4,因此sin (α+π4)=-45,所以sin 2(α+π4)=2sin (α+π4)cos (α+π4)=-2425,cos 2(α+π4)=2cos 2(α+π4)-1=-725,因此cos (2α+π4)=cos[2(α+π4)-π4]=cos 2(α+π4)cos π4+sin 2(α+π4)sin π4=.观察题目中的各个角,可以发现:已知角α+π4与所要求的角2α+π4之间相差一个α,可得2(α+π4)-π4=2α+π4,用二倍角公式和诱导公式求出sin 2(α+π4)和cos 2(α+π4)的值,最后根据余弦的两角和公式,即可求出cos(2α+π4)的值.二、降幂与升幂当三角函数式中出现高次或者次数不一的式子时,就要运用降幂与升幂的技巧来解题.常用到的公式有cos 2α=2cos 2α-1=1-2sin 2α、tan 2α=2tan α1-tan 2α、sin 2α+cos 2α=1.例2.证明cos 2α+cos 2(x +π3)+cos 2(x -π3)的值与x 的取值无关.证明:cos 2α+cos 2(x +π3)+cos 2(x -π3)=1+cos 2x 2+1+cos(2x +23π)2+1+cos(2x -23π)2=32+12[cos 2x +cos(2x +23π)cos(2x -2π3)]=32+12(cos 2x -12cos 2x -2x -12cos 2x +2x )=32.该式与x 无关,命题得证.该三角函数式较为复杂,cos 2α、cos 2(x +π3)、cos 2(x -π3)均为二次式,且各个角不相等,需先利用余弦函数的二倍角公式降幂,将其转化为一次式,然后再进行化简,这样运算起来就会容易很多.三、弦切互化当函数式中出现多种不同的三角函数名称时,就需要通过弦切互化,将不同名函数化为同名函数.常用的办法是利用tan α=sin αcos α或sin 2α+cos 2α=1将切化弦或将弦化切.例3.已知tan α=2,求4sin α-2cos α5cos α+3sin α的值.解:因为tan α=2,所以cos α≠0,所以4sin α-2cos α5cos α+3sin α=4sin α-2cos αcos α5cos α+3sin αcos α=4tan α-25+2tan α=611.解答本题,需挖掘题目中的隐含信息cos α≠0,将所求目标式的分子、分母同时除以cos α,利用tan α=sin αcos α,使所求目标式中的函数名称统一为正切函数,最后将已知值代入,求得目标函数式的值.无论是对函数名称、角,还是对幂进行转化,都需要灵活运用三角函数中的基本公式及其变形式,有时也要学会逆用公式.在进行三角恒等变换时,要注意仔细观察三角函数式,选择恰当的三角恒等变换技巧.(作者单位:江苏省射阳县高级中学)解题宝典40。

三角函数中三角变换常用的方法和技巧

三角函数中三角变换常用的方法和技巧

三角函数中三角变换常用的方法和技巧三角函数是数学中的重要分支,广泛应用于物理、工程、计算机科学等领域。

在求解问题时,我们常常需要对三角函数进行各种变换和化简。

本文将介绍一些常用的三角变换方法和技巧。

一、和差化积与积化和差1.1和差化积和差化积是一种常用的三角函数变换方法,能够将两个三角函数的和(或差)表示为一个(或两个)三角函数的积。

具体公式如下:sin(a ± b) = sin a cos b ± cos a sin bcos(a ± b) = cos a cos b ∓ sin a sin btan(a ± b) = (tan a ± tan b) / (1 ∓ tan a tan b)1.2积化和差积化和差则是和差化积的逆运算,能够将一个三角函数的积表示为两个三角函数的和(或差)。

具体公式如下:sin a sin b = (1 / 2) [cos(a - b) - cos(a + b)]cos a cos b = (1 / 2) [cos(a - b) + cos(a + b)]sin a cos b = (1 / 2) [sin(a + b) + sin(a - b)]二、倍角公式和半角公式2.1倍角公式倍角公式是将一个角的三角函数表示为另一个角的三角函数的公式。

具体公式如下:sin 2a = 2sin a cos acos 2a = cos² a - sin² a = 2cos² a - 1 = 1 - 2sin² atan 2a = (2tan a) / (1 - tan² a)2.2半角公式半角公式是将一个角的三角函数表示为另一个角的三角函数的公式。

具体公式如下:sin (a / 2) = ±√[(1 - cos a) / 2]cos (a / 2) = ±√[(1 + cos a) / 2]tan (a / 2) = ±√[(1 - cos a) / (1 + cos a)]三、和差化积与和差化积的扩展3.1和差化积的扩展除了上述提到的基本的和差化积公式外,还存在一些扩展的和差化积公式。

三角函数定积分技巧

三角函数定积分技巧

三角函数定积分技巧
三角函数定积分是一种经常用于计算定积分的技巧,也称为三角函数变换法或三角变换技巧。

它可以通过运用三角函数的特性和变换,将某些定积分转化为更容易求解的形式,从而更快地求解定积分。

首先,要明确求解定积分的函数,然后使用一些三角函数变换原则,将函数表达式转换为能够更容易求解的形式。

其中,最常用的变换有以下几种:(1)正弦变换法:当求解定积分
中的函数形式为sin(x)或cos(x)时,可以使用正弦变换法,即
将定积分的函数表达式转换为积分的形式为1/cos(x)或1/sin(x)的形式,这样可以把求解定积分变换为一个更容易求解的形式。

(2)反正弦变换法:当求解定积分中的函数形式为
arcsin(x)或arccos(x)时,可以使用反正弦变换法,即将定积分
的函数表达式转换为积分的形式为x/sqrt(1-x^2)或sqrt(1-x^2)的形式,这样可以把求解定积分变换为一个更容易求解的形式。

(3)反正切变换法:当求解定积分中的函数形式为
arctan(x)时,可以使用反正切变换法,即将定积分的函数表达
式转换为积分的形式为x/(1+x^2)的形式,这样可以把求解定
积分变换为一个更容易求解的形式。

此外,三角函数定积分技巧还包括其他一些变换,比如正切变换法、双曲函数变换法等,只要熟悉这些变换,就可以更有效地求解定积分。

总之,三角函数定积分技巧是一种经常用于计算定积分的技巧,通过正确使用这些变换,可以更快地求解定积分,从而提高数学计算的效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数中三角变换常用的方法和技巧一、角的变换当已知条件中的角与所求角不同时,需要通过“拆”、“配”等方法实现角的转化,一般是寻求它们的和、差、倍、半关系,再通过三角变换得出所要求的结果. 例1 函数ππ2sin cos ()36y x x x ⎛⎫⎛⎫=--+∈⎪ ⎪⎝⎭⎝⎭R 的最小值等于( ). (A )3- (B )2-(C )1-(D )5-解析:注意到题中所涉及的两个角的关系:πππ362x x ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭,所以将函数()f x 的表达式转化为πππ()2cos cos cos 666f x x x x ⎛⎫⎛⎫⎛⎫=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()f x 的最小值为1-.故选(C ).评注:常见的角的变换有:()ααββ=+-,2()()ααβαβ=++-,2()αβααβ-=+-,22αβαββ+-=-,3πππ()442βααβ⎛⎫⎛⎫+--=++⎪ ⎪⎝⎭⎝⎭,ππ44αβαβ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭.只要对题设条件与结论中所涉及的角进行仔细的观察,往往会发现角之间的关系.例2已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值.例3、已知 βαβαα,,1411)cos(,71cos -=+=均是锐角,求βcos 。

解:。

)21734143571)1411(cos 1435sin(,734sin .sin )sin(cos )cos(])cos[(cos =⨯+⨯-=∴=+=+++=-+=ββαααβααβααβαβ小结:本题根据问题的条件和结论进行])[(αβαβ-+=的变换。

例4、已知cos(91)2-=-βα,sin(2α-β)=32,且,20,2πβπαπ<<<<求.2cosβα+分析:观察已知角和所求角,可作出)2()2(2βαβαβα---=+的配凑角变换,然后利用余弦的差角公式求角。

解:.2757329543591)]2()2cos[(2cos,35(1)2cos(,954(1)2sin(.224,24,20,2)32)9122=∙+⨯-=---=+∴=--=-=-=-<-<-<-<∴<<<<βαβαβαβαβαπβαππβαππβπαπ例5、已知),2sin(sin βαβ+=m 求证:).1(tan 11)tan(≠-+=+m mmαβα 分析:由角的特点,因已知条件所含角是,,2ββα+所证等式含角,,αβα+所以以角为突破口。

证明:.tan 11tan(1sin )cos()1(cos )sin()1(,sin )cos(cos )sin(sin )cos(cos )sin(],)sin[(])sin[(,)(,)(2αβααβααβααβααβααβααβααβααβααβαβαβαβαmmm m m m m m -+=+∴≠++=+-∴+++=+-+++=-+∴-+=++=+)即小结:抓住题设与结论中角的差异,利用角的和,差,倍等关系,变不同的角为同角,在三角变换中角的变换很重要。

二、函数名称变换对于含有多种三角函数的问题,要从题目中所给的各函数间的关系入手,寻求统一函数名称的变换途径,正确选用三角变换公式,通过变换尽量减少三角函数的种类,可以使问题得到快速的解决.例6、若sin (α+β)=12, sin (α—β)=110,求tan tan αβ解:由sin=(α+β)=12, s in (α—β)=110得1sin cos cos sin 312sin cos ,cos sin 1105sin cos cos sin 10αβαβαβαβαβαβ⎧+=⎪⎪==⎨⎪=⎪⎩解得- ∴tan tan αβ=sin cos cos sin αβαβ=32例7、当π04x <<时,函数22cos ()cos sin sin xf x x x x=-的最小值是( ).(A )4 (B )12(C )2 (D )14解析:注意到函数的表达式的分子与分母是关于sin x 与cos x 的齐二次式,所以,分子与分母同时除以2cos x 转化为关于tan x 的函数进行求解.因为π04x <<,所以0t a n 1α<<,所以2211()4tan tan 11tan 24f x x x x ==-⎛⎫--+⎪⎝⎭≥.故选(A ). 评注:切化弦,弦化切是解答三角问题中对函数名称进行转化的最常见、最基本的两种方法:(1)若所给的三角式中出现了“切函数”,则可利用同角三角函数基本关系将“切函数”化为“弦函数”进行求解、证明;(2)若所给的三角式中出现了“弦函数”与“切函数”,有时可以利用公式sin tan cos x x x=将“弦函数”化为“切函数”进行解答. 例8、化简:0cos10(tan103)sin50-解:原式00000000000sin10cos10sin103cos10cos102cos 40(3)2cos10sin 50cos10sin 50sin 50--=-===- 例9、已知tan()34πα+=-,求22sin cos sin sin cos 1ααααα-+的值。

解:∵tan()14tan tan()2441tan()4παππααπα+-=+-==++, ∴222222sin cos 2sin cos 2tan 47sin sin cos 1sin sin cos sin cos 2tan tan 1ααααααααααααααα===-+-++-+ 点评:在求值、化简、恒等式证明中,切化弦与弦化切是常用的三角变换技巧。

例10、已知k =++αααtan 12sin sin 22 )24(παπ<<,试用k 表示ααcos sin -的值。

分析:将已知条件“切化弦”转化为ααcos ,sin 的等式。

解:由已知k ==++=++ααααααααααcos sin 2cos sin 1)cos (sin sin 2tan 12sin sin 22; 24παπ<<ααc o s s i n>∴ ∴ααcos sin -k -=-=-=1cos sin 21)cos (sin 2αααα。

三、升幂与降幂变换分析三角函数中的次数,是低次的升次,还是高次的降次,要充分结合题中的要求,正确选用半角公式或倍角公式等三角公式,达到次数的统一.常用的降幂公式有:22cos 1sin 2αα-=,22cos 1cos 2αα+=和αα22cos sin 1+= 例11、求值:︒︒︒+︒-480sin 20sin 220sin 820sin 433解:原式:=︒︒-︒-20sin 3)20sin 21(20sin 432=︒︒︒-20sin 340cos 20sin 43=︒︒︒-︒+︒20sin 340cos 20sin 4)2040sin(2=︒︒︒-︒︒20sin 320sin 40cos 20cos 40(sin 2=︒︒-︒20sin 3)2040sin(2=332 注:怎样处理sin 320°和3是本题的难点,解决的方法是“降 幂”和“常数变换法”。

四、常数变换 例12、已知πtan 24α⎛⎫+=⎪⎝⎭,求212sin cos cos ααα+的值. 分析:由已知易求得tan α的值,而所求三角函数式中的分母所涉及的函数是正、余弦函数且各式都为二次式,而分子是常数1,可将1化为22sin cos αα+,再利用同角三角函数基本关系将所求式转化为正切函数进行求解.解:由π1tan tan 241tan ααα+⎛⎫+==⎪-⎝⎭,得1tan 3α=,于是原式2222sin cos tan 122sin cos cos 2tan 13ααααααα++===++. 评注:对于题中所给三角式中的常数(如:231323,,,等),比照特殊角的三角函数值,将它们化为相应的三角函数,参与其它三角函数的运算,在解题中往往起着十分奇妙的作用. 例13.求值(21cos 80o —23cos 10o )²1c o s 20o解:∵21cos 80o —23cos 10o =2222cos 103cos 80cos 80cos 10o oo o-=223cos 10sin 10o oo o o o (cos10+3sin10)(cos10-sin10)=22cos10cos 10sin 10o o o o o o o o o o 4(sin30+cos30sin10)(sin30cos10-cos30sin10)=24sin 40sin 201sin 204o o o =16sin 40sin 20o o=32cos20o∴原式=32在三角函数的、求值、证明中,有时需要将常数转化为三角函数,例如常数“1”的变换有:αα22cos sin 1+=,045tan 90sin 1==,等等。

例14、求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期,最大值和最小值。

分析:由所给的式子x x x x 2244cos sin cos sin ++可联想到222)cos (sin 1x x +=。

解:xxx x x x f 2sin 2cos sin cos sin )(2244-++=)cos sin 1(2cos sin 122x x xx --=212sin 41+=x 。

所以函数)(x f 的最小正周期是π,最大值为43,最小值为41。

六.公式的变形与逆用在进行三角变换时,我们经常顺用公式,但有时也需要逆用公式,以达到化简的目的。

通常顺用公式容易,逆用公式困难,因此要有逆用公式的意识。

教材中仅给出每一个三角公式的基本形式,如果我们熟悉其它变通形式,常可以开拓解题思路。

如由αααc o s s i n 22s i n =可以变通为αααs i n22s i n c o s =;由αααc o s s i n t a n =可变形为αααcos tan sin =;tan α±tan β=tan (α+β)(1 tan αtan β)等等。

例15、求︒︒+︒+︒28tan 17tan 28tan 17tan 的值。

解:原式=128tan 17tan )28tan 17tan 1(45tan 28tan 17tan )28tan 17tan 1)(2817tan(=︒︒+︒︒-︒=︒︒+︒︒-︒+︒小结:对于两个角的正切的三角函数的和与积的形式的求值问题,通常利用βαβαβαt a n t a n 1t a n t a n )t a n ( ±=±的变形式).tan tan 1)(tan(tan tan βαβαβα ±=±例16、求)6tan()6tan(3)6tan()6tan(θπθπθπθπ+-+++-的值。

相关文档
最新文档