高考数学抛物线复习
高考数学——抛物线-考点复习
【名师点睛】本题主要考查了抛物线的定义,抛物线的标准方程,属于中档题. @#网
典例 2 抛物= 线 y2 2 px( p > 0) 上的动点 Q 到其焦点的距离的最小值为 1,则 p =
1
A.
2
C.2
B.1 D.4
【答案】C
本题选择 C 选项. 【名师点睛】本题主要考查抛物线的定义及其应用,意在考查学生的转化能力和计算求解能力.由题意结合 抛物线的定义确定点的位置,然后求解 p 的值即可.
3
B.
2 9
D.
4
8.曲线 y = 2x2 上两点 A( x1, y1 )、B ( x2 , y2 ) 关于直线 y=
3
A.
2 5
C.
2
B. 2 D. 3
x
+
m 对称,且
x1
⋅
x2
=− 1 2
,则
m
的值为
9.已知抛物线 y2=2px(p>0)的焦点为 F,抛物线上的两个动点 A,B 始终满足∠AFB=60°,过弦 AB 的中点 H 作抛
PF= x + p 或 PF= y + p ,使问题简化.
2
2
3
典例 1 平面内动点 P 到点 F (0, 2) 的距离和到直线 l : y = −2 的距离相等,则动点 P 的轨迹方程为是
_____________.
【答案】 x2 = 8 y
【解析】由题意知,该点轨迹是以 F (0, 2) 为焦点,y = −2 为准线的抛物线,其中 p = 4 ,所以方程为 x2 = 8 y .
则 △OFM 的周长为
A. 4
B. 2 5 +1
C. 5 + 2 或 4
如何备考高考数学抛物线
如何备考高考数学抛物线高考数学抛物线是高考数学中的重要知识点,也是高中数学中的难点之一。
要想在高考中顺利通过抛物线这一关,就需要对抛物线的性质、图形、方程、对称性等方面进行深入的了解和掌握。
一、了解抛物线的性质1.定义:抛物线是平面上一条曲线,它的每一个点到抛物线所在的准线的距离等于这个点到抛物线焦点的距离。
2.标准方程:抛物线的标准方程为 y^2 = 4ax,其中 a 是抛物线的焦点到准线的距离,称为抛物线的参数。
当 a > 0 时,抛物线开口向右;当 a < 0 时,抛物线开口向左。
3.顶点:抛物线的顶点是曲线的最高点或最低点,位于对称轴上,坐标为 (0,0) 或 (0, -4a)。
4.对称性:抛物线具有轴对称性和中心对称性。
轴对称性指的是抛物线关于其对称轴对称,中心对称性指的是抛物线关于其顶点对称。
5.焦点和准线:抛物线的焦点位于对称轴上,坐标为 (a,0),准线的方程为 x = -a。
二、掌握抛物线的图形1.对称轴:抛物线的对称轴是垂直于准线的直线,方程为 x = 0。
2.焦点和顶点:抛物线的焦点和顶点都在对称轴上,且焦点在顶点的正下方。
3.渐近线:抛物线的渐近线是平行于对称轴的直线,方程为 y = 0。
4.开口方向:当 a > 0 时,抛物线开口向右;当 a < 0 时,抛物线开口向左。
5.顶点:抛物线的顶点是曲线的最高点或最低点,坐标为 (0,0) 或 (0, -4a)。
三、熟悉抛物线的方程1.标准方程:y^2 = 4ax,其中 a 是抛物线的焦点到准线的距离,称为抛物线的参数。
2.顶点式:当抛物线的顶点在原点时,方程可以写成 y^2 = 4px 或 y^2= -4px,其中 p 是顶点到焦点的距离。
3.焦点式:当抛物线的焦点在原点时,方程可以写成 x^2 = 4py 或 x^2= -4py,其中 p 是焦点到顶点的距离。
四、了解抛物线的应用1.光学:抛物线在光学中有着广泛的应用,如反射镜、折射镜等。
高考数学一轮复习全程复习构想数学(文)【统考版】第七节 抛物线(课件)
答案:B
答案:(1)D
答案:A
反思感悟 1.求抛物线的标准方程的方法 (1)先定位:根据焦点或准线的位置. (2)再定形:即根据条件求p. 2.抛物线性质的应用技巧 (1)利用抛物线方程确定及应用其焦点、准线时,关键是将抛物线方 程化成标准方程. (2)要结合图形分析,灵活运用平面图形的性质简化运算.
解析:当焦点在x轴上时,根据y=0,x-2y-4=0可得焦点坐标为(4,0),所 以抛物线的标准方程为y2=16x;当焦点在y轴上时,根据x=0,x-2y-4=0可得 焦点坐标为(0,-2),所以抛物线的标准方程为x2=-8y.
答案:B
关键能力—考点突破
答案:(1)A
(2)设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2), 则|PB|+|PF|的最小值为__4______.
3.[选修1-1·P64A组T4(2)题改编]顶点在原点,且过点P(-2,3)的抛 物线的标准方程是__________________.
答案:D
5.(忽视焦点的位置致误)若抛物线的焦点在直线x-2y-4=0上, 则此抛物的标准方程为___y_2=__1_6_x或__x_2_=_-__8_y__.
(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系 数的关系采用“设而不求”“整体代入”等解法.
[提醒] 涉及弦的中点、斜率时一般用“点差法”求解.
答案:B
微专题35 活用抛物线焦点弦的几个结论
数学抽象素养水平表现为能够在得到的数学结论的基础上形成新命 题,能够针对具体的问题运用数学方法解决问题,而新命题、新结论 有助于数学运算,两者相辅相成,本课时抛物线的焦点弦问题的四个 常用结论即为具体表现之一.
向右 |PF|=
高考数学(理科)总复习 9.5 抛物线及其性质
(1)设直线l:y=kx+b,抛物线y2=2px(p>0),直线与抛物线交点的个数等价于
方程组
y y
kx 2 2
b, px
解的个数,也等价于方程ky2-2py+2bp=0解的个数.
①当k≠0时,若Δ>0,则直线和抛物线相交,有两个公共点;若Δ=0,则直线
②当k=0时,直线y=b与抛物线y2=2px(p>0)相交,有一个公共点.特别地,当 直线l的斜率不存在时,设l:x=m,则当m>0时,l与抛物线相交,有两个公共 点;当m=0时,l与抛物线相切,有一个公共点;当m<0时,l与抛物线相离,无 公共点. (2)直线与抛物线相离(无交点)时,常求抛物线上的点到此直线的距离的 最小值.方法有两种,一是将距离d写成一个变量的函数,利用函数求之, 二是利用切线法求. (3)相切时,求切线斜率,一种方法是利用Δ=0求,另一种方法是利用导数求. 3.焦点弦的性质 以抛物线y2=2px(p>0)为例,设AB是抛物线的过焦点的一条弦(焦点弦),F
焦点 弦长
y2=2px(p>0)
p
2 +x0 p+(x1+x2)
y2=-2px(p>0)
p
2 -x0 p-(x1+x2)
x2=2py(p>0)
p
2 +y0 p+(y1+y2)
x2=-2py(p>0)
p
2 -y0 p-(y1+y2)
考向突破
考向 抛物线的几何性质
例
(2018贵州贵阳一模,8)过点M
k
方法技巧
方法 抛物线焦点弦问题的求解方法
(1)求抛物线的焦点弦长时,可应用公式求解,解题时,需要依据抛物线的 标准方程确定弦长是由p与交点横坐标确定,还是由p与交点纵坐标确 定,进一步还要确定是p与交点横(纵)坐标的和还是差,这是正确解题的 关键. (2)熟练掌握与焦点弦有关的结论是快速解决与焦点弦有关的选择题和 填空题的关键.
高考数学科学复习创新方案:抛物线(一)
抛物线(一)[课程标准]1.掌握抛物线的定义、几何图形、标准方程.2.掌握抛物线的简单几何性质(范围、对称性、顶点、离心率).1.抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)的距离01相等的点的轨迹叫做抛物线.点F叫做抛物线的02焦点,直线l叫做抛物线的03准线.2.抛物线的标准方程与几何性质O(0,0)抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F |PF |=x 0+p2,也称为抛物线的焦半径.1.(人教A 选择性必修第一册P133练习T 2改编)抛物线y =2x 2的准线方程为()A .y =-18B .y =-14C .y =-12D .y =-1答案A解析由y =2x 2,得x 2=12y ,故抛物线y =2x 2的准线方程为y =-18.故选A.2.(2023·绍兴模拟)设抛物线y 2=2px (p >0)的焦点为F ,若点P (1,m )在抛物线上,且|PF |=3,则p =()A .1B .2C .4D .8答案C解析抛物线y 2=2px (p >0)的焦点为x =-p 2,点P (1,m )在抛物线上,且|PF |=3,由抛物线的定义可知1+p2=3,则p =4.故选C.3.(人教B 选择性必修第一册2.7.1练习B T 5改编)若动点M (x ,y )到点F (4,0)的距离比它到直线x =-5的距离小1,则点M 的轨迹方程是()A .x =-4B .x =4C .y 2=8xD .y 2=16x答案D解析∵点M 到F (4,0)的距离比它到直线x =-5的距离小1,∴点M 到F的距离和它到直线x =-4的距离相等,故点M 的轨迹是以F 为焦点,直线x =-4为准线的抛物线,得点M 的轨迹方程为y 2=16x .4.(人教A 选择性必修第一册3.3.1练习T 3改编)已知抛物线C :y 2=8x 的焦点为F ,点P 在抛物线上,|PF |=6,则点P 的横坐标为()A .6B .5C .4D .2答案C解析设点P 的横坐标为x 0,抛物线y 2=8x 的准线方程为x =-2.∵点P 在抛物线上,|PF |=6,∴x 0+2=6,∴x 0=4.故选C.5.(人教B 选择性必修第一册习题2-7C T 1(1)改编)设P 是抛物线y 2=4x 上的一个动点,F 是抛物线的焦点.若B (3,2),则|PB |+|PF |的最小值为________.答案4解析如图,过点B 作BQ 垂直准线于点Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |.则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4,即|PB |+|PF |的最小值为4.()A .y 2=-92xB .y 2=92xC .x 2=-43yD .x 2=43y答案AD解析设抛物线的标准方程为y 2=kx 或x 2=my ,代入点P (-2,3),解得k=-92,m =43,所以y 2=-92x 或x 2=43y .故选AD.(2)(2021·北京高考)已知抛物线C :y 2=4x ,焦点为F ,点M 为抛物线C 上的点,且|FM |=6,则M 的横坐标是________;作MN ⊥x 轴于N ,则S △FMN =________.答案545解析因为抛物线的方程为y 2=4x ,故p =2且F (1,0).因为|FM |=6,所以x M +p 2=6,解得x M =5,故y M =±25,所以S △FMN =12×(5-1)×25=45.求抛物线的标准方程的方法(1)定义法.(2)待定系数法:当焦点位置不确定时,常采用以下两种模式设抛物线的标准方程:焦点在x 轴上设为y 2=ax (a ≠0)焦点在y 轴上设为x 2=ay (a ≠0)1.动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是()A .直线B .椭圆C .双曲线D .抛物线答案D解析设动圆的圆心为C ,半径为r ,则C 到定圆A :(x +2)2+y 2=1的圆心的距离等于r +1,而动圆的圆心到直线x =1的距离等于r ,所以动圆圆心到直线x =2的距离为r +1,根据抛物线的定义知,动圆圆心的轨迹为抛物线.故选D.2.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则抛物线C 的方程为()A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x答案C解析抛物线C :y 2=2px (p >0)的焦点M (x 0,y 0),由抛物线的定义,知|MF |=x 0+p 2=5,得x 0=5-p 2,则以MF 为直径的圆的圆心横坐标为52,而圆的半径为52,于是得该圆与y 轴相切于点(0,2),得圆心的纵坐标为2,则点M的纵坐标为4,即-p 2,42=2p 2-10p +16=0,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x .直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()C .(1,0)D .(2,0)答案B解析因为直线x =2与抛物线y 2=2px (p >0)交于D ,E 两点,且OD ⊥OE ,不妨设点D 在第一象限,根据抛物线的对称性可得∠DOx =∠EOx =π4,所以D (2,2),代入y 2=2px ,得4=4p ,解得p =1故选B.(2)(2021·新高考Ⅰ卷)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为________.答案x =-32解析解法一:不妨设点P 在第一象限,如图,由已知可得k OP =2,又PQ ⊥OP ,所以k PQ =-12.所以直线PQ 的方程为y -p 令y =0,得x =52p .所以|FQ |=52p -p 2=2p =6,所以p =3,所以C 的准线方程为x =-p 2=-32.解法二:由题易得|OF |=p 2,|PF |=p ,|PF |2=|OF |·|FQ |,即p 2=p2×6,解得p=3或p =0(舍去),所以C 的准线方程为x =-32.(1)涉及抛物线上的点到焦点的距离或到准线的距离时,常可相互转化.(2)应用抛物线的几何性质解题时,常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.1.已知抛物线C :y 2=4x 与圆E :(x -1)2+y 2=9相交于A ,B 两点,点M 为劣弧AB ︵上不同于A ,B 的一个动点,平行于x 轴的直线MN 交抛物线于点N ,则△MNE 周长的取值范围为()A .(3,5)B .(5,7)C .(6,8)D .(6,8]答案C解析如图所示,圆E 的圆心为(1,0),半径为3,抛物线的焦点为(1,0),准线为x =-1.由2=4x ,x -1)2+y 2=9,解得=2,=22或=2,=-22,不妨令A (2,22),B (2,-22),所以2<x M <4.设平行于x 轴的直线MN 交抛物线的准线x =-1于D ,根据抛物线的定义可知|NE |=|ND |,所以△MNE 的周长为|ME |+|NE |+|MN |=3+|ND |+|MN |=3+|MD |.而|MD |=x M +1∈(3,5),所以3+|MD |∈(6,8),即△MNE 周长的取值范围是(6,8).故选C.2.(2023·湖北校考模拟预测)过抛物线y 2=2px (p >0)的焦点F 的射线与抛物线交于点A ,与准线交于点B ,若|AF |=2,|BF |=6,则p 的值为________.答案3解析过点A 作AM ⊥准线于点M ,则|AM |=|AF |=2,∵|AF |=2,|BF |=6,∴|AB |=4,由AM ∥DF 可得|AM ||DF |=|AB ||BF |,即2p =46,解得p =3.多角度探究突破角度到焦点与到定点(动点)距离之和最小问题例3(多选)(2023·湖北部分重点中学联考)已知F是抛物线y2=4x的焦点,P 是抛物线y2=4x上一动点,Q是⊙C:(x-4)2+(y-1)2=1上一动点,则下列说法正确的是()A.|PF|的最小值为1B.|QF|的最小值为10C.|PF|+|PQ|的最小值为4D.|PF|+|PQ|的最小值为10+1答案AC解析抛物线的焦点为F(1,0),准线为x=-1.对于A,由抛物线的性质可知,|PF|的最小值为|OF|=1,故A正确;对于B,注意到F是定点,由圆的性质可知,|QF|的最小值为|CF|-r=10-1,故B错误;对于C,D,过点P作抛物线准线的垂线,垂足为M,由抛物线的定义可知|PF|=|PM|,故|PF|+|PQ|=|PM|+|PQ|,|PM|+|PQ|的最小值为点Q到准线x=-1的距离的最小值,故最小值为4,故C正确,D错误.故选AC.角度到定直线的距离最小问题例4(2023·浙江模拟)已知直线l1:3x-4y-6=0和直线l2:y=-2,拋物线x2=4y上一动点P到直线l1和直线l2的距离之和的最小值是() A.2B.3C.115D.3716答案B解析拋物线x2=4y 的焦点F (0,1),准线l :y=-1,设动点P 到直线l ,l 1,l 2的距离分别为d ,d 1,d 2,点F 到直线l 1的距离为d 3=|3×0-4×1-6|32+(-4)2=2,由d 2=d +1=|PF |+1,可得d 1+d 2=d 1+|PF |+1≥d 3+1=3,当且仅当PF ⊥l 1且P 在F 与l 1之间时,等号成立,即动点P 到直线l 1和直线l 2的距离之和的最小值是3.故选B.与抛物线有关的最值问题的两个转化策略(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.1.已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是()A.3 B.5C .2 D.5-1答案D解析由题意知,抛物线的焦点为F (1,0).设点P 到直线l 的距离为d ,由抛物线的定义可知,点P 到y 轴的距离为|PF |-1,所以点P 到直线l 的距离与到y 轴的距离之和为d +|PF |-1.易知d +|PF |的最小值为点F 到直线l 的距离,故d +|PF |的最小值为|2+3|22+(-1)2=5,所以d +|PF |-1的最小值为5-1.2.已知点M (20,40)不在抛物线C :y 2=2px (p >0)上,抛物线C 的焦点为F .若对于抛物线上的一点P ,|PM |+|PF |的最小值为41,则p 的值为________.答案42或22解析当点M (20,40)位于抛物线内时,如图1,过点P 作抛物线准线的垂线,垂足为D,则|PF|=|PD|,|PM|+|PF|=|PM|+|PD|.当点M,P,D三点共线时,=41,解得p=42;当点M(20,|PM|+|PF|的值最小.由最小值为41,得20+p240)位于抛物线外时,如图2,当点P,M,F三点共线时,|PM|+|PF|的值最小.由最小值为4141,解得p=22或p=58.当p=58时,抛物线C:y2=116x,点M(20,40)在抛物线内,故舍去.综上,p=42或p=22.课时作业一、单项选择题1.(2023·成都模拟)抛物线y=16x2的焦点坐标为()A.(0,4)B.(4,0)答案C解析抛物线的标准方程为x2=1y故选C.162.(2023·济南期末)已知抛物线的准线方程为x=1,则该拋物线的标准方程为()A.x2=-4y B.x2=4yC.y2=4x D.y2=-4x答案D解析由题意知,抛物线的准线方程为x=1,所以抛物线开口向左,设拋物线的标准方程为y2=-2px(p>0),则p=1,即p=2,所以拋物线的标准方程为y22=-4x.故选D.3.(2023·北京高考)已知抛物线C:y2=8x的焦点为F,点M在C上.若M 到直线x=-3的距离为5,则|MF|=()A.7 B.6C.5D.4答案D解析因为抛物线C:y2=8x的焦点F(2,0),准线方程为x=-2,点M在C上,所以M到准线x=-2的距离为|MF|,又M到直线x=-3的距离为5,所以|MF|+1=5,故|MF|=4.故选D.4.(2023·邯郸一模)抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的对称轴,反之,平行于抛物线对称轴的光线,经过抛物线上的一点反射后,反射光线经过该抛物线的焦点.已知抛物线C:y2=2px(p>0),一条平行于x轴的光线,经过点A(3,1),射向抛物线C的B处,经过抛物线C的反射,经过抛物线C的焦点F,若|AB|+|BF|=5,则抛物线C的准线方程是()A.x=-4B.x=-2C.x=-1D.x=-12答案B=5,解得p=4,则抛物线C的解析由抛物线的定义可得|AB|+|BF|=3+p2=-2.故选B.准线方程是x=-p25.设F为抛物线y2=2x的焦点,A,B,C为抛物线上三点,若F为△ABC 的重心,则|FA→|+|FB→|+|FC→|的值为()A.1B.2C.3D.4答案C解析由题意可知,点F又F为△ABC的重心,故x A+x B+x C3=12,即x A +x B +x C =32.又由抛物线的定义可知|FA →|+|FB →|+|FC →|=x A +x B +x C +32=32+32=3.故选C.6.(2023·十堰二模)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 的准线与坐标轴交于点P ,点M (3,2),且△MFP 的面积为2,若Q 是抛物线C 上一点,则△FMQ 周长的最小值为()A .4+2B .4+22C .4+10D .4+210答案B解析由题意可知,△MFP 的面积为12×p ×2=2,解得p=2,则F (1,0),准线方程为x =-1,|MF |=(3-1)2+22=22,点Q 到准线的距离为|QQ ′|,△FMQ 的周长最小,需|QF |+|MQ |最小,即|QQ ′|+|MQ |最小,所以当MQ 垂直于抛物线C 的准线时,△FMQ 的周长最小,且最小值为4+2 2.故选B.7.(2023·咸阳模拟)若F 是抛物线C :y 2=2px (p >0)的焦点,P 是抛物线C 上任意一点,|PF |的最小值为1,且A ,B 是抛物线C 上两点,线段AB 的中点到y 轴的距离为2,则|AF |+|BF |=()A .3B .4C .5D .6答案D解析由条件可得P (x 0,y 0)(x 0≥0),则|PF |2=0+2px 00,当且仅当x 0=0时取等号,所以=1,解得p =2,所以抛物线C 的方程为y 2=4x .如图所示,设A (x 1,y 1),B (x 2,y 2),因为AB 的中点到y 轴的距离为2,所以x 1+x 2=4,所以由抛物线的定义可知|AF |+|BF |=p +x 1+x 2=6.故选D.8.已知点P 为抛物线x 2=4y 上任意一点,点A 是圆x 2+(y -6)2=5上任意一点,则|PA |的最小值为()A.5B .25C .35D .6-5答案A解析圆x 2+(y -6)2=5的圆心为C (0,6),半径r =5.设0则|PC |2=x 20=116x 40-2x 20+3620-+20,当x 20=16时,|PC |2有最小值20,数形结合可知|PA |min =|PC |min -5=25-5=5.二、多项选择题9.(2023·衡水联考)已知抛物线C :y 2=4x 的焦点为F ,P 为抛物线上一点,则下列结论正确的是()A .焦点F 到抛物线准线的距离为2B .若|PF |=2,则点P 的坐标为(1,2)C .过焦点F 且垂直于x 轴的直线被抛物线所截得的弦长为2D .若点M 的坐标为(1,4),则|PM |+|PF |的最小值为4答案AD解析由抛物线的解析式知p =2,所以抛物线的焦点F (1,0),准线方程为x =-1,所以焦点F 到抛物线准线的距离为2,故A 正确;设抛物线上点P (x ,y ),则|PF |=x +1=2,解得x =1,故y =±2,则点P 的坐标为(1,2)或(1,-2),故B 错误;过焦点F 且垂直于x 轴的直线被抛物线所截得的弦长为2p =4,故C 错误;如图,当M ,P ,F 三点共线且P 在线段MF 上时,|PM |+|PF |取得最小值,即|MF |=(1-1)2+42=4,故D 正确.故选AD.10.(2023·大庆模拟)已知抛物线x 2=12y 的焦点为F ,M (x 1,y 1),N (x 2,y 2)是抛物线上两点,则下列结论正确的是()A.点F的坐标为18,0B.若直线MN过点F,则x1x2=-116C.若MF→=λNF→,则|MN|的最小值为12D.若|MF|+|NF|=32,则线段MN的中点P到x轴的距离为58答案BCD解析易知点F的坐标为0,18,A错误;根据抛物线的性质知,MN过焦点F时,x1x2=-p2=-116,B 正确;若MF→=λNF→,则MN过点F,则|MN|的最小值即抛物线通径的长,为2p,即12,C正确;抛物线x2=12y的焦点为0,18,准线方程为y=-18,过点M,N,P分别作准线的垂线MM′,NN′,PP′,垂足分别为M′,N′,P′,所以|MM′|=|MF|,|NN′|=|NF|.所以|MM′|+|NN′|=|MF|+|NF|=32,所以|PP′|=|MM′|+|NN′|2=34,所以线段MN的中点P到x轴的距离为|PP′|-18=34-18=58,D正确.故选BCD.11.设抛物线C:y2=2px(p>0)的焦点为F,准线为l,A为C上一点,以F 为圆心,|F A|为半径的圆交l于B,D两点.若∠ABD=90°,且△ABF的面积为93,则()A.|BF|=3B.△ABF是等边三角形C.点F到准线的距离为3D.抛物线C的方程为y2=6x答案BCD解析根据题意,作出图形如图所示.因为以|FA|为半径的圆交l 于B ,D 两点,所以|FA |=|FB |,又|FA |=|AB |,所以△ABF 为等边三角形,B 正确;因为∠ABD =90°,所以AB ∥x 轴,所以∠BFO =60°,所以|BF |=2p ,S △ABF =34|BF |2=34·4p 2=93,解得p =3,所以|BF |=6,所以A 不正确;焦点到准线的距离为p =3,所以C 正确;抛物线C 的方程为y 2=6x ,所以D 正确.故选BCD.三、填空题12.(2023·全国乙卷)已知点A (1,5)在抛物线C :y 2=2px 上,则A 到C 的准线的距离为________.答案94解析由题意可得(5)2=2p ×1,则2p =5,抛物线C 的方程为y 2=5x ,准线方程为x =-54,所以A 到C 的准线的距离为1--54=94.13.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba =________.答案1+2解析依题意知C a 2,-a ,F a 2+b ,b,因为点C ,F 在抛物线上,所以a 2=pa ,b 2=p (a +2b ),两式相除得b a 2-2·b a -1=0,解得b a =1+2或b a =1-2(舍去).14.(2023·江苏二模)已知点P 在抛物线C :y 2=2px (p >0)上,过P 作C 的准线的垂线,垂足为H ,点F 为C 的焦点.若∠HPF =60°,点P 的横坐标为1,则p =________.答案23解析如图所示,不妨设点P 在第一象限,联立y 2=2px ,x =1,=1,=±2p,即点P(1,2p).易知PH⊥y轴,则PH∥x轴,则∠xFP=∠HPF=60°,所以直线PF的倾斜角为60°,易知点所以k PF=2p1-p2=3,整理可得22p=3(2-p),且2-p>0,故0<p<2,等式22p=3(2-p)两边同时平方可得3p2-20p+12=0,即(3p-2)(p-6)=0,解得p=23或p=6(舍去).四、解答题15.(2020·全国Ⅱ卷)已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.解(1)∵F(c,0),AB⊥x轴且与椭圆C1相交于A,B两点,则直线AB的方程为x=c,c,+y2b2=1,b2+c2,=c,=±b2a,则|AB|=2b2a.抛物线C2的方程为y2=4cx,把x=c代入y2=4cx,得y=±2c,∴|CD|=4c.∵|CD|=43|AB|,即4c=8b23a,∴2b 2=3ac .又b 2=a 2-c 2,∴2c 2+3ac -2a 2=0,即2e 2+3e -2=0,解得e =12或e =-2,∵0<e <1,∴e =12,∴椭圆C 1的离心率为12.(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c2=1,4cx ,+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得|MF |=23c +c =5c3=5,解得c =3.∴曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .16.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 的中点的轨迹方程.解(1)证明:由题意知设l 1:y =a ,l 2:y =b ,则ab ≠0,且-12,-12,-12,记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k1=a-b1+a2=a-ba2-ab=1a=-aba=-b=k2.所以AR∥FQ.(2)设l与x轴的交点为D(x1,0),则S△ABF=12|b-a||FD|=12|b-a||x1-12|,S△PQF=|a-b|2.由题设可得2×12|b-a||x1-12|=|a-b|2,所以x1=0(舍去)或x1=1.设满足条件的AB的中点为E(x,y).当AB与x轴不垂直时,由k AB=k DE可得2a+b =yx-1(x≠1).而a+b2=y,所以y2=x-1(x≠1).当AB与x轴垂直时,E与D重合.所以所求轨迹方程为y2=x-1.。
高考数学复习题库 抛物线
高考数学复习题库抛物线抛物线一.选择题1.抛物线x2=(2a-1)y的准线方程是y=1,则实数a=( )A. B. C.- D.-解析根据分析把抛物线方程化为x2=-2y,则焦参数p=-a,故抛物线的准线方程是y==,则=1,解得a=-. 答案 D2.若抛物线y2=2px(p>0)的焦点在圆x2+y2+2x-3=0上,则p=( )A. B.1 C.2 D.3 解析∵抛物线y2=2px(p>0)的焦点为(,0)在圆x2+y2+2x-3=0上,∴+p-3=0,解得p=2或p=-6(舍去). 答案 C3.已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,则p的值为( ). A. B.1 C.2 D.4 解析抛物线y2=2px(p >0)的准线为x=-,圆x2+y2-6x-7=0,即(x-3)2+y2=16,则圆心为(3,0),半径为4;又因抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,所以3+=4,解得p=2. 答案 C4.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为( ). A.18 B.24 C.36 D.48 解析如图,设抛物线方程为 y2=2px(p>0). ∵当x=时,|y|=p,∴p===6. 又P到AB的距离始终为p,∴S△ABP=×12×6=36. 答案 C5. 过抛物线的焦点的直线交抛物线于两点,点是原点,若,则的面积为() A. B. C. D. 答案 C6.将两个顶点在抛物线y2=2px(p>0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则( ). A.n=0 B.n=1 C.n=2 D.n≥3 解析结合图象可知,过焦点斜率为和-的直线与抛物线各有两个交点,所以能够构成两组正三角形.本题也可以利用代数的方法求解,但显得有些麻烦. 答案 C7.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为( )A. B.3 C. D. 解析依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F.依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PA|≥|AF|==. 答案 A二.填空题8.设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________.解析设抛物线的焦点F,由B为线段FA的中点,所以B,代入抛物线方程得p=,则B到该抛物线准线的距离为+==. 答案9.已知动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为________. 解析设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与其到直线x=-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y2=4x. 答案 y2=4x10.已知抛物线y2=4x的焦点为F,准线与x轴的交点为M,N为抛物线上的一点,且满足|NF|=|MN|,则∠NMF=________. 解析过N 作准线的垂线,垂足是P,则有PN=NF,∴PN=MN,∠NMF=∠MNP.又cos∠MNP=,∴∠MNP=,即∠NMF=. 答案11.设圆C 位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为________. 解析依题意,结合图形的对称性可知,要使满足题目约束条件的圆的半径最大,圆心位于x轴上时才有可能,可设圆心坐标是(a,0)(0<a<3),则由条件知圆的方程是(x-a)2+y2=(3-a)2.由消去y得x2+2(1-a)x+6a-9=0,结合图形分析可知,当Δ=[2(1-a)]2-4(6a-9)=0且0<a<3,即a=4-时,相应的圆满足题目约束条件,因此所求圆的最大半径是3-a =-1.答案-112. 过抛物线的焦点作直线交抛物线于两点,若则= 。
备战高考数学复习考点知识与题型讲解68---抛物线
备战高考数学复习考点知识与题型讲解第68讲 抛物线考向预测核心素养抛物线的方程、几何性质及抛物线的综合问题是高考热点,综合问题难度较大.直观想象、数学抽象、数学运算一、知识梳理 1.抛物线的概念(1)定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹.(2)焦点:点F 叫做抛物线的焦点. (3)准线:直线l 叫做抛物线的准线. 2.抛物线的标准方程和简单几何性质 标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 焦点 ⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 ⎝ ⎛⎭⎪⎫0,-p 2准线 方程 x =-p 2x =p 2y =-p 2y =p 2对称轴 x 轴y 轴顶点 (0,0)离心率e =1常用结论1.与焦点弦有关的常用结论如图,倾斜角为θ的直线AB与抛物线y2=2px(p>0)交于A,B两点,F为抛物线的焦点,设A(x1,y1),B(x2,y2).则有(1)y1y2=-p2,x1x2=p2 4.(2)焦点弦长:|AB|=x1+x2+p=2psin2θ(θ为直线AB的倾斜角).通径(过焦点垂直于对称轴的弦)长:2p.(3)焦半径:|AF|=p1-cos α,|BF|=p1+cos α,1|AF|+1|BF|=2p.(4)以弦AB为直径的圆与准线相切;以AF或BF为直径的圆与y轴相切.2.若A,B为抛物线y2=2px(p>0)上两点,且OA⊥OB,则直线AB过定点(2p,0).二、教材衍化1.(人A选择性必修第一册P133练习T3(2)改编)抛物线y2=12x上与焦点的距离等于6的点的坐标是________.答案:(3,±6)2.(人A选择性必修第一册P136练习T4改编)已知过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,|AF|=2,则|BF|=________.解析:设点A的横坐标是x1,则依题意有焦点F(1,0),|AF|=x1+1=2,则x1=1.因为AF所在直线过点F,所以直线AF的方程是x=1,此时弦AB为抛物线的通径,故|BF|=|AF|=2.答案:2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.() (2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.() (3)若一抛物线过点P (-4,3),则其标准方程可写为y 2=2px (p >0).() (4)抛物线x 2=-2ay (a >0)的通径长为2a .() 答案:(1)×(2)×(3)×(4)√ 二、易错纠偏1.(多选)(忽视焦点的位置致误)顶点在原点,且过点P (-2,3)的抛物线的标准方程是()A .y 2=-92xB.y 2=92xC .x 2=43yD.x 2=-43y解析:选AC.设抛物线的标准方程是y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y . 2.(忽视抛物线的开口方向致误)若抛物线y =ax 2的准线方程是y =2,则a 的值是________.解析:把抛物线方程y =ax 2化为标准形式得x 2=1a y ,所以-14a =2,解得a =-18.答案:-183.(忽视方程多解致误)抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.解析:设P (x 1,y 1),则|PF |=x 1+2=5,得x 1=3,y 1=±2 6.故满足条件的点的个数为2.答案:2考点一 抛物线的定义和标准方程(自主练透)复习指导:1.了解抛物线的定义、标准方程、掌握各种形式下抛物线的图形. 2.理解参数p 的几何意义.1.(2021·新高考卷Ⅱ)若抛物线y 2=2px (p >0)的焦点到直线y =x +1的距离为2,则p =() A .1 B.2 C.2 2D.4解析:选B.抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p 2,0,其到直线x -y +1=0的距离d =⎪⎪⎪⎪⎪⎪p 2-0+11+1=2,解得p =2(p =-6舍去).故选B.2.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.解析:设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .答案:y 2=4x3.在平面直角坐标系xOy 中,有一定点A (2,1).若线段OA 的垂直平分线过抛物线y 2=2px (p >0)的焦点,则该抛物线的准线方程是________.解析:线段OA 的垂直平分线方程是y =-2x +52,且交x 轴于点⎝ ⎛⎭⎪⎫54,0,该点为抛物线y 2=2px (p >0)的焦点,故该抛物线的准线方程为x =-54.答案:x =-54抛物线的定义及标准方程应用关键点(1)由抛物线定义,抛物线上的点到焦点的距离和到准线的距离可相互转化.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.考点二 抛物线的几何性质(多维探究)复习指导:理解应用抛物线的简单几何性质. 角度1 焦半径和焦点弦(1)(2022·河北衡水三模)设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若A ,B ,C 三点坐标分别为(1,2),(x 1,y 1),(x 2,y 2),且||+||+||=10,则x 1+x 2=()A .6 B.5 C.4D.3(2)(链接常用结论1(2))设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为()A.334B.938C.6332D.94【解析】 (1)根据抛物线的定义,知||,||,||分别等于点A ,B ,C 到准线x =-1的距离,所以由||+||+||=10,可得2+x 1+1+x 2+1=10,即x 1+x 2=6.故选A.(2)由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0,因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,即4x -43y -3=0.方法一:联立直线方程与抛物线方程化简得 4y 2-123y -9=0, 则y A +y B =33,y A y B =-94,故|y A -y B |=(y A +y B )2-4y A y B =6.因此S△OAB=12|OF||y A-y B|=12×34×6=94.方法二:联立直线方程与抛物线方程得x2-212x+916=0,故x A+x B=212.根据抛物线的定义有|AB|=x A+x B+p=212+32=12,同时原点到直线AB的距离为d=|-3|42+(-43)2=38,因此S△OAB=12|AB|·d=94.【答案】(1)A(2)D角度2 与抛物线有关的最值设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,若B(3,2),则|PB|+|PF|的最小值为________.【解析】如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4.即|PB|+|PF|的最小值为4.【答案】 41.若本例条件不变,则P到准线l的距离与P到直线3x+4y+7=0的距离之和的最小值是________.解析:由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离,由抛物线y2=4x及直线方程3x+4y+7=0可得直线与抛物线相离,所以点P到准线l的距离与点P到直线3x+4y+7=0的距离之和的最小值为焦点F(1,0)到直线3x+4y+7=0的距离,即|3+7|32+42=2.答案:22.若将本例中的B点坐标改为(3,4),试求|PB|+|PF|的最小值.解:由题意可知点(3,4)在抛物线的外部,F(1,0).因为|PB|+|PF|的最小值即为B,F两点间的距离,所以|PB|+|PF|≥|BF|=(3-1)2+(4-0)2=25,即|PB|+|PF|的最小值为2 5.抛物线的性质及应用要点(1)由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离,从而进一步确定抛物线的焦点坐标及准线方程.(2)与抛物线有关的最值问题的两个转化策略转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,“三角形两边之和大于第三边”,使问题得以解决.转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.|跟踪训练|1.已知点Q(22,0)及抛物线y=x24上的动点P(x,y),则y+|PQ|的最小值是()A.2 B.3 C.4 D.2 2 解析:选A.因为抛物线的方程为x 2=4y , 所以焦点为F (0,1),准线方程为y =-1, 所以抛物线上的动点P (x ,y )到准线的距离为y -(-1)=y +1,由抛物线的定义可得|PF |=y +1,又因为Q (22,0),所以y +|PQ |=y +1+|PQ |-1=|PF |+|PQ |-1≥|FQ |-1=(22-0)2+(0-1)2-1=3-1=2, 当且仅当F ,P ,Q 三点共线时取等号.2.(2022·沈阳质量检测)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则△AOB 的边长是________.解析:如图,设△AOB 的边长为a ,则A ⎝ ⎛⎭⎪⎫32a ,12a ,因为点A 在抛物线y 2=3x 上,所以14a 2=3×32a ,所以a =6 3.答案:6 3考点三 直线与抛物线(综合研析)复习指导:了解圆锥曲线的简单应用,了解抛物线的实际背景.(2021·高考全国卷乙)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足=9,求直线OQ 斜率的最大值. 【解】 (1)由抛物线的定义可知,焦点F 到准线的距离为p ,故p =2,所以C 的方程为y 2=4x .(2)由(1)知F (1,0),设P (x 1,y 1),Q (x 2,y 2), 则=(x 2-x 1,y 2-y 1),=(1-x 2,-y 2), 因为=9,所以⎩⎨⎧x 2-x 1=9(1-x 2),y 2-y 1=-9y 2,可得⎩⎨⎧x 1=10x 2-9,y 1=10y 2,又点P 在抛物线C 上,所以y 21=4x 1,即(10y 2)2=4(10x 2-9),化简得y 22=25x 2-925,则点Q 的轨迹方程为y 2=25x -925.设直线OQ 的方程为y =kx ,易知当直线OQ 与曲线y 2=25x -925相切时,斜率可以取最大,联立y =kx 与y 2=25x -925并化简,得k 2x 2-25x +925=0,令Δ=(-25)2-4k 2·925=0,解得k =±13,所以直线OQ 斜率的最大值为13.解决直线与抛物线位置关系问题的方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=|x 1|+|x 2|+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.[注意]涉及弦的中点、斜率时,一般用“点差法”求解.|跟踪训练|1.直线y=x+b交抛物线y=12x2于A,B两点,O为抛物线顶点,OA⊥OB,则b的值为()A.-1 B.0C.1D.2解析:选D.设A(x1,y1),B(x2,y2),将y=x+b代入y=12x2,化简可得x2-2x-2b=0,故x1+x2=2,x1x2=-2b,所以y1y2=x1x2+b(x1+x2)+b2=b2.又OA⊥OB,所以x1x2+y1y2=0,即-2b+b2=0,则b=2或b=0,经检验b=0时,不符合题意,故b=2.2.(多选)(2022·广东省广雅中学月考)已知O为坐标原点,M(2,2),P,Q是抛物线C:y2=2px上两点,F为其焦点,若F到准线的距离为2,则下列说法正确的有() A.△PMF周长的最小值为2 5B.若=λ,则||PQ最小值为4C.若直线PQ过点F,则直线OP,OQ的斜率之积恒为-2D.若△POF外接圆与抛物线C的准线相切,则该圆面积为9π4解析:选BD.因为F到准线的距离为2,所以p=2,所以抛物线C:y2=4x,F(1,0),|MF|=(2-1)2+(2-0)2=5,准线l:x=-1,对于A,过P作PN⊥l,垂足为N,则|PF|+|PM|=|PN|+|PM|≥|MN|=2+1=3,所以△PMF周长的最小值为3+5,故A不正确;对于B ,若=λ,则弦PQ 过F ,过P 作l 的垂线,垂足为P ′,过Q 作l 的垂线,垂足为Q ′,设PQ 的中点为G ,过G 作GG ′⊥l ,垂足为G ′,则|PQ |=|PF |+|QF |=|PP ′|+|QQ ′|=2|GG ′|≥2×2=4,即||PQ 最小值为4,故B 正确;对于C ,若直线PQ 过点F ,设直线PQ :x =my +1, 联立⎩⎨⎧x =my +1,y 2=4x ,消去x 得y 2-4my -4=0,设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4,所以k OP ·k OQ =y 1x 1·y 2x 2=4y 1·4y 2=16-4=-4,故C 不正确;对于D ,因为OF 为外接圆的弦,所以圆心的横坐标为12,因为△POF 外接圆与抛物线C 的准线相切,所以圆的半径为1+12=32,所以该圆面积为π(32)2=94π,故D 正确.3.设抛物线y 2=2px (p >0)的焦点为F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设C ⎝ ⎛⎭⎪⎫72p ,0,AF 与BC 相交于点E ,若|CF |=2|AF |,且△ACE 的面积为32,则p 的值为________.解析:不妨设点A 在第一象限.由题意得图,其中AB 垂直于抛物线的准线l .则|FC |=3p ,所以|AF|=|AB|=|CF| 2=32p,则A(p,2p).易证△EFC∽△EAB,所以|EF||EA|=|CF||AB|=|CF||AF|=2,所以|EA||AF|=13,所以S△ACE=13S△AFC=13×12×3p×2p=22p2=32,所以p= 6.答案: 6[A 基础达标]1.(2022·荆州市检测)过点A(3,0)且与y轴相切的圆的圆心的轨迹为()A.圆 B.椭圆C.直线D.抛物线解析:选D.如图,设P为满足条件的一点,不难得出结论:点P到点A的距离|PA|等于点P到y轴的距离|PB|,故点P在以点A为焦点,y轴为准线的抛物线上,故点P的轨迹为抛物线.2.已知点P(2,y)在抛物线y2=4x上,则点P到抛物线焦点F的距离为()A.2 B.3C. 3D. 2解析:选B.因为抛物线y2=4x的焦点为(1,0),准线为x=-1,结合定义点P到抛物线焦点的距离等于它到准线的距离,为3.3.(2022·哈尔滨六中期末)过抛物线x 2=4y 的焦点F 作直线l 交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=()A .5 B.6 C.8D.10解析:选C.抛物线x 2=4y 的准线为y =-1,因为P 1(x 1,y 1),P 2(x 2,y 2)两点是过抛物线焦点的直线l 与抛物线的交点,所以P 1(x 1,y 1),P 2(x 2,y 2)两点到准线的距离分别是y 1+1,y 2+1,所以|P 1P 2|=y 1+y 2+2=8.4.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2 B.4 C.6 D.8解析:选B.如图,不妨设抛物线C :y 2=2px (p >0),A (x 1,22),则x 1=(22)22p =4p,由题意知|OA |=|OD |,所以⎝ ⎛⎭⎪⎫4p 2+8=⎝ ⎛⎭⎪⎫p 22+5,解得p =4.5.(2020·高考全国卷Ⅲ)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.⎝ ⎛⎭⎪⎫14,0 B.⎝ ⎛⎭⎪⎫12,0 C .(1,0)D.(2,0)解析:选B.将直线方程与抛物线方程联立,可得y =±2p ,不妨设D (2,2p ),E (2,-2p ),由OD ⊥OE ,可得·=4-4p =0,解得p =1,所以抛物线C 的方程为y 2=2x ,其焦点坐标为⎝ ⎛⎭⎪⎫12,0.6.已知直线l 是抛物线y 2=2px (p >0)的准线,半径为3的圆过抛物线顶点O 和焦点F 与l 相切,则抛物线的方程为________.解析:因为半径为3的圆与抛物线的准线l 相切, 所以圆心到准线的距离等于3,又因为圆心在OF 的垂直平分线上,|OF |=p2,所以p 2+p4=3,所以p =4,故抛物线的方程为y 2=8x .答案:y 2=8x7.(2021·新高考卷Ⅰ)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为________.解析:通解(解直角三角形法):由题易得|OF |=p2,|PF |=p ,∠OPF =∠PQF ,所以tan ∠OPF =tan ∠PQF ,所以|OF ||PF |=|PF ||FQ |,即p2p =p 6,解得p =3,所以C 的准线方程为x =-32. 光速解(应用射影定理法):由题易得|OF |=p2,|PF |=p ,|PF |2=|OF |·|FQ |,即p 2=p 2×6,解得p =3或p =0(舍去),所以C 的准线方程为x =-32. 答案:x =-328.(2022·山东模拟)直线l 过抛物线C :y 2=2px (p >0)的焦点F (1,0),且与C 交于A ,B 两点,则p =________,1|AF |+1|BF |=________.解析:由题意知p2=1,从而p =2,所以抛物线方程为y 2=4x .当直线AB 的斜率不存在时,将x =1代入抛物线方程, 解得|AF |=|BF |=2,从而1|AF |+1|BF |=1.当直线AB 的斜率存在时,设AB 的方程为y =k (x -1), 联立⎩⎨⎧y =k (x -1),y 2=4x ,整理,得k 2x 2-(2k 2+4)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=2k 2+4k 2,x 1x 2=1,从而1|AF |+1|BF |=1x 1+1+1x 2+1=x 1+x 2+2x 1+x 2+x 1x 2+1=x 1+x 2+2x 1+x 2+2=1.综上,1|AF |+1|BF |=1.答案:219.顶点在原点,焦点在x 轴上的抛物线截直线y =2x -4所得的弦长|AB |=35,求此抛物线方程.解:设所求的抛物线方程为y 2=ax (a ≠0),A (x 1,y 1),B (x 2,y 2),把直线y =2x -4代入y 2=ax ,得4x 2-(a +16)x +16=0,由Δ=(a +16)2-256>0,得a >0或a <-32. 又x 1+x 2=a +164,x 1x 2=4,所以|AB |=(1+22)[(x 1+x 2)2-4x 1x 2]=5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=35, 所以5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1642-16=45,所以a =4或a =-36.故所求的抛物线方程为y 2=4x 或y 2=-36x . 10.如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解:(1)由抛物线的定义得|AF |=2+p2.由|AF |=3,得2+p2=3,解得p =2.所以抛物线E 的方程为y 2=4x .(2)证明:因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2.又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223,所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等, 故以F 为圆心且与直线GA 相切的圆,必与直线GB 相切.[B 综合应用]11.(2022·陕西省咸阳市质检)已知点M (-3,2)是坐标平面内一定点,若抛物线y 2=2x 的焦点为F ,点Q 是该抛物线上的一动点,则|MQ |-|QF |的最小值是()A.72B.3C.52D.2解析:选C.如图,抛物线的准线方程为x =-12,过点Q 作QQ ′垂直准线于点Q ′,|MQ |-|QF |=|MQ |-|QQ ′|,显然当MQ ∥x 轴时,|MQ |-|QF |取得最小值,此时|MQ |-|QF |=|2+3|-⎪⎪⎪⎪⎪⎪2+12=52.12.(多选)(2022·盐城市阜宁中学高二检测)已知抛物线C :y 2=4x 的焦点为F ,点P 在抛物线的准线上,线段PF 与抛物线交于点M ,则下列判断正确的是()A .△OMF 不可能是等边三角形B .△OMF 可能是等腰直角三角形 C.|PF ||PM |=1+2|PF |D.|PF ||MF |-|PF |=1 解析:选AC.若△OMF 是等边三角形,则边长为1,且点M 的横坐标为12,纵坐标为±2,此时|OM |=14+2=32≠1,所以△OMF 不可能是等边三角形,故A 正确;若△OMF 是等腰直角三角形,则只可能是∠OMF =90°,|OM |=|FM |=32,所以|OM |2+|FM |2≠|OF |2,故B 不正确;过点M 作准线的垂线交准线于点N ,则|MF |=|MN |,|PF ||PM |=|PM |+|MF ||PM |=1+|MF ||PM |=1+|MN ||PM |=1+2|PF |,故C 正确,D 不正确. 13.(多选)已知抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,PQ 垂直于l 且交l 于点Q ,M ,N 分别为PQ ,PF 的中点,MN 与x 轴相交于点R ,若∠NRF =60°,则()A .∠FQP =60° B.|QM |=1 C .|FP |=4 D.|FR |=2解析:选ACD.如图,连接FQ ,FM ,因为M ,N 分别为PQ ,PF 的中点,所以MN ∥FQ ,又PQ ∥x 轴,∠NRF =60°,所以∠FQP =60°,由抛物线的定义知,|PQ |=|PF |,所以△FQP 为等边三角形,则FM ⊥PQ ,|QM |=2,等边三角形FQP 的边长为4,|FP |=|PQ |=4,|FN |=12|PF |=2,则△FRN 为等边三角形,所以|FR |=2.故选ACD.14.(2022·江苏省如皋市高三调研)已知抛物线C :y 2=4x 的焦点为F ,过F 的直线交抛物线C 于A ,B 两点,以AF 为直径的圆过点()0,2,则直线AB 的斜率为________.解析:由抛物线C :y 2=4x 可得焦点为F ()1,0,设A ()x 1,y 1, 由抛物线的定义可得||AF =x 1+p2=x 1+1,AF 的中点为⎝⎛⎭⎪⎫x 1+12,y 12, 所以AF 为直径的圆的方程为⎝ ⎛⎭⎪⎫x -x 1+122+⎝ ⎛⎭⎪⎫y -y 122=⎝ ⎛⎭⎪⎫x 1+122, 因为以AF 为直径的圆过点()0,2,所以⎝ ⎛⎭⎪⎫0-x 1+122+⎝ ⎛⎭⎪⎫2-y 122=⎝ ⎛⎭⎪⎫x 1+122,可得y 1=4,所以x 1=4, 所以点A ()4,4,所以直线AB 的斜率为4-04-1=43.答案:43[C 素养提升]15.(2022·湖南名校大联考)已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x 轴、y 轴交于M ,N 两点,点A (2,-4),且=λ+μ,则λ+μ的最小值为________.解析:由题意得M (2,0),N (0,-4),设P (x ,y ),由=λ+μ得(x -2,y +4)=λ(0,4)+μ(-2,0).所以x -2=-2μ,y +4=4λ.因此λ+μ=y +44-x -22=x 24-x2+2=⎝ ⎛⎭⎪⎫x 2-122+74≥74,故λ+μ的最小值为74. 答案:7416.(2021·高考全国卷甲)抛物线C 的顶点为坐标原点O ,焦点在x 轴上,直线l :x =1交C 于P ,Q 两点,且OP ⊥OQ .已知点M (2,0),且⊙M 与l 相切.(1)求C ,⊙M 的方程;(2)设A 1,A 2,A 3是C 上的三个点,直线A 1A 2,A 1A 3均与⊙M 相切.判断直线A 2A 3与⊙M 的位置关系,并说明理由.解:(1)由题意,直线x =1与C 交于P ,Q 两点,且OP ⊥OQ ,设C 的焦点为F ,P 在第一象限,则根据抛物线的对称性,∠POF =∠QOF =45°, 所以P (1,1),Q (1,-1).设C 的方程为y 2=2px (p >0),则1=2p ,p =12,所以C 的方程为y 2=x .由题意,圆心M (2,0)到l 的距离即⊙M 的半径,且距离为1,所以⊙M 的方程为(x -2)2+y 2=1.(2)设A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3),当A 1,A 2,A 3中有一个为坐标原点,另外两个点的横坐标均为3时,A 1A 2,A 1A 3均与⊙M 相切,此时直线A 2A 3与⊙M 相切.当x 1≠x 2≠x 3时,直线A 1A 2:x -(y 1+y 2)y +y 1y 2=0, 则|2+y 1y 2|(y 1+y 2)2+1=1,即(y 21-1)y 22+2y 1y 2+3-y 21=0, 同理可得(y 21-1)y 23+2y 1y 3+3-y 21=0,所以y 2,y 3是方程(y 21-1)y 2+2y 1y +3-y 21=0的两个根,则y 2+y 3=-2y 1y 21-1,y 2y 3=3-y 21y 21-1.直线A2A3的方程为x-(y2+y3)y+y2y3=0,设M到直线A2A3的距离为d(d>0),则d2=(2+y2y3)2==1,1+(y2+y3)2即d=1,所以直线A2A3与⊙M相切.综上可得,直线A2A3与⊙M相切.21 / 21。
高考数学一轮复习第七章第七讲抛物线课件
解析:如图 D81,分别过 P,Q 两点作准线 x=-2p的垂线,
垂足分别为 P1,Q1.分别过 P,Q 两点ห้องสมุดไป่ตู้ x 轴
的垂线,垂足分别为 P2,Q2.准线 x=-p2交
x 轴于点 D-p2,0.
∵|PP1|=|PF|=4,|FP2|=12|PF|=2,
图 D81
∴|DF|=|DP2|-|FP2|=4-2=2. ∵|FQ2|=21|QF|=12|QQ1|, ∴|DF|=|QQ1|+|FQ2|=23|QF|. ∴32|QF|=2,|QF|=43. 答案:34
A.直线 AB 的斜率为 2 6 B.|OB|=|OF| C.|AB|>4|OF| D.∠OAM+∠OBM<180°
解析:如图 7-7-5,
图 7-7-5 ∵Fp2,0,M(p,0),且|AF|=|AM|,
∴A34p, 26p, 由抛物线焦点弦的性质可得 xA·xB=p42,则 xB=p3,
则 Bp3,- 36p,
F0,-p2 y≤0,x∈R
(续表) 准线方程 开口方向
焦半径 通径长
x=-p2 向右 x0+p2
x=p2 向左 -x0+2p
2p
y=-p2 向上 y0+p2
y=p2 向下 -y0+2p
【名师点睛】 如图 7-7-1,设 AB 是过抛物线 y2=2px(p>0)焦点 F 的弦,若 A(x1,y1),B(x2,y2),则
由yy= 2=k4(xx-,1), 得 k2x2-(2k2+4)x+k2=0,
得 xA·xB=1,① 因为|AF|=2|BF|,由抛物线的定义得 xA+1=2(xB+1), 即 xA=2xB+1,② 由①②解得 xA=2,xB=21, 所以|AB|=|AF|+|BF|=xA+xB+p=29. 答案:B
2025高考数学一轮复习-8.7-抛物线【课件】
x0+p2 |PF|=-x0+p2 |PF|=y0+p2
|PF|=-y0+p2
提醒:(1)焦点在 x 轴上时,方程的右端为±2px,左端为 y2,焦点在 y 轴上时,方程的 右端为±2py,左端为 x2.
(2)过焦点且垂直于对称轴的弦称为通径,长等于 2p,是过焦点最短的弦.
『基础过关』 思考辨析 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹一定是抛物线.( × ) (2)抛物线既是中心对称图形,又是轴对称图形.( × ) (3)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( × ) (4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通 径,那么抛物线 x2=-2ay(a>0)的通径长为 2a.( √ ) (5)方程 y=ax2(a≠0)表示的曲线是焦点在 x 轴上的抛物线,且其焦点坐标是a4,0, 准线方程是 x=-a4.( × )
易错点睛:(1)求抛物线方程时容易忽视 p 的几何意义致错,解题时应注意. (2)直线与抛物线相交时,忽视与抛物线的对称轴平行的直线致错,如 6 题中忽视对 k =0 的讨论.
课堂考点突破
——精析考题 提升能力
考点一 抛物线的定义及其应用
【例 1】 (1)(2020·全国卷Ⅰ)已知 A 为抛物线 C:y2=2px(p>0)上一点,点 A 到 C 的
的点的轨迹
2.抛物线的标准方程和几何性质 标准方程 y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0) p 的几何意义:焦点 F 到准线 l 的距离
高考数学复习重难点三种抛物线解题方法(核心考点讲与练)
重难点14三种抛物线解题方法(核心考点讲与练)能力拓展题型一:定义法求焦半径一、单选题1.(2022·全国·模拟预测(文))对于正数a ,p ,抛物线()24y a px -=的焦点为1F ,抛物线24y x =-的焦点为2F ,线段12F F 与两个抛物线的交点分别为P ,Q .若123F F =,1PQ =,则22a p +的值为()A .6B .254C .7D .2742.(2022·湖北·模拟预测)已知抛物线C 的焦点为F ,点,A B 在抛物线上,过线段AB 的中点M 作抛物线C 的准线的垂线,垂足为N ,以AB 为直径的圆过点F ,则MNAB的最大值为()A .12B C .2D .13.(2022·广东佛山·模拟预测)已知抛物线C :()220y px p =>的焦点为F ,过焦点且斜率为的直线l 与抛物线C 交于A ,B (A 在B 的上方)两点,若AF BF λ=,则λ的值为()A BC .2D4.(2022·安徽·巢湖市第一中学模拟预测(文))已知抛物线C :()220y px p =>的焦点为F ,Q 为C 上一点,M 为C 的准线l 上一点且//QM x 轴.若O 为坐标原点,P 在x 轴上,且在点F 的右侧,4OP =,QF QP =,120MQP ∠=︒,则准线l 的方程为()A .165x =-B .25x =-C .45x =-D .85x =-二、多选题5.(2022·全国·模拟预测)已知抛物线24y x =,焦点为F ,直线l 与抛物线交于A ,B 两点,则下列选项正确的是()A .当直线l 过焦点F 时,以AF 为直径的圆与y 轴相切B .若线段AB 中点的纵坐标为2,则直线AB 的斜率为1C .若OA OB ⊥,则弦长AB 最小值为8D .当直线l 过焦点F 且斜率为2时,AB ,AF ,BF 成等差数列6.(2022·福建泉州·模拟预测)已知A (a ,0),M (3,-2),点P 在抛物线24y x =上,则()A .当1a =时,PA 最小值为1B .当3a =时,PA 的最小值为3C .当1a =时,PA PM +的最小值为4D .当3a =时,PA PM -的最大值为27.(2022·全国·模拟预测)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是()A .E 的准线方程为116y =-B .AB 的最大值为6C .若2AF FB = ,则直线AB 的方程为14y x =±+D .若OA OB ⊥,则AOB 面积的最小值为168.(2022·广东佛山·模拟预测)已知直线l :2p y k x ⎛⎫=- ⎪⎝⎭与抛物线C :()220y px p =>相交于A ,B 两点,点A 在x 轴上方,点()1,1M --是抛物线C 的准线与以AB 为直径的圆的公共点,则下列结论正确的是()A .2p =B .2k =-C .MF AB ⊥D .25FA FB =9.(2022·重庆一中高三阶段练习)已知抛物线24y x =的焦点为F ,过点F 的直线交该抛物线于()11,A x y ,()22,B x y 两点,点T (-1,0),则下列结论正确的是()A .124y y =-B .111AF BF+=C .若三角形TAB 的面积为S ,则S 的最小值为D .若线段AT 中点为Q ,且2AT BQ =,则4AF BF -=三、解答题10.(2022·辽宁·沈阳二中模拟预测)曲线C 10x +=,点D 的坐标()1,0,点P 的坐标()1,2.(1)设E 是曲线C 上的点,且E 到D 的距离等于4,求E 的坐标:(2)设A ,B 是曲线C 上横坐标不等于1的两个不同的动点,直线PA ,PB 与y 轴分别交于M 、N 两点,线段MN 的垂直平分线经过点P .证明;直线AB 的斜率为定值,并求出此值.11.(2022·河南焦作·三模(理))已知抛物线2:2(0)C y px p =>的焦点为F ,直线8y =与抛物线C 交于点P ,且5||2PF p =.(1)求抛物线C 的方程;(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,求PQ 的最小值.12.(2022·贵州毕节·三模(理))已知抛物线()2:20C x py p =>的焦点为F ,且点F 与()22:21M x y +-= 上点的距离的最大值为114.(1)求p ;(2)当01p <≤时,设B ,D ,E 是抛物线C 上的三个点,若直线BD ,BE 均与M 相切,求证:直线DE 与M 相切.题型二:定义转换法求距离的最值问题一、单选题1.(2022·重庆巴蜀中学高三阶段练习)已知定点(3,3)M -,点P 为拋物线2:4C x y =上一动点,P 到x 轴的距离为d ,则||d PM +的最小值为()A .4B .5C1D2.(2022·青海·大通回族土族自治县教学研究室二模(文))已知抛物线28y x =的焦点为F ,过F 的直线l 与抛物线相交于A ,B 两点,则9AF BF-的最小值为()A .1B .32C .52D .63.(2022·河北张家口·三模)已知点P 是抛物线24y x =上的动点,过点P 向y 轴作垂线,垂足记为N ,动点M 满足||||PM PN +最小值为3,则点M 的轨迹长度为()A .163πB .8πC .163π+D .8π+4.(2022·全国·模拟预测)已知点P 为抛物线2:4C y x =上的动点,点F 为抛物线的焦点,点()3,2A ,设点Q 为以点P 为圆心,PF 为半径的圆上的动点,QA 的最大值为Q d ,当点P 在抛物线上运动时,则Q d 的最小值为()A .B C .4D .55.(2022·河南·西平县高级中学模拟预测(理))已知M 是抛物线212x y =上一点,F 为其焦点,()3,6C ,则MF MC +的最小值为()A .10B .9C .8D .76.(2022·全国·高三专题练习)已知抛物线22(0)y px p =>的焦点为F ,过F 且倾斜角为4π的直线l 与抛物线相交于A ,B 两点,||8AB =,过A ,B 两点分别作抛物线的切线,交于点Q .下列说法正确的是()A .QA QB⊥B .AOB (O 为坐标原点)的面积为C .112||||AF BF +=D .若()1,1M ,P 是抛物线上一动点,则||||PM PF +的最小值为52二、多选题7.(2022·河北·模拟预测)设抛物线2:8C x y =的焦点为F ,准线为l ,()00,P x y 为C 上一动点,(2,1)A ,则下列结论正确的是()A .当02x =时,抛物线C 在点P 处的切线方程为220x y --=B .当04x =时,||PF 的值为6C .||||PA PF +的最小值为3D .||||PA PF -8.(2022·湖北·宜城市第一中学高三阶段练习)已知F 是抛物线24y x =的焦点,P 是抛物线24y x =上一动点,Q 是()()22:411C x y -+-= 上一动点,则下列说法正确的有()A .PF的最小值为1B .QF C .PF PQ +的最小值为4D .PF PQ +19.(2022·福建福州·三模)已知抛物线()220y px p =>的准线为l ,点M 在抛物线上,以M 为圆心的圆与l 相切于点N ,点()5,0A 与抛物线的焦点F 不重合,且MN MA =,120NMA ∠=︒,则()A .圆M 的半径是4B .圆M 与直线1y =-相切C .抛物线上的点P 到点A 的距离的最小值为4D .抛物线上的点P 到点A ,F 的距离之和的最小值为4三、填空题10.(2021·山东·青岛西海岸新区第一高级中学高三期末)已知抛物线()2:20C y px p =>的焦点为F ,点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线C 上一点,圆M 与线段MF 相交于点A ,且被直线2px=MA ,若2MA AF=,则AF =___________.四、解答题11.(2022·浙江·高三专题练习)已知椭圆22122:1(0)x y C a b a b+=>>,经过拋物线22:2(0)C y px p =>的焦点F 的直线1l 与2C 交于,P Q 两点,2C 在点P 处的切线2l 交1C 于,A B 两点,如图.(1)当直线PF 垂直x 轴时,2PF =,求2C 的准线方程;(2)若三角形ABQ 的重心G 在x 轴上,且2a b <,求PF QF的取值范围.题型三:定义法求焦点弦一、单选题1.(2022·河北石家庄·高三阶段练习)过抛物线2:4C y x =的焦点作直线交抛物线于A ,B 两点,若A 、B 两点横坐标的等差中项为2,则||AB =)A .8B .6C .D .42.(2022·全国·高三专题练习)已知抛物线2:4C y x =的焦点为F ,过点F 分别作两条直线12,l l ,直线1l 与抛物线C 交于A 、B 两点,直线2l 与抛物线C 交于D 、E 两点,若1l 与2l 的斜率的平方和为2,则AB DE +的最小值为()A .24B .20C .16D .12二、多选题3.(2022·全国·高三专题练习)(多选题)已知抛物线24y x =,过焦点F 作一直线l 交抛物线于()11,A x y ,()22,B x y 两点,以下结论正确的有()A .AB 没有最大值也没有最小值B .122AB x x =++C .124y y =-D .111FA FB+=4.(2022·全国·高三专题练习)(多选题)已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y 、()22,Q x y ,点P 在l 上的射影为1P ,则()A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +≥D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条三、填空题5.(2022·全国·模拟预测)抛物线2:2C y px =的焦点F 恰好是圆()2211x y -+=的圆心,过点F 且倾斜角为45︒的直线l 与C 交于不同的A ,B 两点,则AB =______.6.(2022·辽宁·模拟预测)已知抛物线2:8C y x =的焦点为F ,直线l 过点F 与C 交于A ,B 两点,与C 的准线交于点P ,若3AP BP =,则l 的斜率为______.四、解答题7.(2022·吉林长春·模拟预测(理))已知抛物线()2:20E x py p =>的焦点为F ,过点F 且倾斜角为3π的直线被E 所截得的弦长为16.(1)求抛物线E 的方程;(2)已知点C 为抛物线上的任意一点,以C 为圆心的圆过点F ,且与直线12y =-相交于,A B 两点,求FA FB FC ⋅⋅的取值范围.8.(2022·全国·模拟预测)直线l :kx -y -k =0过抛物线C :()220y px p =>的焦点F ,且与C 交于不同的两点A ,B .(1)若AF ,BF ,AB 成等差数列,求实数k 的值;(2)试判断在x 轴上存在多少个点()(),00T t t >,总在以AB 为直径的圆上.高考一轮复习专项。
高考数学复习---抛物线基础知识巩固练习题(含答案)
(1)求该抛物线的方程; (2)O 为坐标原点,C 为抛物线上一点,若O→C=O→A+λO→B,求 λ 的值.
[解] (1)由题意得直线 AB 的方程为 y=2 2·x-p2,与 y2=2px 联立,消去 y 有 4x2-5px+p2=0,所以 x1+x2=54p.
x2=4y [△FPM 为等边三角形,则|PM|=|PF|,由抛物线的定义得 PM 垂直
于抛物线的准线,设 Pm,m2p2,则点 Mm,-p2,因为焦点 F0,p2,△FPM 是
等边三角形,
m2p2+p2=4, 所以
p2+p22+m2=4,
m2=12,
解得
因此抛物线方程为 x2=4y.]
p=2,
三、解答题
2.
则直线 AB 的方程为 y=2 2(x-1), 与抛物线方程联立整理得 2x2-5x+2=0,xA+xB=52, 所以 xB=12,所以|BF|=12+1=32.]
8.已知抛物线 x2=2py(p>0)的焦点为 F,点 P 为抛物线上的动点,点 M 为 其准线上的动点,若△FPM 为边长是 4 的等边三角形,则此抛物线的方程为 ________.
A.1
B.2
C.3
D.4
A [∵x2=2y,∴y=x22,∴y′=x,
∵抛物线 C 在点 B 处的切线斜率为 1,∴B1,12,
∵抛物线 x2=2y 的焦点 F 的坐标为0,12,
∴直线 l 的方程为 y=12,∴|AF|=|BF|=1.]
3.(2019·桂林模拟)设经过抛物线C的焦点的直线l与抛物
高考数学解析几何专题讲义第3讲--抛物线的定义及其应用
MA MF 的最小值为
.
7.过抛物线 y2 x 焦点的直线与该抛物线交于 A 、 B 两点,若 AB 4 ,则弦 AB 的中点到直线 x 1 0 的距 2
离等于( )
A. 7 4
B. 9 4
C. 4
D.2
8.过抛物线 y2 4x 的焦点 F 的直线交抛物线于 A 、 B 两点,则 1 1
【证明】如图,设抛物线的准线为 l ,过 A 、B 两点分别作 AC 、BD 垂直于 l ,垂足分别为 C 、D .取 线段 AB 中点 M ,作 MH 垂直 l 于 H .
由抛物线的定义有: AC AF , BD BF ,所以 AB AC BD .
∵ ABDC 是直角梯形, MH 1 AC BD 1 AB
以开口向右的抛物线为例,设抛物线 C : y2 2 px p 0 的焦点为 F,准线为 l ,点 M x0, y0 为抛物线
C 上的动点.则有:
焦半径 MF
x0
p 2
;过焦点的弦
AB
长为
AB
xA xB p .
(二)抛物线定义的应用
与抛物线焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点 的距离与点到直线的距离的转化:
(2)如图,设 AFK .
∵
AF
AA1
AK
p
AF
sin
p
,∴
AF
p 1 sin
,
又
BF
BB1
p
BF
sin
,∴
BF
p 1 sin
,
∴ 1 1 1 sin 1 sin 2 (定值).
AF BF
p
pp
【变式训练】求证:以抛物线 y2 2 px p 0 过焦点的弦为直径的圆,必与此抛物线的准线相切.
高中数学总复习专题53 抛物线-2020年领军高考数学一轮复习(文理通用)(解析版)
专题53抛物线最新考纲1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用.2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.基础知识融会贯通1.抛物线的概念平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质【知识拓展】1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径. 2.y 2=ax (a ≠0)的焦点坐标为⎝⎛⎭⎫a 4,0,准线方程为x =-a4. 3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p,通径是过焦点最短的弦.重点难点突破【题型一】抛物线的定义及应用【典型例题】已知动圆P与定圆C:(x﹣2)2+y2=1相外切,又与定直线l:x=﹣1相切,那么动圆的圆心P的轨迹方程是()A.y2=4x B.y2=﹣4x C.y2=8x D.y2=﹣8x【解答】解:令P点坐标为(x,y),A(2,0),动圆得半径为r,则根据两圆相外切及直线与圆相切得性质可得,P A=1+r,d=r,P在直线的右侧,故P到定直线的距离是x+1,所以P A﹣d=1,即(x+1)=1,化简得:y2=8x.故选:C.【再练一题】已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点,则|P A|+|PM|的最小值是()A.5 B.C.4 D.【解答】解:依题意可知焦点F(,0),准线x,延长PM交准线于H点.则|PF|=|PH|.|PM|=|PH||PF|,|PM|+|P A|=|PF|+|P A|,我们只有求出|PF|+|P A|最小值即可.由三角形两边长大于第三边可知,|PF|+|P A|≥|F A|,①设直线F A与抛物线交于P0点,可计算得P0(3,),另一交点(,)舍去.当P重合于P0时,|PF|+|P A|可取得最小值,可得|F A|.则所求为|PM|+|P A|.故选:B.思维升华与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.【题型二】抛物线的标准方程和几何性质命题点1求抛物线的标准方程【典型例题】已知抛物线的焦点坐标是(﹣1,0),则抛物线的标准方程为()A.x2=4y B.x2=﹣4y C.y2=4x D.y2=﹣4x【解答】解:∵抛物线的焦点坐标是(﹣1,0),∴抛物线是焦点在x轴负半轴的抛物线,且,得p=2.∴抛物线的标准方程为y2=﹣4x.故选:D.【再练一题】已知抛物线y2=24ax(a>0)上的点M(3,y0)到焦点的距离是5,则抛物线的方程为()A.y2=8x B.y2=12x C.y2=16x D.y2=20x【解答】解:由题意知,3+6a=5,∴a,∴抛物线方程为y2=8x.故选:A.命题点2抛物线的几何性质【典型例题】已知抛物线C:y2=4x的焦点为F,A为抛物线C上异于顶点O的一点,点B的坐标为(a,b)(其中a,b 满足b2﹣4a<0)当|AB|+|AF|最小时,△ABF恰好正三角形,则a=()A.1 B.C.D.2【解答】解:点B的坐标为(a,b)(其中a,b满足b2﹣4a<0),可得B在抛物线的开口之内,设A在准线x=﹣1上的射影为M,由抛物线的定义可得|AF|=|AM|,当M,A,B三点共线时,|AB|+|AF|取得最小值,即有A(,b),F(1,0),△ABF恰好正三角形,可得a2,b(a),解得a,故选:C.【再练一题】过焦点为F的抛物线y2=12x上一点M向其准线作垂线,垂足为N,若|NF|=10,则|MF|=()A.B.C.D.【解答】解:设M(x0,y0),F(3,0).∵|NF|=10,∴62102,12x0,解得x0,则MF|3.故选:B.思维升华(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【题型三】直线与抛物线的综合问题命题点1直线与抛物线的交点问题【典型例题】过抛物线y2=4x焦点F的直线交抛物线于A,B两点,若,则|AB|=()A.9 B.72 C.D.36【解答】解:如图,点B在第一象限.过B、A分别向抛物线的准线作垂线,垂足分别为D、E,过B作EA的垂线,垂足为C,则四边形BDEC为矩形.由抛物线定义可知|BD|=|BF|,|AE|=|AF|,又∵,∴|BD|=|CE|=2|AE|,即A为CE中点,∴|BA|=3|AC|,在Rt△BAC中,|BC|=2|AC|,k AB=2,F(1,0),AB的方程为:y=2(x﹣1),代入抛物线方程可得:2x2﹣5x+2=0,x1+x2,则|AB|=x1+x2+22.故选:C.【再练一题】已知抛物线x2=2py(p>0)的准线方程为y=﹣1,△ABC的顶点A在抛物线上,B,C两点在直线y=2x ﹣5上,若||=2,则△ABC面积的最小值为()A.5 B.4 C.D.1【解答】解:因为抛物线x2=2py(p>0)的准线方程为y=﹣1,抛物线方程为x2=4y;又||=2,所以||=2,设点A到直线BC的距离为d,故△ABC面积为,因为A在抛物线上,设A(x,),则d,故1.故选:D.命题点2与抛物线弦的中点有关的问题【典型例题】设抛物线C:y2=2px(p>0)的焦点为F(1,0),过点P(1,1)的直线l与抛物线C交于A,B两点,若P恰好为线段AB的中点,则|AB|=()A.2 B.C.4 D.5【解答】解:抛物线C:y2=2px(p>0)的焦点为F(1,0),可得抛物线方程为:y2=4x,过点P(1,1)的直线l与抛物线C交于A,B两点,若P恰好为线段AB的中点,可知直线的斜率存在不为0,设为k,直线方程为:y﹣1=k(x﹣1),直线方程与抛物线方程联立可得:ky2﹣4y﹣4k+4=0,y1+y22,解得k=2,则y1y2=﹣2,则|AB|.故选:B.【再练一题】设F为抛物线C:y2=8x的焦点,过点P(﹣2,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点,若,则|AB|=()A.B.C.D.【解答】解:设直线l的方程为y=k(x+1),A(x1,y1)、B(x2,y2)、Q(x0,y0).解方程组,化简得:k2x2+(4k2﹣8)x+4k2=0,∴x1+x2,x1x2=4,y1+y2=k(x1+x2+4),∴x0,y0,由4,∴k=±.|AB||x2﹣x1|•16.故选:D.思维升华(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x轴的正半轴上),可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.基础知识训练1.【陕西省2019届高三年级第三次联考】已知是抛物线的焦点,是该抛物线上的两点,,则线段的中点到准线的距离为()A.B.C.1 D.3【答案】B【解析】∵是抛物线的焦点,∴,准线方程,设,根据抛物线的定义可得,∴.解得,∴线段的中点横坐标为,∴线段的中点到准线的距离为.故应选B.2.【四川省双流中学2019届高三第一次模拟考试】已知是抛物线上一点,为其焦点,为圆的圆心,则的最小值为( ).A.2 B.3 C.4 D.5【答案】B【解析】设抛物线的准线方程为为圆的圆心,所以的坐标为,过的垂线,垂足为,根据抛物线的定义可知,所以问题求的最小值,就转化为求的最小值,由平面几何的知识可知,当在一条直线上时,此时有最小值,最小值为,故本题选B.3.【甘肃省、青海省、宁夏回族自治区2019届高三5月联考】已知抛物线C :22(0)x py p =>的准线l 与圆M :22(1)(2)16x y −+−=相切,则p =( ) A .6 B .8 C .3 D .4【答案】D 【解析】因为抛物线2:2C x py =的准线为2p y =−, 又准线l 与圆()()22:1216M x y −+−=相切, 所以242p+= ,则4p =. 故选D4.【北京市通州区2019届高三4月第一次模拟考试】设抛物线24y x =的焦点为F ,已知点1,4M a ⎛⎫ ⎪⎝⎭,1,2N b ⎛⎫⎪⎝⎭,()1,P c ,()4,Q d 都在抛物线上,则,,,M N P Q 四点中与焦点F 距离最小的点是( ) A .M B .N C .PD .Q【答案】A 【解析】抛物线24y x =的焦点为F(1,0),准线方程为1x =−; 则点1,4M a ⎛⎫ ⎪⎝⎭到焦点F 的距离为15||(1)44MF =−−=, 点1,2N b ⎛⎫⎪⎝⎭到焦点F 的距离为13||(1)22NF =−−=,点P(1, c)到焦点F 的距离为|P F|=1-(-1)=2 点Q(4, d)到焦点F 的距离为|Q F|=4-(-1)=5;所以点M 与焦点F 的距离最小. 故选:A5.【湖北部分重点中学2020届高三年级新起点考试】已知抛物线2:2C y px =(0p >)的焦点为F ,准线为l ,O 为坐标原点,点M 在C 上,直线MF 与l 交于点N .若3MFO π∠=,则MF MN = A .14B .13C .12D .23【答案】C 【解析】作MQ 垂直l 于Q ,则在RT△MQN 中,2MQN π∠=,6MNQ π∠=,所以12MF MQ MN MN ==.选C . 6.【江西省新八校2019届高三第二次联考】如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点,A B ,交其准线于点C ,若4BC BF =,且6AF =,则p 为( )A .94B .92C .9D .18【答案】B 【解析】设准线与x 轴交于点P ,作BH 垂直于准线,垂足为H由4BC BF =,得:45BH BC PF CF == 由抛物线定义可知:BF BH =,设直线l 倾斜角为θ由抛物线焦半径公式可得:41cos 5pBF BF PF p p θ+===,解得:1cos 4θ= 46131cos 3144p p p AF p θ∴=====−−,解得:92p = 本题正确选项:B7.【山东省泰安市教科研中心2019届高三考前密卷】已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于( ) A.B .8C.D .4【答案】C 【解析】F (1,0),故直线AB 的方程为y =x ﹣1,联立方程组241y x y x ⎧=⎨=−⎩,可得x 2﹣6x+1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1. 由抛物线的定义可知:|FA|=x 1+1,|FB|=x 2+1, ∴||FA|﹣|FB||=|x 1﹣x 2|==.故选:C .8.【河南省八市重点高中联盟“领军考试”2019届高三压轴】过抛物线22(0)y px p =>的焦点F 作直线,交抛物线于A ,B 两点,M 为准线上的一点,记MBF α∠=,MAF β∠=,且90αβ+=︒,则MFO∠与αβ−的大小关系是( )A .MFO αβ∠=−B .MFO αβ∠>−C .MFO αβ∠<−D .不确定 【答案】A 【解析】如图,设N 为AB 的中点,根据抛物线的定义,点N 到准线的距离为12AB , 即以AB 为直径的圆与准线相切,∵AM BM ⊥,M 为准线上的点,∴M 为切点,MNx 轴,由抛物线的焦点弦的性质,可得MF AB ⊥,又AM BM ⊥,所以MAF BMF β∠=∠=, 又∵AN MN =,∴AMN MAN β∠=∠=, ∴AMF AMN FMN MFO αβ−=∠−∠=∠=∠, 故选A.9.【广东省2019届高三适应性考试】在直角坐标系xOy 中,抛物线2:4C y x =的焦点为F ,准线为l ,P为C 上一点,PQ 垂直l 于点Q ,M ,N 分别为PQ ,PF 的中点,直线MN 与x 轴交于点R ,若60NFR ∠=︒,则NR =( )A .2 BC .D .3【答案】A 【解析】根据题意,如图所示:连接MF ,QF ,抛物线的方程为y 2=4x ,其焦点为(1,0), 准线x =﹣1, 则FH =2,PF =PQ ,又由M ,N 分别为PQ ,PF 的中点,则MN ∥QF , 又PQ =PF ,∠NRF =60°, 且∠NRF =∠QFH =∠FQP =60°,则△PQF 为边长为4等边三角形,MF =在Rt △FMR 中,FR =2,MF = 则MR =4, 则NR 12=MR =2, 故选:A .10.【江西省吉安一中、九江一中、新余一中等八所重点中学2019届高三4月联考】已知曲线1C 是以原点O 为中心,12F F 为焦点的椭圆,曲线2C 是以O 为顶点、2F 为焦点的抛物线,A 是曲线1C 与2C 的交点,且21AF F ∠为钝角,若1275,22AF AF ==,则12AF F ∆的面积是()A BC .2D .4【答案】B 【解析】过1F 作抛物线的准线l ,过A 作AB l ⊥于B , 作2F C AB ⊥于C , 由抛物线的定义可知,252AB AF ==,由勾股定理得21F C F B ====,12AC ==, 可知122F F BC AB AC ==−=,1212211222AF F S F F F C ∆∴=⨯=⨯= B. 11.【山东省烟台市2019届高三5月适应性练习(二)】已知过抛物线2:4C y x =焦点的直线交抛物线C 于P ,Q 两点,交圆2220x y x +−=于M ,N 两点,其中P , M 位于第一象限,则14||||PM QN +的值不可能为( ) A .3 B .4C .5D .6【答案】A 【解析】作图如下:可以作出下图,由图可得,可设PF m =,QF n =,则1PM m =−,1QN n =−,24y x =,2p ∴=,根据抛物线的常用结论,有1121m n p+==, 1m nmn+∴=,则m n mn +=, 14||||PM QN ∴+1411m n =+−−4545()1m n m n mn m n +−==+−−++又11(4)1(4)()m n m n m n +⋅=+⋅+441m n n m =+++5≥+, 得49m n +≥,454m n ∴+−≥则14||||PM QN +的值不可能为3, 答案选A12.【河南省百校联盟2019届高三考前仿真试卷】已知,A B 为抛物线22(0)x py p =>上的两个动点,以AB 为直径的圆C 经过抛物线的焦点F ,且面积为2π,若过圆心C 作该抛物线准线l 的垂线CD ,垂足为D ,则||CD 的最大值为( )A .2 BC .2D .12【答案】A 【解析】根据题意,222AB ππ⎛⎫= ⎪⎝⎭,∴AB =设||||AF a BF b ==,,过点A 作AQ l ⊥于Q ,过点B 作BP l ⊥于P , 由抛物线定义,得AF AQ BF BP ==,,在梯形ABPQ 中, ∴2CD AQ BP a b =+=+, 由勾股定理得,228a b =+,∵2222282244a b a b ab CD ab ++++⎛⎫==== ⎪⎝⎭2222424ab a b +++=…, 所以2CD ≤(当且仅当a b =时,等号成立).13.【天津市南开区2019届高三第二学期模拟考试(一)】已知P 为抛物线2:C y =上一点,点M ),若PM =,则△POM(O 为坐标原点)的面积为_____________【答案】【解析】解:∵抛物线C 的方程为y 2=∴M ,0)为抛物线的焦点 设P (m ,n )根据抛物线的定义,得|PM |=m 2p+=,即m =,解得m =∵点P 在抛物线C 上,得n 2==24∴n =±∵|OM |=∴△POF 的面积为S 12=|OM |×|n |=.故答案为:14.【重庆西南大学附属中学校2019届高三第十次月考】已知抛物线24y x =的焦点为F ,其准线与x 轴交于点A ,过A 作直线l 与抛物线交于M 、N 两点,则22||||FM FN +的取值范围为______________.【答案】()8+∞,. 【解析】由题意可得(1,0)A −,设直线l 方程为1(0)x my m =−≠,11(,)M x y ,22(,)N x y ,由241y x x my ⎧=⎨=−⎩得24(1)y my =−,整理得2440y my −+=, 所以216160m =−>,解得21m > 又124y y m +=,124y y =,因此21212()242x x m y y m +=+−=−,212121212(1)(1)()11x x my my m y y m y y =−−=−++=,所以2222212121212||||(1)(1)()22()2FM FN x x x x x x x x +=+++=+−+++ ()22212(1)1411x x m =++−=−−,因为21m >,所以()2222||||411918FM FN m +=−−>−=.故答案为()8+∞,15.【重庆市南开中学2019届高三第三次教学质量检测考试】已知F 是抛物线24y x =的焦点,A ,B 在抛物线上,且ABF ∆的重心坐标为11(,)23,则FA FB AB−=__________.【解析】设点A (),A A x y ,B (),B B x y ,焦点F(1,0),ABF ∆的重心坐标为11,23⎛⎫ ⎪⎝⎭, 由重心坐标公式可得1132A B x x ++=,0133A B y y ++=,即1=2A B x x +,=1A B y y + , 由抛物线的定义可得()22=114A BA B A B y y FA FB x x x x −−+−+=−=, 由点在抛物线上可得22=4=4A A B By x y x ⎧⎨⎩,作差2244A B A B y y x x −=−,化简得4=4+A B AB A B A By y k x x y y −==−,代入弦长公式得--A B A B y y y ,则17FA FB AB−=,16.【四川省雅安市2019届高三第三次诊断考试】已知F 是抛物线C :28y x =的焦点,点(2,6)M ,点P是C 上任意一点,当点P 在1P 时,PF PM −取得最大值,当点P 在2P 时,PF PM −取得最小值.则12PP =__________.【答案】2【解析】作出抛物线C :28y x =的图象如下:过点P 作抛物线准线的垂线段PN ,过点M 作抛物线准线的垂线段ME 由抛物线方程可得:()2,0F由三角形知识可得:PF PM MF −≤ 所以MF PF PM MF −≤−≤当且仅当,,P M F 三点共线时,PF PM −取得最小值=-6MF −, 即点P 位于图中的2P 处,可求得:()22,4P − 由抛物线定义可得:PN PF =,由图可得:PF PM −==4PM PN ME −≤,当且仅当,,P M E 三点共线时,PF PM −取得最大值ME ,即点P 位于图中的1P 处,可求得:19,62P ⎛⎫⎪⎝⎭.所以122PP ==.17.【北京市房山区2019年第二次高考模拟检测高三】已知抛物线22(0)x py p =>过点(2,1).(Ⅰ)求抛物线的方程和焦点坐标;(Ⅱ)过点(0,4)A −的直线l 与抛物线交于两点,M N ,点M 关于y 轴的对称点为T ,试判断直线TN 是否过定点,并加以证明.【答案】(Ⅰ)抛物线方程为24x y =,焦点坐标为()0,1(Ⅱ)详见解析.【解析】(Ⅰ)因为抛物线22(0)x py p =>过点(2,1)P ,所以24p = 所以抛物线方程为24x y =,焦点坐标为(0,1) (Ⅱ)设直线l 的方程为4y kx =−,由244y kx x y=−⎧⎨=⎩消y 整理得24160x kx −+=, 则216640k ∆=−>,即||2k > 设1122(,),(,)M x y N x y 则T 11(,)x y − 且12124,16x x k x x +==. 直线212221:()y y TN y y x x x x −−=−+ 212221222212212222121222112()1()4()41444 44y y y x x y x x x x y x x x x x x x x x x y x x x x x x y x −∴=−++−∴=−++−−∴=−+−∴=+即2144x x y x −=+ 所以,直线TN 恒过定点(0,4).18.【江苏省南通市2019届高三适应性考试】已知抛物线C :22(0)y px p =>的焦点为F ,过F 且斜率为43的直线l 与抛物线C 交于A ,B 两点,B 在x 轴的上方,且点B 的横坐标为4.(1)求抛物线C 的标准方程;(2)设点P 为抛物线C 上异于A ,B 的点,直线PA 与PB 分别交抛物线C 的准线于E ,G 两点,x 轴与准线的交点为H ,求证:HG HE ⋅为定值,并求出定值. 【答案】(1)24y x =(2)见证明 【解析】(1)由题意得:(,0)2pF , 因为点B 的横坐标为4,且B 在x 轴的上方,所以B , 因为AB 的斜率为43,4342=−,整理得:80p +=,即0+=,得2p =, 抛物线C 的方程为:24y x =.(2)由(1)得:(4,4)B ,(1,0)F ,淮线方程1x =−, 直线l 的方程:4(1)3y x =−, 由24(1)34y x y x ⎧=−⎪⎨⎪=⎩解得14x =或4x =,于是得1(,1)4A −.设点2(,)4n P n ,又题意1n ≠±且4n ≠±,所以直线PA :41114y x n ⎛⎫+=− ⎪−⎝⎭,令1x =−,得41n y n +=−−, 即41n HE n +=−−, 同理可得:444n HG n −=+, 444414n n HG HE n n +−⋅=−⋅=−+. 19.【广东省肇庆市2019届高中毕业班第三次统一检测】已知抛物线C :24y x =的焦点为F ,直线l 与抛物线C 交于A ,B 两点,O 是坐标原点.(1)若直线l 过点F 且8AB =,求直线l 的方程;(2)已知点(2,0)E −,若直线l 不与坐标轴垂直,且AEO BEO ∠=∠,证明:直线l 过定点. 【答案】(1)1y x =−或1y x =−+;(2)(2,0). 【解析】解:(1)法一:焦点(1,0)F ,当直线l 斜率不存在时,方程为1x =,与抛物线的交点坐标分别为(1,2),(1,2)−, 此时4AB =,不符合题意,故直线的斜率存在.设直线l 方程为(1)=−y k x 与24y x =联立得()2222220k x k x k −+−=,当0k =时,方程只有一根,不符合题意,故0k ≠.()212222k x x k++=,抛物线的准线方程为1x =−,由抛物线的定义得()()12||||||11AB AF BF x x =+=+++()222228k k+=+=,解得1k =±,所以l 方程为1y x =−或1y x =−+.法二:焦点(1,0)F ,显然直线l 不垂直于x 轴,设直线l 方程为1x my =+,与24y x =联立得2440y my −−=,设11(,)A x y ,22(,)B x y ,124y y m +=,124y y =.||AB ==()241m ==+,由8AB =,解得1m =±, 所以l 方程为1y x =−或1y x =−+. (2)设11(,)A x y ,22(,)B x y ,设直线l 方程为(0)x my b m =+≠与24y x =联立得:2440y my b −−=,可得124y y m +=,124y y b =−. 由AEO BEO ∠=∠得EA EB k k =,即121222y yx x =−++. 整理得121122220y x y x y y +++=,即121122()2()20y my b y my b y y +++++=, 整理得12122(2)()0my y b y y +++=, 即84(2)0bm b m −++=,即2b =. 故直线l 方程为2x my =+过定点(2,0).20.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)】已知圆22:4O x y +=,抛物线2:2(0)C x py p =>.(1)若抛物线C 的焦点F 在圆O 上,且A 为抛物线C 和圆O 的一个交点,求AF ;(2)若直线l 与抛物线C 和圆O 分别相切于,M N 两点,设()00,M x y ,当[]03,4y ∈时,求MN 的最大值.【答案】(1)2−;(2)5. 【解析】(1)由题意知(0,2)F ,所以4p =. 所以抛物线C 的方程为28x y =.将28x y =与224x y +=联立得点A的纵坐标为2)A y =−,结合抛物线定义得||22A pAF y =+=. (2)由22x py =得:22x y p=,x y p '=,所以直线l 的斜率为0x p ,故直线l 的方程为()000x y y x x p−=−. 即000x x py py −−=.又由||2ON ==得02084y p y =−且2040y −> 所以2222200||||||4MN OM ON x y =−=+−220000020824244y py y y y y =+−=+−− ()2202200022001644164444y y y y y y −+=+−=+−−− 2020641644y y =++−− 令204t y =−,0[3,4]y ∈,则[5,12]t ∈, 令64()16f t t t =++,则264()1f t t'=−; 当[5,8]t ∈时()0f t '≤,()f t 单调递减,当(8,12]t ∈时()0f t '>,()f t 单调递增,又64169(5)16555f =++=,64100169(12)16121235f =++=<, 所以max 169()5f x =,即||MN的最大值为5.21.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知O 为坐标原点,过点()1,0M 的直线l 与抛物线C :22(0)y px p =>交于A ,B 两点,且3OA OB ⋅=−. (1)求抛物线C 的方程;(2)过点M 作直线'l l ⊥交抛物线C 于P ,Q 两点,记OAB ∆,OPQ ∆的面积分别为1S ,2S ,证明:221211S S +为定值. 【答案】(1)24y x =;(2)详见解析. 【解析】(1)设直线l :1x my =+,与22y px =联立消x 得,2220y pmy p −−=.设()11,A x y ,()22,B x y ,则122y y pm +=,122y y p =−.因为g x (),所以()()1112222111OA OB x x y m y y y y y m ⋅++==++()()2121211m y y m y y =++++()()221221213m p pm p =+−++=−+=−,解得2p =.所以抛物线C 的方程为24y x =.(2)由(1)知()1,0M 是抛物线C 的焦点,所以21212244AB x x p my my p m =++=+++=+.原点到直线l的距离d =,所以()21412OAB S m ∆=+=. 因为直线'l 过点()1,0且'l l ⊥,所以OPQS ∆==所以()()2222212111144141m S S m m +=+=++.即221211S S +为定值14. 22.【陕西省汉中市2019届高三全真模拟考试】已知点为直线上的动点,,过作直线的垂线的中垂线于点,记点的轨迹为.(Ⅰ)求曲线的方程;(Ⅱ)若直线与圆相切于点,与曲线交于两点,且为线段的中点,求直线的方程.【答案】(Ⅰ)(Ⅱ)直线的方程为【解析】解:(Ⅰ)由已知可得,,即点到定点的距离等于它到直线的距离,故点的轨迹是以为焦点,为准线的抛物线,∴曲线的方程为.(Ⅱ)设,由,得,∴,∴,即,∵直线与圆相切于点,∴,且,从而,即:,整理可得,即,∴,故直线的方程为.能力提升训练1.【河北省邯郸市2019届高三第一次模拟考试】位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可以近似地看成抛物线,该桥的高度为5m ,跨径为12m ,则桥形对应的抛物线的焦点到准线的距离为( )A .2512m B .256m C .95mD .185m 【答案】D 【解析】以桥顶为坐标原点,桥形的对称轴为y 轴建立直角坐标系xOy ,结合题意可知,该抛物线()2x 2py p 0=−>经过点()6,5−,则3610p =,解得18p 5=,故桥形对应的抛物线的焦点到准线的距离为18p 5=. 故选:D2.【甘肃省2019届高三第一次高考诊断考试】抛物线28y x =的焦点到双曲线2214y x −=的渐近线的距离是( )A B C D 【答案】C 【解析】依题意,抛物线的焦点为()2,0,双曲线的渐近线为2y x =±,其中一条为20x y −=,由点到直线的距离公式得5d ==.故选C. 3.【北京市海淀区2019届高三4月期中练习(一模)】抛物线2:4W y x =的焦点为F ,点A 在抛物线上,且点A 到直线3x =−的距离是线段AF 长度的2倍,则线段AF 的长度为( ) A .1 B .2 C .3 D .4【答案】B 【解析】解:依题意,得F (1,0),抛物线的准线为x =-1, 线段AF 的长等于点A 到准线x =-1的距离,因为点A 到直线3x =−的距离是线段AF 长度的2倍,所以,点A 到直线3x =−的距离是点A 到准线x =-1的距离的2倍 设A 点横坐标为0x ,是0x +3=2(0x +1),解得:0x =1, 所以,|AF |=1-(-1)=2 故选:B4.【山东省2019届高三第一次大联考】已知抛物线2:4C y x =的焦点为F ,C 上一点P 在y 轴上的投影为Q ,O 为坐标原点.若OQF ∆的面积为2,则PF =( ) A .4 B .5 C .6 D .3 【答案】B 【解析】由对称性可知,不妨设()00,P x y 在第一象限,0111222OQF S OF OQ y ∆=⨯=⨯⨯=,即04y =,因为()00,P x y 在抛物线上,即2004y x =,解得04x =,由抛物线定义04152pPF x =+=+=,故选B.5.【河南省焦作市2018-2019学年高三年级第三次模拟考试河南省焦作市2018-2019学年高三年级第三次模拟考试】已知抛物线E :y 2=2px (p >0)的准线为l ,圆C :(x ﹣2p )2+y 2=4,l 与圆C 交于A ,B ,圆C 与E 交于M ,N .若A ,B ,M ,N 为同一个矩形的四个顶点,则E 的方程为( )A .y 2=xB .y 2C .y 2=2xD .y 2=x【答案】C 【解析】 如图,圆C :(x ﹣2p )2+y 2=4的圆心C (2p,0)是抛物线E :y 2=2px (p >0)的焦点, ∵圆C :(x ﹣2p )2+y 2=4的半径为2, ∴|NC|=2,根据抛物线定义可得:|NA|=|NC|=2. ∵A ,B ,M ,N 为同一个矩形的四个顶点, ∴点A ,N 关于直线x =2p 对称,即22N A P x x P +=⨯=,∴32N x p =, ∴|NA|=322p p ⎛⎫−− ⎪⎝⎭=2,∴2p =2,则E 的方程为y 2=2x . 故选:C .6.【贵州省2019届高三普通高等学校招生适应性考试】过抛物线24y x =的焦点F 的直线交该抛物线A ,B 两点,该抛物线的准线与x 轴交于点M ,若4AF =,则MAB ∆的面积为A .3B .3C .3D .【答案】A 【解析】解: y 2=4x 的准线l :x =﹣1.∵|AF |=3,∴点A 到准线l :x =﹣1的距离为4, ∴1+A x =4, ∴A x =3,∴A y =±不妨设A (3,),∴S △AFM 12=⨯2×=, ∵F (1,0),∴直线AB 的方程为y =x ﹣1),∴)214y x y x⎧=−⎪⎨=⎪⎩,解得B (13,3−),∴S △BFM 12=⨯233⨯=,∴S △AMB =S △AFM +S △BFM =33=,故选:A .7.【江苏省扬州中学2019届高三4月考试】已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:()PF d P FQ=. (1)当8(1)3P −−,时,求()d P ; (2)证明:存在常数a ,使得2()d P PF a =+.(3)123,,P P P 为抛物线准线上三点,且1223PP P P =,判断13()()d Pd P +与22()d P 的关系. 【答案】(1)83;(2)证明见解析;(3)()()()1322d P d P d P +>. 【解析】(1)因为8443(1)233PF k y x ==⇒=−. 联立方程24(1)1344Q y x x y x ⎧=−⎪⇒=⎨⎪=⎩, 则1083()534PF d P QF ⎧=⎪⎪⇒=⎨⎪=⎪⎩. (2)当()1,0P −,易得2()2a d P PF =−=,不妨设()1,P P y −,0P y >,直线:1PF x my =+,则2P my =−,联立214x my y x=+⎧⎨=⎩,2440y my −−=,2Q y m ==+2()||2P P Q y d P PF y m −=−=+2=−+=.(3)设()()()1122331,,1,,1,P y P y P y −−−,则()()()13224d P d P d P +−⎡⎤⎣⎦1322PF P F P F =+−===,因为()221316y y ⎡⎤−++⎣⎦1228y y =−−,又因()()()()2222213131313444480y y y y y y y y ++−+=+−>, 所以()()()1322d P d P d P +>.8.【辽宁省沈阳市2019届高三教学质量监测(三)】已知抛物线2:2(0)C x py p =>的焦点为F ,()02,M y −是C 上一点,且2MF =.(1)求C 的方程;(2)过点F 的直线与抛物线C 相交于,A B 两点,分别过点,A B 两点作抛物线C 的切线12,l l ,两条切线相交于点P ,点P 关于直线AB 的对称点Q ,判断四边形PAQB 是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由.【答案】(1)24x y =(2)见解析【解析】(1)解:根据题意知,042py =① 因为2MF =,所以022p y +=② 联立①②解得01,2y p ==.所以抛物线C 的方程为24x y =.(2)四边形PAQB 存在外接圆.设直线AB 方程为1y kx =+,代入24x y =中,得2440x kx −−=,设点()()1122,,,A x y B x y ,则216160k ∆=+>,且4,42121−==+x x k x x所以()212||41AB x k =−=+, 因为2:4C x y =,即24x y =,所以'2x y =. 因此,切线1l 的斜率为112x k =,切线2l 的斜率为222x k =, 由于121214x x k k ==−,所以PA PB ⊥,即PAB △是直角三角形, 所以PAB △的外接圆的圆心为线段AB 的中点,线段AB 是圆的直径,所以点Q 一定在PAB △的外接圆上,即四边形PAQB 存在外接圆. 又因为()241AB k =+,所以当0k =时,线段AB 最短,最短长度为4, 此时圆的面积最小,最小面积为4π.9.【北京市昌平区2019届高三5月综合练习(二模)】已知抛物线()2:20G y px p =>过点()1,2M −,,A B是抛物线G 上异于点M 的不同两点,且以线段AB 为直径的圆恒过点M .(I )当点A 与坐标原点O 重合时,求直线MB 的方程;(II )求证:直线AB 恒过定点,并求出这个定点的坐标.【答案】(I )250x y −−=; (II )答案见解析.【解析】(I )因为()1,2M −在抛物线()2:20G y px p =>上,所以()2221p −=⨯, 所以2p =,抛物线2:4G y x =.当点A 与点O 重合时,易知2AM k =−,因为以线段AB 为直径的圆恒过点M ,所以AM MB ⊥.所以12BM k =. 所以()1:212MB y x +=−,即直线MB 的方程为250x y −−=. (II )显然直线AB 与x 轴不平行,设直线AB 方程为x my n =+ .2,4x my n y x=+⎧⎨=⎩,消去x 得2440y my n −−=. 设1122(,),(,)A x y B x y ,因为直线AB 与抛物线交于两点,所以21212=16160,4,4m n y y m y y n ∆+>+==− ①因为以线段AB 为直径的圆恒过点M ,所以AM MB ⊥.因为,A B 是抛物线上异于M 的不同两点,所以12,1x x ≠,1MA MB k k ⋅=−.112111224=1214MA y y k x y y ++==−−−,同理得222222224=1214MB y y k x y y ++==−−−. 所以1244=122y y ⋅−−−,即12(2)(2)160y y −−+=,12122(+)200y y y y −+=. 将 ①代入得, 48200n m −−+=,即=25n m −+ .代入直线方程得25(2)5x my m m y =−+=−+.所以直线AB 恒过定点(5,2) .10.【重庆南开中学2019届高三第四次教学检测考试】过抛物线()2:20C y px p =>的焦点F 且斜率为1的直线交抛物线C 于M ,N 两点,且2MN =.(1)求p 的值;(2)抛物线C 上一点()0,1Q x ,直线:l y kx m =+(其中0k ≠)与抛物线C 交于A ,B 两个不同的点(均与点Q 不重合),设直线QA ,QB 的斜率分别为1k ,2k ,1212k k =−.动点H 在直线l 上,且满足0OH AB ⋅=,其中O 为坐标原点.当线段OH 最长时,求直线l 的方程.【答案】(1) 12p =(2) 310y x =− 【解析】(1)抛物线的焦点为,02p F ⎛⎫⎪⎝⎭,设直线MN 方程为2p x y =+ 联立抛物线方程可得2220y py p −−=故:2M N y y p +=,2·M N y y p =− ∴4222M N M N p p MN x x p y y p p ⎛⎫⎛⎫=++=++++== ⎪ ⎪⎝⎭⎝⎭,解得12p =. (2)由(1)知抛物线C 方程为2y x =,从而点()1,1Q ,设()11,A x y ,()22,B x y220y kx m ky y m y x=+⎧⇒−+=⎨=⎩ ()140*km ∆=−>∵0k ≠,∴121y y k +=,12m y y k ⋅=. 由1212122212121211111111111112y y y y k k x x y y y y −−−−=⋅=⋅=⋅=−−−−−++ 可得()121230y y y y +++=,即130m k k ++= 从而13m k +=−该式满足()*式∴()31y k x =−−即直线l 恒过定点()3,1T −.设动点(),H x y ,∵·0OH AB =,∴()(),?3,10x y x y −+= ∴动点H 在2230x x y y −++=,故H 与T 重合时线段OH 最长,此时直线():331l y x =−−,即:310y x =−.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线复习【高考会这样考】1.考查抛物线的定义、方程,常与求参数和最值等问题相结合.2.考查抛物线的几何性质,常考查焦点弦及内接三角形问题.3.多与向量交汇考查抛物线的定义、方程、性质等.考点梳理1.抛物线的定义(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质图形标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0) x2=-2py(p>0) p的几何意义:焦点F到准线l的距离性质顶点O(0,0)对称轴y=0 x=0焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R开口 方向向右 向左 向上 向下【助学·微博】一个重要转化 一次项的变量与焦点所在的坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向,即“对称轴看一次项,符号决定开口方向”. 六个常见结论直线AB 过抛物线y 2=2px (p >0)的焦点,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图. ①y 1y 2=-p 2,x 1x 2=p 24.②|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . ③1|AF |+1|BF |为定值2p .④弦长AB =2psin 2α(α为AB 的倾斜角). ⑤以AB 为直径的圆与准线相切.⑥焦点F 对A ,B 在准线上射影的张角为90°. 考点自测1.(陕西)设抛物线的顶点在原点,准线方程x =-2,则抛物线的方程是( ). A .y 2=-8x B .y 2=-4x C .y 2=8x D .y 2=4x2.(辽宁)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ). A.34 B .1 C.54 D.743.(四川)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |=( ).A.2 2 B.2 3 C.4 D.2 54.已知动圆过点(1,0),且与直线x=-1相切,则动圆的圆心的轨迹方程为________.5.(新乡模拟)若抛物线y2=2px的焦点与双曲线x26-y23=1的右焦点重合,则p的值为________.考向一抛物线的定义及其应用【例1】►已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|P A|+|PF|的最小值,并求出取最小值时P点的坐标.【训练1】设P是曲线y2=4x上的一个动点,则点P到点B(-1,1)的距离与点P到直线x=-1的距离之和的最小值为________.考向二抛物线的标准方程及几何性质【例2】►(1)以原点为顶点,坐标轴为对称轴,并且经过P(-2,-4)的抛物线方程为________.(2)设M(x0,y0)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y0的取值范围是().A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞)【训练2】(郑州一模)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为().A.y2=9x B.y2=6x C.y2=3x D.y2=3x考向三抛物线的焦点弦问题【例3】►已知过抛物线y2=2px(p>0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.【训练3】 若抛物线y 2=4x 的焦点为F ,过F 且斜率为1的直线交抛物线于A ,B 两点,动点P 在曲线y 2=-4x (y ≥0)上,则△P AB 的面积的最小值为________.方法优化——有关抛物线焦点弦的解题技巧【真题探究】► (安徽)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( ).A.22B. 2C.322 D .2 2【试一试】 已知抛物线y 2=4x 的焦点为F ,过F 的直线与该抛物线相交于A (x 1,y1),B(x2,y2)两点,则y21+y22的最小值是().A.4 B.8 C.12 D.16A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(辽宁)已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为 ( ). A.34 B .1C.54D.742.(东北三校联考)若抛物线y 2=2px (p >0)上一点P 到焦点和抛物线的对称轴的距离分别为10和6,则p 的值为 ( ).A .2B .18C .2或18D .4或163.(全国)已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB = ( ).A.45B.35C .-35D .-454.(山东)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ). A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y二、填空题(每小题5分,共10分)5.(郑州模拟)设斜率为1的直线l过抛物线y2=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为8,则a的值为________.6.(陕西)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.三、解答题(共25分)7.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程;(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于55?若存在,求出直线l的方程;若不存在,说明理由.8.(13分)(温州十校联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切. (1)求a 与b ;(2)设该椭圆的左、右焦点分别为F 1,F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB→|+|FC →|=( ).A .9B .6C .4D .32.(洛阳统考)已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( ).A. 3B. 5 C .2 D.5-1二、填空题(每小题5分,共10分)3.(北京)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60°,则△OAF 的面积为________.4.(重庆)过抛物线y 2=2x 的焦点F 作直线交抛物线于A ,B 两点,若|AB |=2512,|AF |<|BF |,则|AF |=________.三、解答题(共25分)5.(12分)已知抛物线C :y 2=4x ,过点A (-1,0)的直线交抛物线C 于P 、Q 两点,设AP→=λAQ →. (1)若点P 关于x 轴的对称点为M ,求证:直线MQ 经过抛物线C 的焦点F ; (2)若λ∈⎣⎢⎡⎦⎥⎤13,12,求|PQ |的最大值.6.(13分)(新课标全国)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C 上一点,已知以F为圆心,F A为半径的圆F交l于B,D两点.(1)若∠BFD=90°,△ABD的面积为4 2,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.。