随机变量的协方差和相关系数课件
合集下载
协方差与相关系数 PPT
D(V ) D(2X Y ) D(2X ) D(Y ) 2Cov(2X ,Y )
4D( X ) D(Y ) 2 2 Cov( X ,Y ) 17
所以
Cov(U ,V ) Cov(2X Y , 2X Y )
Cov(2X , 2X ) Cov(2X ,Y ) Cov(Y , 2X ) Cov(Y ,Y )
所以D(t0X*-Y*)=0,由方差得性质知它等价于 P{t0X*-Y* =0}=1,即P{Y=aX+b}=1
其中a=t0σ(Y)/σ(X),b=E(Y)- t0 E(X) σ(Y)/σ(X)、
• 性质3:若X与Y相互独立,则ρXY=0、 证明 若X与Y相互独立,则E(XY)=E(X)E(Y), 又 Cov(X,Y)= E(XY)-E(X)E(Y),所以
协方差与相关系数
一、协方差得概念及性质 二、相关系数得概念及性质 三、协方差得关系式
§1 协方差
• 定义:设二维随机向量(X,Y)得数学期望 (E(X),E(Y))存在,若E[(X-E(X))(Y-E(Y))]存在,则称 它为随机变量X与Y得协方差,记为Cov(X,Y),即
Cov(X,Y)= E[(X-E(X))(Y-E(Y))] • 协方差有计算公式
9 , XY
1 3
,设
U
2X
Y
,
V 2X Y , 求 UV .
解
Cov( X ,Y ) XY
D( X ) D(Y ) 1 3
49 2
D(U ) D(2X Y ) D(2X ) D(Y ) 2Cov(2X ,Y )
4D( X ) D(Y ) 2 2 Cov( X ,Y ) 33
E( X ) (1) 0.15 1 0.35 0.20
协方差和相关系数的计算ppt(共24张PPT)
E(X 2) 2
D( X ) D(Y ) 2
E(Y 2 ) 2
cov(U ,V ) (a2 b2 ) 2
而 D(U ) a2D( X ) b2D(Y ) (a2 b2 ) 2
D(V ) a2D( X ) b2D(Y ) (a2 b2 ) 2
故
UV
a2 a2
b2 b2
XY 1 0 P pq
E(X ) p, E(Y ) p, D(X ) pq, D(Y ) pq, E(XY ) p, D(XY ) pq,
cov( X ,Y ) pq, XY 1
例2 设 ( X ,Y ) ~ N ( 1,12,2,22,), 求
XY .
解
cov( X ,Y )
当D(X ) > 0, D(Y ) > 0 时,当且仅当
P(Y E(Y ) t0 ( X E( X ))) 1
时,等式成立 —Cauchy-Schwarz不等式.
证明 令
g(t) E[(Y E(Y )) t( X E( X ))]2 D(Y ) 2t cov( X ,Y ) t2D( X )
在寒冷的年代里,母爱是温暖。
协方差和相关系数的计算
cov(U ,V ) 解 在文明的年代里,母爱是道德。
继续讨论:a,b 取何值时,U,V 不相关?
E(UV
)
E(U
)E(V
)
为X,Y 的相关系数,记为
a E( X ) b E(Y ) 例2 设 ( X ,Y ) ~ N ( 1, 12, 2, 22,2 ), 求 2XY . 2
E( XY ) p, D( XY ) pq,
cov( X ,Y ) pq, XY 1
X X p ,Y Y p , P(X Y ) 1
协方差与相关系数(PPT课件)
2 误差rmin (1 XY ) DY , 其 中 XY
C ov(X , Y ) 为相关系数 DX DY
相关系数的性质 相关系数满足|ρXY |≤1且
XY 1 常数a, b, 使P{Y a bX } 1
2 证 由 (1 XY )
rmin 0 知 | XY | 1 DY
则称E ( X EX )(Y EY )为随机变量X 与Y的协方差, 记 为Cov( X ,Y ), 即
Cov( X ,Y ) E ( X EX )(Y EY )
将上式展开, 易得公式
Cov( X ,Y ) E ( XY ) ( EX )( EY )
特别, 当X与Y 相互独立时,有
解 Cov(X ,Y ) XY DX DY 0.5 4 16 4 例3 设 ( X , Y ) 服从参数为 1 ,
2 2 , 12 , 2 , 的
二维正态分布 , 求X 与Y 的相关 系数.
概率统计(ZYH)
例3 解 二维正态分布的密度是
f
exp(h) 2σ1σ 2 1 ρ 2
Cov( X , Y ) Cov( X , Y ) EX , b DX DX
2
Cov( X , Y ) Cov( X , Y ) E Y EY EX X DX DX
Cov(X , Y ) X EX E (Y EY ) DX
( σ1 σ 2 u 2 ) e
t2 2
t 2 u2 2
dtdu
u2 2
σ1σ 2
Hale Waihona Puke 1 e 2dt u
第14讲 协方差与相关系数
2
XY刻画了X与Y之间线性关系的程度
(2) |XY|=1 存在常数a, b 使 P{Y= aX+b} =1
例3
(2012数学一,4分)
将长度为 1米的木棒截成两段,则两段长度的相关系数为( ) ( A)1; 1 ( B) ; 2 1 (C ) ; 2 ( D) 1.
分析:设其中一段木棒长度为X , 另一段为Y , 则显然 X Y 1, Y X 1, Y 与X 之间有明显的线性 关系,且变化趋势相反,从而, XY 1,故选D
2)X ~ U ( 1,1), Y X 2 , 求 XY
解1)
1 1 1 1 4 E ( X ) , E (Y ) , E ( XY ) , D( X ) , D(Y ) 2 3 4 12 45 1 2) E ( X ) 0, E ( XY ) 0 12 XY 0.968 1 4 XY 0 12 45
证: cov( X Y , Z ) E[( X Y ) Z ] E ( X Y ) E ( Z ) E ( XZ YZ ) [ E ( X ) E (Y )]E ( Z )
E ( XZ ) E (YZ ) E ( X ) E ( Z ) E (Y ) E ( Z ) cov( X , Z ) cov(Y , Z ).
X 和 Y 独立时 X 和 Y 不相关, 反之不一定成立。 但对下述情形,独立与不相关是一回事: 若(X, Y )服从二维正态分布,则
X 与Y 独立的充分必要条件是X与Y不相关。 参见P70-例3.6.3: X与Y独立 XY=0
练习2 1) X ~ U (0,1), Y X 2 , 求 XY
y 1
XY刻画了X与Y之间线性关系的程度
(2) |XY|=1 存在常数a, b 使 P{Y= aX+b} =1
例3
(2012数学一,4分)
将长度为 1米的木棒截成两段,则两段长度的相关系数为( ) ( A)1; 1 ( B) ; 2 1 (C ) ; 2 ( D) 1.
分析:设其中一段木棒长度为X , 另一段为Y , 则显然 X Y 1, Y X 1, Y 与X 之间有明显的线性 关系,且变化趋势相反,从而, XY 1,故选D
2)X ~ U ( 1,1), Y X 2 , 求 XY
解1)
1 1 1 1 4 E ( X ) , E (Y ) , E ( XY ) , D( X ) , D(Y ) 2 3 4 12 45 1 2) E ( X ) 0, E ( XY ) 0 12 XY 0.968 1 4 XY 0 12 45
证: cov( X Y , Z ) E[( X Y ) Z ] E ( X Y ) E ( Z ) E ( XZ YZ ) [ E ( X ) E (Y )]E ( Z )
E ( XZ ) E (YZ ) E ( X ) E ( Z ) E (Y ) E ( Z ) cov( X , Z ) cov(Y , Z ).
X 和 Y 独立时 X 和 Y 不相关, 反之不一定成立。 但对下述情形,独立与不相关是一回事: 若(X, Y )服从二维正态分布,则
X 与Y 独立的充分必要条件是X与Y不相关。 参见P70-例3.6.3: X与Y独立 XY=0
练习2 1) X ~ U (0,1), Y X 2 , 求 XY
y 1
随机变量的协方差和相关系数
协方差的大小在一定程度上反映了X和Y相互间 的关系,但它还受X与Y本身度量单位的影响.
为了克服这一缺点,对协方差进行标准化,这 就引入了相关系数 .
二、相关系数
定义: 设D(X)>0, D(Y)>0, 称
XY
cov(X,Y) D(X)D(Y)
为随机变量 X 和 Y 的相关系数 .
在不致引起混淆时,记 XY 为 .
注: X Y 反应了X与Y的线性关系密切程度;X与Y不相关
表明两者没有线性关系,但不等于说没有其他关系。
独立与不相关的关系: 若 X 与 Y 独立,则X与Y不相关, 但由X与Y不相关,不一定能推出X与Y独立.
但可以证明对下述情形,独立与不相关等价
若(X,Y)服从二维正态分布,则
X与Y独立 X与Y不相关
注:协方差cov(X,Y)是X和Y的二阶混合中心矩.
六、例题讲解
1、设 X ~ N (,2 )Y ,~ N (,2 ),X 且 , Y 相 设 互
试Z求 1XY和 Z2XY的相关 (其系 中 , 数
是不全为零的常数)。
1、解 D (X)D (Y)2
D ( Z 1 ) D ( X Y ) 2 D ( X ) 2 D ( Y ) ( 2 2 ) 2 D ( Z 2 ) D ( X Y ) 2 D ( X ) 2 D ( Y ) ( 2 2 ) 2
随机变量的协方差和相关系数
第三节 随机变量的协方差和相关系数
协方差
协方差矩阵 相关系数矩阵 原点矩、中心矩
前面我们介绍了随机变量的数学期望和方差, 对于二维随机变量(X,Y),我们除了讨论X与Y 的数学期望和方差以外,还要讨论描述X和Y之间 关系的数字特征,这就是本讲要讨论的
协方差和相关系数
43 协方差和相关系数精品PPT课件
4
12
45
XY
1 12 0.968 1 4 12 45
2) E( X ) 0, E( XY ) 0
XY 0
XY
0.968
:有96.8%的线性相似度,即在[0,1]之间,
y=x2与某条直线y=ax+b的图像差别不大。
XY 0 :根本就没有线性相关性,但有其他相关性。
三. 矩
XY
COV ( X ,Y ) 1 D( X )D(Y ) 2
例6 1) X ~ U (0,1),Y X 2 ,求 XY
2)X ~ U (1,1),Y X 2 ,求 XY
解1)
E( X ) 1 , E(Y ) 1 , E( XY ) 1 , D( X ) 1 , D(Y ) 4
2
3
解 DX 3, DY 1,
D(V ) 16D( X ) 9D(Y ) 24Cov( X ,Y ) 33, D(W ) 4D( X ) 16D(Y ) 16Cov( X ,Y ) 44,
Cov(V ,W ) Cov(4X 3Y 1,2X 4Y ) 8D( X ) 16Cov( X ,Y ) 6Cov(Y , X ) 12D(Y ) 22.
)
1 0
x 0
x
2dy
dx
2 3
D(X )
1 0
x 0
x2
2dy
dx
4 9
1 18
x=y D 1
E(Y
)
1 0
x 0
y
2dy
dx
1 3
D(Y )
1 x
0 0
y2
2dy
dx
1 9
1 18
E(XY )
随机变量的协方差和相关系数
1.定义 E[ X-EX][Y-EY]称为随机变量X和Y的协方 差,记为cov(X,Y) ,即
cov(X,Y)=E[X-EX][Y-EY]=EXY-EXEY
1) 当(X,Y)是离散型随机变量时,
co X ,Y v ) ( (x i E)(y X j E)p Y i,j
ij
2) 当(X,Y)是连续型随机变量时,
A
10
独立与不相关的关系: 若 X 与 Y 独立,则X与Y不相关, 但由X与Y不相关,不一定能推出X与Y独立.
但可以证明对下述情形,独立与不相关等价
若(X,Y)服从二维正态分布,则
X与Y独立 X与Y不相关
A
11
三、协方差矩阵
将二维随机变量(X1,X2)的四个数量指标
v11 E {X [1E (X 1)2 ]}
第三节 随机变量的协方差和相关系数
协方差 相关系数 协方差矩阵 相关系数矩阵 原点矩、中心矩
A
1
前面我们介绍了随机变量的数学期望和方差, 对于二维随机变量(X,Y),我们除了讨论X与Y 的数学期望和方差以外,还要讨论描述X和Y之间 关系的数字特征,这就是本讲要讨论的
协方差和相关系数
A
2
一、协方差
为(X1,X2, …,Xn) 的协方差矩阵.
A
这是一个非 负定对称矩阵
13
四、相关系数矩阵
若
i j
cov(Xi, Xj )
D(Xi) D(Xj)
都存在, 则称
v ij
( i, j=1,2,…,n )
vii v jj
11 12
矩阵
R
21
n1
22
n2
1n
2n
随机变量的方差、协方差与相关系数
随机变量的方差、 协方差与相关系数
目 录
• 随机变量的方差 • 随机变量的方差 • 随机变量的协方差 • 相关系数 • 方差、协方差与相关系数的关系 • 实例分析
01
CATALOGUE
随机变量的方差
协方差的定义
协方差是衡量两个随机变量同时偏离其各自期望值程度的量,表示两个随机变量 之间的线性相关程度。
03
当两个随机变量的尺度相差很大时,直接计算协方差可能 得出不准确的结果,此时归一化的相关系数更为适用。
方差、协方差与相关系数的应用场景
方差在统计学中广泛应用于衡量数据的离散程度,例如在计算平均值、中位数等统计量时需要考虑数 据的离散程度。
协方差在回归分析、时间序列分析等领域中有着广泛的应用,用于衡量两个变量之间的线性相关程度。
3
当只考虑一个随机变量时,方差即为该随机变量 与自身期望值之差的平方的期望值,因此方差是 协方差的一种特例。
协方差与相关系数的关系
01
相关系数是协方差的一种归一化形式,用于消除两个随机变量 尺度上的差异,计算公式为 $r = frac{Cov(X,Y)}{sigma_X sigma_Y}$。
02
相关系数的取值范围是 [-1,1],其中 1 表示完全正相关,1 表示完全负相关,0 表示不相关。
详细描述
对称性是指如果随机变量X和Y的相关系数是r,那么随机变量Y和X的相关系数也是r。有界性是指相关 系数的绝对值不超过1,即|r|≤1。非负性是指相关系数的值总是非负的,即r≥0。
相关系数的计算
总结词
相关系数的计算方法有多种,包括皮尔 逊相关系数、斯皮尔曼秩相关系数等。
VS
详细描述
皮尔逊相关系数是最常用的一种,其计算 公式为r=∑[(xi-x̄)(yi-ȳ)]/[(n-1)sxy],其 中xi和yi分别是随机变量X和Y的第i个观测 值,x̄和ȳ分别是X和Y的均值,sxy是X和 Y的协方差。斯皮尔曼秩相关系数适用于 有序分类变量,其计算方法是根据变量的 秩次进行计算。
目 录
• 随机变量的方差 • 随机变量的方差 • 随机变量的协方差 • 相关系数 • 方差、协方差与相关系数的关系 • 实例分析
01
CATALOGUE
随机变量的方差
协方差的定义
协方差是衡量两个随机变量同时偏离其各自期望值程度的量,表示两个随机变量 之间的线性相关程度。
03
当两个随机变量的尺度相差很大时,直接计算协方差可能 得出不准确的结果,此时归一化的相关系数更为适用。
方差、协方差与相关系数的应用场景
方差在统计学中广泛应用于衡量数据的离散程度,例如在计算平均值、中位数等统计量时需要考虑数 据的离散程度。
协方差在回归分析、时间序列分析等领域中有着广泛的应用,用于衡量两个变量之间的线性相关程度。
3
当只考虑一个随机变量时,方差即为该随机变量 与自身期望值之差的平方的期望值,因此方差是 协方差的一种特例。
协方差与相关系数的关系
01
相关系数是协方差的一种归一化形式,用于消除两个随机变量 尺度上的差异,计算公式为 $r = frac{Cov(X,Y)}{sigma_X sigma_Y}$。
02
相关系数的取值范围是 [-1,1],其中 1 表示完全正相关,1 表示完全负相关,0 表示不相关。
详细描述
对称性是指如果随机变量X和Y的相关系数是r,那么随机变量Y和X的相关系数也是r。有界性是指相关 系数的绝对值不超过1,即|r|≤1。非负性是指相关系数的值总是非负的,即r≥0。
相关系数的计算
总结词
相关系数的计算方法有多种,包括皮尔 逊相关系数、斯皮尔曼秩相关系数等。
VS
详细描述
皮尔逊相关系数是最常用的一种,其计算 公式为r=∑[(xi-x̄)(yi-ȳ)]/[(n-1)sxy],其 中xi和yi分别是随机变量X和Y的第i个观测 值,x̄和ȳ分别是X和Y的均值,sxy是X和 Y的协方差。斯皮尔曼秩相关系数适用于 有序分类变量,其计算方法是根据变量的 秩次进行计算。
协方差及相关系数PPT课件
3) 1 存在常数 a, b(b≠0), 使 P{ Y=aX+b }=1,
即: X 和 Y 以概率 1 线性相关.
相关系数刻划了X 和Y 间“线性相关”的程度.
概率论
可见, 若 ρ = ±1, Y 与 X 有严格线性关系; 若 ρ = 0, Y 与 X 无线性关系; 若 0 < |ρ| < 1, |ρ|的值越接近于1, Y 与 X的线性相关程度越高; |ρ|的值越接近于0, Y 与 X的线性相关程度越弱.
可见, 均值 E(X)是 X 的一阶原点矩, 方差 D(X)是 X的二阶中心矩。
概率论
2. 定义: 设 X 和 Y 是随机变量,
若 E X k Y l k ,l 1 ,2 , 存 在
称它为 X 和 Y 的 k+l 阶混合(原点)矩. ((k+l)-th mixed raw moment)
若 E [ X E ( X ) ] k [ Y E ( Y ) ] l k , l 1 , 2 ,存 在
称它为 X 和 Y 的 k+l 阶混合中心矩. ((k+l)-th mixed central moment)
可见, 协方差 cov(X, Y)是 X 和 Y 的二阶混合中心矩.
四、协方差矩阵
概率论
将二维随机变量 (X1, X2) 的四个二阶中心矩:
c11 E {X [1E (X 1)2} ]
c 1 2 E { X 1 [ E (X 1 )X ]2 [ E (X 2 )]}
若 cij coX vi,(Xj) E {X [i E (X i)] X j[ E (X j)]}
( i, j=1,2,…,n ) 都存在, 称矩阵:
c11
C
c21
即: X 和 Y 以概率 1 线性相关.
相关系数刻划了X 和Y 间“线性相关”的程度.
概率论
可见, 若 ρ = ±1, Y 与 X 有严格线性关系; 若 ρ = 0, Y 与 X 无线性关系; 若 0 < |ρ| < 1, |ρ|的值越接近于1, Y 与 X的线性相关程度越高; |ρ|的值越接近于0, Y 与 X的线性相关程度越弱.
可见, 均值 E(X)是 X 的一阶原点矩, 方差 D(X)是 X的二阶中心矩。
概率论
2. 定义: 设 X 和 Y 是随机变量,
若 E X k Y l k ,l 1 ,2 , 存 在
称它为 X 和 Y 的 k+l 阶混合(原点)矩. ((k+l)-th mixed raw moment)
若 E [ X E ( X ) ] k [ Y E ( Y ) ] l k , l 1 , 2 ,存 在
称它为 X 和 Y 的 k+l 阶混合中心矩. ((k+l)-th mixed central moment)
可见, 协方差 cov(X, Y)是 X 和 Y 的二阶混合中心矩.
四、协方差矩阵
概率论
将二维随机变量 (X1, X2) 的四个二阶中心矩:
c11 E {X [1E (X 1)2} ]
c 1 2 E { X 1 [ E (X 1 )X ]2 [ E (X 2 )]}
若 cij coX vi,(Xj) E {X [i E (X i)] X j[ E (X j)]}
( i, j=1,2,…,n ) 都存在, 称矩阵:
c11
C
c21
概率论与数理统计图文课件最新版-第四章随机变量的数字特征-第三节协方差与相关系数
2
E( XY )
2a
E( X )
0
b
概率统计
解得:
Cov( X ,Y ) b0 D( X )
a0 E(Y ) b0E( X )
这样求出的 最佳逼近为:
L(X)=a0+b0X
这一逼近的剩余是:E{[Y L( X )]2 } D(Y )(1 XY 2 )
可见: 若 XY 1, 则 Y 与 X 有严格线性关系;
第四章知识结构图
随机变量的数字特征
数学期望
方差
矩与协方差 矩阵
一维随机 变量的数
学期望
二维随机 变量的数
学期望
一维随 机变量的
方差
二维随 机变量的
方差
离散型 连续型 离散型 连续型
相关 系数 与协 方差
概率统计
第三节 协方差与相关系数
问题的引出 随机变量的数学期望及方差都只刻画了一个随 机变量的某一方面的特征,而协方差与相关系 数是刻画两个随机变量之间关系的数字特征.
[ )
(
x1 12
)2
2
(
x 1 )( y 1 2
2
)
(
y 2
2 2
)2
]
21 2 1 2
求:X 与 Y 的相关系数
解: 由已知,X, Y 的边缘概率密度为:
fX (x) fY ( y)
1
( x 1 )2
e , 212
2
1
1 ( y2 )2
e
, 2
2 2
2 2
x y
最小时的 a,b :
e = E {[ Y- ( a + bX ) ]2 }
数学期望性质
概率论教学课件第四章4.4协方差与相关系数
解
X
~
f (x)
1
,
1
2
x 1
EX 11 0,
0,其他
2
EY cos xf (x)dx = 1 1 cos xdx sin1,
1 2
E( XY ) E( X cos X ) x cos xf (x)dx = 1 1 x cos xdx 0.
1 2
Cov(X ,Y) E(XY) EX EY 0 0sin1 0,
y y 3x
3 y 2x
2
O
1
x
EX
xf (x, y) dxdy
1
dx
3x
2x dy
2
,
0
2x
3
EY
yf (x, y) dxdy
1
dx
3x 2y dy 5 ,
0
2x
3
EX 2
x2 f (x, y)dxdy
1
dx
0
3x 2x
2x2
dy
1 2
,
EY 2
反之,ρXY 1 P(Y aX b) 1,即Y与X几乎处处有线性关系.
证(第一个结论) EY aEX b, DY a2DX , E(XY ) E[X (aX b)] aEX 2 bEX ,
15
XY
Cov( X , Y ) DX DY
E( XY ) EXEY DX DY
性质4.3协方差具有下列性质 1. 对称性: Cov( X ,Y ) Cov(Y , X ) 2. 线性性质:Cov(aX ,bY ) ab Cov( X ,Y )
Cov ( X1 X2 , Y ) Cov ( X1, Y ) Cov ( X2 , Y )
相关主题