第四章 图像的几何变换

合集下载

第4章-图像的几何变换

第4章-图像的几何变换

图像旋转后处理 ——解决问题的思路
出现问题的核心是像素之 间的连接是不连续的。
相邻像素的角度是无法改 变的,所以只能通过利用 某种填补策略来填充空洞 的方法从整体上解决这个 问题。
图像旋转的后处理 —— 插值
最简单的方法是最邻近插值法--行插值 (列插值)方法。
1)找出当前行的最小和最大的非背景点 的坐标,记作:(i,k1)、(i,k2)。
思考一个问题:
如果放大倍数太大,按照前面的方法处 理会出现马赛克效应。如果这个问题交给 你,有没有办法解决?或者想办法至少使 之有所改善?
灰度级插值
灰度级插值
最邻近插值法 双线性插值(一阶插值) 高阶插值
最邻近插值法
双线性插值
基本算法思想
假设输出图象的宽度为W,高度为H,
输入图象的宽度为w1,高度为h1。
如右图有:
(1,3)、(1,3); (2,1)、(2,4);
(3,2)、(3,4); 处理 —— 插值
2)在(k1,k2)范围内进行插值,插值的方 法是:空点的像素值等于前一点(或后一 点)的像素值。
3)同样的操作重复到所有行。
插值
旋转
4.3 图像的形状变换
图像缩小 —— 实现方法
设原图像大小为M*N,缩小为k1M*k2N, (k1<1,k2<1)。算法步骤如下: 1)设原图为F(i,j), i=1,2,…,M, j=1,2,…,N.
压缩后图像是G(x,y), x=1,2,…,k1M, y=1,2,…,k2N. 其中,c1=1/k1 c2=1/k2 为采样间隔 2)G(x,y)=F(c1*x,c2*y)
2
-3
1
4.2.3 图像的旋转
图像的旋转计算公式如下:

图形的几何变换

图形的几何变换

图形的几何变换图形的几何变换是指对于一个图形,在平面上或空间中进行比例、旋转、平移、对称等操作后,得到的新图形。

这种操作可以改变图形的大小、方向、位置等特征,广泛运用于数学、物理、美术、计算机图形等领域。

以下从不同变换类型的角度分析图形的几何变换。

一、比例变换比例变换是指将一个图形沿着某个中心点或轴线进行等比例伸缩的变换。

其结果通常是一个形状相似但大小不同的新图形。

比例变换可以分为放大和缩小两种情况,当比例因子大于1时,为放大;比例因子小于1时,为缩小。

比例变换常见的应用包括模型制作、图形的等比例缩放等。

二、旋转变换旋转变换是指将一个图形沿着某个轴心或轴线进行旋转的变换。

旋转变换可分为顺时针旋转和逆时针旋转两种情况,其结果是一个相似但方向不同的新图形。

旋转变换的角度通常用弧度制表示,旋转角度为正时为逆时针旋转,为负时为顺时针旋转,常见的应用包括风车的运动、建筑设计的转角变换等。

三、平移变换平移变换又叫做移动变换,是指将一个图形沿着某个方向进行平移的变换。

平移变换可以将图形整体沿着平移向量的方向进行移动,其结果是一个与原图形相同但位置不同的新图形。

平移变换常见的应用包括机器人的运动、物体的位移等。

平移变换也可以看作是比例变换的特殊情况,比例因子为1,即不改变图形的大小。

四、对称变换对称变换是指将一个图形沿着某个轴线进行翻折的操作。

对称变换可以分为对称、反对称和正交对称三种类型。

对称变换的结果通常是一个与原图形相等但位置镜像对称的新图形。

对称变换在分形几何、美术设计等领域都有着广泛的应用。

五、仿射变换仿射变换是指图形在平面上或空间中进行非等比例伸缩、旋转、平移和投影等操作时的变换。

仿射变换的结果通常是一个与原图形相似但有略微变形的新图形。

仿射变换包括平移变换、旋转变换、比例变换和剪切变换等。

其应用领域包括医学图像处理、计算机图形学等。

总结图形的几何变换在现代科技和艺术中有着广泛的应用。

比例变换常用于造型、模型制作和图形的等比例缩放;旋转变换常用于旋转花纹、风车运动、建筑转角的变化等;平移变换常用于运动控制、物体的位移等;对称变换常用于几何分形、美术设计等领域;仿射变换则是结合了以上变换操作的高级变换,其应用范围更加广泛。

数字图像处理---图像的几何变换

数字图像处理---图像的几何变换

数字图像处理---图像的⼏何变换图像的⼏何变换图像的⼏何变换包括了图像的形状变换和图像的位置变换图像的形状变换图像的形状变换是指图像的放⼤、缩⼩与错切图像缩⼩图像的缩⼩是对原有的数据进⾏挑选或处理,获得期望缩⼩尺⼨的数据,并尽量保持原有的特征不消失分为按⽐例缩⼩和不按⽐例缩⼩两种最简单的⽅法是等间隔地选取数据图像缩⼩实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1<1,K 2<1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像放⼤图像放⼤时对多出的空位填⼊适当的值,是信息的估计最简单的思想是将原图像中的每个像素放⼤为k ∗k 的⼦块图像放⼤实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1>1,K 2>1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像错切图像错切变换实际上是平⾯景物在投影平⾯上的⾮垂直投影效果图像错切的数学模型x ′=x +d x y y ′=y(x ⽅向的错切,dx =tan θ)x ′=x y ′=y +d y x(y ⽅向的错切,dy =tan θ)图像的位置变换图像的位置变换是指图像的平移、镜像与旋转,即图像的⼤⼩和形状不发⽣变化主要⽤于⽬标识别中的⽬标配准图像平移公式:{{x ′=x +Δx y ′=y +Δy图像镜像图像镜像分为⽔平镜像和垂直镜像,即左右颠倒和上下颠倒公式:图像⼤⼩为M*Nx ′=x y ′=−y (⽔平镜像)x ′=−x y ′=y(垂直镜像)由于不能为负,因此需要再进⾏⼀次平移x ′=x y ′=N +1−y (⽔平镜像)x ′=M +1−xy ′=y(垂直镜像)图像旋转公式:x ′=xcos θ−ysin θy ′=xsin θ+ycos θ由于计算结果值所在范围与原有值不同,因此需要在进⾏扩⼤画布、取整、平移等处理画布扩⼤原则:以最⼩的⾯积承载全部的画⾯信息⽅法:根据公式x ′=xcos θ−ysin θy ′=xsin θ+ycos θ计算x ′min ,x ′max ,y ′min ,y ′max旋转后可能导致像素之间相邻连接不再连续,因此需要通过增加分辨率的⽅式填充空洞插值最简单的⽅式就是⾏插值(列插值)⽅法1. 找出当前⾏的最⼩和最⼤的⾮背景点坐标,记作:(i,k1)、(i,k2)2. 在(k1,k2)范围内进⾏插值,插值⽅法为空点的像素值等于前⼀点的像素值3. 重复上述操作直⾄没有空洞图像的仿射变换图像的仿射变换即通过通⽤的仿射变换公式,表⽰⼏何变换{{{{{{{齐次坐标原坐标为(x,y),定义齐次坐标为(wx,wy,w)实质上是通过增加坐标量来解决问题仿射变换通式通过齐次坐标定义仿射变换通式为x ′=ax +by +Δx y ′=cx +dy +Δy⇒x ′y ′=a b Δx c dΔyx y⼏何变换表⽰1. 平移x ′y ′1=10Δx 01Δy 001x y12. 旋转x ′y ′1=cos θ−sin θ0sin θcos θ0001x y 13. ⽔平镜像x ′y ′1=−10001001x y14. 垂直镜像x ′y ′1=1000−10001x y15. 垂直错切x ′y ′1=1d x 00−10001x y16. ⽔平错切x ′y ′1=100d y −10001x y1图像的⼏何校正由于图像成像系统的问题,导致拍摄的图⽚存在⼀定的⼏何失真⼏何失真分为{[][][][][][][][][][][][][][][][][][][][][]1. 系统失真:有规律的、可预测的2. ⾮系统失真:随机的⼏何校正的基本⽅法是先建⽴⼏何校正的数学模型,其次利⽤已知条件确定模型参数,最后根据模型对图像进⾏⼏何校正步骤:1. 图像空间坐标的变换2. 确定校正空间各像素的灰度值(灰度内插)途径:1. 根据畸变原因,建⽴数学模型2. 参考点校正法,根据⾜够多的参考点推算全图变形函数空间坐标变换实际⼯作中利⽤⼀幅基准图像f(x,y),来校正失真图像g(x′,y′)根据⼀些控制点对,建⽴两幅图像之间的函数关系,通过坐标变换,以实现失真图像的⼏何校正两幅图像上的f(x,y)=g(x′,y′)时,称其为对应像素(同名像素)通过表达式x′=h1(x,y)y′=h2(x,y)表⽰两幅图像之间的函数关系通常⽤多项式x′=n∑i=0n−i∑j=0a ij x i y jy′=n∑i=0n−i∑j=0b ij x i y j来近似h1(x,y)、h2(x,y)当多项式系数n=1时,畸变关系为线性变换x′=a00+a10x+a01yy′=b00+b10x+b01y六个未知数需要⾄少三个已知点来建⽴⽅程式当多项式系数n=2时,畸变关系式为x′=a00+a10x+a01y+a20x2+a11xy+a02y2y′=b00+b10x+b01y+b20x2+b11xy+b02y2 12个未知数需要⾄少6个已知点来建⽴⽅程式当超过已知点数⽬超过要求时,通过最⼩⼆乘法求解n=2时多项式通式为B2∗n=H2∗6A6∗n(n为待求点数)B2∗n=x′1x′2⋯x′n y′1y′2⋯y′n{ []H 2∗6=a 00a 10a 01a 20a 11a 02b 00b 10b 01b 20b 11b 02A 6∗n =11⋯1x 1x 2⋯x n y 1y 2⋯y n x 21x 22⋯x 2n x 1y 1x 2y 2⋯x n y ny 21y 22⋯y 2n同名点对要求1. 数量多且分散2. 优先选择特征点直接法利⽤已知点坐标,根据x ′=h 1(x ,y )y ′=h 2(x ,y )⇒x =h ′1(x ′,y ′)y =h ′2(x ′,y ′)x =n ∑i =0n −i∑j =0a ′ij x ′i y′jy =n ∑i =0n −i∑j =0b ′ijx ′i y ′j解求未知参数;然后从畸变图像出发,根据上述关系依次计算每个像素的校正坐标,同时把像素灰度值赋予对应像素,⽣成校正图像由于像素分布的不规则,导致出现像素挤压、疏密不均等现象,因此最后还需要进⾏灰度内插,⽣成规则图像间接法间接法通过假定⽣成图像的⽹格交叉点,从⽹格交叉点(x,y)出发,借助已知点求取未知参数,根据x ′=n ∑i =0n −i∑j =0a ij x i y jy ′=n ∑i =0n −i∑j =0b ij x i y j推算⽹格交叉点(x,y)对应畸变图像坐标(x',y'),由于对应坐标⼀般不为整数,因此需要通过畸变图像坐标周围点的灰度值内插求解,作为⽹格交叉点(x,y)的灰度值间接法相对直接法内插较为简单,因此常采⽤间接法作为⼏何校正⽅法像素灰度内插最近邻元法最近邻元法即根据四邻域中最近的相邻像素灰度决定待定点灰度值该⽅法效果较佳,算法简单,但是校正后图像存在明显锯齿,即存在灰度不连续性双线性内插法[][]{{双线性内插法是利⽤待求点四个邻像素的灰度在两个⽅向上作线性内插该⽅法相较最近邻元法更复杂,计算量更⼤,但是没有灰度不连续的缺点,且具有低通滤波性质,图像轮廓较为模糊三次内插法三次内插法利⽤三次多项式S(x)来逼近理论最佳插值函数sin(x)/xS(x)=1−2|x|2+|x|30≤|x|<1 4−8|x|+5|x|2−|x|31≤|x|<20|x|≥2该算法计算量最⼤,但是内插效果最好,精度最⾼{Processing math: 100%。

图像变换

图像变换
w 可以取不同值,同一点齐次坐标不唯一。
如普通坐标系的点(2,3)的齐次坐标可以是:
(1,1.5,0.5),(4,6,2),(6,9,3)等。
普通坐标与齐次坐标的关系为“一对多”
普通坐标w =>齐次坐标 齐次坐标/w =>普通坐标 当w = 1时产生的齐次坐标称为“规格化坐标”
f(x,y) 减去背景图像b(x,y) g(x,y) 添加蓝色背景
图像的错切效果
在这个错切变换中,蒙娜丽莎的图像被变形,但是中心的 纵轴在变换下保持不变。(注意:角落在右边的图像中被 裁掉了。)蓝色的向量,从胸部到肩膀,其方向改变了, 但是红色的向量,从胸部到下巴,其方向不变。因此红色 向量是该变换的一个特征向量,而蓝色的不是。因为红色 向量既没有被拉伸又没有被压缩,其特征值为1。所有沿着 垂直线的向量也都是特征向量,它们的特征值相等。它们 构成这个特征值的特征空间。

=
图像的或运算
模板运算:提取感兴趣的子图像

=
图像的与运算
0 1=0 1 0=0 0 0=0 求两个子图像的相交子图
1 1=1
^
= 模板运算:提取感兴趣的图像^=图像加法运算举例


图像加法运算举例
图像加法运算举例
图像加法运算举例
图像减法运算举例
=
图像减法运算举例
因为前n个坐标是普通坐标系下的n维坐标。
图像的仿射变换
—— 齐次坐标的特点
(x,y)点的齐次坐标为(xw,yw,w) xw=wx,yw=wy,w≠0
(x,y)点对应的齐次坐标为三维空间的一条直线 :

xw yw

wx wy

zw

[课件]第4章 图像几何变换PPT

[课件]第4章 图像几何变换PPT
f x 1 f i,y i f3 f x ,y i 1 i 1 fp f x ,y i
xi+1
f x , yf y yf y y p i q i 1 f f x x f x x p 3 i 4 i 1
f2 f x ,y i 1 i f4 f x i,y i 1 fq f x ,y i 1
f f x x f x x q 2 i 1 i 1 f xy , f y f y y y p i q i 1
x x f x x y f y 3 i 4 i 1 i x f x x y f2x y i 1 i 1 i 1
P ' P T P ( x ,) y P ' ( x ' ,' y )
4.4 图像镜像
a T c l b d m p q s
0 0 1 T 0 1 0 width 0 1
P ' P T P ( x ,) y P ' ( x ' ,' y )
4.5 图像的旋转
a T c l b d m p q s
cos sin 0 T sin cos 0 0 1 0
P ' P T P ( x ,) y P ' ( x ' ,' y )
θ α
4.5 图像的旋转
a T c l b d m p P ' P T P ( x ,) y P ' ( x ' ,' y ) q s
4.2 比例变换

插值算法

图像处理几何变换讲课文档

图像处理几何变换讲课文档

如果M×N大小的原图像F(x,y)缩小为 kM×kN大小(k<1)的新图 像I(x,y)时,则I(x, y)=F(int(c×x), int(c×y)) 其中, c=1/k。由此公式可以构造出新图像,如图所示。
k=1/3
图像按任意比例缩小
第二十八页,共150页。
当fx≠fy (fx, fy>0)时,图像不按比例缩小,这种操作因为在x 方向和y方向的缩小比例不同,一定会带来图像的几何畸变。图像
对应关系如图所示。
第二十一页,共150页。
放大 后
(x , y) (x0 , y0)
O
x
缩放 前 y
第二十二页,共150页。
比例缩放
比例缩放前后两点P0(x0, y0)、P(x, y)之间的关系用矩阵形式可以表示

x
fx
0
0
x
0
y 0
fx
0
y
0
1
0
0
0
1
其逆运算为
1
x0 y0 1
fx
0
0
0
1 fx 0
0
0 1
x y 1
0 0
第二十三页,共150页。
▪ 分为按比例缩小和不按比例缩小两种。
▪ 图像缩小之后,因为承载的信息量小了,所以画布可相应缩 小。
(a) 按比例缩小
第二十四页,共150页。
(b) 不按比例缩小

而且此时f、x、y都在整数集合中取值。因此,除了插值运算外,常见的图像几
何变换可以通过与之对应的矩阵线性变换来实现。
第七页,共150页。
对于2D图像几何变换及变换中心在坐标原点的比例缩放、
反射、 错切和旋转等各种变换,都可以用2×2的矩阵表示和实

图像的几何变换共45页

图像的几何变换共45页
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
图像的几何变换
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)

60、生活的道路一旦选定,就要Hale Waihona Puke 敢地 走到底 ,决不 回头。 ——左

第四章--图像的几何变换

第四章--图像的几何变换

7 9 10 11 12 13 15 16 17 18 25 27 28 29 30 31 33 34 35 36
i=[1,6], j=[1,6]. x=[1,6*06]=[1,4], y=[1,6*0.75=[1,5]. x=[1/0.6,2/0.6,3/0.6,4/0.6]=[i2,i3,i5,i6], y=[1/0.75,2/0.75,3/0.75,4/0.75,5/0.75]=[j1,j3,j4,j5,j6].
素值的填充是不连续的。 因此可以采用插值填充的方法来解决。
4.1.3.3 图像旋转的后处理
最简单的方法是行插值(列插值)方法
1. 找出当前行的最小和最大的 非背景点的坐标,记作:
(i,k1)、(i,k2)。
4.1.3.3 图像旋转的后处理
2. 在(k1,k2)范围内进行插值, 插值的方法是:空点的像素 值等于前一点的像素值。
•注意:平移后的景物与原图像相同,但“画 布”一定是扩大了。否则就会丢失信息。
4.1.2 图像的镜像
镜像分为水平镜像和垂直镜像
水平镜像计算公式如下(图像大小为M*N):
x' y'
x
(水平镜#39; x
平移:
y
''
y '
N
1
N
1
y
123 1
2
3
-1 -2 -3 1
2
3
N 3
图像的旋转计算公式如下: x' x cos y sin y' x sin y cos
• 这个计算公式计算出的值为小数,而坐标值为正整数。 • 这个计算公式计算的结果值所在范围与原来的值所在 的范围不同。
• 因此需要前期处理:扩大画布,取整处理,平移处理

第四章 图像的几何变换ppt课件

第四章 图像的几何变换ppt课件
其中: ◆ 参数A为要进行的缩放的原始图像。 ◆ scale为统一的缩放比例。 ◆ 可选参数method用于为imresize制定插值算 法,默认为最近邻插值。
2.不等比例缩放 B=imresize(A,[mrows ncola],method);
其中向量参数[mrows ncols]指明了变换后目标图 像B的具体行数(高)和列数(宽),其余均与 等比例缩放时的调用相同。
运行结果:
原VC++实现
原图像 水平镜像
竖直镜像
4.4 图像转置
图像转置是将图像像素的x坐标和y坐标互换。图像的大 小会随之改变:高度和宽度将互换。
实现
4.5 图像缩放
4.5.1 图像的缩小
• 分为按比例缩小和不按比例缩小两种。 • 图像缩小之后,因为承载的信息量小了,所以画布 可相应缩小。
1 1 2 3
2
3 -1 -2 -3
1
2
3
M 3
1 3 2 1
2
3
4.3.1 MATLAB实现
imtransform函数用于完成一般的二维空间变换,形式 如下:
B=imtransform(A,TFORM,method);
其中: ◆ 参数A为要进行几何变换的图像。 ◆空间变换结构TFORM制定了具体的变换类型。 ◆可选参数method用于为imtransform函数选择插值算 法。默认时为双线性插值——'bilinear'。
第四章 图像的几何变换
4.1 图像几何变换内容及一般思路
4.1.1 几何变换的内容 ◆ 作用: 包含相同内容的两幅图像可能由于成像角度、 透视关系乃至镜头自身原因所造成的几何失 真而呈现出截然不同的外观,这就给观测者 或是图像识别程序带来了困扰。通过适当的 几何变换可以最大程度地消除这些几何失真 所产生的负面影响,有利于在以后的图像处 理和识别中更集中于图像中的对象,而不是 对象的角度和位置等。

第四章 遥感图像处理――几何校正PPT课件

第四章 遥感图像处理――几何校正PPT课件
22
三种内插方法比较
方法 1
优点 简单易用,计算量小
缺点
处理后的影像亮度具有不连 续性,影响精确度
精度明显提高,特别是对亮度 计算量增加,且对影像起到
2
不连续现象或线状特征的块状 平滑作用,从而使对比度明
化现象有明显的改善。
显的分界线变得模糊。
3
更好的影像质量,细节表现更 为清楚。
工作量很大。
23
18
像元灰度值重采样
校正前后图像的分辨率变化、像元点位置相对变化引 起输出图像阵列中的同名点灰度值变化。
x X
P(X,Y) Y
纠正后影像
p(x,y) y
纠正前影像
19
最近邻法
—以距内插点最近的观测点的像元值为所求的像元值。
影像中两相邻点的距离为1,即 行间距△x=1,列间距△y=1,取与 所计算点(x,y)周围相邻的4个点,比 较它们与被计算点的距离,哪个点距 离最近,就取哪个的亮度值作为 (x,y)点的亮度值f(x,y)。设该 最近邻点的坐标为(k,l),则
一是指平台在运行过程中,由于姿态、地球曲 率、地形起伏、地球旋转、大气折射、以及传 感器自身性能所引起的几何位置偏差。
二是指图像上像元的坐标与地图坐标系统中相 应坐标之间的差异。
3
引起遥感图像几何变形的因素
一、遥感平台位置和运动状态变化的影响
旁向位移的影响 速度变化即航向位移的影响
高度变化的影响—地面分辨率不均匀 俯仰变化的影响
21
三次卷积内插法
取与计算点(x,y)周 围 相 邻 的 16 个 点 , 与 双 向 线 性内插类似,可先在某一方 向上内插,每4个值依次内插 4次,求出f(x,j-1),f(x, j ) , f(x,j+1) , f(x,j+2) , 再根据这四个计算结果在另 一 方 向 上 内 插 , 得 到 f(x , y)。

图像几何变换的原理及应用

图像几何变换的原理及应用

图像几何变换的原理及应用1. 引言图像几何变换是指通过对图像进行旋转、平移、缩放和仿射变换等操作,改变图像的位置、大小和形状,以达到特定的目的。

在计算机视觉、图像处理和计算机图形学等领域中,图像几何变换被广泛应用于图像的校正、增强、变换和特征提取等任务。

2. 原理图像几何变换的原理基于几何学的相关理论。

对于二维图像来说,可以通过变换矩阵对图像进行坐标变换,从而实现图像的几何变换。

以下是常见的图像几何变换操作及其原理:2.1 旋转旋转是指将图像按一定角度绕某个中心点进行旋转变换。

旋转操作可以通过变换矩阵实现,变换矩阵如下所示:cosθ -sinθ 0sinθ cosθ 00 0 1其中,θ表示旋转的角度。

通过对每个像素进行坐标变换,可以实现图像的旋转。

2.2 平移平移是指将图像沿着水平或垂直方向进行平移操作,即改变图像的位置。

平移操作可以通过变换矩阵实现,变换矩阵如下所示:1 0 tx0 1 ty0 0 1其中,tx和ty分别表示在x轴和y轴上的平移距离。

通过对每个像素进行坐标变换,可以实现图像的平移。

2.3 缩放缩放是指改变图像的尺寸大小。

缩放操作可以通过变换矩阵实现,变换矩阵如下所示:sx 0 00 sy 00 0 1其中,sx和sy分别表示在x轴和y轴上的缩放比例。

通过对每个像素进行坐标变换,并根据缩放比例进行采样,可以实现图像的缩放。

2.4 仿射变换仿射变换是指通过线性变换和平移来对图像进行变换。

仿射变换可以通过变换矩阵实现,变换矩阵如下所示:a11 a12 txa21 a22 ty0 0 1其中,a11、a12、a21和a22分别表示仿射变换的线性变换部分,tx和ty分别表示平移部分。

通过对每个像素进行坐标变换,并根据变换矩阵进行计算,可以实现图像的仿射变换。

3. 应用图像几何变换在各个领域中有着广泛的应用,以下列举了一些常见的应用场景:3.1 图像校正在图像处理中,由于各种因素的影响,例如相机畸变、透视变换等,图像可能会出现失真或畸变。

电子信息工程《数字图像处理》总复习题(第1-7章)(1)

电子信息工程《数字图像处理》总复习题(第1-7章)(1)

电⼦信息⼯程《数字图像处理》总复习题(第1-7章)(1)第⼀章引⾔⼀.填空题1. 图像可以分为物理图像和虚拟图像两种。

其中,采⽤数学的⽅法,将由概念形成的物体进⾏表⽰的图像是虚拟图像。

2. 数字图像是⽤⼀个数字阵列来表⽰的图像。

数字阵列中的每个数字,表⽰数字图像的⼀个最⼩单位,称为像素。

3. 数字图像处理可以理解为两个⽅⾯的操作:⼀是从图像到图像的处理,如图像增强等;⼆是从图像到⾮图像的⼀种表⽰,如图像测量等。

4. 数字图像处理包含很多⽅⾯的研究内容。

其中,图像重建的⽬的是根据⼆维平⾯图像数据构造出三维物体的图像。

⼆.简答题1. 数字图像处理的主要研究内容包含很多⽅⾯,请列出并简述其中的4种。

①图像数字化:将⼀幅图像以数字的形式表⽰。

主要包括采样和量化两个过程。

②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。

③图像的⼏何变换:改变图像的⼤⼩或形状。

④图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。

⑤图像识别与理解:通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。

2. 简述图像⼏何变换与图像变换的区别。

①图像的⼏何变换:改变图像的⼤⼩或形状。

⽐如图像的平移、旋转、放⼤、缩⼩等,这些⽅法在图像配准中使⽤较多。

②图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。

⽐如傅⾥叶变换、⼩波变换等。

3. 简述数字图像处理的⾄少4种应⽤。

①在遥感中,⽐如⼟地测绘、⽓象监测、资源调查、环境污染监测等⽅⾯。

②在医学中,⽐如B超、CT机等⽅⾯。

③在通信中,⽐如可视电话、会议电视、传真等⽅⾯。

④在⼯业⽣产的质量检测中,⽐如对⾷品包装出⼚前的质量检查、对机械制品质量的监控和筛选等⽅⾯。

⑤在安全保障、公安⽅⾯,⽐如出⼊⼝控制、指纹档案、交通管理等。

变换图像的操作方法

变换图像的操作方法

变换图像的操作方法变换图像有许多不同的操作方法,可以通过修改图像的几何属性、颜色属性或者根据特定的应用进行变换。

下面将介绍几种常用的图像变换操作方法。

1. 几何变换几何变换是通过对图像的几何属性进行修改,改变图像的位置、形状、大小和方向。

常见的几何变换包括平移、旋转、缩放和剪裁等。

- 平移:平移是将图像沿着水平和垂直方向移动一定的距离。

平移操作可以通过对图像每个像素坐标进行加法运算来实现。

例如,将一个图像向右平移10个像素,就可以将图像的x坐标都加上10。

- 旋转:旋转是将图像围绕一个中心点进行旋转一定的角度。

旋转操作可以通过对图像每个像素坐标进行旋转矩阵运算来实现。

例如,将一个图像顺时针旋转30,就可以将图像的x和y坐标都根据旋转矩阵进行变换。

- 缩放:缩放是改变图像的大小。

缩放操作可以通过对图像的每个像素进行插值运算来实现。

常用的插值方法有最近邻插值、双线性插值和双三次插值等。

- 剪裁:剪裁是将图像从一个大的尺寸截取到一个较小的区域。

剪裁操作可以通过对图像的像素坐标进行判断,只保留指定区域内的像素值。

2. 色彩变换色彩变换是通过修改图像的色彩属性来变换图像。

常见的色彩变换包括调整亮度、对比度、饱和度和色调等。

- 调整亮度:调整图像的亮度可以通过对每个像素的RGB值进行加减操作来实现。

增加亮度时,可以将RGB值都加上一个较大的常数;减小亮度时,可以将RGB值都减去一个较大的常数。

- 调整对比度:调整图像的对比度可以通过拉伸图像的灰度值范围来实现。

可以使用直方图均衡化等方法将图像的灰度值分布拉伸到更广的范围。

- 调整饱和度:调整图像的饱和度可以通过修改图像的色彩空间来实现。

可以将RGB空间转换为HSV空间,然后修改饱和度分量的值,再将HSV空间转换回RGB空间。

- 调整色调:调整图像的色调可以通过修改图像的色相值来实现。

可以将RGB 空间转换为HSV空间,然后修改色调分量的值,再将HSV空间转换回RGB空间。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档