南京大学数学建模培训班_ppt课件
合集下载
数学建模培训精品课件ppt
R具有丰富的统计函数库和图形库,可以进行各种统计分析 、数据挖掘和预测建模。R还具有开源的特性,用户可以自由 地使用和修改代码,同时也有大量的社区资源和教程可供参 考。
CHAPTER 04
数学建模竞赛经验分享
竞赛准备
知识储备
01
掌握数学建模所需的基本数学知识,如概率论、统计学、线性
代数和微积分等。
Python的NumPy库提供了强大的数组操作功能,可以进行大规模数值计算; Pandas库提供了数据分析和处理的功能;SciPy库可以进行各种科学计算和数学 建模;Scikit-learn库则提供了丰富的机器学习算法和模型。
R
R是一种用于统计计算和图形的编程语言,它提供了大量的 统计函数和图形工具,方便用户进行数据分析、统计建模和 可视化。
微分方程模型
总结词
微分方程模型用于描述动态系统的变化规律,通过建立微分方程来描述系统的状态和行 为。
详细描述
微分方程模型基于物理定律和数学原理,通过求解微分方程来预测系统的未来状态。常 见的微分方程模型有常微分方程、偏微分方程等,广泛应用于物理学、工程学等领域。
优化模型
总结词
优化模型用于寻找最优解,通过建立数学模型来描述问题的约束条件和目标函数。
任务。
创新思维
在解决问题时尝试不同 的方法和思路,不要局
限于一种解决方案。
文档规范
注意文档的规范性和可 读性,方便评委理解和
评价。
CHAPTER 05
数学建模前沿动态
人工智能与数学建模
人工智能算法的数学原理
解释人工智能算法背后的数学原理,如线性代数、概率论和统计 等。
机器学习与数学建模
介绍机器学习中的数学建模方法,如回归分析、分类和聚类等。
CHAPTER 04
数学建模竞赛经验分享
竞赛准备
知识储备
01
掌握数学建模所需的基本数学知识,如概率论、统计学、线性
代数和微积分等。
Python的NumPy库提供了强大的数组操作功能,可以进行大规模数值计算; Pandas库提供了数据分析和处理的功能;SciPy库可以进行各种科学计算和数学 建模;Scikit-learn库则提供了丰富的机器学习算法和模型。
R
R是一种用于统计计算和图形的编程语言,它提供了大量的 统计函数和图形工具,方便用户进行数据分析、统计建模和 可视化。
微分方程模型
总结词
微分方程模型用于描述动态系统的变化规律,通过建立微分方程来描述系统的状态和行 为。
详细描述
微分方程模型基于物理定律和数学原理,通过求解微分方程来预测系统的未来状态。常 见的微分方程模型有常微分方程、偏微分方程等,广泛应用于物理学、工程学等领域。
优化模型
总结词
优化模型用于寻找最优解,通过建立数学模型来描述问题的约束条件和目标函数。
任务。
创新思维
在解决问题时尝试不同 的方法和思路,不要局
限于一种解决方案。
文档规范
注意文档的规范性和可 读性,方便评委理解和
评价。
CHAPTER 05
数学建模前沿动态
人工智能与数学建模
人工智能算法的数学原理
解释人工智能算法背后的数学原理,如线性代数、概率论和统计 等。
机器学习与数学建模
介绍机器学习中的数学建模方法,如回归分析、分类和聚类等。
数学建模培训精品课件ppt
提高解决问题的能力
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。
《数学建模培训》PPT课件
数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。
建模辅导 第一讲.ppt
(2)可将本问题提法更一般化些,从而更具一般性。
在 在
设个个星星头nx期期12牛n中中在aa吃就a个完能xx2n1x星吃1n亩n期n完21地中 上亩mmm就m的1地(2能(h(hmh0草上吃002?的完nnn草v12)vv亩,))地m那1上么的多草少,头牛头才牛x能2
第一讲 数学建模的初步认识
实例2(方桌问题)四条腿的方桌能在地面上放稳吗? 试建立数学模型来回答这个问题?
(2)草在牛吃草之前,其高度未必一致; (3)草是随吃随长的,且各处的生长速度也不尽相同;
2、模型假设:
第一讲 数学建模的初步认识
(1)牛吃不到草的草高为吃完高度,假设此时草高为零;
(2)在牛吃草之前,各处草的高度是一致的,设为 h0; (3)每头牛吃草量相同,均为 a单位/星期;
(4)草的生长速度各处相同且是均匀生长的,即生长速度为
不合理的,更为合理的是:整个身体的重量集中在脚上,于是动能
项中的 M,=由m此模型又被改写成
P= Mgv x Mv3
8l
2x
从而 x2 4lv2 n2 g
g
4l
再将刚才的数据代入后,得到n 1.6
第一讲 数学建模的初步认识
巩固”五步建模法”: 实例4(土地承包问题) 设某村一户农民承包了100亩中低产田,土地租用费每 亩50元/年,农业税每亩10元/年;根据当地气候条件可 以种植小麦、玉米和花生,其种植周期是:10月份(秋 天)收玉米后可种冬小麦,第二年6月(夏天)收割小麦, 后可种玉米,10月份收割玉米;4月份种花生,10月份 收割花生后可种冬小麦,有关数据列入下表:
经过细想,做法值得推敲:
(1)市场情况你了解吗?即市场能否容纳所有鱼的出售; (2)涉及到你是否还想继续做养鱼专业户的问题?
数学建模培训精品课件
深度学习与神经网络
介绍深度学习和神经网络的基本原理 ,以及在数学建模中的应用和挑战。
探讨机器学习算法如何与数学建模相 结合,实现数据分析和预测。
大数据时代的数学建模挑战与机遇
大数据的数学建模方法
介绍处理大规模数据集的数学建模方法和技巧,如分布式计算、 云计算等。
数据清洗与预处理
阐述数据预处理在数学建模中的重要性,以及如何进行数据清洗和 特征提取。
THANKS.
04
模型评估与改进技巧
误差分析
分析模型预测误差来源,提高模型预测精度 。
多目标优化
在满足多个约束条件下,优化模型目标函数 。
敏感性分析
评估模型参数对结果的影响程度,优化模型 参数。
模型集成
将多个模型组合起来,提高整体预测性能。
数学建模软件介绍
04
MATLAB的使用介绍
MATLAB概述
01
MATLAB是一种用于算法开发、数据可视化、数据分析以及数
数学建模应用实例
02
微积分建模实例
总结词:微积分建模是数学建模中的基 础,通过实例可以更好地理解微积分的 实际应用。
经济学中的边际分析:通过微积分分析 经济活动中成本、收益和利润的变化, 为决策提供依据。
人口增长模型:利用微积分的知识,建 立人口增长模型,预测未来人口数量和 增长趋势。
详细描述
瞬时速度与加速度:通过分析物体运动 的速度和加速度,建立微积分模型,用 于预测物体的运动轨迹和时间。
模型验证:使用实际数据对模型进行 验证,评估模型的准确性和可靠性。
应用与优化:将模型应用于未来气候 预测中,根据反馈进行模型优化和调 整。
数学建模前沿动态
06
人工智能与数学建模的结合
《数学建模培训》课件
MATLAB
• 总结词:MATLAB是一种高效的数值计算和数据分析工具 ,广泛用于数学建模、算法开发、数据分析等领域。
MATLAB
• 详细描述 • MATLAB简介:MATLAB是Matrix Laboratory的缩写,由MathWorks
公司开发,是一种基于矩阵运算的编程语言和数值计算环境。 • MATLAB功能:MATLAB具有强大的矩阵运算和数值计算能力,可以用
Python(NumPy, Pandas, Scikit-learn)
• 总结词:Python是一种广泛使用的通用编程语言,具有简单易学、代码可读性高等优点,常用于数据处理、机器学习等领 域。
Python(NumPy, Pandas, Scikit-learn)
• 详细描述 • Python简介:Python由Guido van Rossum于1989年发布第一个公开发行版,是一种解释型、交互式的编程
《数学建模培训》课件
汇报人: 日期:
目录
• 数学建模概述 • 数学基础知识 • 数学建模案例分析 • 数学建模进阶知识 • 数学建模实践技巧 • 数学建模常用软件介绍 • 数学建模发展趋势与挑战
01
数学建模概述
数学建模的定义
数学建模是一种用数学语言描述现实问题,建立数学模型,并通过对模型的分析和 求解来做出决策的科学方法。
大数据时代的挑战
数据处理难度加大
随着大数据时代的到来,数据的类型、规模 和复杂性都不断加大,这给数学建模带来了 更多的挑战。如何有效地处理、分析和利用 大数据,成为数学建模需要面对的重要问题 。
数据隐私和安全问题
在大数据时代,数据的隐私和安全问题也日 益突出。如何在保证数据隐私和安全的前提 下,进行有效的数学建模,是当前需要解决 的一个重要问题。
《数学建模培训》课件
Excel 和 Python
05
数学建模竞赛介绍
国际数学建模竞赛起源于1985年,由美国数学及其应用联合会主办,是全球范围内最具影响力的数学建模竞赛之一。
起源与发展
国际数学建模竞赛(ICM)
ICM面向全球的数学建模爱好者,参赛者可以来自不同学科领域,包括理工科、社会科学、人文科学等。
参赛范围
ICM采用3人一组的参赛形式,限定4天时间内完成一个实际问题,提交一篇完整的英文论文。
竞赛形式
起源与发展
MCM面向全美的数学建模爱好者,参赛者主要来自理工科和社科类专业。
参赛范围
竞赛形式
全美数学建模竞赛(MCM)
MCM采用2人一组的参赛形式,限定48小时内完成一个实际问题,提交一篇完整的英文论文。
全美数学建模竞赛由美国数学协会主办,是全美范围内最具代表性的数学建模竞赛之一。
起源与发展
经济增长模型
模型假设
经济增长受投资、劳动力、技术等多种因素影响,假设投资和技术进步是经济增长的主要驱动力,而劳动力增长速度较慢。
模型建立
基于假设,建立微分方程模型,将国内生产总值、投资、劳动力数量和技术水平作为变量。
模型求解
通过数值方法求解方程,得出未来经济增长趋势。
01
02
03
股票价格受市场供求关系、公司业绩、宏观经济等多种因素影响,假设公司业绩和宏观经济对股票价格具有长期影响。
应用程序
03
Mathematica支持与其他应用程序的集成,如Excel、Access、Visual Studio等,方便数据的导入和导出。
Maple具有强大的符号计算能力,可以处理各种符号数学问题,如微积分、线性代数、组合数学等。
符号计算
数学建模培训精品课件ppt
Python在数学建模中的应用
开源、跨平台
VS
Python是一种开源的、跨平台的编 程语言,被广泛应用于数学建模领域 。Python具有简洁的语法和丰富的 库,可以方便地进行数值计算和数据 可视化。
Python在数学建模中的应用
科学计算、数据分析
Python拥有许多科学计算和数据分析的库,如 NumPy、Pandas和SciPy等,可以方便地进行矩阵运 算、统计分析等。
MATLAB在数学建模中的应用
功能强大、广泛使用
MATLAB是一款由MathWorks公司开发的商业数学软件,主要用于算法开发、 数据可视化、数据分析以及数值计算。在数学建模领域,MATLAB因其强大的矩 阵运算和绘图功能被广泛使用。
MATLAB在数学建模中的应用
数值计算、算法开发
MATLAB提供了大量的内置函数,可以方便地进行数值计算,包括线性代数、微积分、常微分方程求解等。同时,它也支持 用户自定义函数,可以方便地进行算法开发。
2023 WORK SUMMARY
数学建模培训精品课 件
汇报人:可编辑
2023-12-26
REPORTING
目录
• 数学建模基础 • 数学建模应用实例 • 数学建模软件介绍 • 数学建模竞赛经验分享 • 数学建模前沿动态 • 数学建模课程建议与展望
PART 01
数学建模基础
数学建模的定义与重要性
方案优化等。
未来数学建模的发展趋势
跨学科融合
大数据与机器学习
随着各学科的交叉融合,数学建模将与其 他领域更加紧密地结合,形成新的研究领 域和应用方向。
随着大数据和机器学习技术的发展,数学 建模将更多地应用于数据分析和预测等领 域。
数学建模培训精品课件
数学建模的基本步骤
总结词:掌握数学建模的基本步骤是成功解决问题的 关键。
详细描述:数学建模的基本步骤包括明确问题、收集数 据、建立模型、求解模型和评估模型。明确问题是数学 建模的第一步,需要清晰地定义问题并确定研究范围。 收集数据是建立模型的基础,需要收集足够的信息来支 持模型的建立。建立模型是将实际问题转化为数学问题 的过程,需要选择合适的数学方法和工具。求解模型是 利用计算机和数学软件对建立的模型进行计算和分析。 评估模型是验证模型的准确性和可靠性,需要对模型的 预测结果进行误差分析和改进。
线性代数在机器学习中的应用
例如,利用线性代数建模进行数据降维、特征提取等。
概率论与数理统计建模应用
概率论与数理统计建模概述
概率论与数理统计是研究随机现象的数学分支,通过概率论与数理统 计建模可以解决不确定性和风险的问题。
概率论与数理统计在金融中的应用
例如,利用概率论与数理统计建模进行风险评估、投资组合优化等。
例如,利用微积分建模研究生物种群增长、疾病 传播等问题。
线性代数建模应用
线性代数建模概述
线性代数是研究线性关系的数学分支,通过线性代数建模可以解决矩 阵和向量的问题。
线性代数在计算机图形学中的应用
例如,利用线性代数建模进行图像处理、3D渲染等。
线性代数在控制系统中的应用
例如,利用线性代数建模研究系统的稳定性、控制系统的设计和优化 等。
例如,利用优化建模进行路径规划、车辆调 度等,以实现运输成本的最小化。
优化在生产计划中的应用
例如,利用优化建模进行生产计划安排、资 源分配等,以实现生产效益的最大化。
优化在金融中的应用
例如,利用优化建模进行投资组合优化、风 险管理等,以实现金融收益的最大化。
《数学建模培训》课件
数中一些 重要的等式,如欧拉恒等 式、柯西恒等式等。
几何基础知识
平面几何
解析几何
平面几何是研究平面图形及其性质的 数学分支,包括点、线、面、角等基 本概念。
解析几何是用代数方法研究几何问题 的一门学科,包括坐标系、向量、向 量的运算等基本概念。
立体几何
立体几何是研究空间图形及其性质的 数学分支,包括长方体、球体、圆柱 体等基本几何体。
现状
目前,数学建模已经成为 一个独立的学科领域,拥 有广泛的学术和应用价值 。
数学建模的应用领域
自然科学
数学建模在物理学、化学、生 物学等领域有着广泛的应用, 如牛顿万有引力定律、薛定谔
方程等。
工程学
数学建模在土木工程、机械工 程、电子工程等领域发挥着重 要作用,如结构分析、流体动 力学等。
社会科学
概率与统计基础知识
概率论
概率论是研究随机现象的数学分 支,包括随机事件、概率、期望
、方差等基本概念。
统计学
统计学是研究数据收集、整理、分 析和解释的学科,包括描述性统计 、推论性统计等基本内容。
回归分析
回归分析是研究自变量和因变量之 间关系的学科,包括线性回归、多 元回归等基本内容。
数学建模方法与技
3
分式方程
通过实际问题建立分式方程,如工程问题、时间 分配等,掌握方程的解法及实际应用。
几何图形建模案例分析
平面几何
01
通过实际问题建立平面几何模型,如面积、周长、角度等,掌
握图形的性质及实际应用。
立体几何
02
通过实际问题建立立体几何模型,如体积、表面积、距离等,
掌握图形的性质及实际应用。
解析几何
总结词
竞赛经验、团队合作
几何基础知识
平面几何
解析几何
平面几何是研究平面图形及其性质的 数学分支,包括点、线、面、角等基 本概念。
解析几何是用代数方法研究几何问题 的一门学科,包括坐标系、向量、向 量的运算等基本概念。
立体几何
立体几何是研究空间图形及其性质的 数学分支,包括长方体、球体、圆柱 体等基本几何体。
现状
目前,数学建模已经成为 一个独立的学科领域,拥 有广泛的学术和应用价值 。
数学建模的应用领域
自然科学
数学建模在物理学、化学、生 物学等领域有着广泛的应用, 如牛顿万有引力定律、薛定谔
方程等。
工程学
数学建模在土木工程、机械工 程、电子工程等领域发挥着重 要作用,如结构分析、流体动 力学等。
社会科学
概率与统计基础知识
概率论
概率论是研究随机现象的数学分 支,包括随机事件、概率、期望
、方差等基本概念。
统计学
统计学是研究数据收集、整理、分 析和解释的学科,包括描述性统计 、推论性统计等基本内容。
回归分析
回归分析是研究自变量和因变量之 间关系的学科,包括线性回归、多 元回归等基本内容。
数学建模方法与技
3
分式方程
通过实际问题建立分式方程,如工程问题、时间 分配等,掌握方程的解法及实际应用。
几何图形建模案例分析
平面几何
01
通过实际问题建立平面几何模型,如面积、周长、角度等,掌
握图形的性质及实际应用。
立体几何
02
通过实际问题建立立体几何模型,如体积、表面积、距离等,
掌握图形的性质及实际应用。
解析几何
总结词
竞赛经验、团队合作
数学建模培训精品课件ppt
03
跨学科的数学建模需要加强交流与合作,打破学科壁垒,促进知识的融合和应用。
总结
数学建模是利用数学语言描述现实世界的过程,它在科学、工程、经济、金融等领域有着广泛的应用。
重要性
数学建模能够将实际问题抽象化,通过数学分析和计算得出结论,为决策提供科学依据。
应用领域
数学建模在物理、化学、生物、环境科学、医学、社会科学等领域都有应用,是解决复杂问题的重要工具。
数学建模竞赛经验分享
数学建模竞赛需要学生运用所学知识解决实际问题,有助于培养他们的创新思维和解决问题的能力。
培养创新思维
参加数学建模竞赛可以提高学生的数学素养、编程能力、团队协作和沟通能力等,有助于提升学生的综合素质。
提高综合素质
在数学建模竞赛中取得优异成绩,可以为学生未来的学术和职业发展提供有力支持,增强他们的竞争力。
随着实际问题越来越复杂,数学建模面临诸多挑战,如模型建立、数据获取和处理、计算效率等。
挑战
随着科技的发展,数学建模在大数据分析、人工智能、机器学习等领域的应用越来越广泛,为数学建模提供了新的机遇。
技术创新
随着计算技术和算法的发展,数学建模将更加高效和精确,能够处理更大规模和更复杂的数据。
应用拓展
LINGO是一款由Lindo Systems公司开发的商业优化软件,主要用于解决线性规划、整数规划、非线性规划等问题。
LINGO内置了多种求解器,可以快速求解大规模的优化问题,支持多种目标函数和约束条件。
LINGO提供了友好的用户界面和强大的建模功能,支持多种优化模型,包括线性规划、整数规划、二次规划等。
Python的语法简单易懂,易于上手,适合初学者快速入门。
Python的可视化库也非常丰富,如Matplotlib、Seaborn等,可以方便地绘制各种统计图形和数据可视化。
跨学科的数学建模需要加强交流与合作,打破学科壁垒,促进知识的融合和应用。
总结
数学建模是利用数学语言描述现实世界的过程,它在科学、工程、经济、金融等领域有着广泛的应用。
重要性
数学建模能够将实际问题抽象化,通过数学分析和计算得出结论,为决策提供科学依据。
应用领域
数学建模在物理、化学、生物、环境科学、医学、社会科学等领域都有应用,是解决复杂问题的重要工具。
数学建模竞赛经验分享
数学建模竞赛需要学生运用所学知识解决实际问题,有助于培养他们的创新思维和解决问题的能力。
培养创新思维
参加数学建模竞赛可以提高学生的数学素养、编程能力、团队协作和沟通能力等,有助于提升学生的综合素质。
提高综合素质
在数学建模竞赛中取得优异成绩,可以为学生未来的学术和职业发展提供有力支持,增强他们的竞争力。
随着实际问题越来越复杂,数学建模面临诸多挑战,如模型建立、数据获取和处理、计算效率等。
挑战
随着科技的发展,数学建模在大数据分析、人工智能、机器学习等领域的应用越来越广泛,为数学建模提供了新的机遇。
技术创新
随着计算技术和算法的发展,数学建模将更加高效和精确,能够处理更大规模和更复杂的数据。
应用拓展
LINGO是一款由Lindo Systems公司开发的商业优化软件,主要用于解决线性规划、整数规划、非线性规划等问题。
LINGO内置了多种求解器,可以快速求解大规模的优化问题,支持多种目标函数和约束条件。
LINGO提供了友好的用户界面和强大的建模功能,支持多种优化模型,包括线性规划、整数规划、二次规划等。
Python的语法简单易懂,易于上手,适合初学者快速入门。
Python的可视化库也非常丰富,如Matplotlib、Seaborn等,可以方便地绘制各种统计图形和数据可视化。
数学建模竞赛集训精品PPT课件
9.模型评价 (1)优点突出,缺点不回避。 (2)推广或改进方向 10.参考文献
参考文献要书写规范,可参考专业学术杂志。 11.附录
(1)计算程序、详细的结果,详细的数据表格,可 在此列出。但不要错,错的宁可不列。
(2)主要结果数据,应在正文中列出,不怕重复。
8
五、检查论文主要把握三点: (1) 模型的正确性、合理性、创新性
1、队员要有积极的合作及吃苦精神。 2、相互取长补短,优势互补。
如:一个思维敏捷,数学基础好, 一个计算机水平高, 一个写作能力强
3、一个优秀的队长。
2
二、充分重视竞赛论文的质量。 1. 评定参赛队的成绩好坏、高低,获奖级别,竞
赛论文是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。
3. 写好答卷的训练,是科技写作的一种基本训练。 三、论文评选标准:
数学建模的创新可体现在: ▲建模中,模型本身,简化的好方法、好策略等; ▲模型求解中; ▲结果表示、分析、检验,模型检验; ▲推广部分。 (2) 结果的正确性、合理性; (3) 文字表述清晰,分析精辟,摘要精彩。
9
六、建模竞赛论文需再强调的几点:
1、严格按照论文要求的格式;
2、论文摘要极为重要; 3、语言流畅,表达清晰准确;
5
6、模型的建立(由简单到复杂可建多个模型);
建立数学模型应注意以下几点
(1) 分清变量类型,恰当使用数学工具。
(2)抓住问题本质,简化变量之间的关系。
(3) 建立数学模型时要有严密的数学推理。 (4)用数学方法建模,模型要明确,要有数学表 达式。
7、模型求解
(1)重要结论需要建立数学命题时,命题叙述要 符合数学命题的表述规范,尽可能论证严密;
参考文献要书写规范,可参考专业学术杂志。 11.附录
(1)计算程序、详细的结果,详细的数据表格,可 在此列出。但不要错,错的宁可不列。
(2)主要结果数据,应在正文中列出,不怕重复。
8
五、检查论文主要把握三点: (1) 模型的正确性、合理性、创新性
1、队员要有积极的合作及吃苦精神。 2、相互取长补短,优势互补。
如:一个思维敏捷,数学基础好, 一个计算机水平高, 一个写作能力强
3、一个优秀的队长。
2
二、充分重视竞赛论文的质量。 1. 评定参赛队的成绩好坏、高低,获奖级别,竞
赛论文是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。
3. 写好答卷的训练,是科技写作的一种基本训练。 三、论文评选标准:
数学建模的创新可体现在: ▲建模中,模型本身,简化的好方法、好策略等; ▲模型求解中; ▲结果表示、分析、检验,模型检验; ▲推广部分。 (2) 结果的正确性、合理性; (3) 文字表述清晰,分析精辟,摘要精彩。
9
六、建模竞赛论文需再强调的几点:
1、严格按照论文要求的格式;
2、论文摘要极为重要; 3、语言流畅,表达清晰准确;
5
6、模型的建立(由简单到复杂可建多个模型);
建立数学模型应注意以下几点
(1) 分清变量类型,恰当使用数学工具。
(2)抓住问题本质,简化变量之间的关系。
(3) 建立数学模型时要有严密的数学推理。 (4)用数学方法建模,模型要明确,要有数学表 达式。
7、模型求解
(1)重要结论需要建立数学命题时,命题叙述要 符合数学命题的表述规范,尽可能论证严密;
数学建模培训课件 32页PPT文档
问题分析 多步决策过程
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员 要求~在安全的前提下(两岸的随从数不比商人多),经有 限步使全体人员过河
模型构成
xk~第k次渡河前此岸的商人 数yk~第k次渡河前此岸的随从数
xk, yk=0,1,2,3;
sk=(xk , yk)~过程的状 S ~ 允许k=状1态,2集,
数学建模比赛
中国矿业大学科技文化节数学建模竞赛/每年十 一月份
电工杯全国大学生数学建模竞赛/每年十二月份 美国国际大学生数学建模竞赛/每年一月份 苏北数学建模联赛/每年五月份 高教杯全国大学生数学建模竞赛/每年九月份
全国大学生电工数学建模竞赛
全国大学生电工数学建模竞赛(以下简称竞赛) 是中国电机工程学会电工数学专委会主办的面 向全国大学生的科技活动,目的是提高学生的 综合素质、增强创新意识、培养学生应用数学 知识解决实际工程问题的能力,激发学生学习 数学的积极性,同时也将推动高校的教学改革 与教育创新的进程。
D‘ D
模型构成
由假设1,f和g都是连续函数
由假设3,椅子在任何位置至少有三只脚同时着地:对 任意t ,f(t)和g(t)中至少有一个为0。当t=0时,不妨设 g(t)=0,f(t)>0,原题归结为证明如下的数学命题:
已知f(t)和g(t)是t的连续函数,对任意t, f(t) •g(t)=0,且 g(0)=0,f(0)>0。则存在t0,使f(t0)= g(t0)=0
苏北数学建模联赛
苏北数学建模联赛是由江苏省工业与应用数学 学会、徐州市工业与应用数学学会、中国矿业 大学联合主办,中国矿业大学理学院团委协办 及数学建模协会筹办的面向苏北及全国其他地 区的跨校、跨地区性数学建模竞赛,目的在于 更好地促进数学建模事业的发展,扩大中国矿 业大学在数学建模方面的影响力;同时,给全 国广大数学建模爱好者提供锻炼的平台和更多 的参赛机会,鼓励广大学生踊跃参加课外科技 活动,开拓知识面,培养创造精神及合作意识。
数学建模培训PPT课件
第15页/共62页
数学建模作为用数学方法解决实际问题的 第一步,越来越受到人们的重视。
第16页/共62页
数学建模的一般步骤
实体 信息
假设
建模
求
解
应用 验证 分析
第17页/共62页
数学模型的分类
分类标准
具体类别
对某个实际问题 了解的深入程度
白箱模型、灰箱模型、黑箱模型
模型中变量的特 连续模型、离散模型;确定性模型、随
第28页/共62页
建模:
x k • :第 次渡河前此岸的商人数 k
yk:第 k次渡河前此岸的随从数
xk , yk 0,1, 2,3; k 1, 2, sk (xk , yk ) :过程的状态
S :允许状态的集合
S {(x, y) | x 0, y 0,1,2,3; x 3, y 0,1,2,3; x y 1,2}
x=(x1, …, xn)T: 决策变量 f (x): 目标函数, hi(x), gp(x): 约束函数
第38页/共62页
数学规划的一般模型
• min f (x) s.t. hi(x)=0, i=1, …, m gp(x)≥0, p=1, …, t
(MP)
若f(x), hi(x)( i=1, …, m), gp(x)( p=1, …, t) 均为线性函数,则问题(MP)就被称为线
相遇时他已步行了多少分钟?
请思考:本题解答中隐含了哪些假设条 件?
5:30
5分钟 5:35
会合点
相遇点
家
第35页/共62页
预备技能
• 数学知识
分析、代数、几何、概率、统计、优化、 方程…
软件使用
Matlab, Mathematica, Maple, Lindo, Lingo…
数学建模作为用数学方法解决实际问题的 第一步,越来越受到人们的重视。
第16页/共62页
数学建模的一般步骤
实体 信息
假设
建模
求
解
应用 验证 分析
第17页/共62页
数学模型的分类
分类标准
具体类别
对某个实际问题 了解的深入程度
白箱模型、灰箱模型、黑箱模型
模型中变量的特 连续模型、离散模型;确定性模型、随
第28页/共62页
建模:
x k • :第 次渡河前此岸的商人数 k
yk:第 k次渡河前此岸的随从数
xk , yk 0,1, 2,3; k 1, 2, sk (xk , yk ) :过程的状态
S :允许状态的集合
S {(x, y) | x 0, y 0,1,2,3; x 3, y 0,1,2,3; x y 1,2}
x=(x1, …, xn)T: 决策变量 f (x): 目标函数, hi(x), gp(x): 约束函数
第38页/共62页
数学规划的一般模型
• min f (x) s.t. hi(x)=0, i=1, …, m gp(x)≥0, p=1, …, t
(MP)
若f(x), hi(x)( i=1, …, m), gp(x)( p=1, …, t) 均为线性函数,则问题(MP)就被称为线
相遇时他已步行了多少分钟?
请思考:本题解答中隐含了哪些假设条 件?
5:30
5分钟 5:35
会合点
相遇点
家
第35页/共62页
预备技能
• 数学知识
分析、代数、几何、概率、统计、优化、 方程…
软件使用
Matlab, Mathematica, Maple, Lindo, Lingo…
数学建模培训之一ppt
概率统计建模方法是利用概率论和统计学原理来 解决实际问题的建模方法。
概率统计建模方法的优点是能够处理不确定性和 随机性,提供较为准确的预测和决策支持。
这类方法主要应用于解决一些不确定性问题,如 风险评估、预测等问题,如贝叶斯推断、马尔可 夫链蒙特卡洛等方法。
然而,概率统计建模方法需要较高的数学基础和 统计学知识,对于初学者有一定的难度。
模型验证与评估
对建立的模型进行验证和 评估,确保模型的可靠性 和有效性。
如何提高数学建模能力
基础知识学习
掌握数学建模所需的基本知识和 技能,如概率论、统计学、线性
代数等。
案例分析与实践
通过案例分析和实践,加深对数学 建模的理解和应用能力。
参加竞赛与培训
参加数学建模竞赛和培训课程,提 高数学建模的实战能力和技巧。
数学建模的基本步骤
01
02
03
04
问题分析
对实际问题进行分析,明确问 题的目标、条件和限制。
建立模型
根据问题分析的结果,选择适 当的数学方法和工具,建立数 学模型。
求解模型
使用适当的数学方法和工具, 求解建立的数学模型,得到结 果。
结果分析
对求解结果进行分析,解释结 果的意义,并回答实际问题。
02
团队合作
鼓励学生分组进行项目实 践,培养团队协作和沟通 能力。
创新性思维
鼓励学生尝试不同的建模 方法和思路,培养创新性 思维和解决问题的能力。
解决实际问题的挑战与方法
数据获取与处理
面对实际问题时,如何获 取和处理数据是关键,需 要掌握数据分析和处理的 方法和技术。
模型选择与优化
根据问题的性质和需求, 选择合适的数学模型并进 行优化,以提高模型的准 确性和实用性。
概率统计建模方法的优点是能够处理不确定性和 随机性,提供较为准确的预测和决策支持。
这类方法主要应用于解决一些不确定性问题,如 风险评估、预测等问题,如贝叶斯推断、马尔可 夫链蒙特卡洛等方法。
然而,概率统计建模方法需要较高的数学基础和 统计学知识,对于初学者有一定的难度。
模型验证与评估
对建立的模型进行验证和 评估,确保模型的可靠性 和有效性。
如何提高数学建模能力
基础知识学习
掌握数学建模所需的基本知识和 技能,如概率论、统计学、线性
代数等。
案例分析与实践
通过案例分析和实践,加深对数学 建模的理解和应用能力。
参加竞赛与培训
参加数学建模竞赛和培训课程,提 高数学建模的实战能力和技巧。
数学建模的基本步骤
01
02
03
04
问题分析
对实际问题进行分析,明确问 题的目标、条件和限制。
建立模型
根据问题分析的结果,选择适 当的数学方法和工具,建立数 学模型。
求解模型
使用适当的数学方法和工具, 求解建立的数学模型,得到结 果。
结果分析
对求解结果进行分析,解释结 果的意义,并回答实际问题。
02
团队合作
鼓励学生分组进行项目实 践,培养团队协作和沟通 能力。
创新性思维
鼓励学生尝试不同的建模 方法和思路,培养创新性 思维和解决问题的能力。
解决实际问题的挑战与方法
数据获取与处理
面对实际问题时,如何获 取和处理数据是关键,需 要掌握数据分析和处理的 方法和技术。
模型选择与优化
根据问题的性质和需求, 选择合适的数学模型并进 行优化,以提高模型的准 确性和实用性。
建模培训1ppt课件
• 作出简化假设(船速、水速为常数)
• 用符号表示有关量(x, y分别表示船速和水速) • 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程)
• 求解得到数学解答(x=20, y=5)
• 回答原问题(船速为20km/h)
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
• 椅子位置
利用正方形(椅脚连线)的对称性.
A´
B B ´ 用(对角线与x轴的夹角)表示椅子位置.
• 四只脚着地 椅脚与地面距离为零 距离是的函数. 四个距离 (四只脚) 两个距离
C
C´
O
A
x
D´
正方形 对称性
D
A,C 两脚与地面距离之和 ~ f()
B,D 两脚与地面距离之和 ~ g()
正方形ABCD 绕O点旋转
标准 宗旨
假设的合理性,建模的创造性, 结果的正确性,表述的清晰性.
创新意识 团队精神 重在参与 公平竞争
竞赛培养创新精神和综合素质
• 赛题紧密结合科技和社会热点问题,培养理论联系实 际的学风和实践能力. • 综合运用学过的数学知识和计算机技术(选择合适的 数学软件)通过数学建模分析、解决实际问题的能力. • 解决方法没有任何限制,培养主动学习、独立研究的 能力. • 没有事先设定的标准答案,留有充分余地供同学们发 挥聪明才智和创造精神.
证明:存在0,使f(0) = g(0) = 0.
模型求解 给出一种简单、粗糙的证明方法
1)将椅子旋转90°,对角线AC和BD互换.
由 g(0)=0,f(0) > 0,知 f(/2)=0, g(/2)>0.
• 用符号表示有关量(x, y分别表示船速和水速) • 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程)
• 求解得到数学解答(x=20, y=5)
• 回答原问题(船速为20km/h)
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
• 椅子位置
利用正方形(椅脚连线)的对称性.
A´
B B ´ 用(对角线与x轴的夹角)表示椅子位置.
• 四只脚着地 椅脚与地面距离为零 距离是的函数. 四个距离 (四只脚) 两个距离
C
C´
O
A
x
D´
正方形 对称性
D
A,C 两脚与地面距离之和 ~ f()
B,D 两脚与地面距离之和 ~ g()
正方形ABCD 绕O点旋转
标准 宗旨
假设的合理性,建模的创造性, 结果的正确性,表述的清晰性.
创新意识 团队精神 重在参与 公平竞争
竞赛培养创新精神和综合素质
• 赛题紧密结合科技和社会热点问题,培养理论联系实 际的学风和实践能力. • 综合运用学过的数学知识和计算机技术(选择合适的 数学软件)通过数学建模分析、解决实际问题的能力. • 解决方法没有任何限制,培养主动学习、独立研究的 能力. • 没有事先设定的标准答案,留有充分余地供同学们发 挥聪明才智和创造精神.
证明:存在0,使f(0) = g(0) = 0.
模型求解 给出一种简单、粗糙的证明方法
1)将椅子旋转90°,对角线AC和BD互换.
由 g(0)=0,f(0) > 0,知 f(/2)=0, g(/2)>0.
《数学建模培训》课件
模型建立流程
确定问题
明确实际问题,确定建模目标和 范围。
建立模型
根据问题特点和目标,建立数学 模型并制定求解策略。
求解模型
根据求解策略,运用数学方法求 解模型并得出结论。
常见数学建模问题案例分析
物流配送问题
分析如何减少配送时间、节约物流成本。
金融投资决策问题
分析股票、债券等各种资本市场的特点及投资方 案。
4. 数学建模实 例精讲
为什么要学习数学建模
1
解决实际问题
数学建模可以将实际问题转化为数学问题,通过求解数学模型来解决实际问题。
2
提高数学素养
数学建模过程需要运用数学知识和数学思维,提高数学素养和解决问题的能力。
3
增强创新精神
数学建模过程中需要创新思维,提高创新精神和实际应用能力,培养科学研究和 技术创新人才。
医疗资源配置问题
如何在依据疫情数据和实际病情情况下,合理分 配医疗资源。
人口增长问题
通过数学建模,分析人口增长趋势和长期发展方 向。
数学建模软件介绍
MATLAB
COM SOL
MATLAB是一种高级的数学软件, 被广泛运用于科研、工程、教育、 金融等领域的数据计算、分析和 可视化。
COMSOL Multiphysics是一款强 大的多物理场仿真软件,可以用 于模拟、分析、优化各种实际问 题。
示例应用
通过实例,让大家更加深入理解 数学建模软件的使用和应用场景, 以及如何将数学建模工具应用到 实际研究中。
数学建模培训
欢迎大家参加这次数学建模培训!在这里,我们会为大家介绍数学建模的基 本概念和方法,探讨常见的实际问题并提供解决方案。
课程大纲
数学建模概述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
春节前后有一次“全美数模竞赛”
MCM (Mathematical Contest in Modeling数学建模竞赛)和 ICM (Interdisciplinary Contest Modeling交叉学数学学会 (SIAM--Society for Industrial and Applied Mathematics )
CUMCM竞赛的时间通常安排在9月份的某个周五 上午八时开始,72小时后交卷。我们江苏赛区规 定在周一上午十时交卷。有两种交卷方式:1、 直接交到东南大学教务处,我校在鼓楼参赛的同 学一定要注意这一点。2、在仙林参赛的同学我 们统一于9:00收齐后直接送到仙林收卷点或在 仙林附近找一个邮政所以特快专递的方式邮寄 (平信邮寄无效)。而比赛可供选择的题目有两 题(即A题与B题),试题由学生自己独立完成, 学生需要讨论以弄清题意,反复分析寻找解题思 想,经过充分的讨论、研究,确定解题的方向, 队员之间要精诚合作,具体分工。在评奖中,论 文表达清楚与否是相当地重要!
第二阶段:在8月的第2个周五8 时开始至下一周的周一10时,我 们仿全国建模竞赛进行校内选拔 100个队,可以根据具体情况适 当地加以增减)。
第三阶段:在第二阶段的基础上在 每一个新学年开始的前10天对选拔 出来的队再进行强化培训,主要进 行各种建模案例的剖析以及作业的 训练。根据集训情况然后进行组队 参加全国大学生数学建模竞赛,而 前一年获奖的队可以直接报名参赛。
第四阶段:在每年9月的某个周 五正式参加全国大学生数学建 模竞赛。时间为周五的8时从相 关网站上获取题目,到下周一 的10时交卷。历时72小时+2个 小时。
注意事项:
学生们在两次培训的间隙时间内要认真进行准 备。到第二次培训结束时将最终确定参加全国大学 生数学建模竞赛的队。 我校参赛的队数一般不超过60个,今年因是建 模开展20周年,故为100个队。200元的报名费自 理。往年比赛中获得奖项的队员可以直接报名参赛, 但必须在教务处报名。往年没有获奖的参赛队员可 以不参加暑期学校的培训,但必须参加校内选拔赛。 其他报名的同学必须参加暑期学校的集中培训,上 交布置的作业,参加校内选拔赛,最后由教练员综 合上述情况来确定参赛的队员。具体报名事项及选 拔结果请关注教务处主页或小百合BBS“大学生竞 赛”版块。
南京大学数学建模培训班
全国大学生数学建模竞赛 China Undergraduate Mathematical Contest in Modeling (CUMCM) 竞赛宗旨:创新意识 团队精神 重在参与 公平竞争
数学建模竞赛
数学建模竞赛是由美国工业与应用数学学 会在1985年发起的一项大学生竞赛活动,目的 是促进数学建模的教学,培养学生应用数学的 能力。我国在1992年起开展这项竞赛,现已形 成一项全国性规模很大的大学生竞赛活动。 我校在1998.9第一次参加这项竞赛活动。 派出十个队参赛,共30名学生。首次参赛就荣 获全国一等奖一个,全国二等奖二个,江苏赛 区一等奖二个。可以说是首战告捷!
现在已经发展成一项国际性的竞赛活动,竞赛 题在网上获得,论文的书写是全英文的,比赛 评奖在美国本土进行,报名费用用美元支付 .
美国数学建模竞赛
具体报名以及其他相关事宜可参看文件:“MCM-ICM 竞赛注册和指导” 网址:
/undergraduate/conte sts/
数学建模就是建立数学模型,建立数学模型的过程就 是数学建模的过程。数学建模是一种数学的思考方法, 是运用数学的语言和方法,通过抽象、简化建立能近 似刻划并“解决”实际问题的一种强有力的数学手段。
“数模”活动要求每一位参与其中 的学生都要树立一种自主精神。听 “数模”讲座、阅读“数模”书籍、 学习计算机知识,研究问题,完成 “数模”作业,各种活动大部分都是 “自己的事”。 “数学建模竞赛”偏 重于应用,它是以数学知识为引导, 计算机运用能力及文章的写作能力为 辅的综合能力的竞赛。 参加的同学要兼顾数学建模能力, 计算机能力,写作能力三方面的因素。
此外,还有一些区域性的比赛:
如中国矿业大学承办的“苏北 数学建模联赛”;
复旦承办的“大学生数学建模 邀请赛”; 全国研究生数学建模竞赛等赛 事。
我校的“数模” 竞赛活动
我校开展的数学建模活动是制度化、 规范化的,一般采用暑期学校集中培 训和选拔的形式进行。 分四个阶段进行
第一阶段:在每年的暑期学校中安排2周的时间 面向全校学生,对全校对数学建模感兴趣的同学 进行普及性的培训。在这期间我们将聘请校内校 外的建模专家进行建模知识和案例的讲解,集中 讲授数学建模所需的一些方法和相关知识。例如: 计算方法; 图论;运筹学;概率统计;建模软件 介绍;建模案例分析等 。讲课内容都具有很强 的浓缩性,因为有的内容只是简介科普性的,要 展开讲不是这一点课时能解决的,那也不是建模 的目的。并相应地布置作业,学生全程模仿全国 大学生数学建模竞赛的规范通过网络将作业发给 教练进行批阅。
竞赛的题目一般来源于工程技术和管理科
学邻域经过简化的实际问题,不要求预先 掌握深入的数学方面的专门知识,具有较 大的灵活性供参赛者发挥创造能力。竞赛 采用开卷形式,三名学生组成一队,可以 使用任何资料、计算机、软件和互联网 (但是不允许与队外任何人包括指导教师 讨论),在三天内从两个赛题中择一完成 一篇论文。 评比标准:假设的合理性、建模的创造性、 结果的正确性和表述的清晰性。
简单地说:数学模型就是对实际问题的一种数学表述。
具体一点说:数学模型是关于部分现实世界为某种目 的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了 一个特定目标,根据特有的内在规律,做出一些必要 的简化假设,运用适当的数学工具,得到的一个数学 结构。数学结构可以是数学公式,算法、表格、图示 等。