如图,C在直线BE上,∠ABC与∠ACE的角平分线交

合集下载

【教师卷】洛阳市八年级数学上册第十二章《全等三角形》经典复习题(专题培优)(1)

【教师卷】洛阳市八年级数学上册第十二章《全等三角形》经典复习题(专题培优)(1)

一、选择题1.如图,在△ABC 中,AB=AC ,AB >BC ,点D 在BC 边上,BD=12DC ,∠BED=∠CFD=∠BAC ,若S △ABC =30,则阴影部分的面积为( )A .5B .10C .15D .20D解析:D【分析】 根据△ABE ≌△CAF 得出△ACF 与△ABE 的面积相等,可得S △ABE +S △CDF =S △ACD ,即可得出答案.【详解】∵∠BED=∠CFD=∠BAC ,∠BED=∠BAE+∠ABE ,∠BAC=∠BAE+∠CAF ,∠CFD=∠FCA+∠CAF ,∴∠ABE=∠CAF ,∠BAE=∠FCA ,在△ABE 和△CAF 中,ABE CAF AB AC BAE FCA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CAF (ASA ),∴S △ABE =S △ACF , ∴阴影部分的面积为S △ABE +S △CDF =S △ACD ,∵S △ABC =30,BD=12DC , ∴S △ACD =20,故选:D .【点睛】本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,解题的关键是正确寻找全等三角形解决问题.2.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .1B解析:B【分析】 先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 3.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm C解析:C【分析】 延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP =∠EBP ,∠APB =∠BPE =90∘,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP ∴△APB ≌△EPB (ASA ),∴APB EPB S S =△△,AP =PE ,∴△APC 和△CPE 等底同高,∴APC PCE S S =,∴PBC PCE PCE S S S =+△△△=12ABC S=1632⨯= 故选C . 【点睛】本题考查了三角形的面积和全等三角形的性质和判定的应用,关键是求出PBC PCE PCE S S S =+△△△=12ABC S .4.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .1D解析:D【分析】根据三角形的高线、角平分线的性质及全等三角形的判定分析各个选项即可.【详解】解:①只有当三角形是锐角三角形时,三条高才在三角形的内部,此选项错误; ②有两边及一角对应相等的两个三角形全等,此选项错误;③有两角和一边对应相等,满足AAS 或ASA ,此选项正确;④在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点; 在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.则到三角形三边所在直线距离相等的点有4个,此选项错误;⑤两边及第三边上的高对应相等的两个三角形不一定全等,此选项错误.正确的有一个③,故选:D .【点睛】本题考查了全等三角形的判定方法及三角形的角平分线,垂心等概念,熟练掌握概念和性质是解题的关键.5.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足,下列结论:①△ABD ≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF 其中正确的是( )A .①②③B .①③④C .①②④D .①②③④D解析:D【分析】 易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD ≌△EBC ,∴∠BCE=∠BDA ,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA ,∴∠DCE=∠DAE ,∴△ACE 是等腰三角形,∴AE=EC ,∵△ABD ≌△EBC ,∴AD=EC ,∴AD=AE=EC ,故③正确;作EG ⊥BC ,垂足为G ,如图所示:∵ E 是BD 上的点,∴EF=EG ,在△BEG 和△BEF 中BE BE EF EG=⎧⎨=⎩ ∴ △BEG ≌△BEF ,∴BG=BF , 在△CEG 和△AFE 中EF EG AE CE =⎧⎨=⎩∴△CEG ≌△AFE ,∴ AF=CG ,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;6.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ C解析:C【分析】 先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.7.如图所示,已知∠A =∠C ,∠AFD =∠CEB ,那么给出的条件不能得到ADF CBE △≌△是( )A .∠B =∠DB .EB=DFC .AD=BCD .AE=CF A解析:A【分析】 直接利用全等三角形的判定方法进行判断即可;三角形全等的证明方法有:SSS 、SAS 、AAS 、ASA ;【详解】A ∵∠A=∠C ,∠AFD=∠CEB ,∠B=∠D ,三个角相等,不能判定三角形全等,该选项不符合题意;B ∵∠A=∠C ,∠AFD=∠CEB ,EB=DF ,符合AAS 的判定,该选项符合题意;C ∵∠A=∠C ,∠AFD=∠CEB ,AD=BC ,符合AAS 的判定,该选项符合题意;D ∵∠A=∠C ,∠AFD=∠CEB ,AE=CF ,∴AF=CE ,符合ASA 的判定,该选项符合题意; 故选:A .【点睛】本题考查了全等三角形的判定方法,正确掌握判定方法是解题的关键;8.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD C解析:C【分析】 在△ACD 和△ABD 中,AD=AD ,AB=AC ,由全等三角形判定定理对选项一一分析,排除不符合题意的选项即可.【详解】解:添加A 选项中条件可用HL 判定两个三角形全等,故选项A 不符合题意;添加B 选项中的条件可用SSS 判定两个三角形全等,故选项B 不符合题意;添加C 选项中的条件∠1=∠2可得∠CDA=∠BDA ,结合已知条件不SS 判定两个三角形全等,故选项C 符合题意;添加D 选项中的条件可用SAS 判定两个三角形全等,故选项D 不符合题意.故选:C .【点睛】本题考查了全等三角形的判定,判定三角形全等的方法:SSS 、SAS 、ASA 、AAS ,判断直角三角形全等的方法:“HL”.9.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE BF =;②ACE △和CDE △面积相;③//BF CE ;④BDF CDE ≌.其中正确的有( )A .1个B .2个C .3个D .4个C解析:C【分析】 根据“SAS”可证明△CDE ≌△BDF ,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于AE 和DE 不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到∠ECD=∠FBD ,则利用平行线的判定方法可对③进行判断;【详解】∵ AD 是△ABC 的中线,∴ CD=BD ,∵ DE=DF ,∠CDE=∠BDF ,∴ △CDE ≌△BDF(SAS),所以④正确;∴ CE=BF ,所以①正确;∵ AE 与DE 不能确定相等,∴ △ACE 和△CDE 面积不一定相等,所以②错误;∵ △CDE ≌△BDF ,∴∠ECD=∠FBD ,∴BF ∥CE ,所以③正确;故选:C .【点睛】本题考查了全等三角形的判定与性质,三角形的面积 ,熟练掌握三角形全等的判定方法并准确识图是解题的关键.10.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个B解析:B添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明.【详解】解:①在ABC 和AED 中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED AAS ≅;⑤不可以;故选:B .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理.二、填空题11.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.61°【分析】首先利用直角三角形的性质求得∠ABC 的度数然后利用角平分线的判定方法得到BD 为∠ABC 的平分线再求出∠ABD 的度数根据三角形外角的性质进而求得结论【详解】解:∵∠A=32°∠ACB=9解析:61°【分析】首先利用直角三角形的性质求得∠ABC 的度数,然后利用角平分线的判定方法得到BD 为∠ABC 的平分线,再求出∠ABD 的度数,根据三角形外角的性质进而求得结论.解:∵∠A=32°,∠ACB =90°,∴∠CBA=58°,∵DE ⊥AB ,DC ⊥BC ,DC=DE ,∴BD 为∠ABC 的平分线,∴∠CBD=∠EBD ,∴∠CBD=12∠CBA=12×58°=29°, ∴∠BDC=∠A+∠ABD=32°+29°=61°.故答案为:61°.【点睛】本题考查了角平分线的判定与性质,解题的关键是根据已知条件得到BD 为∠ABC 的平分线,难度不大.12.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.100°【分析】根据全等三角形对应角相等可得然后根据周角等于求出再根据三角形的内角和定理求出从而得解【详解】解:(对顶角相等)故答案为:【点睛】本题考查了全等三角形对应角相等的性质三角形的内角和定理解析:100°【分析】根据全等三角形对应角相等可得1BAE ∠=∠,ACB E ∠=∠,然后根据周角等于360︒求出2∠,再根据三角形的内角和定理求出2α∠=∠,从而得解.【详解】解:ABE ADC ABC ∆≅∆≅∆,1130BAE ∴∠=∠=︒,ACB E ∠=∠,23601360130130100BAE ∴∠=︒-∠-∠=︒-︒-︒=︒,180DFE E α∴∠=︒-∠-∠,1802AFC ACD ∠=︒-∠-∠,DFE AFC ∠=∠(对顶角相等),1801802E ACD α∴︒-∠-∠=︒-∠-∠,2100α∴∠=∠=︒.故答案为:100︒.【点睛】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,对顶角相等的性质,准确识图,找出对应角是解题的关键.13.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.5【分析】根据题意证明利用证明根据全等三角形的性质得到米再利用时间=路程÷速度计算即可【详解】解:∵∴又∵∴∴在和中∴∴米(米)∵该人的运动速度他到达点M 时运动时间为s 故答案为5【点睛】本题考查了全解析:5【分析】根据题意证明C DMB ∠=∠,利用AAS 证明ACM BMD ≌,根据全等三角形的性质得到12BD AM ==米,再利用时间=路程÷速度计算即可.【详解】解:∵90CMD ∠=︒,∴90CMA DMB +=︒∠∠,又∵90CAM ∠=︒,∴90CMA C ︒∠+∠=,∴C DMB ∠=∠,在 Rt ACM △和Rt BMD △中, A B C DMB CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt ACM Rt BMD AAS ≌,∴12BD AM ==米,221210BM =-=(米),∵该人的运动速度2m/s ,他到达点M 时,运动时间为5210=÷s .故答案为5.【点睛】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt ACM Rt BMD ≌.14.如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则点A 到直线CD 的距离是_____.4【分析】根据垂直的定义得到∠BCD=延长CD 到H使DH=CD 由线段中点的定义得到AD=BD 根据全等三角形的性质得到AH=BC=4【详解】∵DC ⊥BC ∴∠BCD=∵∠ACB=∴∠ACD=如图延长CD解析:4【分析】根据垂直的定义得到∠BCD=90︒,延长CD 到H 使DH=CD ,由线段中点的定义得到 AD=BD ,根据全等三角形的性质得到 AH=BC=4.【详解】∵ DC ⊥BC ,∴ ∠BCD=90︒,∵ ∠ACB=120︒,∴ ∠ACD=30︒,如图,延长 CD 到 H 使 DH=CD ,∵ D 为 AB 的中点,∴ AD=BD ,在 ΔADH 与 ΔBCD 中,CD DH ADH BDC AD BD =⎧⎪∠=∠⎨⎪=⎩,∴ ΔADH ≅ΔBCD(SAS),∴ AH=BC=4,∠AHD=∠BCD=90°,∴点A 到CD 的距离为4,故答案为:4.【点睛】本题考察全等三角形的判定与性质,正确作出辅助线是解题的关键.15.如图,AC AE =,AD AB =,90ACB DAB ∠=∠=︒,33BAE ∠=︒,//CB AE ,AC 与DE 相交于点F .(1)DAC ∠=______.(2)当1AF =时,BC 的长为______.33°2【分析】(1)作DG ⊥AC 的延长线于G 然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS )由全等三角形的性质得出DG =AC =AE ;AG =BC 证明△AEF ≌△GDF (AAS 解析:33° 2【分析】(1)作DG ⊥AC 的延长线于G ,然后根据平行线的性质可以推出结论;(2)证明△ADG ≌△BAC (AAS ),由全等三角形的性质得出DG =AC =AE ;AG =BC ,证明△AEF ≌△GDF (AAS ),得出1122AF GF AG BC ===,则可得出答案. 【详解】解:(1)∵90ACB ∠=︒,//AE BC ,∴18090CAE ACB ∠=︒-∠=︒.∵90DAB CAE ∠=∠=︒,∴DAC CAB BAE CAB ∠+∠=∠+∠,∴33DAC BAE ∠=∠=︒.故答案为:33.(2)如图,过点D 作DG AC ⊥,交AC 的延长线于点G ,∴90AGD ACB ∠=∠=︒.∵//AE CB ,∴DAG BAE B ∠=∠=∠. 在ADG 和BAC 中,,,,AGO BCA DAG B AD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS ADG BAC ≅△△,∴DG AC AE ==,AG BC =.在AEF 和GDF 中,,,,EFA DFG EAF DGF AE DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS AEF GDF ≅△△, ∴1122AF GF AG BC ===, ∴22BC AF ==.故答案为:2.【点睛】此题考查了全等三角形的判定与性质,用到的知识点是平行线的性质和全等三角形的判定与性质,解题的关键是熟练掌握全等的三角形的判定与性质.16.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D ,若∠D =20°,则∠A =_____.40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ∠ACE =2∠DCE 再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ∠A =∠ACE ﹣∠ABC 即得出∠A =2∠D 即得出答案【详解】∵∠ABC 解析:40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ,∠ACE =2∠DCE .再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ,∠A =∠ACE ﹣∠ABC .即得出∠A =2∠D ,即得出答案.【详解】∵∠ABC 的平分线交∠ACE 的外角平分线∠ACE 的平分线于点D ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠DCE 是△BCD 的外角,∴∠D =∠DCE ﹣∠DBE ,∵∠ACE 是△ABC 的外角,∠A =∠ACE ﹣∠ABC =2∠DCE ﹣2∠DBE =2(∠DCE ﹣∠DBE ),∴∠A =2∠D =40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.17.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上.【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可【详解】解:∵点P (2mm-1)在二四象限的角平分线上∴2m=-(m-1)解得m=故答案为:【点睛】本题考查了点的坐标熟记第 解析:13 【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可.【详解】解:∵点P (2m ,m-1)在二、四象限的角平分线上,∴2m=-(m-1),解得m=13. 故答案为:13. 【点睛】本题考查了点的坐标,熟记第二四象限角平分线上点的横坐标与纵坐标互为相反数是解题的关键.18.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.25°【分析】利用三角形内角和定理得出∠BAC 的度数进而得出∠ADC 的度数再利用三角形内角和定理和外角性质得出即可【详解】解:∵∠B=35°∠ACB=85°∴∠BAC=60°∵AD 平分∠BAC ∴∠B解析:25°【分析】利用三角形内角和定理得出∠BAC 的度数,进而得出∠ADC 的度数,再利用三角形内角和定理和外角性质得出即可.【详解】解:∵∠B=35°,∠ACB=85°,∴∠BAC=60°,∵AD 平分∠BAC ,∴∠BAD=30°,∴∠ADC=35°+30°=65°,∵∠EPD=90°,∴∠E 的度数为:90°-65°=25°.故答案为:25°.【点睛】此题主要考查了三角形内角和定理以及角平分线的性质和三角形外角的性质,根据已知得出∠BAD 度数是解题关键.19.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______.【分析】如图延长AD 至点E 使得DE=AD 可证△ABD ≌△CDE 可得AB=CEAD=DE 在△ACE 中根据三角形三边关系即可求得AE 的取值范围即可解题【详解】解:延长AD 至点E 使得DE=AD ∵点D 是BC解析:15a <<【分析】如图延长AD 至点E ,使得DE=AD ,可证△ABD ≌△CDE ,可得AB=CE ,AD=DE ,在△ACE 中,根据三角形三边关系即可求得AE 的取值范围,即可解题.【详解】解:延长AD 至点E ,使得DE=AD ,∵点D 是BC 的中点,∴BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CDE (SAS ),∴AB=CE ,∵△ACE 中,AC-CE <AE <AC+CE ,即:AC-AB <AE <AC+AB ,∴2<AE <10,∴1<AD <5.故答案为:1<AD <5.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD ≌△CDE 是解题的关键.20.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.4cm 【分析】由DE ⊥AB 可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm .【分析】由DE ⊥AB ,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB ,然后根据AAS 判断△ABC ≌△EDB ,根据全等三角形的对应边相等即可得到BD=BC ,AC=BE ,由E 是BC 的中点,得到BE=12BC=12BD=4. 【详解】解:∵DE ⊥AB ,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中, ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.三、解答题21.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.解析:(1)PA=PB ;(2)成立证明见解析;(3)OA=BC+OC【分析】(1)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(2)作PD ⊥OM 于点D ,根据角平分线的性质得到PC=PD ,证明△APD ≌△BPC ,根据全等三角形的性质定理证明;(3)仿照(2)的解法得出△APD ≌△BPC ,从而得出AD=BC ,再根据HL 得出Rt △OPD ≌△RtOPC ,得出OC=OD ,继而得出结论.【详解】(1)作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=90°,∴∠APB=90°,∠CPD=90°,∴∠APD+∠BPD=90°,∠BPC+∠BPD=90°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(2)(1)中的结论还成立理由如下:如图2,作PD ⊥OM 于点D ,∵点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,∵∠MON=60°,∴∠APB=120°,在四边形OCPD 中,∠CPD=360°-90°-90°-60°=120°,∴∠APD+∠BPD=120°,∠BPC+∠BPD=120°∴∠APD=∠BPC ,∵∠PDA=∠PCB=90°,在△APD 和△BPC 中,APD BPC PD PCADP BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△APD ≌△BPC (ASA ),∴AP=BP .(3)OA=2BC-OB .理由如下:如图3,作PD ⊥OM 于点D ,同(2),可证△APD ≌△BPC ,∴AD=BC ,点P 在∠MON 的角平分线上,且PC ⊥ON 于C ,∴PC=PD ,在Rt △OPD 和RtOPC 中,PC PD OP OP =⎧⎨=⎩∴Rt △OPD ≌△RtOPC ,∴OC=OD ,∴OA-AD=OD=OC ,∴OA-BC=OC ,∴OA=BC+OC .【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、灵活运用类比思想是解题的关键.22.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌;(2)若1GF =,求线段HC 的长.解析:(1)见详解;(2)1【分析】(1)先证明AC=DF ,再根据HL 证明Rt ABC Rt DEF ≌;(2)先证明∠AFG=∠DCH ,从而证明∆AFG ≅∆DCH ,进而即可求解. 【详解】(1)∵AF CD =,∴AF+CF=CD+CF ,即AC=DF ,在Rt ABC 与Rt DEF △中,∵AC DF AB DE =⎧⎨=⎩, ∴Rt ABC ≅Rt DEF △(HL );(2)∵Rt ABC ≅Rt DEF △,∴∠A=∠D ,∠EFD=∠BCA ,∵∠AFG=180°-∠EFD ,∠DCH=180°-∠BCA ,∴∠AFG=∠DCH ,又∵AF CD =,∴∆AFG ≅∆DCH ,∴HC=GF =1.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握HL 和ASA 证明三角形全等,是解题的关键.23.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .解析:见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.24.如图,已知∠AOC 是直角,∠BOC =46°,OE 平分∠BOC ,OD 平分∠AOB .(1)试求∠DOE 的度数;(2)当∠BOC =α(0°≤α≤90°),请问∠DOE 的大小是否变化?并说明理由.解析:(1)45︒;(2)不会变化,理由见解析.【分析】(1)根据题意可知DOE BOD BOE ∠=∠-∠,12BOD AOB ∠=∠,12BOE BOC ∠=∠.即可推出12DOE AOC ∠=∠,即可求出DOE ∠. (2))根据(1)可知DOE ∠的大小与∠BOC 的大小无关,所以DOE ∠的大小不会变化.【详解】(1)由图可知DOE BOD BOE ∠=∠-∠,∵OE 平分∠BOC ,OD 平分∠AOB . ∴12BOD AOB ∠=∠,12BOE BOC ∠=∠. ∴1111()2222DOE AOB BOC AOB BOC AOC ∠=∠-∠=∠-∠=∠, ∵∠AOC 是直角,∴90AOC ∠=︒, ∴1452DOE AOC ∠=∠=︒. (2)根据(1)可知DOE ∠的大小与∠BOC 的大小无关, ∴DOE ∠的大小不会变化且大小为12AOC ∠. 【点睛】本题考查角的计算,角平分线的性质.利用角平分线的性质找出图形中角的关系是解答本题的关键.25.如图,在△ABD 中,∠ABD =90°,AB=BD ,点E 在线段BD 上,延长AB 使BC=BE ,连接AE、CE、CD,点M在线段AE上,点N在线段CD上,BM⊥BN,易证△ABE≌△DBC;仔细观察,请逐一找出图中其他的全等三角形,并说明理由.解析:△ABM≌△DBN,△BME≌△BNC,理由见解析.【分析】观察图形,可找出△ABM≌△DBN,△BME≌△BNC.①由△ABE≌△DBC可得到∠BAE=∠BDC,根据BM⊥BN可得到∠AMB+∠MBE =∠DBN+∠MBE,继而得到∠AMB=∠DBN,AB=BD,可得△ABM≌△DBN;②由△ABM≌△DBN可得BM=BN,根据∠NBE+∠MBE =∠NBE+∠NBC,可得∠MBE =∠NBC,继而可证得△BME≌△BNC.【详解】解:全等三角形:△ABM≌△DBN,△BME≌△BNC,理由如下:由题意知△ABE≌△DBC,∴∠BAE=∠BDC,∵BM⊥BN,∴∠MNB=90 ,∴∠ABM+∠MBE =∠DBN+∠MBE,∴∠ABM=∠DBN,AB=BD,∴△ABM≌△DBN,∴BM=BN,∵∠NBE+∠MBE =∠NBE+∠NBC,∴∠MBE =∠NBC,∵BE=BC,∴△BME≌△BNC.【点睛】本题考察全等三角形的判定与性质,熟知全等三角形的判定与性质是解题关键.26.如图①,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥CA的延长线点E,由∠1+∠2=∠D+∠2=90°,得∠1=∠D,又∠ACB=∠AED=90°,AB=AD,得△ABC≌△DAE进而得到AC=DE,BC=AE,我们把这个数学模型称为“K字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC、DE,且BC⊥AH于点H,DE与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.解析:(1)见解析;(2)A(32,52)或(52,-32). 【分析】 (1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90 ,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1 .在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理 △ACH ≅△EAN (AAS ),∴ AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE 的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=, 解得32x =, ∴32AC =,35122DE =+=. 即点A 坐标为(32,52).②当A 点在OB 的下方时,如图,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .根据①同理可得:52AP =,32MQ =. 即点A 坐标为(52,32-).【点睛】本题考查了三角形全等的判定和性质.熟练利用三角形的判定方法是解答本题的关键.27.在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点H ,已知3EH EB ==,4AE =,求CH 的长.解析:CH=1【分析】根据AD ⊥BC ,CE ⊥AB ,可得出∠EAH+∠B=90°∠EAH+∠AHE=90°,则∠B=∠AHE ,则可证△AEH ≌△CEB ,从而得出CE=AE ,再根据已知条件得出CH 的长.【详解】解:∵AD ⊥BC ,∴∠EAH+∠B=90°,∵CE ⊥AB ,∴∠EAH+∠AHE=90°,∴∠B=∠AHE ,∵EH=EB ,在△AEH 和△CEB 中,AHE B EH BEAEH BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEH ≌△CEB (ASA ),∴CE=AE=4,∵EH=EB=3,∴CH=CE-EH=4-3=1.【点睛】本题考查了全等三角形的判定和性质,根据同角的余角相等得出∠B=∠AHE ,是解此题的关键.28.已知:如图,AOB ∠.求作: A O B '''∠,使A O B AOB '''∠=∠.作法:①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;②画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C '; ③以点C '为圆心,CD 长为半径画弧,与②中所画的弧相交于点D ;④过点D 画射线O B '',则A O B AOB '''∠=∠;A OB '''∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C D ''.由作法可知OC O C ''=,,,∴COD C O D '''≅.( )(填推理依据).∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角.解析:(1)补全图形见解析;(2)OD O D ''=,CD C D ''=,SSS .【分析】(1)根据题意要求作图即可;(2)根据题意利用SSS 证明COD C O D '''≅即可.【详解】(1)作图:(2)连接C D '',∵OC O C ''=,OD O D ''= ,CD C D ''=,∴COD C O D '''≅(SSS ),∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角故答案为:OD O D ''=,CD C D ''=,SSS ..【点睛】此题考查作图能力—作一个角等于已知角,全等三角形的判定及性质,根据题意画出图形并确定对应相等的条件证明三角形全等是解题的关键.。

[数学]-必考点05 角平分线的性质与判定-【题型·技巧培优系列】2022-2023学年八年级数学上

[数学]-必考点05 角平分线的性质与判定-【题型·技巧培优系列】2022-2023学年八年级数学上
◆◆题型五与角的平分线有关的探究题
11.(2021秋•朝阳期中)在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.
(1)如图1,当点D是BC边上的中点时,S△ABD:S△ACD=;
(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n的代数式表示);
③∠BAC=2∠BPC;④S△PAC=S△MAP+S△NCP.其中正确结论序号是.
7.(2021秋•松桃县期末)如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.
◆◆题型三角的平分线的性质与判定的综合应用
8.(2021秋•鹿邑县月考)如图,在△ABC中,∠ABC的平分线与△ABC的外角∠ACE的平分线交于点P,PD⊥AC于点D,PH⊥BA,交BA的延长线于点H.
(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连接BE,如果AC=2,AB=4,S△BDE=6,那么S△ABC=.
1.(2022春•六盘水期末)如图,BD为∠ABC的角平分线,DE⊥BC于点E,AB=5,DE=2,则△ABD的面积是( )
A.5B.7C.7.5D.10
2.(2022•雁塔区模拟)如图,AB∥CD,BP和CP分别平分∠ABC和∠BCD,AD过点P且与AB垂直.若AD=8,BC=10,则△BCP的面积为( )
A.△ABC三条高线的交点处
B.△ABC三条中线的交点处
C.△ABC三条角平分线的交点处
D.△ABC三边垂直平分线的交点处
【例题20】(2022春•兰州期末)某镇要在三条公路围成的一块三角形平地内修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址( )
A.仅有一处B.有四处C.有七处D.有无数处

新课标-最新浙教版八年级数学上学期《三角形的初步认识》培优提升卷及答案解析-精品试题

新课标-最新浙教版八年级数学上学期《三角形的初步认识》培优提升卷及答案解析-精品试题

第1章《三角形的初步认识》培优提升卷班级______ 姓名_______一、选择题(每题3分,共30分)1.现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm ,从中任取三根木棒,能组成三角形的个数为( )A .1个B .2个C .3个D .4个2.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠+∠12 的度数为( )A.120°B. 180°C. 240°D. 300°第2题 第4题 第5题 3.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =64.如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是( )A. 180°B.360°C.540°D.720°2160°5.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°6.下列命题:(1)无限小数是无理数(2)绝对值等于它本身的数是非负数(3) 垂直于同一直线的两条直线互相平行(4) 有两边和其中一边的对角对应相等的两个三角形全等, (5)面积相等的两个三角形全等,是真命题的有()A.1个B.2个C.3个D.4个7.如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠EB. BC=ECC. BC=DC,∠A=∠DD.∠B=∠E,∠A=∠D8.如图,在△ABC中,AD是角平分线,AE是高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB为()A. 80°B. 72°C. 48°D. 36°第7题第8题第10题9.若三角形的周长为18,且三边都是整数,则满足条件的三角形的个数有()A、4个B、5个C、6个D、7个10.如图所示,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE ≌△BCDB.△BGC ≌△AFCC.△DCG ≌△ECFD.△ADB ≌△CEA二、填空题(每题4分,共24分)11.已知三角形的三边长分别是3、x 、9,则化简135-+-x x = 12.如图,长方形ABCD 中(AD>AB),M 为CD 上一点,若沿着AM 折叠,点N 恰落在BC 上,则∠ANB+∠MNC=___________13.如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=______°BFB第12题 第13题 第16题14.在△ABC 中,AB=8,AC=6,则BC 边上的中线AD 的取值范围是 15.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题:①如果a ∥b ,a ⊥c ,那么b ⊥c ;②如果b ∥a ,c ∥a ,那么b ∥c ;③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥C .其中为真命题的是__________.(填写所有真命题的序号)16.在数学活动课上,小明提出这样一个问题:如图,∠B=∠C=900,E 是BC 的中点,DE 平分∠ADC ,∠CED=35°,,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______。

期末复习(压轴题49题)—2023-2024学年七年级数学下学期期末考点(北师大版)(解析版)

期末复习(压轴题49题)—2023-2024学年七年级数学下学期期末考点(北师大版)(解析版)

z 期末复习(压轴题49题20个考点)一.规律型:数字的变化类(共1小题)1.为了求1+2+22+23+…+22011+22012的值,可令S =1+2+22+23+…+22011+22012,则2S =2+22+23+24+…+22012+22013,因此2S ﹣S =22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是( )A .52013﹣1B .52013+1C .D . 【答案】D【解答】解:令S =1+5+52+53+ (52012)则5S =5+52+53+…+52012+52013,5S ﹣S =﹣1+52013,4S =52013﹣1,则S =.故选:D .二.同底数幂的乘法(共1小题) 2.阅读材料:求1+2+22+23+24+…+22013的值.解:设S =1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S =2+22+23+24+25+…+22013+22014 将下式减去上式得2S ﹣S =22014﹣1即S =22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).【答案】见试题解答内容【解答】解:(1)设S =1+2+22+23+24+ (210)将等式两边同时乘2得:2S =2+22+23+24+…+210+211,将下式减去上式得:2S ﹣S =211﹣1,即S =211﹣1,则1+2+22+23+24+…+210=211﹣1;z (2)设S =1+3+32+33+34+…+3n ①,两边同时乘3得:3S =3+32+33+34+…+3n +3n +1②,②﹣①得:3S ﹣S =3n +1﹣1,即S =(3n +1﹣1),则1+3+32+33+34+…+3n =(3n +1﹣1).三.多项式乘多项式(共1小题)3.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片 张.【答案】见试题解答内容【解答】解:(a +2b )(a +b )=a 2+3ab +2b 2.则需要C 类卡片3张.故答案为:3.四.完全平方公式(共3小题)4.已知a ﹣b =b ﹣c =,a 2+b 2+c 2=1,则ab +bc +ca 的值等于 .【答案】见试题解答内容【解答】解:∵a ﹣b =b ﹣c =,∴(a ﹣b )2=,(b ﹣c )2=,a ﹣c =, ∴a 2+b 2﹣2ab =,b 2+c 2﹣2bc =,a 2+c 2﹣2ac =, ∴2(a 2+b 2+c 2)﹣2(ab +bc +ca )=++=, ∴2﹣2(ab +bc +ca )=, ∴1﹣(ab +bc +ca )=, ∴ab +bc +ca =﹣=﹣. 故答案为:﹣.z 5.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a +b )6= .【答案】见试题解答内容【解答】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 66.回答下列问题(1)填空:x 2+=(x +)2﹣ =(x ﹣)2+(2)若a +=5,则a 2+= ;(3)若a 2﹣3a +1=0,求a 2+的值. 【答案】见试题解答内容【解答】解:(1)2、2.(2)23. (3)∵a =0时方程不成立,∴a ≠0,∵a 2﹣3a +1=0两边同除a 得:a ﹣3+=0,移项得:a +=3,∴a 2+=(a +)2﹣2=7. 五.平方差公式的几何背景(共1小题)7.如图,边长为m +4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.z【答案】见试题解答内容【解答】解:设拼成的矩形的另一边长为x ,则4x =(m +4)2﹣m 2=(m +4+m )(m +4﹣m ),解得x =2m +4.故答案为:2m +4.六.整式的混合运算(共1小题)8.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =bB .a =3bC .a =bD .a =4b 【答案】B 【解答】解:左上角阴影部分的长为AE ,宽为AF =3b ,右下角阴影部分的长为PC ,宽为a ,∵AD =BC ,即AE +ED =AE +a ,BC =BP +PC =4b +PC ,∴AE +a =4b +PC ,即AE ﹣PC =4b ﹣a ,∴阴影部分面积之差S =AE •AF ﹣PC •CG =3bAE ﹣aPC =3b (PC +4b ﹣a )﹣aPC =(3b ﹣a )PC +12b 2﹣3ab ,则3b ﹣a =0,即a =3b .解法二:既然BC 是变化的,当点P 与点C 重合开始,然后BC 向右伸展,设向右伸展长度为X ,左上阴影增加的是3bX ,右下阴影增加的是aX ,因为S 不变,∴增加的面积相等,z ∴3bX =aX ,∴a =3b .故选:B .七.函数的图象(共4小题)9.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (分)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A 方案比B 方案便宜20元;(2)若通话时间超过200分,则B 方案比A 方案便宜12元;(3)若通讯费用为60元,则B 方案比A 方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A .1个B .2个C .3个D .4个【答案】C【解答】解:依题意得A :(1)当0≤x ≤120,y A =30, (2)当x >120,y A =30+(x ﹣120)×[(50﹣30)÷(170﹣120)]=0.4x ﹣18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70﹣50)÷(250﹣200)](x ﹣200)=0.4x ﹣30,所以当x ≤120时,A 方案比B 方案便宜20元,故(1)正确;当x ≥200时,B 方案比A 方案便宜12元,故(2)正确;z 当y =60时,A :60=0.4x ﹣18,∴x =195,B :60=0.4x ﹣30,∴x =225,故(3)正确;当B 方案为50元,A 方案是40元或者60元时,两种方案通讯费用相差10元,将y A =40或60代入,得x =145分或195分,故(4)错误;故选:C .10.在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )A .B .C .D . 【答案】C 【解答】解:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选:C .11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;z ④兔子在途中750米处追上乌龟.其中正确的说法是 .(把你认为正确说法的序号都填上)【答案】见试题解答内容【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x ﹣200(40≤x ≤60),y 2=100x ﹣4000(40≤x ≤50),当y 1=y 2时,兔子追上乌龟,此时20x ﹣200=100x ﹣4000,解得:x =47.5,y 1=y 2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.12.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 分钟.【答案】见试题解答内容【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),z 所以他从单位到家门口需要的时间是(分钟).故答案为:15.八.二次函数的图象(共1小题) 13.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P →D →Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .【答案】A 【解答】解:当F 在PD 上运动时,△AEF 的面积为y =AE •AD =2x (0≤x ≤2),当F 在AD 上运动时,△AEF 的面积为y =AE •AF =x (6﹣x )=﹣x 2+3x (2<x ≤4),图象为:故选:A .z 九.平行线的性质(共2小题)14.如图,将长方形ABCD 沿线段EF 折叠到EB 'C 'F 的位置,若∠EFC '=100°,则∠DFC '的度数为( )A .20°B .30°C .40°D .50°【答案】A【解答】解:由翻折知,∠EFC =∠EFC '=100°,∴∠EFC +∠EFC '=200°,∴∠DFC '=∠EFC +∠EFC '﹣180°=200°﹣180°=20°,故选:A .15.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC =120°,∠BCD =80°,则∠CDE = 度. 【答案】见试题解答内容【解答】解:过点C 作CF ∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∴AB ∥DE ,∴CF ∥DE ,∴∠BCF +∠ABC =180°,∴∠BCF =60°,∴∠DCF =20°,∴∠CDE =∠DCF =20°.故答案为:20.z十.三角形的面积(共4小题)16.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是( )A .5B .4C .3D .2【答案】A【解答】解:满足条件的C 点有5个,如图平行于AB 的直线上,与网格的所有交点就是.故选:A . 17.如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若S △ABC =12,则图中阴影部分的面积是 .【答案】见试题解答内容【解答】方法1解:∵△ABC 的三条中线AD 、BE ,CF 交于点G ,∴S △CGE =S △AGE =S △ACF ,S △BGF =S △BGD =S △BCF ,∵S △ACF =S △BCF =S△ABC=×12=6,z ∴S △CGE =S △ACF =×6=2,S △BGF =S △BCF =×6=2,∴S 阴影=S △CGE +S △BGF =4.故答案为4.方法2设△AFG ,△BFG ,△BDG ,△CDG ,△CEG ,△AEG 的面积分别为S 1,S 2,S 3,S 4,S 5,S 6,根据中线平分三角形面积可得:S 1=S 2,S 3=S 4,S 5=S 6,S 1+S 2+S 3=S 4+S 5+S 6①,S 2+S 3+S 4=S 1+S 5+S 6② 由①﹣②可得S 1=S 4,所以S 1=S 2=S 3=S 4=S 5=S 6=2,故阴影部分的面积为4.故答案为:4.18.如图,A 、B 、C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积 .【答案】见试题解答内容【解答】解:如图,连接AB 1,BC 1,CA 1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB 1=S △ABC =1,S △A 1AB 1=S △ABB 1=1,∴S △A 1BB 1=S △A 1AB 1+S △ABB 1=1+1=2,同理:S △B 1CC 1=2,S △A 1AC 1=2,∴△A 1B 1C 1的面积=S △A 1BB 1+S △B 1CC 1+S △A 1AC 1+S △ABC =2+2+2+1=7.故答案为:7.z 19.如图,对面积为s 的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A n B n ∁n ,则其面积S n = .【答案】见试题解答内容【解答】解:连接A 1C ;S △AA 1C =3S △ABC =3S ,S △AA 1C 1=2S △AA 1C =6S ,所以S △A 1B 1C 1=6S ×3+1S =19S ;同理得S △A 2B 2C 2=19S ×19=361S ; S △A 3B 3C 3=361S ×19=6859S ,S △A 4B 4C 4=6859S ×19=130321S , S △A 5B 5C 5=130321S ×19=2476099S ,从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n 次后,得到△A n B n ∁n , 则其面积Sn =19n •S .十一.三角形内角和定理(共3小题)20.已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是( )A.0个B.1个C.2个D.3个【答案】C【解答】解:(1)若P点是∠ABC和∠ACB的角平分线的交点,则∠PBC=∠ABC,∠PCB=∠ACB则∠PBC+∠PCB=(∠ABC+∠ACB)=(180°﹣∠A)z在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°﹣∠A)=90°+∠A,故成立;(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;(3)若P点是外角∠CBF和∠BCE的角平分线的交点,则∠PBC=∠FBC=(180°﹣∠ABC)=90°﹣∠ABC,∠BCP=∠BCE=90°﹣∠ACB∴∠PBC+∠BCP=180°﹣(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠Az 在△BCP 中利用内角和定理得到:∠P =180﹣(∠PBC +∠PCB )=180﹣(180°+∠A )=90°﹣∠A ,故成立.∴说法正确的个数是2个.故选:C .21.已知△ABC 中,∠A =α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C =90°+;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C = ;请你猜想,当∠B 、∠C 同时n 等分时,(n ﹣1)条等分角线分别对应交于O 1、O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C = (用含n 和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O 2B 和O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC +∠O 2CB =(∠ABC +∠ACB )=(180°﹣α)=120°﹣α;∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=180°﹣(120°﹣α)=60°+α;在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O n ﹣1B 和O n ﹣1C 分别是∠B 、∠C 的n 等分线,∴∠O n ﹣1BC +∠O n ﹣1CB =(∠ABC +∠ACB )=(180°﹣α)=﹣. ∴∠BO n ﹣1C =180°﹣(∠O n ﹣1BC +∠O n ﹣1CB )=180°﹣(﹣)=+.z 故答案为:60°+α;+.22.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度.【答案】见试题解答内容【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =∠ABC ,∠A 1CA =∠ACD ,∵∠A 1CD =∠A 1+∠A 1BC ,即∠ACD =∠A 1+∠ABC ,∴∠A 1=(∠ACD ﹣∠ABC ),∵∠A +∠ABC =∠ACD ,∴∠A =∠ACD ﹣∠ABC ,∴∠A 1=∠A ,∴∠A 1=m °,∵∠A 1=∠A ,∠A 2=∠A 1=∠A , …以此类推∠A 2013=∠A =°. 故答案为:.十二.全等图形(共1小题)23.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°【答案】B【解答】解:在△ABC与△EDC中,,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.z十三.全等三角形的判定(共3小题)24.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【答案】D【解答】解:∵AB=AC,D为BC中点,在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS)∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE(SSS;在△BOD和△COD中,,∴△BOD≌△COD(SAS);在△AOC和△AOB中,,∴△AOC≌△AOB(SSS);故选:D.25.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有 ①②③(填序z号).【答案】见试题解答内容【解答】解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)z ∴△ACN ≌△ABM (ASA )(③正确)∴CN =BM (④不正确).所以正确结论有①②③.故填①②③.26.如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =BD ,EN =CE ,得到图③,请解答下列问题:(1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是 ;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; 【答案】见试题解答内容【解答】解:(1)①BD =CE ;②AM =AN ,∠MAN =∠BAC ,∵∠DAE =∠BAC ,∴∠CAE =∠BAD ,在△BAD 和△CAE 中∵∴△CAE ≌△BAD (SAS ),∴∠ACE =∠ABD ,z ∵DM =BD ,EN =CE ,∴BM =CN ,在△ABM 和△ACN 中,∵∴△ABM ≌△ACN (SAS ),∴AM =AN ,∴∠BAM =∠CAN ,即∠MAN =∠BAC ;十四.全等三角形的判定与性质(共12小题) 27.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68 【答案】A【解答】解:∵AE ⊥AB 且AE =AB ,EF ⊥FH ,BG ⊥FH ,∴∠EAB =∠EF A =∠BGA =90°,∵∠EAF +∠BAG =90°,∠ABG+∠BAG=90°,z ∴∠EAF =∠ABG ,在△EF A 和△AGB 中,,∴△EF A ≌△AGB (AAS ),∴AF =BG ,AG =EF .同理证得△BGC ≌△CHD 得GC =DH ,CH =BG .故FH =F A +AG +GC +CH =3+6+4+3=16故S =(6+4)×16﹣3×4﹣6×3=50.故选:A .28.如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .a 2B .a 2C .a 2D .a 2【答案】D【解答】解:过E 作EP ⊥BC 于点P ,EQ⊥CD 于点Q ,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,z∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.29.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC ,其中结论正确的有( )zA .1个B .2个C .3个D .4个 【答案】D【解答】解:∵△ABD 、△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°,在△ABE 和△DBC 中,, ∴△ABE ≌△DBC (SAS ),∴①正确;∵△ABE ≌△DBC ,∴∠BAE =∠BDC ,∵∠BDC +∠BCD =180°﹣60°﹣60°=60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°,∴②正确;在△ABP 和△DBQ 中,, ∴△ABP ≌△DBQ (ASA ),∴BP =BQ ,∴△BPQ 为等边三角形,∴③正确;∵∠DMA =60°,∴∠AMC =120°,∴∠AMC +∠PBQ =180°,∴P 、B 、Q 、M 四点共圆,z ∵BP =BQ ,∴,∴∠BMP =∠BMQ ,即MB 平分∠AMC ;∴④正确;综上所述:正确的结论有4个;故选:D .30.如图,在正方形ABCD 中,如果AF =BE ,那么∠AOD 的度数是 .【答案】见试题解答内容【解答】解:由ABCD 是正方形,得AD =AB ,∠DAB =∠B =90°.在△ABE 和△DAF 中,, ∴△ABE ≌△DAF (SAS ),∴∠BAE =∠ADF .∵∠BAE +∠EAD =90°,∴∠OAD +∠ADO =90°,∴∠AOD =90°,故答案为:90°.31.如图,△ABC 和△EBD 中,∠ABC =∠DBE =90°,AB =CB ,BE =BD ,连接AE ,CD ,AE 与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE =CD ;(2)求证:AE ⊥CD ;(3)连接BM ,有以下两个结论:①BM 平分∠CBE ;②MB 平分∠AMD .其中正确的有 ② (请写序号,少选、错选均不得分).z【答案】见试题解答内容【解答】(1)证明:∵∠ABC =∠DBE ,∴∠ABC +∠CBE =∠DBE +∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,,∴△ABE ≌△CBD ,∴AE =CD .(2)∵△ABE ≌△CBD ,∴∠BAE =∠BCD , ∵∠NMC =180°﹣∠BCD ﹣∠CNM ,∠ABC =180°﹣∠BAE ﹣∠ANB ,又∠CNM =∠ANB ,∵∠ABC =90°,∴∠NMC =90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .z∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB ,∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△CBM ≌△EBM ,则AB =BD ,显然不可能,故①错误.故答案为②.32.(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD .求证:EF =BE +FD ;(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立? (3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】见试题解答内容【解答】证明:(1)延长EB 到G ,使BG =DF ,连接AG .z∵∠ABG =∠ABC =∠D =90°,AB =AD ,∴△ABG ≌△ADF .∴AG =AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF =∠BAD .∴∠GAE =∠EAF .又∵AE =AE ,∴△AEG ≌△AEF .∴EG =EF .∵EG =BE +BG .∴EF =BE +FD(2)(1)中的结论EF =BE +FD 仍然成立.(3)结论EF =BE +FD 不成立,应当是EF =BE ﹣FD . 证明:在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵AB =AD ,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.33.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【答案】见试题解答内容【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC ,∴△DAB≌△F AC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠F AC,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠F AC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.z34.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.) 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】见试题解答内容【解答】证明:(1)①∵∠ADC =∠ACB =∠BEC =90°,∴∠CAD +∠ACD =90°,∠BCE +∠CBE =90°,∠ACD +∠BCE =90°. ∴∠CAD =∠BCE .∵AC =BC ,∴△ADC ≌△CEB (AAS ).②∵△ADC ≌△CEB ,∴CE =AD ,CD =BE .∴DE =CE +CD =AD +BE .解:(2)∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE.又∵AC =BC ,∴△ACD ≌△CBE (AAS ).∴CE =AD ,CD =BE .∴DE =CE ﹣CD =AD ﹣BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE =BE ﹣AD (或AD =BE ﹣DE ,BE =AD +DE 等).∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE ,又∵AC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,CD =BE ,∴DE =CD ﹣CE =BE ﹣AD .35.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图3,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】见试题解答内容【解答】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,z∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠F AE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DEF为等边三角形.36.在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:(1)写出原问题中DF与EF的数量关系;(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.【答案】见试题解答内容【解答】解:(1)DF=EF.(2)猜想:DF=FE.证明:过点D作DG⊥AB于G,则∠DGB=90°.∵DA=DB,∠ADB=60°.∴AG=BG,△DBA是等边三角形.z ∴DB =BA .∵∠ACB =90°,∠ABC =30°,∴AC =AB =BG .在Rt △DBG 和Rt △BAC 中,∴Rt △DBG ≌Rt △BAC (HL ).∴DG =BC .∵BE =EC ,∠BEC =60°,∴△EBC 是等边三角形.∴BC =BE ,∠CBE =60°.∴DG =BE ,∠ABE =∠ABC +∠CBE =90°.∵∠DFG =∠EFB ,∠DGF =∠EBF ,在△DFG 和△EFB 中,∴△DFG ≌△EFB (AAS ).∴DF =EF .(3)猜想:DF =FE .过点D 作DH ⊥AB 于H ,连接HC ,HE ,HE 交CB 于K ,则∠DHB =90°.∵DA =DB , ∴AH =BH ,∠1=∠HDB .∵∠ACB =90°,∴HC =HB .在△HBE 和△HCE 中,∴△HBE ≌△HCE (SSS ).∴∠2=∠3,∠4=∠BEH .∴HK ⊥BC .∴∠BKE =90°.∵∠ADB =∠BEC =2∠ABC ,z ∴∠HDB =∠BEH =∠ABC .∴∠DBC =∠DBH +∠ABC =∠DBH +∠HDB =90°,∠EBH =∠EBK +∠ABC =∠EBK +∠BEK =90°.∴DB ∥HE ,DH ∥BE .∴四边形DHEB 是平行四边形.∴DF =EF .37.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边△DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合)连接DC ,以DC 为边在BC上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 在等边△ABC 边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】见试题解答内容z 【解答】解:(1)AF =BD ;证明如下:∵△ABC 是等边三角形(已知),∴BC =AC ,∠BCA =60°(等边三角形的性质);同理知,DC =CF ,∠DCF =60°;∴∠BCA ﹣∠DCA =∠DCF ﹣∠DCA ,即∠BCD =∠ACF ;在△BCD 和△ACF 中,, ∴△BCD ≌△ACF (SAS ),∴BD =AF (全等三角形的对应边相等);(2)证明过程同(1),证得△BCD ≌△ACF (SAS ),则AF =BD (全等三角形的对应边相等),所以,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF =BD 仍然成立;(3)Ⅰ.AF +BF ′=AB ;证明如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立.新的结论是AF =AB +BF ′;证明如下:在△BCF ′和△ACD 中,,∴△BCF ′≌△ACD (SAS ), ∴BF ′=AD (全等三角形的对应边相等);又由(2)知,AF =BD ;∴AF =BD =AB +AD =AB +BF ′,即AF =AB+BF ′.z 38.操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:线段BM 、MN 、NC 之间的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得5分.AN =NC (如图②);②DM ∥AC (如图③).附加题:若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.【答案】见试题解答内容【解答】解:(1)BM +CN =MN证明:如图,延长AC 至M 1,使CM 1=BM ,连接DM 1由已知条件知:∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠ABD =∠ACD =90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∴∠MDM 1=(120°﹣∠MDB )+∠M 1DC =120°.又∵∠MDN =60°,∴∠M 1DN =∠MDN =60°.∴△MDN ≌△M 1DN .∴MN =NM 1=NC+CM 1=NC +MB .z (2)附加题:CN ﹣BM =MN证明:如图,在CN 上截取CM 1,使CM 1=BM ,连接MN ,DM 1∵∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠DBM =∠DCM 1=90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∵∠BDM +∠BDN =60°,∴∠CDM 1+∠BDN =60°.∴∠NDM 1=∠BDC ﹣(∠M 1DC +∠BDN )=120°﹣60°=60°.∴∠M 1DN =∠MDN . ∵ND =ND ,∴△MDN ≌△M 1DN . ∴MN =NM 1=NC ﹣CM 1=NC ﹣BM,即MN =NC ﹣BM .z 十五.角平分线的性质(共1小题)39.如图,△ABC 的三边AB 、BC 、CA 长分别为40、50、60.其三条角平分线交于点O ,则S △ABO :S △BCO :S △CAO = .【答案】见试题解答内容【解答】解:过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,∵OA ,OB ,OC 是△ABC 的三条角平分线,∴OD =OE =OF ,∵△ABC 的三边AB 、BC 、CA 长分别为40、50、60,∴S △ABO :S △BCO :S △CAO =(AB •OD ):(BC •OF ):(AC •OE )=AB :BC :AC =40:50:60=4:5:6.故答案为:4:5:6.十六.线段垂直平分线的性质(共1小题) 40.如图,△ABC 中,AB =AC ,∠BAC =54°,点D 为AB 中点,且OD ⊥AB ,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为度.【答案】见试题解答内容z 【解答】解:法一:如图,连接OB 、OC ,∵∠BAC =54°,AO 为∠BAC 的平分线,∴∠BAO =∠BAC =×54°=27°,又∵AB =AC ,∴∠ABC =(180°﹣∠BAC )=(180°﹣54°)=63°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =27°,∴∠OBC =∠ABC ﹣∠ABO =63°﹣27°=36°,∵AO 为∠BAC 的平分线,AB =AC ,∴△AOB ≌△AOC (SAS ),∴OB =OC ,∴点O 在BC 的垂直平分线上,又∵DO 是AB 的垂直平分线,∴点O 是△ABC 的外心,∴∠OCB =∠OBC =36°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE =CE , ∴∠COE =∠OCB =36°, 在△OCE 中,∠OEC =180°﹣∠COE ﹣∠OCB =180°﹣36°﹣36°=108°.法二:证明点O 是△ABC 的外心,推出∠BOC =108°,根据OB =OC ,推出∠OCE =36°可得结论.故答案为:108.z 十七.等腰三角形的性质(共4小题)41.如图,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )A .2.5秒B .3秒C .3.5秒D .4秒 【答案】D【解答】解:设运动的时间为x cm ,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动, 当△APQ 是等腰三角形时,AP =AQ ,AP =20﹣3x ,AQ =2x即20﹣3x =2x ,解得x =4(cm ).故选:D .42.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n = 9 .【答案】见试题解答内容【解答】解:由题意可知:AO =A 1A ,A 1A =A 2A 1,…,则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A,…,∵∠BOC =9°,z ∴∠A 1AB =18°,∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,…,∴9°n <90°,解得n <10.由于n 为整数,故n =9.故答案为:9.43.如图所示,AOB 是一钢架,且∠AOB =10°,为了使钢架更加坚固,需在其内部添加一些钢管EF ,FG ,GH …,添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根.【答案】见试题解答内容【解答】解:∵添加的钢管长度都与OE 相等,∠AOB =10°,∴∠GEF =∠FGE =20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.44.如图,△ABC 中AB =AC ,BC =6,点P 从点B 出发沿射线BA 移动,同时,点Q 从点C 出发沿线段AC 的延长线移动,已知点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线垂足为E ,当点P 、Q 在移动的过程中,线段BE 、DE 、CD 中是否存在长度保持不变的线段?请说明理由.【答案】见试题解答内容【解答】解:(1)如图,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP =CQ ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴证得△PFD≌△QCD,∴DF=CD=CF,又因P是AB的中点,PF∥AQ,∴F是BC的中点,即FC=BC=3,∴CD=CF=;(2)分两种情况讨论,得ED为定值,是不变的线段,如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,z∵△PBF为等腰三角形,∴PB=PF,BE=EF,∴PF=CQ,∴FD=DC,∴ED=EF+FD=BE+DC=BC=3,∴ED为定值,同理,如图,若P 在BA的延长线上,z作PM ∥AC 的延长线于M ,∴∠PMC =∠ACB ,又∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠PMC ,∴PM =PB ,根据三线合一得BE =EM ,同理可得△PMD ≌△QCD ,所以CD =DM ,∵BE =EM ,CD =DM ,∴ED =EM ﹣DM =﹣DM =+﹣DM =3+DM ﹣DM =3, 综上所述,线段ED 的长度保持不变.十八.等边三角形的性质(共1小题)45.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉如图正三角形纸板边长的)后,得图③,④,…,记第n (n ≥3)块纸板的周长为P n ,则P n﹣P n ﹣1的值为( )zA .B .C .D . 【答案】C【解答】解:P 1=1+1+1=3,P 2=1+1+=,P 3=1+++×3=,P 4=1+++×2+×3=, …∴P 3﹣P 2=﹣==, P 4﹣P 3=﹣==,则Pn ﹣Pn ﹣1==.故选:C .十九.轴对称-最短路线问题(共3小题)46.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( )。

成都市第八中学八年级数学上册第二单元《全等三角形》检测卷(含答案解析)

成都市第八中学八年级数学上册第二单元《全等三角形》检测卷(含答案解析)

一、选择题1.如图,OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,延长CP ,DP 交OB , OA 于点E ,F ,下列结论错误的是( )A .PC PD =B .OC OD = C .CPO DPO ∠=∠ D .PC PE =2.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .93.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒4.如图,在ABC 中,90C ∠=︒,AD 是BAC ∠的角平分线,E 是边AB 上一点,若6CD =,则DE 的长可以是( )A .1B .3C .5D .75.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A.AE=CE;SAS B.DE=BE;SASC.∠D=∠B;AAS D.∠A=∠C;ASA6.如图,已知AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是()A.BD+ED=BC B.∠B=2∠DACC.AD平分∠EDC D.ED+AC>AD7.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC ④ BA+BC=2BF其中正确的是()A.①②③B.①③④C.①②④D.①②③④8.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长,分别交AC,AB于点F,E,则图中全等三角形共有()A.2对B.3对C.4对D.5对9.如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为( )A .50°B .65°C .70°D .80°10.下列说法正确的是 ( ) A .一直角边对应相等的两个直角三角形全等 B .斜边相等的两个直角三角形全等 C .斜边相等的两个等腰直角三角形全等 D .一边长相等的两个等腰直角三角形全等 11.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b 12.如图,在Rt ABC 和Rt ADE △中,90,,ACB AED AB AD AC AE ∠=∠===,则下列说法不正确的是( )A .BC DE =B .BAE DAC ∠=∠ C .OC OE =D .EAC ABC ∠=∠二、填空题13.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.14.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.15.如图,在△ABC 中,∠ABC 的平分线与外角∠ACE 的平分线交于点D ,若∠D =20°,则∠A =_____.16.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.17.如图,AB =8cm ,AC =5cm ,∠A =∠B ,点P 在线段AB 上以2cm/s 的速度由点A 向B 运动,同时,点Q 以x cm/s 的速度从点B 出发在射线BD 上运动,则△ACP 与△BPQ 全等时,x 的值为_____________18.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________.19.如图,△ABC 的面积为1cm 2,AP 垂直∠ABC 的平分线BP 于P ,则△PBC 的面积为___.20.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.三、解答题21.如图1是一个平分角的仪器,其中OD=OE ,FD=FE .(1)如图2,将仪器放置在△ABC 上,使点O 与顶点A 重合,D 、E 分别在边AB 、AC 上,沿AF 画一条射线AP ,交BC 于点P .则AP 就是∠BAC 的平分线吗?请给出判断并说明理由.(2)如图3,在(1)的前提下,过点P 作PQ ⊥AB 于点Q ,已知PQ=4,AC=7,△ABC 的面积是32,求AB 的长.22.(阅读理解)课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC ≌EDB △的理由是______.(2)求得AD 的取值范围是______.(感悟)解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(问题解决)(3)如图2,在ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM DN ⊥,求证:BM CN MN +>.23.如图,已知A ABC ∠=∠,D CBD ∠=∠,ABD CBD ∠=∠,点E 在BC 的延长线上.求证:CD 平分ACE ∠.24.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .25.直线CD 经过BCA ∠的顶点C ,CA=CB .E ,F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)(数学思考)若直线CD 经过BCA ∠的内部,且E ,F 在射线CD 上,请解决下面两个问题:①如图1,若90BCA ∠=︒,90α∠=︒,求证:EF BE AF =-;②如图2,若090BCA ︒<∠<︒,当α∠与BCA ∠之间满足________关系时,①中结论仍然成立,并给予证明.(2)(问题拓展)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.26.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据角平分线的性质定理判断A 选项;证明△OPC ≌△OPD 判断B 选项;根据△OPC ≌△OPD 即可判断C 选项;证明△DPE ≌△CPF 判断D 选项.【详解】∵OP 平分AOB ∠,PC OA ⊥于点C ,PD OB ⊥于点D ,∴PC=PD ,故A 选项正确;∵∠ODP=∠OCP=90︒,又∵OP=OP ,PC=PD ,∴Rt △OPC ≌Rt △OPD ,∴OC=OD ,故B 选项正确;∵△OPC ≌△OPD ,∴CPO DPO ∠=∠,故C 选项正确;∵∠PDE=∠PCF=90︒,PD=PC ,∠DPE=∠CPF ,∴△DPE ≌△CPF ,∴PE=PF ,∵PF>PC ,∴PE>PC ,故D 选项错误;故选:D .【点睛】此题考查三角形角平分线的性质定理,全等三角形的判定及性质,熟记角平分线的性质定理是解题的关键.2.D解析:D【分析】求出DE 的值,代入面积公式得出关于AB 的方程,求出即可.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE=DF=2,∵S △ABC =S △ABD +S △ACD ,∴12=12×AB×DE+12×AC×DF , ∴24=AB×2+3×2,∴AB=9,故选:D .【点睛】本题考查了角平分线性质,三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.3.C解析:C【分析】先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.4.D解析:D【分析】过点D 作DF AB ⊥于点F ,根据角平分线的性质定理得6CD DF ==,而DE 的长一定是大于等于点D 到AB 的距离也就是DF 的长,即可得出结果.【详解】解:如图,过点D 作DF AB ⊥于点F ,∵AD 平分BAC ∠,DF AB ⊥,90C ∠=︒,∴6CD DF ==,∵DE DF ≥,∴6DE ≥,则只有D 选项符合.故选:D .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质定理.5.C解析:C【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B ,根据AAS 可证明△ADE ≌△CBE ,故此选项符合题意;D.添加∠A=∠C ,根据AAS 可证明△ADE ≌△CBE ,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA .关键在于应根据所给的条件判断应证明哪两个三角形全等.6.B解析:B【分析】利用角平分线的性质定理判断A ;利用直角三角形两锐角互余判断B ;证明△AED ≌△ACD ,由此判断C ;利用三角形三边关系得到AC+CD>AD ,由此判断D .【详解】∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE=DC ,∠BAD=∠DAC ,∵BD+DC=BC ,∴BD+ED=BC ,故A 正确;∵∠C=90︒,∴∠B+∠BAC=90︒,∴∠B+2∠DAC=90︒,故B 错误;∵DE ⊥AB ,∴∠AED=∠C=90︒,又∵∠BAD=∠DAC ,DE=CD ,∴△AED ≌△ACD ,∴∠ADE=∠ADC ,∴AD 平分∠EDC ,故C 正确;在△ACD 中,AC+CD>AD ,∴ED +AC >AD ,故D 正确;故选:B .【点睛】此题考查三角形的三边关系,角平分线的性质定理,全等三角形的判定及性质,直角三角形两锐角互余的性质,熟记各知识点并应用解决问题是解题的关键.7.D解析:D【分析】易证ABD EBC ∆∆≌,可得BCE BDA ∠=∠,AD=EC 可得①②正确;再根据角平分线的性质可求得DAE DCE ∠=∠ ,即③正确,根据③可判断④正确;【详解】∵ BD 为∠ABC 的角平分线,∴ ∠ABD=∠CBD ,∴在△ABD 和△EBD 中,BD=BC ,∠ABD=∠CDB ,BE=BA ,∴△ABD EBC ∆∆≌(SAS),故①正确;∵ BD 平分∠ABC ,BD=BC ,BE=BA ,∴ ∠BCD=∠BDC=∠BAE=∠BEA ,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE是等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,故③正确;作EG⊥BC,垂足为G,如图所示:∵ E是BD上的点,∴EF=EG,在△BEG和△BEF中BE BE EF EG=⎧⎨=⎩∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中EF EG AE CE=⎧⎨=⎩∴△CEG≌△AFE,∴ AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;8.C解析:C【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.【详解】解:AD 平分BAC ∠,BAD CAD ∴∠=∠, 在ABD ∆与ACD ∆中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,()ABD ACD SAS ∴∆≅∆,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠,又EDB FDC ∠=∠,ADE ADF ∴∠=∠,AED AFD ,BDE CDF ∆≅∆,∆≅∆ABF ACE .AED AFD ,ABD ACD ∆≅∆,BDE CDF ∆≅∆,∆≅∆ABF ACE ,共4对. 故选:C .【点睛】本题考查三角形全等的判定方法和全等三角形的性质,熟悉相关判定定理是解题的关键. 9.A解析:A【分析】根据题意可证明ABE ACD ≅,即得到B C ∠=∠.再利用三角形外角的性质,可求出DME ∠,继而求出BMD ∠.【详解】根据题意ABE ACD ≅(SAS ),∴30B C ∠=∠=︒∵DME B BDC ∠=∠+∠,BDC C A ∠=∠+∠∴307030130DME B A C ∠=∠+∠+∠=︒+︒+︒=︒∴180********BMD DME ∠=︒-∠=︒-︒=︒故选A .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质.利用三角形外角的性质求出DME B A C ∠=∠+∠+∠是解答本题的关键.10.C解析:C【分析】根据全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL 定理针对四个选项分别进行判断即可.【详解】A. 一直角边对应相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;B. 斜边相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;C. 斜边相等的两个等腰直角三角形全等,对应角相等,根据AAS即可证明全等,故此选项正确;D. 一边长相等的两个等腰直角三角形不一定全等,必须说明是对应边相等,故此选项错误.故选:C.【点睛】本题考查了全等三角形的判定,掌握证明三角形全等的条件尤其是必须含有边这个条件是解题的关键.11.B解析:B【分析】在线段AC上作AF=AB,证明△AEF≌△AEB可得∠AFE=∠B,∠AEF=∠AEB,再证明△CEF≌△CED可得CD=CF,即可求得四边形ABDC的周长.【详解】解:在线段AC上作AF=AB,∵AE是BAC的平分线,∴∠CAE=∠BAE,又∵AE=AE,∴△AEF≌△AEB(SAS),∴∠AFE=∠B,∠AEF=∠AEB,∵AB∥CD,∴∠D+∠B=180°,∵∠AFE+∠CFE=180°,∴∠D=∠CFE,∵AE CE ⊥,∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,∴∠CEF=∠CED ,在△CEF 和△CED 中∵D CFE CEF CED CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEF ≌△CED (AAS )∴CE=CF ,∴四边形ABDC 的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=2a b +,故选:B .【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键. 12.D解析:D【分析】根据HL 定理分别证明Rt △ABC ≌Rt △ADE 和Rt △AEO ≌Rt △ACO ,根据全等三角形的性质可判断各选项.【详解】解:解:∵90,,ACB AED AB AD AC AE ∠=∠===,∴Rt △ABC ≌Rt △ADE (HL )∴BC DE =,∠BAC=∠DAE ,故A 选项正确;∴∠BAC-∠EAC=∠DAE-∠EAC ,即BAE DAC ∠=∠,故B 选项正确;连接AO ,∵AE=AC ,AO=AO ,∴Rt △AEO ≌Rt △ACO (HL ),∴OC OE =,故C 选项正确;无法得出EAC ABC ∠=∠,故D 选项错误;故选:D .【点睛】本题全等三角形的性质与判断.掌握证明直角三角形全等的HL 定理是解题关键.二、填空题13.15cm2【分析】过点D作DE⊥AB于E根据角平分线的性质可得DE=CD根据三角形的面积公式即可求得△ABD的面积【详解】解:过点D作DE⊥AB于E∵AD是∠BAC的角平分线∠C=90°DE⊥AB∴解析:15cm2【分析】过点D作DE⊥AB于E,根据角平分线的性质可得DE=CD,根据三角形的面积公式即可求得△ABD的面积.【详解】解:过点D作DE⊥AB于E,∵AD是∠BAC的角平分线,∠C=90°,DE⊥AB∴DE=DC,∵BC=8cm,BD=5cm,∴DE=DC=3cm,∴S△ABD=12·AB·DE=12×10×3=15(cm2),故答案为:15cm2.【点睛】本题考查角平分线的性质、三角形的面积公式,熟练掌握角平分线的性质是解答的关键.14.5【分析】作DF⊥AB于F根据角平分线的性质得到DE=DF根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F∵BD平分∠ABCDE⊥BCDF⊥AB∴DE=DF∴×AB×DF+×BC×DE=解析:5【分析】作DF⊥AB于F,根据角平分线的性质得到DE=DF,根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F,∵ BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴12×AB×DF+12×BC×DE=ABCS,即12×AB×2+12×7×2=12, 解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键; 15.40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ∠ACE =2∠DCE 再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ∠A =∠ACE ﹣∠ABC 即得出∠A =2∠D 即得出答案【详解】∵∠ABC解析:40°【分析】利用角平分线的性质可知∠ABC =2∠DBC ,∠ACE =2∠DCE .再根据三角形外角的性质可得出∠D =∠DCE ﹣∠DBE ,∠A =∠ACE ﹣∠ABC .即得出∠A =2∠D ,即得出答案.【详解】∵∠ABC 的平分线交∠ACE 的外角平分线∠ACE 的平分线于点D ,∴∠ABC =2∠DBC ,∠ACE =2∠DCE ,∵∠DCE 是△BCD 的外角,∴∠D =∠DCE ﹣∠DBE ,∵∠ACE 是△ABC 的外角,∠A =∠ACE ﹣∠ABC =2∠DCE ﹣2∠DBE =2(∠DCE ﹣∠DBE ),∴∠A =2∠D =40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.16.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一 解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.17.2或【分析】由∠A =∠B 可知△ACP 与△BPQ 全等时CP 和PQ 是对应边则分AP =BQ 和AP =PB 两种情况进行讨论即可【详解】设动点的运动时间为t 秒则AP =2tBP =AB -AP =8-2tBQ =xt ∵∠解析:2或52【分析】由∠A =∠B ,可知△ACP 与△BPQ 全等时,CP 和PQ 是对应边,则分AP =BQ 和AP =PB 两种情况进行讨论即可.【详解】设动点的运动时间为t 秒,则AP =2t ,BP =AB -AP =8-2t ,BQ =xt ,∵∠A =∠B ,∴CP 和PQ 是对应边,当△ACP 与△BPQ 全等时,①AP =BQ ,即:2t = xt ,解得:x =2,②AP =PB ,即:2t =8-2t ,解得:t =2,此时,BQ =AC ,xt =5,即:2x =5,解得:x=5 2故填:2或52.【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.18.22【分析】由三角形全等性质可得mn中有一边为5pq中有一边为3mn与pq中剩余两边相等再由三角形三边关系可知mn与pq中剩余两边最大为7如此即可得到m+n+p+q的最大值【详解】∵△ABC≌△DE解析:22【分析】由三角形全等性质可得m、n中有一边为5,p、q中有一边为3,m、n与p、q中剩余两边相等,再由三角形三边关系可知m、n与p、q中剩余两边最大为7,如此即可得到m+n+p+q的最大值.【详解】∵△ABC≌△DEF,∴m、n中有一边为5,p、q中有一边为3,m、n与p、q中剩余两边相等,∵3+5=8,∴两三角形剩余两边最大为7,∴m+n+p+q的最大值为:3+5+7+7=22.【点睛】本题考查三角形全等与三角形三边关系的综合运用,灵活运用三角形全等的性质及三角形三边关系的应用是解题关键.19.cm2【分析】如图延长AP交BC于T利用全等三角形的性质证明AP=PT即可解决问题【详解】解:如图延长AP交BC于T∵BP⊥AT∴∠BPA=∠BPT=90°∵BP=BP∠PBA=∠PBT∴△BPA≌解析:12cm2【分析】如图,延长AP交BC于T.利用全等三角形的性质证明AP=PT即可解决问题.【详解】解:如图,延长AP交BC于T.∵BP⊥AT,∴∠BPA=∠BPT=90°,∵BP=BP ,∠PBA=∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA=PT ,∴BPA BPT CAP CPT S S S S ==, 1122PBC ABC S S ∴==, 故答案为12cm 2. 【点睛】 本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.20.【分析】首先由角平分线的性质可知DF=DE=4然后由S △ABC=S △ABD+S △ACD 及三角形的面积公式得出结果【详解】解:∵AD 是∠BAC 的平分线DE ⊥ABDF ⊥AC ∴DF=DE=4又∵S △ABC解析:【分析】首先由角平分线的性质可知DF=DE=4,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE=4.又∵S △ABC =S △ABD +S △ACD ,AB=8,∴12×8×4+ 12×AC×4=28, ∴AC=6.故答案是:6.【点睛】本题主要考查了角平分线的性质;利用三角形的面积求线段的长是一种很好的方法,要注意掌握应用.三、解答题21.(1)AP 是∠BAC 的平分线,理由见解析;(2)AB=9【分析】(1)利用“SSS”证明△ADF ≌△AEF 即可证明AP 是∠BAC 的平分线;(2)利用角平分线的性质得到PG=PQ=4,再根据三角形的面积公式即可求解.【详解】解:(1)AP 是∠BAC 的平分线,理由如下:在△ADF 和△AEF 中,AD AE AF AF DF EF =⎧⎪=⎨⎪=⎩,∴△ADF ≌△AEF (SSS ),∴∠DAF=∠EAF ,即AP 平分∠BAC ;(2)过点P 作PG ⊥AC 于点G ,∵AP 平分∠BAC ,PQ ⊥AB ,PG ⊥AC ,∴PG=PQ=4, ∵11 22ABC ABP APC SS S AB PQ AC PG =+=⋅+⋅ ∴114743222AB ⨯+⨯⨯=, ∴AB=9.【点睛】本题考查了全等三角形的判定及性质,角平分线的判定和性质.熟练掌握确定三角形的判定方法,正确的识别图形是解题的关键.22.(1)SAS ;(2)17AD <<;(3)见解析【分析】(1)根据AD=DE ,∠ADC=∠BDE ,BD=DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE=AC=6,AE=2AD ,由三角形三边关系定理得出8-6<2AD <8+6,求出即可;(3)延长ND 至点E ,使DE DN =,连接BE 、ME ,证明BED ≌()SAS CND △,得到BE CN =,根据三角形三边关系解答即可.【详解】(1)解:∵在△ADC 和△EDB 中,AD DE ADC BDE BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△EDB (SAS ),故答案为:SAS ;(2)解:∵由(1)知:△ADC ≌△EDB ,∴BE=AC=6,AE=2AD ,∵在△ABE 中,AB=8,由三角形三边关系定理得:8-6<2AD <8+6,∴1<AD <7,故答案为:1<AD <7.(3)证明:延长ND 至点E ,使DE DN =,连接BE 、ME ,如图所示:∵点D 是BC 的中点,∴BD CD =.在BED 和CND △中,DE DN BDE CDN BD CD =⎧⎪∠=∠⎨⎪=⎩, ∴BED ≌()SAS CND △,∴BE CN =,∵DM DN ⊥,DE DN =,∴ME MN =,在BEM △中,由三角形的三边关系得:BM BE ME +>,∴BM CN MN +>.【点睛】本题是三角形综合题,主要考查了三角形的中线,三角形的三边关系定理,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.23.见解析【分析】根据题意,先证明//AB CD ,然后由平行线的性质以及等量代换,得到ACD DCE ∠=∠,即可得到结论成立.【详解】证明:D CBD ∠=∠,ABD CBD ∠=∠,D ABD ∴∠=∠,//AB CD ∴ABC DCE ∴∠=∠,A ACD ∠=∠又A ABC ∠=∠,ACD DCE ∴∠=∠,CD ∴平分ACE ∠.【点睛】本题考查了平行线的判定和性质,角平分线的判定,解题的关键是掌握所学的知识,正确得到//AB CD .24.见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.25.(1)证明见解析;(2)180ACB α∠+∠=︒,证明见解析;(3)EF BE AF =+,证明见解析.【分析】(1)①求出∠BEC =∠AFC =90°,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE =AF 即可;②当∠α+∠ACB =180°,证明∠BEC =∠AFC ,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE =AF 即可;(2)求出∠BEC =∠AFC ,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE =AF 即可.【详解】(1)①在图1中,90BEC AFC ∠=∠=︒,90ACB ∠=︒,90BCE ACF ∠+∠=︒,90EBC BCE ∠+∠=︒,EBC ACF ∴∠=∠,在BCE 和CAF 中,EBC ACF BEC AFC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BCE CAF AAS ∴≅,BE CF ∴=,CE AF =,EF CF CE BE AF ∴=-=-;②当180ACB α∠+∠=︒时,①中结论仍然成立;证明:在图2中,BEC CFA a ∠=∠=∠,180ACB α∠+∠=︒,BCE ACF EBC BCE ∴∠+∠=∠+∠,EBC ACF ∴∠=∠,在BCE 和CAF 中,EBC ACF BEC AFC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BCE CAF AAS ∴≅,BE CF ∴=,CE AF =,EF CF CE BE AF ∴=-=-.故答案为180ACB α∠+∠=︒;(2)不成立,结论:EF BE AF =+.理由:在图3中,BEC CFA a ∠=∠=∠,a BCA ∠=∠,又180EBC BCE BEC +∠+∠=︒,180BCE ACF ACB ∠+∠+∠=︒,EBC BCE BCE ACF ∴∠+∠=∠+∠,EBC ACF ∴∠=∠,在BEC △和CFA △中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BEC CFA AAS ∴≅,AF CE ∴=,BE CF =,EF CE CF =+,EF BE AF ∴=+.【点睛】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.26.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.。

湖北省武汉市江岸区、东西湖区2022-2023学年八年级上学期期中考试数学试卷

湖北省武汉市江岸区、东西湖区2022-2023学年八年级上学期期中考试数学试卷

湖北省武汉市江岸区、东西湖区2022-2023学年八年级上学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.2.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()A.2cm B.3cm C.5cm D.7cm3.已知图中的两个三角形全等,则∠α等于()A.50°B.60°C.70°D.80°4.已知一个正多边形的每一个外角都是36︒,则这个正多边形的边数是( )A .8B .9C .10D .125.如图MB ND =,MBA NDC ∠=∠,下列条件中不能判定ABM CDN △△≌的是( )A .M N ∠=∠B .AB CD =C .AM CN =D .AM CN ∥ 6.如图,要测量池塘两岸相对的两点A 、B 的距离,可以在池塘外取AB 的垂线BF 上的两点C 、D ,使得BC CD =,再画出BF 的垂线DE ,使点E 与点A 、C 在一条直线上,这是测得线段DE 的长就是线段AB 的长,其原理运用到三角形全等的判定是( )A .ASAB .SSSC .HLD .SAS 7.如图,ABC V 的外角ACE ∠和外角CAF ∠的平分线交于点P ,已知70P ∠=︒,则B ∠的度数为( )A .42°B .40°C .38°D .35° 8.如图,在ABC V 中,线段AC 的垂直平分线和线段BC 的垂直平分线分别与边AB 交于点M 、N (M 在N 的左边),设ACB θ∠=,则M C N ∠的大小可以用含θ的式子表示为( )A .90θ︒+B .1802θ︒-C .2180θ-︒D .2703θ︒- 9.如图所示,在ABC V 中,70ABC ∠=︒,BD 平分ABC ∠,P 为线段BD 上一动点,Q为边AB 上一动点,当AP PQ +的值最小时,APB ∠的度数是( )A .120°B .125°C .130°D .135° 10.如图,在一个44⨯的正方形网格中,ABC V 为格点三角形(三角形的三个顶点都在网格格点上的三角形),在所给的网格中,与ABC V 全等的格点三角形(ABC V 除外)共有( )个A .35B .31C .27D .15二、填空题11.在平面直角坐标系中,点()3,2-关于x 轴对称的点的坐标是________.12.一个八边形的对角线共有__条.13.形如燕尾的几何图形我们通常称之为“燕尾形”.如图是一个燕尾形,已知105ADC ∠=︒,63ABC ∠=︒,22BAD ∠=︒,则BCD ∠的度数为______.14.用一条长为28cm 的细绳围成一个等腰三角形,已知这个等腰三角形一边长是另一边长的1.5倍,则它的底边长为______cm .15.如图,在ABC V 中,90ACB ∠=︒,AC BC =,直线AE 交边BC 于点D ,BE AD ⊥于点E ,过点C 作CH AD ⊥于点H .根据题意,有以下结论:①135CEB ∠=︒;②2AD CH DH =+;③若AE 平分CAB ∠,则有12BE AD =;④若AE 平分CAB ∠,则2AB DB AC+=.其中正确的结论有______.(填写序号)16.如图,在ABC V (AB AC >)中,AB nAC =,AD 、AE 分别为三角形的角平分线、中线,若27DE BC =,则n 的值为______.三、解答题17.求出下列图形中x 的值.18.已知:如图,∠ABC=∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线. 求证:AB=DC .19.如图,在ABC V 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,70C ∠=︒.(1)AOB ∠的度数为______;(2)若60ABC ∠=︒,求DAE ∠的度数.20.如图,在下列带有坐标系的网格中,ABC V 的顶点都在边长为1的小正方形的顶点上,()3,3A -,()4,2B --,()0,1C -.仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,并完成下列问题.(1)在图1中,画出ABC V 关于y 轴对称的DEC V (点D 与点A 对应),点E 的坐标为______;(2)在图1中,画出ABC V 的中线AM ,点M 的坐标为______;(3)在图2中,画出ABC V 的高BF (保留作图痕迹).21.如图,BAC ∠的角平分线与线段BC 的垂直平分线DG 交于点D ,DE AB ⊥,DF AC ⊥,垂足分别为点E 、F .(1)求证:BE CF =;(2)求证:2AB AC BE -=.22.(1)如图1,四边形ABCD 是正四边形,EAF ∠在BAD ∠的内部绕点A 转动,若AE 平分BEF ∠.求证:AF 平分DFE ∠.(2)如图2,四边形ABCD 是正四边形,45EAF ∠=︒,EAF ∠绕点A 旋转,EAF ∠的边与CB 的延长线交于点E ,与DC 的延长线交于点F ,判断BE 、EF 、DF 的数量关系并证明.23.(1)问题背景:如图1,在ABC V 和ADE V 中,DAE BAC ∠=∠,AD AE =,AB AC =,连接BD 、CE ,直接写出线段BD 和线段CE 的数量关系______;(2)问题探究:如图2,在ABC V 和ADE V 中,DAE BAC ∠=∠,AD AE =,AB AC =,点E 在ABC V 内,延长DE 交BC 于点F ,当点F 是线段BC 中点时,求证:90ADB ∠=︒; (3)延伸拓展:如图3,在ABC V 和ADE V 中,90DAE BAC ∠=∠=︒,AD AE =,AB AC =,连接BE 、CD ,过点A 作AM CD ⊥于点M ,反向延长AM 交BE 于点N ,求证;2CD AN =.24.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点B 的坐标为()4,0,点C 的坐标为()0,4,EDC △是以点D 为直角顶点的等腰直角三角形,点E 在第三象限,点D 在x 轴上运动.(1)如图1所示,当点D 的坐标为()1,0时,求点E 的坐标;(2)如图2所示,点D 在线段OB 上运动时,连接AC 、BC ,连接AE 并延长与y 轴交于点P ,求点P 的坐标;(3)如图3,设E D C △的边ED 与y 轴交于点G ,CE 与x 轴交于点F ,当点D 在线段OB 上运动,且满足12EG ED <时,在线段DE 上取点H ,且DH EG =,连接HF 交y 轴于点Q .下列结论:①2CG FH =;②QGH △为等腰三角形,其中只有一个结论是正确,请判断出正确的结论,并写出证明过程.。

三角形及其角平分线、中线和高线

三角形及其角平分线、中线和高线

三角形及其角平分线、中线和高线知识导引1、三角形的有关概念:定义:由不在通一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

外角:三角形一条边的延长线和另一条相邻的边组成的角。

三角形的中线:连结三角形的一个顶点与该顶点的对边中点的线段,叫做三角形的中线。

三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线。

三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

注意:三角形的中线、高线、角平分线都是线段。

2、三角形的边角关系:边与边的关系:三角形的任意一边大于另外两边之差,并小于另外两边之和。

角与角的关系:三角形的内角和等于180°,外角和等于360°;三角形的一个外角等于和它不相邻的两个内角的和,且大于任何一个和它不相邻的内角。

边与角的关系:在一个三角形中,等角对等边,等边对等角,大角对大边,大边对大角。

3三角形的分类:按角分:三角形可分为锐角三角形、直角三角形、钝角三角形。

按边分:三角形可分为不等边三角形、等腰三角形。

典例精析例1:现有2cm,4cm,5cm,8cm长的四根木棒,任意选取三根组成一个三角形,那么可以组成三角形的个数为()A、1个B、2个C、3个D、4个例2:如图,AD是△ABC的角平分线,AE是BC边上的高线,∠B=20°,∠C=40°,求∠DAE 的度数。

例3:如图所示,平面上的六个点A、B、C、D、E、F构成一个封闭的折线图形。

求∠A+∠B +∠C+∠D+∠E+∠F的值。

例3—1:求如图1所示图形中∠A+∠B+∠C+∠D+∠E 的大小。

例3—2:如图所示,(∠1+∠2-∠3)+(∠4+∠5-∠6)+(∠7+∠8-∠9)=例4:如图所示,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于点D ,且∠D=30°,求∠A 的度数。

专题07 角的平分线性质(知识点串讲)(解析版)

专题07 角的平分线性质(知识点串讲)(解析版)

专题07 角的平分线性质知识网络重难突破知识点一角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。

角平分线的性质:角平分线上的点到角两边的距离相等;数学语言:∵∠MOP=∠NOP,PA⊥OM PB⊥ON∴PA=PB判定定理:到角两边距离相等的点在角的平分线上.数学语言:∵PA⊥OM PB⊥ON PA=PB∴∠MOP=∠NOP典例1 (2018春 泰安市期中)如图,在△ABC 中,BE 、CE 分别是∠ABC 和∠ACB 的平分线,过点E 作DF∥BC 交AB 于D ,交AC 于F ,若AB=4,AC=3,则△ADF 周长为( )A .6B .7C .8D .10【答案】B【详解】 因为∠ABC 和∠ACB 的平分线交于点E ,所以∠ABE=∠EBC,∠ACE=∠ECB.因为DF∥BC,所以∠EBC=∠BED,∠ECB=∠FEC,则DE=DC ,EF=FC ,则DF=DE+EF=DB+FC ,所以△ADF 周长=3+4=7.故选择B 项.典例2 (2019春 邯郸市期中)如图,直线AB 、CD 相交于点O ,OD 平分∠AOE,∠BOC=50°,则∠EOB=( )A.50°B.60°C.70°D.80°【答案】D【详解】 解:∵∠BOC=50°,∴∠AOD=50°,∴∠AOE=100°,∠EOB=180°-100°=80°,故选D.典例3 (2018出 盐城市期末)如图,AOB ∠与AOC ∠互余,AOD ∠与AOC ∠互补,OC 平分BOD ∠,则AOB∠的度数是()A.20︒B.22.5︒C.25︒D.30°【答案】B【详解】解:∵∠AOB与∠AOC互余,∠AOD与∠AOC互补,∴∠AOB=90°-∠AOC,∠AOD=180°-∠AOC,∴∠BOD=∠AOD-∠AOB=90°,∵OC平分∠BOD,∴∠BOC=45°,∴∠AOC=45°+∠AOB,∴∠AOB=90°-∠AOC=90°-(45°+∠AOB),∴∠AOB=22.5°,故选:B.知识点二角平分线常考四种辅助线:⏹图中有角平分线,可向两边作垂线。

2022年最新精品解析冀教版七年级数学下册第九章 三角形专项训练试题(含答案解析)

2022年最新精品解析冀教版七年级数学下册第九章 三角形专项训练试题(含答案解析)

冀教版七年级数学下册第九章 三角形专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )A .两点确定一条直线B .两点之间,线段最短C .三角形具有稳定性D .三角形的任意两边之和大于第三边2、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°3、如图,将一个含有30°角的直角三角板放置在两条平行线a ,b 上,若1115∠=︒,则2∠的度数为( )A .85°B .75°C .55°D .95°4、下列各图中,有△ABC 的高的是( )A .B .C .D .5、如图,在△ABC 中,∠C =90°,D ,E 是AC 上两点,且AE =DE ,BD 平分∠EBC ,那么下列说法中不正确的是( )A .BE 是△ABD 的中线B .BD 是△BCE 的角平分线C .∠1=∠2=∠3D .S △AEB =S △EDB 6、三角形的外角和是( )A .60°B .90°C .180°D .360°7、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A .2B .10C .12D .138、在△ABC 中,∠A =∠B =14∠C ,则∠C =( ) A .70° B .80° C .100° D .120°9、如图,已知AD AB =,C E ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A .155°B .125°C .135°D .145°10、如图,在△ABC 中,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,∠D =15°,则∠A 的度数为( )A .30°B .45°C .20°D .22.5°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在直线l 1∥l 2,把三角板的直角顶点放在直线l 2上,三角板中60°的角在直线l 1与l 2之间,如果∠1=35°,那么∠2=___度.2、如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1,设∠A =θ.则∠A 1=_______(用含θ的式子表示).3、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).4、如图,AB =DE ,AC =DF ,BF =CE ,点B 、F 、C 、E 在一条直线上,AB =4,EF =6,求△ABC 中AC 边的取值范围.5、在ABC 中,若50,A B C ∠=︒∠=∠,则B ∠=_______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知△ABC 的高AD 和角平分线AE ,∠B =26°,∠ACD =56°,求(1)∠CAD的度数;(2)∠AED的度数.2、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB 的度数.3、如图,AB∥CD,∠BAC的角平分线AP与∠ACD的角平分线CP相交于点P,求证:AP⊥CP.4、用无刻度的直尺作图,保留作图痕迹.(1)在图1中,BD是△ABC的角平分线,作△ABC的平分内角∠BCA的角平分线;(2)在图2中,AD是∠BAC的角平分线,作△ABC的∠BCA相邻的外角的角平分线.5、如图,BD 是ABC ∆的角平分线,BE 是ABC ∆的AC 边上的中线.(1)若ABE △的周长为13,6BE =,4CE =,求AB 的长.(2)若92A ∠=︒,34CBD ∠=︒,求C ∠的度数.-参考答案-一、单选题1、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C .【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.2、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.3、A【解析】【分析】由平行线的性质,得31115∠=∠=︒,然后由三角形外角的性质,即可求出答案.【详解】解:由题意,如图,a b,∵//∴31115∠=∠=︒,∠=∠+︒,∵3230∠=︒-︒=︒;∴21153085故选:A【点睛】本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出3115∠=︒.4、B【解析】【分析】利用三角形的高的定义可得答案.【详解】解:∵选项B是过顶点C作的AB边上的高,∴有△ABC的高的是选项B,故选:B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.5、C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∵AE=DE,∴BE是△ABD的中线,故本选项不符合题意;B、∵BD平分∠EBC,∴BD是△BCE的角平分线,故本选项不符合题意;C、∵BD平分∠EBC,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D、∵S△AEB=12×AE×BC,S△EDB=12×DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.6、D【解析】【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,142536180∠+∠=∠+∠=∠+∠=︒,142536540∴∠+∠+∠+∠+∠+∠=︒,又123180∠+∠+∠=︒,456540180360∴∠+∠+∠=︒-︒=︒,即三角形的外角和是360︒,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.7、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x ,则由三角形三边关系定理得7-5<x <7+5,即2<x <12.只有选项B 符合题意,故选:B .【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.8、D【解析】【分析】根据三角形的内角和,180A B C ∠+∠+∠=︒①,进而根据已知条件,将,A B ∠∠代入①即可求得C ∠【详解】解:∵在△ABC 中,180A B C ∠+∠+∠=︒,∠A =∠B =14∠C , ∴1118044C C C ∠+∠+∠=︒解得120C ∠=︒故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.9、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.10、A【解析】【分析】由三角形的外角的性质可得,,ACE A ABC ECD CBD D再结合角平分线的性质进行等量代换可得112,22CBD D A ABC A CBD从而可得答案.【详解】解:∠ABC与∠ACE的平分线相交于点D,11,,22CBD ABC ECD ACE,,ACE A ABC ECD CBD D112,22CBD D A ABC A CBD1,2D A15,D30.A∴∠=︒故选A【点睛】本题考查的是三角形的角平分线的性质,三角形的外角的性质,熟练的利用三角形的外角的性质结合等量代换得到12D A∠=∠是解本题的关键.二、填空题1、65【解析】【分析】根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.【详解】解:∵∠3是△ABC的外角,∠1=∠ABC=35°,∴∠3=∠C+∠ABC=30°+35°=65°,∵直线l1∥l2,∴∠2=∠3=65°,故答案为:65.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.2、1 2θ【解析】【分析】根据角平分线的定义、三角形的外角的性质计算即可.【详解】∵∠ABC与∠ACD的平分线交于A1点,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∵∠A=∠ACD-∠ABC=θ∴∠A1=∠A1CD-∠A1BC=12(∠ACD-∠ABC)=12∠A=12θ,故答案为:12 .【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.3、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x<7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.4、2<AC<10【解析】【分析】由BF=CE得到 BC=EF=6,再根据三角形三边关系求解即可.【详解】解:∵BF=CE,点B、F、C、E在一条直线上,∴BF+FC=CE+FC ,∴BC=EF =6,∵AB =4,∴6-4<AC <6+4,即2<AC <10,∴AC 边的取值范围为2<AC <10.【点睛】本题考查三角形的三边关系,熟知一个三角形任意两边之和大于第三边,任意两边之差小于第三边是解答的关键.5、65°##65度【解析】【分析】由三角形的内角和定理,得到180A B C ∠+∠+∠=︒,即可得到答案;【详解】解:在ABC 中,180A B C ∠+∠+∠=︒,∵50,A B C ∠=︒∠=∠,∴502180B ︒+∠=︒,∴65B ∠=︒;故答案为:65°.【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.三、解答题1、 (1)34°(2)41°【解析】【分析】(1)根据三角形内角和可得CAD ∠的度数;(2)先根据三角形外角性质计算出30BAC ∠=︒,再根据角平分线定义得到1122BAE BAC ∠∠==︒,接着再利用三角形外角性质得到AED ∠.(1)解:在Rt ACD △中,90D ∠=︒,56ACD ∠=︒,180905634CAD ∴∠=︒-︒-︒=︒; (2)解:在ABC ∆中,ACD B BAC ∠=∠+∠,562630BAC ∴∠=︒-︒=︒,AE ∵平分BAC ∠,1152BAE BAC ∴∠=∠=︒, 261541AED B BAE ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查角形内角和定理,解题的关键是掌握三角形内角和是180︒,合理使用三角形外角性质计算角度.2、75°【解析】【分析】根据角平分线的定义求出∠DAC 的度数,所以EDCA 可求,进而求出∠ACB 的度数.【详解】解:∵AD 是∠BAC 的平分线,∠BAC =80°,∴∠DAC =40°,∵CE 是△ADC 边AD 上的高,∴∠ACE =90°﹣40°=50°,∵∠ECD =25°∴∠ACB =50°+25°=75°.【点睛】本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.3、见解析【解析】【分析】利用角平分线的性质及平行线的性质,通过等量代换能证明出90P ∠=︒,即可证明AP ⊥CP .【详解】证明:∵AB //CD (已知),∴∠BAC +∠ACD =180°(两直线平行,同旁内角互补),∵AP 、CP 分别平分∠BAC 、∠ACD (已知),∴∠CAP =12∠BAC ,∠ACP =12∠ACD ,∴∠CAP +∠ACP =12∠BAC +12∠ACD =12(∠BAC +∠ACD )=90°,又∵∠CAP +∠ACP +∠P =180°,∴∠P =90°,∴AP⊥CP.【点睛】本题考查了角平分线的性质、平行线的性质,解题的关键是掌握角平分线的性质进行求解.4、(1)见解析;(2)见解析.【解析】【分析】(1)作∠BAC的平分线交BD于点O,作射线CO交AB于E,线段CE即为所求;(2)作△ABC的∠ABC的外角的平分线交AD与D,作射线CD,射线CD即为所求.【详解】(1)如图1,线段CE为所求;(2)如图2,线段CD为所求.【点睛】本题主要考查了基本作图、三角形的外角、三角形的角平分线等知识点,理解三角形的内角平分线交于一点成为解答本题的关键.5、(1)3;(2)20 .【解析】【分析】(1)首先根据中线的性质得到4AE CE ==,然后根据ABE △的周长为13,即可求出AB 的长;(2)首先根据BD 是ABC ∆的角平分线得到268ABC CBD ∠=∠=︒,然后根据三角形内角和定理即可求出C ∠的度数.【详解】(1)∵BE 是ABC ∆的AC 边上的中线,∴4AE CE ==,又∵ABE △的周长为13,∴1313463AB AE BE =--=--=;(2)∵BD 是ABC ∆的角平分线,∴268ABC CBD ∠=∠=︒,又∵92A ∠=︒,∴180180926820C A ABC ∠=︒-∠-∠=︒-︒-︒=︒.【点睛】此题考查三角形中线和角平分线的概念,三角形内角和定理的运用,解题的关键是熟练掌握三角形中线和角平分线的概念,三角形内角和定理.。

人教版2020年八年级上册第11章《三角形》达标检测卷(含答案)

人教版2020年八年级上册第11章《三角形》达标检测卷(含答案)

八年级上册第11章《三角形》达标检测卷满分120分 姓名:_______班级:_______考号:_______成绩:________一、选择题(满分30分)1.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D . 2.下列各组线段中,能组成三角形的是( )A .a =3 cm ,b =8 cm ,c =5 cmB .a =5 cm ,b =5 cm ,c =10 cmC .a =12 cm ,b =5 cm ,c =6 cmD .a =15 cm ,b =10 cm ,c =7 cm3.如图,在生活中,我们经常会看见如图所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的( )A .稳定性B .灵活性C .对称性D .全等性4.在△ABC 中,若一个内角等于另两个内角的差,则这个三角形必定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .以上三个都是5.如图,∠C=50°,∠B=30°,则∠CAD 的度数是A .80°B .90°C .100°D .110°6.下列多边形中,对角线是5条的多边形是( )A .四边形B .五边形C .六边形D .七边形7.已知a b c 、、是ABC ∆的三边长,化简a b c b a c +----的值是( )A .2c -B .22b c -C .22a c -D .22a b -8.如图,△ABC 的面积为8,AD 为BC 边上的中线,E 为AD 上任意一点,连接BE ,CE ,图中阴影部分的面积为()A.2 B.3 C.4 D.59.已知一个正多边形的一个外角是72︒,则该正多边形的边数为()A.9 B.4 C.5 D.π10.如图,过正六边形ABCDEF的顶点B作一条射线与其内角∠BAF的角平分线相交于点P,且∠APB=40°,则∠CBP的度数为()A.80°B.60°C.40°D.30°二、填空题(满分32分)11.如果三角形的两边长为1和5,第三边长为整数,那么三角形的周长为_____.12.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD周长为19cm,AB=__________13.如图,已知AE∥BD,∠1=126°,∠2=40°,则∠C=__________°.14.已知一个正多边形的内角和是外角和的3倍,那么这个正多边形的每个内角是_____度.15.如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于_____度,若∠A=60°时,∠BOC又等于_____16.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.17.如图所示,A B C D E F ∠+∠+∠+∠+∠+∠=_________.18.科技馆为某机器人编制一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为________.三、解答题(7小题,满分58分)19.(6分)如图,AD 是ABC ∆的中线,AH 是ABC ∆的高,1BD =,2AH =,求ABC ∆的面积.20.(6分)如图,五边形ABCDE 的内角都相等,且AB =BC ,AC =AD ,求∠CAD 的度数.21.(8分)如图,在ABC ∆中,(1)画出BC 边上的高AD 和ABC ∆中A ∠的平分线AE .(2)若30B ∠=︒,130ACB ∠=︒,求BAD ∠和EAD ∠的度数.22.(8分)如图,AC ,BD 为四边形ABCD 的对角线,∠ABC =90°,∠ABD +∠ADB =∠ACB ,∠ADC =∠BCD .(1)求证:AD ⊥AC ;(2)探求∠BAC 与∠ACD 之间的数量关系,并说明理由.23.(8分)如图,在△ABC 中,∠B=∠C=45°,点D 在BC 边上,点E 在AC 边上,且∠ADE=∠AED ,连结DE .(1)当∠BAD=60°,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试写出∠BAD 与∠CDE 的数量关系,并说明理由.24.(10分)已知凸四边形ABCD中,∠A=∠C=90°.(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DE与BF位置关系并证明.(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.25.(12分)如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD-∠A1BD=12(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系______;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.。

【微专题】2023学年八年级数学上册常考点微专题提分精练(人教版)内外角平分线问题(解析版)

【微专题】2023学年八年级数学上册常考点微专题提分精练(人教版)内外角平分线问题(解析版)

内外角平分线问题类型一一内一外求角1.如图∠ACD是△ABC的外角∠A=40° BE平分∠ABC CE平分∠ACD且BE CE交于点E.(1)求∠E的度数;(2)请猜想∠A与∠E之间的数量关系不用说明理由.【答案】(1)∠E=20°;(2)∠A=2∠E.【解析】【分析】(1)根据角平分线的定义三角形内角和定理三角形外角的性质进行解答即可;(2)根据(1)中的推导过程进行推论即可.【详解】(1)∠BE平分∠ABC CE平分∠ACD∠∠ABC=2∠CBE∠ACD=2∠DCE由三角形的外角性质得∠ACD=∠A+∠ABC∠DCE=∠E+∠CBE∠∠A+∠ABC=2(∠E+∠CBE),∠∠A =2∠E∠∠A =40°∠∠E =20°.(2)∠A =2∠E .理由如下:∠BE 平分∠ABC CE 平分∠ACD∠∠ABC =2∠CBE ∠ACD =2∠DCE由三角形的外角性质得∠ACD =∠A +∠ABC∠DCE =∠E +∠CBE∠∠A +∠ABC =2(∠E +∠CBE ),∠∠A =2∠E【点睛】本题考查了角平分线的定义 三角形内角和定理 三角形外角的性质 熟练掌握以上知识点是解本题的关键.2.如图 在∠ABC 中 ∠A =30° E 为BC 延长线上一点 ∠ABC 与∠ACE 的平分线相交于点D 则∠D 等于( )A .10°B .15°C .20°D .30°【答案】B【解析】【分析】 先根据角平分线的定义得到12∠=∠ 34∠=∠ 再根据三角形外角性质得1234A ∠+∠=∠+∠+∠ 13D ∠=∠+∠ 则2123A ∠=∠+∠ 利用等式的性质得到12D A ∠=∠ 然后把A ∠的度数代入计算即可.【详解】解答:解:∠ABC ∠的平分线与ACE ∠的平分线交于点D∠12∠=∠34∠=∠∠ACE A ABC∠=∠+∠即1234A ∠+∠=∠+∠+∠∠2123A∠=∠+∠∠13D∠=∠+∠∠11301522D A∠=∠=⨯︒=︒.故选:B.【点睛】本题考查了三角形内角和定理和三角形外角性质、角平分线的性质等根据三角形内角和是180°和三角形外角性质进行分析是解题关键.3.如图∠ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P 若∠BPC=40° 则∠BAC的度数是____________.【答案】80°.【解析】【详解】试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ∠PCD=∠P+∠PCB 根据角平分线的定义可得∠PCD=12∠ACD ∠PBC=12∠ABC 然后整理得到∠PCD=12∠A 再代入数据计算即可得解.在∠ABC中∠ACD=∠A+∠ABC在∠PBC中∠PCD=∠P+∠PCB∠PB、PC分别是∠ABC和∠ACD的平分线∠∠PCD=12∠ACD ∠PBC=12∠ABC∠∠P+∠PCB=12(∠A+∠ABC)=12∠A+12∠ABC=12∠A+∠PCB∠∠PCD=12∠A∠∠BPC=40°∠∠A=2×40°=80°即∠BAC=80°.考点:三角形内角和定理.4.如图△ABC BD平分∠ABC且与∠ABC的外角∠ACE的角平分线交于点D 若∠ABC=m° ∠ACB=n° 求∠D的度数为()A.90°+12m°-12n°B.90°-12m°+12n°C.90°-12m°-12n°D.不能确定【答案】C【解析】【分析】由角平分线分别求出∠DBC和∠ACD 然后在∠BCD中利用三角形内角和定理可求出∠D.【详解】∠BD平分∠ABC∠∠DBC=12∠ABC=12m°∠∠ACB=n°∠∠ACE=180°-n°又∠CD平分∠ACE∠∠ACD=12∠ACE=()111809022-=-n n在∠BCD中∠DBC=12m° ∠BCD=∠ACB+∠ACD=1902+n∠∠D=1111 180DBC BCD=18090902222⎛⎫-∠-∠--+=--⎪⎝⎭m n m n故选C.【点睛】本题考查三角形中的角度计算 熟练运用三角形内角和定理是关键.5.如图 在ABC 中 点D 在边BA 的延长线上 ∠ABC 的平分线和∠DAC 的平分线相交于点M 若∠BAC =80° ∠AB C =40° 则∠M 的大小为( )A .20°B .25°C .30°D .35°【答案】C【解析】【分析】 先由80,BAC ∠=︒ 结合角平分线求解,,MAC MAB ∠∠ 再利用角平分线与40,ABC ∠=︒求解ABM ∠ 利用三角形的内角和定理可得答案.【详解】解:∠∠BAC=80°∠100,DAC ∠=︒ AM 平分,DAC ∠150,2MAC DAC ∴∠=∠=︒ 130,BAM BAC MAC ∴∠=∠+∠=︒∠ABC=40° BM 平分ABC ∠∠∠ABM=20°∠∠M=1802013030,︒-︒-︒=︒故选:C .【点睛】本题考查了角平分线的性质 三角形的内角和定理 邻补角的定义 熟记定理和概念是解题的关键. 6.如图 已知BD 为ABC 中ABC ∠的平分线 CD 为ABC 的外角ACE ∠的平分线 与BD 交于点D .若∠ABD =20° 50ACD ∠=︒ 则A D ∠+∠=( )A.70°B.90°C.80°D.100°【答案】B【解析】【分析】根据角平分线定义求出∠DCE、∠ACE、∠DBC根据三角形外角性质求出∠A、∠D即可求出答案.【详解】解:∠∠ABC的平分线与∠ACB的外角平分线交于D∠ABD=20° ∠ACD=55°∠∠ABD=∠DBC=12∠ABC=20° ∠ACD=∠DCE=12∠ACE=50°∠∠ABC=40° ∠ACE=100°∠∠A=∠ACE-∠ABC=60° ∠D=∠DCE-∠DBC=50°-20°=30°∠∠A+∠D=90°故选:B.【点睛】本题考查了三角形的外角的性质角平分线的性质熟练掌握性质定理是解题的关键.7.如图所示在Rt ABC△中∠ACB=90° ∠CAB=60° ∠ACB的角平分线与∠ABC的外角平分线交于E点则∠AEB=()A.50°B.45°C.40°D.35°【答案】B【分析】过点E 作ED BC ⊥ EH AB ⊥ EF AC ⊥ 利用角平分线性质结合三角形内角和即可得出答案.【详解】解:如图所示 过点E 作ED BC ⊥ EH AB ⊥ EF AC ⊥∠BE CE 是角平分线∠ED EH = ED EF =.∠EH EF =.∠EH AB ⊥ EF AC ⊥∠AE 是BAF ∠的角平分线.∠60CAB ∠=︒∠30CBA ∠=︒ 60=︒∠BAE∠75ABE ∠=︒ 由三角形内角和可得:45AEB ∠=︒.故答案为:45.【点评】本题考查的知识点是角平分线性质 综合利用角平分线的性质是解此题的关键.8.如图 在∠ABC 中 ∠A =80° ∠ABC 与∠ACD 的平分线交于点A 1 得∠A 1 ∠A 1BC 与∠A 1CD 的平分线相交于点A 2 得∠A 2 ∠ ∠A 3BC 与∠A 3CD 的平分线相交于点A 4 得∠A 4 则∠A 4的度数为( )A .5°B .10°C .15°D .20°【解析】【分析】根据角平分线的定义 三角形的外角性质及三角形的内角和定理可知11118022A A ∠=∠=⨯︒ 212118022A A ∠=∠=⨯︒ ⋯ 依此类推可知4A ∠的度数 【详解】解:ABC ∠与ACD ∠的平分线交于点1A11118022A ACD ACB ABC ∴∠=︒-∠-∠-∠ 11180()(180)22ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠ 11804022A =∠=⨯︒=︒ 同理可得 21211802022A A ∠=∠=⨯︒=︒ ⋯4480521A ∴∠=⨯︒=︒. 故选:A .【点睛】本题是找规律的题目 主要考查了三角形的外角性质及三角形的内角和定理 同时考查了角平分线的定义.解答的关键是掌握外角和内角的关系.类型二 内外角分线进阶9.如图 在四边形ABCD 中 ∠DAB 的角平分线与∠ABC 的邻补角的平分线相交于点P 且∠D +∠C =210° 则∠P =( )A .10°B .15°C .30°D .40°【答案】B【解析】利用四边形内角和是360︒可以求得150DAB ABC .然后由角平分线的性质 邻补角的定义求得 PAB ABP 的度数 所以根据ABP ∆的内角和定理求得P ∠的度数即可.【详解】解:210D C 360DAB ABC C D150DAB ABC .又DAB ∠的角平分线与ABC ∠的外角平分线相交于点P 111(180)90()165222PAB ABP DAB ABC ABC DAB ABC180()15P PAB ABP . 故选:B .【点睛】本题考查了三角形内角和定理、多边形的内角与外角.熟知“四边形的内角和是360︒”是解题的关键. 10.如图 在ABC 中 ∠ABC 和∠ACB 的角平分线交于点O 延长BO 与∠ACB 的外角平分线交于点D若∠DOC =48° 则∠D =_____°.【答案】42【解析】【分析】根据角平分线的定义和三角形的内角和定理即可得到结论.【详解】解:∠∠ABC 和∠ACB 的角平分线交于点O∠∠ACO =12∠ACB∠CD 平分∠ACE ∠∠ACD =12∠ACE∠∠ACB +∠ACE =180°∠∠OCD =∠ACO +∠ACD =12(∠ACB +∠ACE )=12×180°=90°∠∠DOC =48°∠∠D =90°﹣48°=42°故答案为:42.【点睛】本题考查了角平分线和三角形内角和 解题关键是熟练运用相关性质进行计算求角.11.如图 等腰ABC 中 顶角42A ∠=︒ 点E F 是内角ABC ∠与外角ACD ∠三等分线的交点 连接EF 则BFC ∠=_________︒.【答案】14【解析】【分析】根据等腰三角形的性质和三角形的内角和定理可求∠ABC 和∠ACB 再根据三角形外角的性质可求∠ACD 再根据三等分线的定义与和差关系可求∠FBC 和∠BCF 再根据三角形的内角和定理可求∠BFC .【详解】解:∠等腰△ABC 中 顶角∠A=42︒ ∠∠ABC=∠ACB=12×(180︒-42︒)=69︒∠∠ACD=111︒∠点E F 是内角∠ABC 与外角∠ACD 三等分线的交点 ∠∠FBC=13×69︒=23︒ ∠FCA=23×111︒=74︒∠∠BCF=143︒∠∠BFC=180︒-23︒-143︒=14︒.故答案为:14.【点睛】本题考查了等腰三角形的性质三角形内角和定理以及三角形外角的性质解答此题的关键是找到角与角之间的关系.12.如图在△ABC中∠A=96° 延长BC到D∠ABC与∠ACD的平分线相交于点A1则∠A1=__ 若∠A1BC 与∠A1CD的平分线相交于点A2则∠A2=__ … 以此类推则∠An﹣1BC与∠An﹣1CD的平分线相交于点An则∠An的度数为__.【答案】48° 24° 96°×1 () 2n【解析】【分析】利用角平分线的定义和三角形内角与外角的性质计算.【详解】解:∠A1B、A1C分别平分∠ABC和∠ACD∠∠ACD=2∠A1CD∠ABC=2∠A1BC而∠A1CD=∠A1+∠A1BC∠ACD=∠ABC+∠A∠∠A=2∠A1=96°∠∠A1=48°同理可得∠A1=2∠A2即∠A=2×2∠A2=96°∠∠A2=24°∠∠A=2n n A∠∠1962nnA⎛⎫∠=︒⨯ ⎪⎝⎭.故答案为48° 24° 96°×1 ()2n.【点睛】本题考查了三角形的内角和定理三角形的一个外角等于与它不相邻的两个内角的和的性质角平分线的定义熟记性质并准确识图然后求出后一个角是前一个角的一半是解题的关键.13.如图在五边形ABCDE中∠A+∠B+∠E=310° CF平分∠DCB FC的延长线与五边形ABCDE外角平分线相交于点P 求∠P的度数【答案】∠P=25°.【解析】【分析】延长ED BC相交于点G.由四边形内角和可求∠G=50° 由三角形外角性质可求∠P度数.【详解】解:延长ED BC相交于点G.在四边形ABGE中∠∠G=360°-(∠A+∠B+∠E)=50°∠∠P=∠FCD-∠CDP=12(∠DCB-∠CDG)=1 2∠G=12×50°=25°.【点睛】本题考查了三角形内角和定理三角形角平分线性质外角的性质熟练运用外角的性质是本题的关键.类型三综合解答14.如图∠XOY=90° 点A B分别在射线OX OY上移动BE是∠ABY的平分线BE的反向延长线与∠OAB的平分线相交于点C试问∠ACB的大小是否发生变化如果不变求出∠C的度数.【答案】不变45°【解析】【分析】根据角平分线的定义、三角形的内角和、外角性质求解.【详解】解:∠∠ABY=90°+∠OAB AC平分∠OAB BE平分∠ABY∠∠4=12∠ABY=12(90°+∠OAB)=45°+12∠OAB即∠4=45°+∠1又∠∠4=∠C+∠1∠∠C=45°.【点睛】本题考查的是三角形内角与外角的关系解答此题目要注意:①求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;②三角形的外角通常情况下是转化为内角来解决.15.如图∠CBF, ∠ACG是∠ABC的外角, ∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD DE交于点D,E.(1)∠DBE的度数;(2)若∠A=70,求∠D的度数;(3)若∠A=α,求∠E 的度数(用含α的式子表示).【答案】(1)90DBE ∠=︒;(2)35D ∠=︒;(3)1902E α∠=︒- 【解析】【分析】(1)根据角平分线的定义可得11,,22DBC ABC EBC FBC ∠=∠∠=∠ 再根据平角的定义可得出结论; (2)根据角平分线的定义可得11,,22DCG ACG DBC ABC ∠=∠∠=∠ 再根据三角形外角的性质可推出2A D ∠=∠则可求出∠D 的度数;(3)由第(2)问的结论可知1122D A α∠=∠= 再加上第(1)问的结论90DBE ∠=︒ 则可表示出∠E 的度数.【详解】(1)∠BD 平分ABC ∠ BE 平分,FBC ∠ ∠11,,22DBC ABC EBC FBC ∠=∠∠=∠ ∠180ABF ∠=︒ ∠1()902DBE DBC EBC ABC FBC ∠=∠+∠=∠+∠=︒ (2)∠CD 平分ACG ∠, BD 平分ABC ∠ ∠11,,22DCG ACG DBC ABC ∠=∠∠=∠ ∠ACG A ABC ∠=∠+∠∠22DCG A DBC ∠=∠+∠∠DCG D DBC ∠=∠+∠∠222DCG D DBC ∠=∠+∠∠2A D ∠=∠ ∠11703522D A ∠=∠=⨯︒=︒ (3)由(2)知1122D A α∠=∠= ∠90DBE ∠=︒ ∠1902E α∠=︒- 【点睛】本题主要考查角平分线的定义及三角形外角的性质 掌握角平分线的定义及三角形外角的性质是解题的关键.16.已知 在四边形ABCD 中 ∠F 为四边形ABCD 的∠ABC 的平分线及外角∠DCE 的平分线所在的直线构成的锐角 若∠A =α ∠D =β(1)如图① 当α+β>180°时 ∠F =____(用含α β的式子表示);(2)如图② 当α+β<180°时 请在图②中 画出∠F 且∠F =___(用含α β的式子表示); (3)当α β满足条件___时 不存在∠F .【答案】(1)12(α+β)﹣90°;(2)90°﹣12(α+β);(3)α+β=180°.【解析】【分析】(1)根据四边形的内角和定理表示出∠BCD 再表示出∠DCE 然后根据角平分线的定义可得∠FBC=12∠ABC ∠FCE=12∠DCE 三角形的一个外角等于与它不相邻的两个内角的和可得∠F+∠FBC=∠FCE 然后整理即可得解;(2)与(1)的思路相同得到∠FBC=12∠ABC ∠FCE=12∠DCE 由外角性质得到∠F+∠FBC=∠FCE 通过等量代换求解即可;(3)根据∠F的表示∠F为0时不存在.【详解】解:(1)如图:由四边形内角和定理得∠BCD=360°﹣∠A﹣∠D﹣∠ABC∠∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180° 由三角形的外角性质得∠FCE=∠F+∠FBC∠BF、CF分别是∠ABC和∠DCE的平分线∠∠FBC=12∠ABC ∠FCE=12∠DCE∠∠F+∠FBC=12(∠A+∠D+∠ABC﹣180°)=12(∠A+∠D)+12∠ABC﹣90°∠∠F=12(∠A+∠D)﹣90°∠∠A=α ∠D=β∠∠F=12(α+β)﹣90°;(2)如图3由(1)可知∠BCD=360°﹣∠A﹣∠D﹣∠ABC∠∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°∠∠FCE =∠F+∠FBC∠∠FBC =12(360°﹣∠ABC ) ∠FCE =180°﹣12∠DCE∠∠F=∠FCE ﹣∠FBC=180°﹣12(∠A+∠D+∠ABC ﹣180°)﹣12(360°﹣∠ABC )∠∠F=90°﹣12(∠A+∠D )∠∠F =90°﹣12(α+β);(3)当α+β=180°时∠∠F =90°﹣118002⨯︒= 此时∠F 不存在.【点睛】本题考查了三角形的外角性质 三角形的内角和定理 多边形的内角和公式 此类题目根据同一个解答思路求解是解题的关键.17.如图 90MON ∠=︒ 点A 、B 分别在OM 、ON 上运动(不与点O 重合).(1)如图1 BC 是ABN ∠的平分线 BC 的反方向延长线与BAO ∠的平分线交于点D .①若60BAO ∠=︒ 则D ∠为多少度?请说明理由.②猜想:D ∠的度数是否随A 、B 的移动发生变化?请说明理由.(2)如图2 若13ABC ABN ∠=∠ 13BAD BAO ∠=∠ 则D ∠的大小为 度(直接写出结果); (3)若将“90MON ∠=︒”改为“MON α∠=(0180α︒<<︒)” 且1ABC ABN n ∠=∠ 1BAD BAO n∠=∠ 其余条件不变 则D ∠的大小为 度(用含α、n 的代数式直接表示出米).【答案】(1)①45° 理由见解析;②∠D 的度数不变;理由见解析(2)30 ;(3)a n【解析】【分析】(1)①先求出∠ABN=150° 再根据角平分线得出∠CBA=12∠ABN=75°、∠BAD=12∠BAO=30° 最后由外角性质可得∠D度数;②设∠BAD=α 利用外角性质和角平分线性质求得∠ABC=45°+α 利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α 得∠BAO=3α 继而求得∠ABN=90°+3α、∠ABC=30°+α 根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β 分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=n+β 由∠D=∠ABC-∠BAD得出答案.【详解】解:(1)①45°∠∠BAO=60° ∠MON=90°∠∠ABN=150°∠BC平分∠ABN、AD平分∠BAO∠∠CBA=12∠ABN=75° ∠BAD=12∠BAO=30°∠∠D=∠CBA-∠BAD=45°②∠D的度数不变.理由是:设∠BAD=α∠AD平分∠BAO∠∠BAO=2α∠∠AOB=90°∠∠ABN=∠AOB+∠BAO=90°+2α∠BC平分∠ABN∠∠ABC=45°+α∠∠D=∠ABC-∠BAD=45°+α-α=45°;(2)设∠BAD=α∠∠BAD=13∠BAO∠∠BAO=3α∠∠AOB=90°∠∠ABN=∠AOB+∠BAO=90°+3α∠∠ABC=13∠ABN∠∠ABC=30°+α∠∠D=∠ABC-∠BAD=30°+α-α=30°;(3)设∠BAD=β∠∠BAD=1n∠BAO∠∠BAO=nβ∠∠AOB=α°∠∠ABN=∠AOB+∠BAO=α+nβ∠∠ABC=1n∠ABN∠∠ABC=an+β∠∠D=∠ABC-∠BAD=an+β-β=an.【点睛】本题主要考查角平分线和外角的性质熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。

永州数学三角形填空选择单元复习练习(Word版 含答案)

永州数学三角形填空选择单元复习练习(Word版 含答案)

永州数学三角形填空选择单元复习练习(Word 版 含答案)一、八年级数学三角形填空题(难)1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.2.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.【答案】2b-2a【解析】【分析】【详解】根据三角形的三边关系得:a ﹣b ﹣c <0,c +a ﹣b >0,∴原式=﹣(a ﹣b ﹣c )﹣(a +c ﹣b )=﹣a +b +c ﹣a ﹣c +b =2b ﹣2a .故答案为2b ﹣2a【点睛】本题考查了绝对值得化简和三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边;一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,据此解答即可.3.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E=∠ECD−∠EBC=12∠ACD−12∠ABC=12∠A=21°.故答案为21°.4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.【答案】22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.5.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=_____cm2.【答案】12cm2.【解析】【分析】根据三角形的面积公式,得△ACE的面积是△ACD的面积的一半,△ACD的面积是△ABC 的面积的一半.【详解】解:∵CE 是△ACD 的中线,∴S △ACD =2S △ACE =6cm 2.∵AD 是△ABC 的中线,∴S △ABC =2S △ACD =12cm 2.故答案为12cm 2.【点睛】此题主要是根据三角形的面积公式,得三角形的中线把三角形的面积分成了相等的两部分.6.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.【答案】80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.【详解】解:在△PBC 中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.7.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.【答案】2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=28.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB= .【答案】85°.【解析】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB 是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.9.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.【答案】35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=12∠ABC,∠OCE=1 2∠ACE,然后整理可得∠BOC=12∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=12∠ABC,∠OCE=12∠ACE,∴12(∠BAC+∠ABC)=∠BOC+12∠ABC,∴∠BOC=12∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.10.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.【答案】85°.【解析】【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.二、八年级数学三角形选择题(难)11.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.12.如图,小明从A点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地A点时,一共走了()A.80米B.160米C.300米D.640米【答案】A【解析】【分析】利用多边形的外角和得出小明回到出发地A点时左转的次数,即可求出多边形的边数,即可解决问题.【详解】解:由题意可知,小明第一次回到出发地A点时,他一共转了360︒,由题意得10°+20° +30°+40°+50°+60°+70°+80°=360°,所以共转了8次,每次沿直线前进10米,所以一共走了80米.故选:A.【点睛】本题考查根据多边形的外角和解决实际问题,注意多边形的外角和是360︒,要注意第一次转了10°,第二次转了20°,第三次转了30°……,利用好规律解题.13.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10B.10-2aC.4D.-4【答案】C【解析】试题分析:已知三角形的三边长分别为2,a-1,4,则根据三角形的三边关系:可得:a-1>4-2,a-1<2+4即a>3,a<7.所以a-3>0,a-7<0. |a-3|+|a-7|=a-3+(7-a)=4.故选C点睛:本题主要考查考生三角形的三边关系:两边之和大于第三边,两边之差小于第三边。

长沙市长沙市第一中学八年级上册压轴题数学模拟试卷及答案

长沙市长沙市第一中学八年级上册压轴题数学模拟试卷及答案

长沙市长沙市第一中学八年级上册压轴题数学模拟试卷及答案一、压轴题1.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.2.如图,若要判定纸带两条边线a ,b 是否互相平行,我们可以采用将纸条沿AB 折叠的方式来进行探究.(1)如图1,展开后,测得12∠=∠,则可判定a//b ,请写出判定的依据_________; (2)如图2,若要使a//b ,则1∠与2∠应该满足的关系是_________;(3)如图3,纸带两条边线a ,b 互相平行,折叠后的边线b 与a 交于点C ,若将纸带沿11A B (1A ,1B 分别在边线a ,b 上)再次折叠,折叠后的边线b 与a 交于点1C ,AB//11A B ,137BB AC ==,,求出1AC 的长.3.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.=,并求(1)当点P运动到点O处,过点P作AP的垂线交直线l于点D,证明AP DP此时点D的坐标;、、为顶点的三角形和(2)点Q是直线l上的动点,问是否存在点P,使得以P C Q∆全等,若存在求点P的坐标以及此时对应的点Q的坐标,若不存在,请说明理由.ABP4.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=度(直接写出结果);②∠BDC的度数为(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).5.阅读并填空:=,D是边AC延长线上的一点,E在边AB上且如图,ABC是等腰三角形,AB AC=,为什么?联接DE交BC于O,如果OE OD,那么CD BE解:过点E作EF AC交BC于F∠=∠(两直线平行,同位角相等)所以ACB EFB∠=∠(________)D OEF△中在OCD与OFE()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =6.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)7.在等边△ABC 的顶点A 、C 处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A 向B 和由C 向A 爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t 分钟后,它们分别爬行到D 、E 处,请问:(1)如图1,在爬行过程中,CD 和BE 始终相等吗,请证明?(2)如果将原题中的“由A 向B 和由C 向A 爬行”,改为“沿着AB 和CA 的延长线爬行”,EB 与CD 交于点Q ,其他条件不变,蜗牛爬行过程中∠CQE 的大小保持不变,请利用图2说明:∠CQE =60°;(3)如果将原题中“由C 向A 爬行”改为“沿着BC 的延长线爬行,连接DE 交AC 于F ”,其他条件不变,如图3,则爬行过程中,证明:DF =EF8.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,点D 为ABC ∆内一点,且BD AD =.(1)求证:CD AB ⊥;(2)若15CAD ∠=︒,E 为AD 延长线上的一点,且CE CA =.①求BDC ∠的度数.②若点M 在DE 上,且DC DM =,请判断ME 、BD 的数量关系,并说明理由. ③若点N 为直线AE 上一点,且CEN ∆为等腰∆,直接写出CNE ∠的度数.9.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则△ABD ≌△ACE .(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC 和△AED 是等边三角形,连接BD ,EC 交于点O ,连接AO ,下列结论:①BD =EC ;②∠BOC =60°;③∠AOE =60°;④EO =CO ,其中正确的有 .(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB =BC ,∠ABC =∠BDC =60°,试探究∠A 与∠C 的数量关系.10.数学活动课上,老师出了这样一个题目:“已知:MF NF ⊥于F ,点A 、C 分别在NF 和MF 上,作线段AB 和CD (如图1),使90FAB MCD ∠-∠=︒.求证://AB CD ”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A 作//AG FM ,交CD 于G .请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明. (2)若点E 在直线CD 下方,且知30BED ∠=︒,直接写出ABE ∠和CDE ∠之间的数量关系.11.对x y 、定义一种新运算T ,规定:()()(),2T x y mx ny x y =++(其中mn 、均为非零常数).例如:()1,133T m n =+.(1)已知()()1,10,0,28T T -==.①求mn 、的值; ②若关于p 的不等式组()()2,244,32T p p T p p a⎧->⎪⎨-≤⎪⎩恰好有3个整数解,求a 的取值范围; (2)当22x y ≠时,()(),,T x y T y x =对任意有理数,x y 都成立,请直接写出mn 、满足的关系式.学习参考:①()a b c ab ac +=+,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;②()()a b m n am an bm bn ++=+++,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加.12.在△ABC 中,AB =AC ,D 是直线BC 上一点,以AD 为一条边在AD 的右侧作△ADE ,使AE =AD ,∠DAE =∠BAC ,连接CE .(1)如图,当点D 在BC 延长线上移动时,若∠BAC =40°,则∠ACE = ,∠DCE = ,BC 、DC 、CE 之间的数量关系为 ;(2)设∠BAC =α,∠DCE =β.①当点D 在BC 延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D 在直线BC 上(不与B ,C 两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE ∥AB 时,若△ABD 中最小角为15°,试探究∠ACB 的度数(直接写出结果,无需写出求解过程).13.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:2114x x =+,求代数式x 2+21x的值. 解:∵2114x x =+,∴21x x+=4 即21x x x+=4∴x +1x =4∴x 2+21x =(x +1x )2﹣2=16﹣2=14 材料二:在解决某些连等式问题时,通常可以引入参数“k ”,将连等式变成几个值为k 的等式,这样就可以通过适当变形解决问题.例:若2x =3y =4z ,且xyz ≠0,求x y z+的值. 解:令2x =3y =4z =k (k ≠0)则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.14.已知:MN ∥PQ ,点A ,B 分别在MN ,PQ 上,点C 为MN ,PQ 之间的一点,连接CA ,CB .(1)如图1,求证:∠C=∠MAC+∠PBC ;(2)如图2,AD ,BD ,AE ,BE 分别为∠MAC ,∠PBC ,∠CAN ,∠CBQ 的角平分线,求证:∠D+∠E=180°;(3)在(2)的条件下,如图3,过点D 作DA 的垂线交PQ 于点G ,点F 在PQ 上,∠FDA=2∠FDB ,FD 的延长线交EA 的延长线于点H ,若3∠C=4∠E ,猜想∠H 与∠GDB 的倍数关系并证明.15.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒; (1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.16.完全平方公式:()2222a b a ab b ±=±+适当的变形,可以解决很多的数学问题.例如:若3,1a b ab ,求22a b +的值. 解:因为3,1a b ab 所以()29,22a b ab +==所以2229,22a b ab ab ++==得227a b +=.根据上面的解题思路与方法,解决下列问题:(1)若228,40x y x y +=+=,求xy 的值;(2)①若()45x x -=,则()224x x -+= ; ②若()()458x x --=则()22()45x x -+-= ; (3)如图,点C 是线段AB 上的一点,以AC BC 、为边向两边作正方形,设6AB =,两正方形的面积和1218S S +=,求图中阴影部分面积.17.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .18.(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点且AE=CD ,BD 与EC 交于点F ,则∠BFE 的度数是 度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).19.(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.20.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有________条对称轴,非正方形的长方形有________条对称轴,等边三角形有___________条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1-2和图1-3都可以看作由图1-1修改得到的,仿照类似的修改方式,请你在图1-4和图1-5中,分别修改图1-2和图1-3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)AE//BF;QE=QF ;(2)QE=QF ,证明见解析;(3)结论成立,证明见解析.【解析】【分析】(1)根据AAS 得到AEQ BFQ ∆≅∆,得到AEQ BFQ ∠=∠、QE=QF ,根据内错角相等两直线平行,得到AE//BF ;(2)延长EQ 交BF 于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明;(3)延长EQ 交FB 的延长于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明.【详解】(1)AE//BF ;QE=QF(2)QE=QF证明:延长EQ 交BF 于D ,,AE CP BF CP ⊥⊥//AE BF ∴AEQ BDQ ∴∠=∠AQE BQD AEQ BDQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,AEQ BDQ ∴∆≅∆EQ DQ ∴=90BFE ︒∠=QE QF ∴=(3)当点P 在线段BA 延长线上时,此时(2)中结论成立证明:延长EQ 交FB 的延长于D因为AE//BF所以AEQ BDQ ∠=∠AQE BQD AEQ BDQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩AEQ BDQ ∴∆≅∆EQ=QF90BFE ︒∠=QE QF ∴=【点睛】本题考查了三角形全等的判定方法:AAS ,平行线的性质,根据P 点位置不同,画出正确的图形,找到AAS 的条件是解决本题的关键.2.(1)内错角相等,两直线平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根据平行线的判定定理,即可得到答案;(2)由折叠的性质得:∠3=∠4,若a ∥b ,则∠3=∠2,结合三角形内角和定理,即可得到答案;(3)分两种情况:①当B 1在B 的左侧时,如图2,当B 1在B 的右侧时,如图3,分别求出1AC 的长,即可得到答案.【详解】(1)∵12∠=∠,∴a ∥b (内错角相等,两直线平行),故答案是:内错角相等,两直线平行;(2)如图1,由折叠的性质得:∠3=∠4,若a ∥b ,则∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a ∥b ,则1∠与2∠应该满足的关系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①当B 1在B 的左侧时,如图2,∵AB//11A B ,a ∥b ,∴AA 1=BB 1=3,∴1AC =AC- AA 1=7-3=4;②当B 1在B 的右侧时,如图3,∵AB//11A B ,a ∥b ,∴AA 1=BB 1=3,∴1AC =AC+AA 1=7+3=10.综上所述:1AC =4或10.【点睛】本题主要考查平行线的判定和性质定理,折叠的性质以及三角形的内角和定理,掌握“平行线间的平行线段长度相等”是解题的关键.3.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P-,(2,2)Q-或1(,0)2P-,(2,2)Q-【点睛】考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.4.(1)(1)①125°;②1902α︒+,(2)1BFC2α∠=;(3)1BMC904α︒∠=+【解析】【分析】(1)①由三角形内角和定理易得∠ABC+∠ACB=110°,然后根据角平分线的定义,结合三角形内角和定理可求∠BDC;②由三角形内角和定理易得∠ABC+∠ACB=180°-∠A,采用①的推导方法即可求解;(2)由三角形外角性质得BFC FCE FBC∠=∠-∠,然后结合角平分线的定义求解;(3)由折叠的对称性得BGC BFC∠=∠,结合(1)②的结论可得答案.【详解】解:(1)①∵12DBC∠=∠ABC,∠DCB=12∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣70°)=125°②∵12DBC∠=∠ABC,∠DCB=12∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣∠A)=90°+12∠A=90°+12α.故答案分别为125°,90°+12α.(2)∵BF和CF分别平分∠ABC和∠ACE∴1FBC ABC 2∠=∠,1FCE ACE 2∠=∠, ∴BFC FCE FBC ∠=∠-∠=11(ACE ABC)A 22∠-∠=∠ 即1BFC 2α∠=. (3)由轴对称性质知:1BGC BFC 2α∠=∠=, 由(1)②可得1BMC 90BGC 2∠=︒+∠, ∴1BMC 904α∠=︒+. 【点睛】 本题考查三角形中与角平分线有关的角度计算,熟练掌握三角形内角和定理,以及三角形的外角性质是解题的关键.5.见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE △≌△,写出证明过程和依据即可.【详解】解:过点E 作//EF AC 交BC 于F ,∴ACB EFB ∠=∠(两直线平行,同位角相等),∴D OEF ∠=∠(两直线平行,内错角相等),在OCD 与OFE △中()()()COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证, ∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.6.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上,∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.7.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD ≌△CBE ,再由全等三角形的性质即可证得CD=BE ;(2)先证明△BCD ≌△ABE ,得到∠BCD=∠ABE ,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC ,∠CQE=180°-∠DQB ,即可解答; (3)如图3,过点D 作DG ∥BC 交AC 于点G ,根据等边三角形的三边相等,可以证得AD=DG=CE ;进而证明△DGF 和△ECF 全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD 和BE 始终相等,理由如下:如图1,AB=BC=CA ,两只蜗牛速度相同,且同时出发,∴CE=AD ,∠A=∠BCE=60°在△ACD 与△CBE 中,AC=CB ,∠A=∠BCE ,AD=CE∴△ACD ≌△CBE (SAS ),∴CD=BE ,即CD 和BE 始终相等;(2)证明:根据题意得:CE=AD ,∵AB=AC ,∴AE=BD ,∴△ABC 是等边三角形,∴AB=BC ,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC ,在△BCD 和△ABE 中,BC=AB ,∠DBC=∠EAB ,BD=AE∴△BCD ≌△ABE (SAS ),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF 始终等于EF 是正确的,理由如下:如图,过点D 作DG ∥BC 交AC 于点G ,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E ,∴△ADG 为等边三角形,∴AD=DG=CE ,在△DGF 和△ECF 中,∠GFD=∠CFE ,∠GDF=∠E ,DG=EC∴△DGF ≌△EDF (AAS ),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.8.(1)证明见解析;(2)①120BDC ∠=︒;②ME BD =,理由见解析;③ 7.5°或15°或82.5°或150°【解析】【分析】(1)利用线段的垂直平分线的性质即可证明;(2)①利用SSS 证得△ADC ≌△BDC ,可求得∠ACD=∠BCD=45°,∠CAD=∠CBD=15°,即可解题;②连接MC ,易证△MCD 为等边三角形,即可证明△BDC ≌△EMC 即可解题;③分EN=EC 、EN=CN 、CE=CN 三种情形讨论,画出图形,利用等腰三角形的性质即可求解.【详解】(1)∵CB=CA ,DB=DA ,∴CD 垂直平分线段AB ,∴CD ⊥AB ;(2)①在△ADC 和△BDC 中,BC AC CD CD BD AD =⎧⎪=⎨⎪=⎩,∴△ADC ≌△BDC (SSS ),∴∠ACD=∠BCD=12∠BCA=45°,∠CAD=∠CBD=15°, ∴∠BDC=180︒-45°-15°=120°;②结论:ME=BD ,理由:连接MC ,∵AC BC =,90ACB ∠=︒,∴∠CAB=∠CBA=45°,∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,由①得∠BDC=120°,∴∠CDE=60°,∵DC=DM ,∠CDE=60°,∴△MCD 为等边三角形,∴CM=CD ,∵EC=CA=CB ,∠DMC=60°,∴∠E=∠CAD=∠CBD=15°,∠EMC=120°,在△BDC 和△EMC 中,15120CBD E BDC EMC CD CM ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDC ≌△EMC (AAS ),∴ME=BD ;③当EN=EC 时,∠1152EN C ︒==7.5°或∠2EN C =180152︒-︒=82.5°; 当EN=CN 时,∠3EN C =180215︒-⨯︒=150°;当CE=CN 时,点N 与点A 重合,∠CNE=15°,所以∠CNE 的度数为7.5°或15°或82.5°或150°.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.9.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE ,∴∠BAC+∠CAD=∠DAE+∠CAD ,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∵AB=AC ,∴△BCF ≌△ACO (SAS ),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF ,要使OC=OE ,则有OC=12CE , ∵BD=CE ,∴CF=OF=12BD , ∴OF=BF+OD ,∴BF <CF ,∴∠OBC >∠BCF ,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC >30°,而没办法判断∠OBC 大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC 至P ,使DP=DB ,∵∠BDC=60°,∴△BDP 是等边三角形,∴BD=BP ,∠DBP=60°,∵∠BAC=60°=∠DBP ,∴∠ABD=∠CBP ,∵AB=CB ,∴△ABD ≌△CBP (SAS ),∴∠BCP=∠A ,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.10.(1)见解析;(2)30ABE CDE ∠-∠=︒【解析】【分析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:AGC MCD ∠=∠,90F GAF ∠+∠=︒,再证明MCD BAG ∠=∠,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A 作//AG FM ,交CD 于G ,AGC MCD ∴∠=∠,90F GAF ∠+∠=︒,FN FM ⊥,90F ∴∠=︒,90GAF ∴∠=︒,90FAB MCD ∠-∠=︒,FAB GAF MCD BAG ∴∠-∠=∠=∠,//AB CD ∴;(2)解:30ABE CDE ∠-∠=︒,理由如下:如图3,//AB CD ,BPD ABE ∴∠=∠,BPD CDE BED ∠=∠+∠,30BED ∠=︒,30BPD CDE ∴∠-∠=︒,∴30ABE CDE ∠-∠=︒.【点睛】本题主要考查了平行线的性质和判定以及三角形外角性质的运用,熟练掌握平行线的性质和判定是解决问题的关键.11.(1)①11m n =⎧⎨=⎩;②42≤a <54;(2)m=2n 【解析】【分析】(1)①构建方程组即可解决问题;②根据不等式即可解决问题;(2)利用恒等式的性质,根据关系式即可解决问题.【详解】解:(1)①由题意得()0 88m nn⎧--=⎨=⎩,解得11mn=⎧⎨=⎩,②由题意得()()()() 222424 432464p p p pp p p p a ⎧+-+->⎪⎨+-+-≤⎪⎩,解不等式①得p>-1.解不等式②得p≤18 12a-,∴-1<p≤18 12a-,∵恰好有3个整数解,∴2≤1812a-<3.∴42≤a<54;(2)由题意:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵对任意有理数x,y都成立,∴m=2n.【点睛】本题考查一元一次不等式、二元一次方程组、恒等式等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.12.(1)70°,40°,BC+DC=CE;(2)①α=β;②当点D在BC上移动时,α=β或α+β=180°;(3)∠ACB=60°.【解析】【分析】(1)证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质和全等三角形的性质求出即可;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;②分三种情况:(Ⅰ)当D在线段BC上时,证明△ABD≌△ACE(SAS),则∠ADB=∠AEC,∠ABC=∠ACE,推出∠DAE+∠DCE=180°,即α+β=180°;(Ⅱ)当点D在线段BC反向延长线上时,α=β,同理可证明△ABD≌△ACE(SAS),则∠ABD=∠ACE,推出∠BAC=∠DCE,即α=β;(Ⅲ)当点D在线段BC的延长线上时,由①得α=β;(3)当点D在线段BC的延长线上或在线段BC反向延长线上移动时,α=β,由CE∥AB,得∠ABC=∠DCE,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°;当D在线段BC上时,α+β=180°,由CE∥AB,得∠ABC+∠DCE=180°,推出∠ABC=∠BAC,易证∠ABC=∠ACB=∠BAC,则△ABC是等边三角形,得出∠ACB=60°.【详解】(1)如图1所示:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE(SAS),∴∠ACE=∠B12=(180°﹣40°)=70°,BD=CE,∴BC+DC=CE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=40°,∴∠DCE=40°.故答案为:70°,40°,BC+DC=CE;(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β.理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE.在△BAD和△CAE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE(SAS),∴∠B=∠ACE.∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;②分三种情况:(Ⅰ)当D在线段BC上时,α+β=180°,如图2所示.理由如下:同理可证明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE.∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°.∵∠BAC=∠DAE=α,∠DCE=β,∴α+β=180°;(Ⅱ)当点D在线段BC反向延长线上时,α=β,如图3所示.理由如下:同理可证明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE.∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE.∵∠BAC=α,∠DCE=β,∴α=β;(Ⅲ)当点D在线段BC的延长线上时,如图1所示,α=β;综上所述:当点D在BC上移动时,α=β或α+β=180°;(3)∠ACB =60°.理由如下:∵当点D 在线段BC 的延长线上或在线段BC 反向延长线上移动时,α=β,即∠BAC =∠DCE .∵CE ∥AB ,∴∠ABC =∠DCE ,∴∠ABC =∠BAC .∵AB =AC ,∴∠ABC =∠ACB =∠BAC ,∴△ABC 是等边三角形,∴∠ACB =60°;∵当D 在线段BC 上时,α+β=180°,即∠BAC +∠DCE =180°.∵CE ∥AB ,∴∠ABC +∠DCE =180°,∴∠ABC =∠BAC .∵AB =AC ,∴∠ABC =∠ACB =∠BAC ,∴△ABC 是等边三角形,∴∠ACB =60°;综上所述:当CE ∥AB 时,若△ABD 中最小角为15°,∠ACB 的度数为60°.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质和多边形内角和等知识.本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.13.(1)5;(2)95; (3)78【解析】【分析】(1)仿照材料一,取倒数,再约分,利用等式的性质求解即可;(2)仿照材料二,设5a =2b =3c =k (k ≠0),则a =5k ,b =2k ,c =3k ,代入所求式子即可;(3)本题介绍两种解法:解法一:(3)解法一:设yz bz cy +=zx cx az +=xy ay bx +=1k(k ≠0),化简得:b c k y z +=①,c a k z x +=②,a b k x y +=③,相加变形可得x 、y 、z 的代入222222x y z a b c ++++=1k中,可得k 的值,从而得结论; 解法二:取倒数得:bz cy yz +=cx az zx +=ay bx xy +,拆项得b c c a a b y z z x x y +=+=+,从而得x =ay b ,z =cy b,代入已知可得结论. 【详解】解:(1)∵21x x x -+=14, ∴21x x x-+=4, ∴x ﹣1+1x =4, ∴x +1x=5; (2)∵设5a =2b =3c =k (k ≠0),则a =5k ,b =2k ,c =3k , ∴342b c a +=61210k k k +=1810=95; (3)解法一:设yz bz cy +=zx cx az +=xy ay bx +=1k(k ≠0), ∴b c k y z +=①,c a k z x+=②,a b k x y +=③, ①+②+③得:2(b c a y z x ++)=3k , b c a y z x ++=32k ④, ④﹣①得:a x =12k , ④﹣②得:12b k y =, ④﹣③得:12c z =k , ∴x =2a k ,y =2b k ,z =2c k 代入222222x y z a b c++++=1k 中,得:()22222224a b c k a b c ++++=1k , 241k k =, k =4,∴x =24a ,y =24b ,z =24c , ∴xyz =864abc =8764⨯=78; 解法二:∵yz zx xy bz cy cx az ay bx==+++, ∴bz cy cx az ay bx yz zx xy+++==, ∴b c c a a b y z z x x y+=+=+, ∴,b a c b y x z y==, ∴,ay cy x z b b ==, 将其代入222222zx x y z cx az a b c ++=+++中得: cy ay b b acy acy b b⋅+=2222222222a y c y yb b a bc ++++ 2y b =22y b ,y =2b , ∴x =22ab a b =,z =cy 2y =2c , ∴xyz =222a b c ⋅⋅=78. 【点睛】本题考查了以新运算的方式求一个式子的值,题目中涉及了求一个数的倒数,约分,等式的基本性质,求代数式的值,解决本题的关键是正确理解新运算的内涵,确定一个数的倒数并能够根据等式的基本性质将原式变为能够进一步运算的式子.14.(1)见解析;(2)见解析;(3)猜想:∠H= 3∠GDB ,证明见解析.【解析】【分析】(1)作辅助线:过C 作EF ∥MN ,根据平行的传递性可知这三条直线两两平行,由平行线的性质得到内错角相等∠MAC=∠ACF ,∠BCF=∠PBC ,再进行角的加和即可得出结论;(2)根据角平分线线定理得知11,22MAD MAC NAE NAC ∠=∠∠=∠,利用平角为180°得到∠DAE=90°,同理得90DBE ∠=︒,再根据四边形内角和180°,得出结论;(3)由(1)(2)中的结论进行等量代换得到3∠ADB=2∠E ,并且两角的和为180°,由此得到两个角的度数分别为72°和108°,利用角的和与差得到∠HDA=36°,∠H=54°,由此得到倍数关系. 【详解】(1)如图:过C 作EF ∥MN ,∵MN ∥PQ , ∴MN ∥EF ∥PQ ,∴∠MAC=∠ACF ,∠BCF=∠PBC ,∴∠ACF+∠BCF=∠MAC+∠PBC ,即∠ACB=∠MAC+∠PBC .(2)∵AD ,AE 分别为∠MAC ,∠CAN 的角平分线,∴11,22MAD MAC NAE NAC ∠=∠∠=∠, ∴11118090222MAD NAE MAC NAC ∠+∠=∠+∠=⨯︒=︒,于是∠DAE=90° 同理可得:90PBD QBE ∠+∠=︒,由(1)可得:∵ 180D E MAD PBD NAE QBE ∠+∠=∠+∠+∠+∠=︒.(3)猜想:∠H= 3∠GDB.理由如下:由(1)可知:2()2C MAC PBC MAD PBD ADB ∠=∠+∠=∠+∠=∠, ∵3∠C=4∠E ,∴6∠ADB=4∠E ,∴3∠ADB=2∠E ,∵∠ADB+∠E=180°,∴∠ADB=72°,∠E=108°,∵DG ⊥DA ,∴∠GDB=18°,∵∠FDA=2∠FDB ,∴∠ADF=144°,∴∠HDA=36°,∵DA ⊥AE ,∴∠H=54°,∴∠H=3∠GDB .【点睛】考查平行线中角度的关系,学生要熟悉掌握平行线的性质以及角平分线定理,结合角的和与差进行计算,本题的关键是平行线的性质.15.(1)60°;(2)15°;(3)30°或15°【解析】【分析】(1)利用两直线平行,同旁内角互补,得出90CAN ∠=︒,即可得出结论;(2)先利用三角形的内角和定理求出AFD ∠,即可得出结论;(3)分90DAF ∠=︒和90AFD ∠=︒两种情况求解即可得出结论.【详解】解:(1)//MN GH ,180ACB NAC ∴∠+∠=︒,90ACB ∠=︒,90CAN ∴∠=︒,30BAC ∠=︒,9060BAN BAC ∴∠=︒-∠=︒; (2)由(1)知,60BAN ∠=︒,45ED F ∠=︒,18075AFD BAN EDF ∴∠=︒-∠-∠=︒,90DFE ∠=︒,15AFE DFE AFD ∴∠=∠-∠=︒;(3)当90DAF ∠=︒时,如图3,由(1)知,60BAN ∠=︒,30FAN DAF BAN ∴∠=∠-∠=︒;当90AFD ∠=︒时,如图4,90DFE ∠=︒,∴点A ,E 重合,45ED F ∠=︒,45DAF ∴∠=︒,由(1)知,60BAN ∠=︒,15FAN BAN DAF ∴∠=∠-∠=︒,即当以A 、D 、F 为顶点的三角形是直角三角形时,FAN ∠度数为30或15︒.【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出60BAN ∠=︒是解本题的关键.16.(1)12;(2)①6;②17;(3)92 【解析】【分析】(1)根据完全平方公式的变形应用,解决问题;(2)①两边平方,再将(4)5x x -=代入计算;②两边平方,再将()()458x x --=代入计算;(3)由题意可得:6AC BC +=,2218AC BC +=,两边平方从而得到9AC BC =,即可算出结果.【详解】解:(1)8x y +=;22()8x y ∴+=;22264x xy y ++=;又2240x y +=;22264()xy x y ∴=-+,2644024xy ∴=-=,∴12xy =.(2)①(4)4x x -+=,22[(4)]4x x ∴-+=222[(4)](4)2(4)16x x x x x x -+=-+-+=;又(4)5x x -=,22(4)162(4)16256x x x x ∴-+=--=-⨯=.②由(4)(5)1x x ---=-,2222[(4)(5)](4)2(4)(5)(5)(1)x x x x x x ∴---=----+-=-;又(4)(5)8x x --=,22(4)(5)12(4)(5)12817x x x x ∴-+-=+--=+⨯=.(3)由题意可得,6AC BC +=,2218AC BC +=;22()6AC BC +=,22236AC AC BC BC ++=;22236()361818AC BC AC BC ∴=-+=-=,9AC BC =;图中阴影部分面积为直角三角形面积,BC CF =, ∴1922ACF S AC CF ∆==.【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题.(2)①②小题都需要根据题意得出两个因式和或者差的结果,合并同类项得①(4)4x x -+=,②(4)(5)1x x ---=-是解决本题的关键,再根据完全平方公式变形应用得出答案.(3)根据几何图形可知选段6AB BC +=,再根据两个正方形面积和为18,利用完全平方公式变形应用得到9AC BC =,再根据直角三角形面积公式得出答案.17.(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【解析】【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,。

【中考数学29个几何模型】模型17 角平分线和高线的夹角(后附解题思路分析与小结)

【中考数学29个几何模型】模型17 角平分线和高线的夹角(后附解题思路分析与小结)

专题17角平分线和高线的夹角1.如图,ABC 中,一内角和一外角的平分线交于点,D 连结,24AD BDC ∠=︒,CAD ∠=_______________________o .2.如图,在ABC ∆中,AD 、AE 分别是ABC ∆的高和角平分线,50B ∠=︒,60C ∠=°,则DAE =∠__________度.3.如图,CD 、CE 分别是△ABC 的高和角平分线,∠A =30°,∠B =60°,则∠DCE =_______.二、解答题4.(1)如图1,ABC 的内角ABC ∠的平分线与外角ACD ∠的平分线相交于P 点,请探究P ∠与A ∠的关系,并说明理由(2)如图②③,四边形ABCD 中,设,,A D P αβ∠=∠=∠为四边形ABCD 的内角ABC ∠与外角DCE ∠的平分线所在直线相交而形成锐角,请利用(1)中的结论完成下列问题:①如图②,若180αβ︒+>,求P ∠的度数(用的代数式表示,记得把图转化为图)②如图③,若180αβ︒+<,请在图③中画出P ∠,并直接写出P ∠=______(用,αβ的代数式表示)5.小学我们已经知道三角形三个内角和是180°,对于如图1中,AC ,BD 交于O 点,形成的两个三角形中的角存在以下关系:①DOC AOB ∠=∠;②D C A B ∠+∠=∠+∠.试探究下面问题:已知BAD ∠的平分线AE 与BCD ∠的平分线CE 交于点E ,(1)如图2,若AB CD ∥,30D ∠=︒,40B ∠=︒,则E ∠=_________;(2)如图3,若AB 不平行CD ,30D ∠=︒,50B ∠=︒,则E ∠=_______.(3)在总结前两问的基础上,借助图3,探究E ∠与D ∠、B Ð之间是否存在某种等量关系?若存在,请说明理由;若不存在,请举例说明.6.在△ABC 中,已知∠A =α.(1)如图1,∠ABC 、∠ACB 的平分线相交于点D .①当α=70°时,∠BDC 度数=度(直接写出结果);②∠BDC 的度数为(用含α的代数式表示);(2)如图2,若∠ABC 的平分线与∠ACE 角平分线交于点F ,求∠BFC 的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,∠GBC 的角平分线与∠GCB 的角平分线交于点M (如图3),求∠BMC 的度数(用含α的代数式表示).7.如图所示,在ABC ∆中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,50BAC ∠=︒,70C ∠=︒,求DAC ∠、BOA ∠的度数.8.如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD=15°,∠B=40°.(1)求∠C 的度数.(2)若:∠EAD=α,∠B=β,其余条件不变,直接写出用含α,β的式子表示∠C 的度数.9.如图,BD 、BE 分别是ABC ∆的高和角平分线,46A ∠=︒,74ABC ∠=︒,求DBE ∠的度数.10.如图,在ABC ∆中,CE 是角平分线,D 是AB 延长线上一动点,DF CE ⊥于点下,试探索D ∠与ABC ∠、A ∠的数量关系.11.如图,在ABC ∆中,42A ∠=︒,70B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥于F ,求EDF ∠.12.如图,在ABC ∆中,44BAC BCA ∠=∠= ,M 为ABC ∆内一点,使得30,16MCA MAC ∠=∠= ,求BMC ∠的度数.13.如图,在ABC ∆中,AD 是BAC ∠的平分线,G 为AD 上一动点,GH AD ⊥,交BC 的延长线于点H .(1)若30B ∠=︒,40BAC ∠=︒,求H ∠的度数;(2)当点G 在AD 上运动时,探求H ∠与B Ð、ACB ∠之间的数量关系,并证明.14.如图,在ABC ∆中,AB AC =,BD AC ⊥于D ,BE 平分ABC ∠,试用A ∠表示DBE ∠.专题17角平分线和高线的夹角(解析版)1.如图,ABC 中,一内角和一外角的平分线交于点,D 连结,24AD BDC ∠=︒,CAD ∠=_______________________o .【解析】66°【分析】过D 作,DF ⊥BE 于F ,DG ⊥AC 于G ,DH ⊥BA ,交BA 延长线于H ,由BD 平分∠ABC ,可得∠ABD=∠CBD ,DH=DF ,同理CD 平分∠ACE ,∠ACD=∠DCF=,DG=DF ,由∠ACE 是△ABC 的外角,可得2∠DCE=∠BAC+2∠DBC ①,由∠DCE 是△DBC 的外角,可得∠DCE=∠CDB+∠DBC ②,两者结合,得∠BAC=2∠CDB ,则∠HAC=180º-∠BAC ,在证AD 平分∠HAC ,即可求出∠CAD .【详解】过D 作,DF ⊥BE 于F ,DG ⊥AC 于G ,DH ⊥BA ,交BA 延长线于H ,∵BD 平分∠ABC ,∴∠ABD=∠CBD=12∠ABC ,DH=DF ,∵CD 平分∠ACE ,∴∠ACD=∠DCF=12∠ACE ,DG=DF ,∵∠ACE 是△ABC 的外角,∴∠ACE=∠BAC+∠ABC ,∴2∠DCE=∠BAC+2∠DBC ①,∵∠DCE 是△DBC 的外角,∴∠DCE=∠CDB+∠DBC ②,由①②得,∠BAC=2∠CDB=2×24º=48º,∴∠HAC=180º-∠BAC=180º-48º=132º,∵DH=DF ,DG=DF ,∴DH=DG ,∵DG ⊥AC ,DH ⊥BA ,AD 平分∠HAC ,∠CAD=∠HAD=12∠HAC=12×132º=66º.故答案为:66.【点睛】本题考查角的求法,关键是掌握点D 为两角平分线交点,可知AD 为角平分线,利用好外角与内角的关系,找到∠BAC=2∠CDB 是解题关键.2.如图,在ABC ∆中,AD 、AE 分别是ABC ∆的高和角平分线,50B ∠=︒,60C ∠=°,则DAE =∠__________度.【解析】5【分析】先根据三角形的内角和定理得到∠BAC 的度数,再利用角平分线的性质可求出∠EAC=12∠BAC ,而∠DAC=90°-∠C ,然后利用∠DAE=∠EAC-∠DAC 进行计算即可.【详解】解:在△ABC 中,∵∠B=50°,∠C=60°,∴∠BAC=180°-∠B-∠C=180°-50°-60°=70°,∵AE 是ABC ∆的角平分线,∴∠EAC=12∠BAC=12×70°=35°,∵AD 是△ABC 的高,∴∠ADC=90°∴在△ADC 中,∠DAC=180°-∠ADC-∠C=180°-90°-60°=30°,∴∠DAE=∠EAC-∠DAC=35°-30°=5°.故答案为:5.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.3.如图,CD 、CE 分别是△ABC 的高和角平分线,∠A =30°,∠B =60°,则∠DCE =_______.【解析】15°【解析】试题分析:根据三角形内角和定理可得:∠ACB=180°-∠A -∠B=90°,根据角平分线的性质可得:∠BCE=90°÷2=45°,根据CD ⊥AB ,∠B=60°可得:∠BCD=30°,则∠DCE=45°-30°=15°.考点:(1)、角平分线的性质;(2)、三角形内角和定理二、解答题4.(1)如图1,ABC 的内角ABC ∠的平分线与外角ACD ∠的平分线相交于P 点,请探究P ∠与A ∠的关系,并说明理由(2)如图②③,四边形ABCD 中,设,,A D P αβ∠=∠=∠为四边形ABCD 的内角ABC ∠与外角DCE ∠的平分线所在直线相交而形成锐角,请利用(1)中的结论完成下列问题:①如图②,若180αβ︒+>,求P ∠的度数(用的代数式表示,记得把图转化为图)②如图③,若180αβ︒+<,请在图③中画出P ∠,并直接写出P ∠=______(用,αβ的代数式表示)【解析】(1)2∠P=∠A;理由见解析;(2)①∠P=12(α+β)﹣90°;②∠P=90°﹣1122αβ-.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,再根据角平分线的性质可得2∠PCD=∠ACD,2∠PBC=∠ABC,运用等量代换即可得解;(2)①添加辅助线,延长BA交CD的延长线于F,利用(1)中结论解决问题即可;②添加辅助线,延长AB交DC的延长线于F,同①的思路求解即可.【详解】(1)如图1中,结论:2∠P=∠A.理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴2∠PCD=∠ACD,2∠PBC=∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,2∠P+2∠PBC=∠A+∠ABC,2∠P+∠ABC=∠A+∠ABC,∴2∠P=∠A;(2)①延长BA交CD的延长线于F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣α)﹣(180°﹣β)=α+β﹣180°,由(1)可知:∠P=12∠F,∴∠P=12(α+β)﹣90°;②如图3,延长AB 交DC 的延长线于F .∵∠F =180°﹣α﹣β,∠P =12∠F ,∴∠P =12(180°﹣α﹣β)=90°﹣1122αβ-.【点睛】本题考查了三角形的外角性质的应用和角平分线的定义,能正确运用性质进行推理和计算是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.5.小学我们已经知道三角形三个内角和是180°,对于如图1中,AC ,BD 交于O 点,形成的两个三角形中的角存在以下关系:①DOC AOB ∠=∠;②D C A B ∠+∠=∠+∠.试探究下面问题:已知BAD ∠的平分线AE 与BCD ∠的平分线CE 交于点E ,(1)如图2,若AB CD ∥,30D ∠=︒,40B ∠=︒,则E ∠=_________;(2)如图3,若AB 不平行CD ,30D ∠=︒,50B ∠=︒,则E ∠=_______.(3)在总结前两问的基础上,借助图3,探究E ∠与D ∠、B Ð之间是否存在某种等量关系?若存在,请说明理由;若不存在,请举例说明.【解析】(1)35°;(2)40°;(3)∠D+∠B=2∠E ,理由见解析【分析】(1)(2)在△CDF 和△AEF 中,有:∠D+∠DCF=∠E+∠DAE ①;在△ABG 和△CEG 中,∠B+∠EAB=∠E+∠BCE ②;①+②再结合BAD ∠的平分线AE 与BCD ∠的平分线CE 交于点E ,进行化简得到∠E=12(∠B+∠D ),然后将∠B 和∠D 代入即可解答;(3)根据(1)(2)的推导即可得到∠D+∠B=2∠E .【详解】解:(1)如图2在△CDF 和△AEF 中,有∠D+∠DCF=∠E+∠DAE ①△ABG 和△CEG 中,有∠B+∠EAB=∠E+∠BCE ②①+②得:∠D+∠DCF +∠B+∠EAB =∠E+∠DAE +∠E+∠BCE又∵BAD ∠的平分线AE 与BCD ∠的平分线CE 交于点E∴∠DCF =∠BCE ,∠EAB =∠DAE∴∠E=12(∠B+∠D )∵30D ∠=︒,40B ∠=︒∴∠E =35°(2)如图3:同(1)可得∠E=12(∠B+∠D )∵30D ∠=︒,50B ∠=︒∴∠E =40°(3)解:∠D+∠B=2∠E .理由如下:在△CDF 和△AEF 中,有∠D+∠DCF=∠E+∠DAE ①△ABG 和△CEG 中,有∠B+∠EAB=∠E+∠BCE ②①+②得:∠D+∠DCF +∠B+∠EAB =∠E+∠DAE +∠E+∠BCE又∵BAD ∠的平分线AE 与BCD ∠的平分线CE 交于点E∴∠DCF =∠BCE ,∠EAB =∠DAE∴∠E=12(∠B+∠D )∴∠D+∠B=2∠E【点睛】考查了平行线的性质、三角形内角和定理、对顶角相等的性质,解题方法较多,关键在于选择合适的解题方法.6.在△ABC 中,已知∠A =α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.①当α=70°时,∠BDC度数=度(直接写出结果);②∠BDC的度数为(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE角平分线交于点F,求∠BFC的度数(用含α的代数式表示).(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的角平分线与∠GCB的角平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).【解析】(1)(1)①125°;②1902α︒+,(2)1BFC2α∠=;(3)1BMC904α︒∠=+【分析】(1)①由三角形内角和定理易得∠ABC+∠ACB=110°,然后根据角平分线的定义,结合三角形内角和定理可求∠BDC;②由三角形内角和定理易得∠ABC+∠ACB=180°-∠A,采用①的推导方法即可求解;(2)由三角形外角性质得BFC FCE FBC∠=∠-∠,然后结合角平分线的定义求解;(3)由折叠的对称性得BGC BFC∠=∠,结合(1)②的结论可得答案.【详解】解:(1)①∵12DBC∠=∠ABC,∠DCB=12∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣70°)=125°②∵12DBC∠=∠ABC,∠DCB=12∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣12(∠ABC+∠ACB)=180°﹣12(180°﹣∠A )=90°+12∠A =90°+12α.故答案分别为125°,90°+12α.(2)∵BF 和CF 分别平分∠ABC 和∠ACE ∴1FBC ABC 2∠=∠,1FCE ACE 2∠=∠,∴BFC FCE FBC ∠=∠-∠=11(ACE ABC)A 22∠-∠=∠即1BFC 2α∠=.(3)由轴对称性质知:1BGC BFC 2α∠=∠=,由(1)②可得1BMC 90BGC 2∠=︒+∠,∴1BMC 904α∠=︒+.【点睛】本题考查三角形中与角平分线有关的角度计算,熟练掌握三角形内角和定理,以及三角形的外角性质是解题的关键.7.如图所示,在ABC ∆中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,50BAC ∠=︒,70C ∠=︒,求DAC ∠、BOA ∠的度数.【解析】20DAC ∠=︒,125BOA ∠=︒【解析】【分析】由AD 是高易得∠DAC 与∠C 互余,即可求出∠DAC ,由三角形内角和定理求出∠ABC ,再根据角平分线的定义求出∠ABO 与∠BAO ,最后根据三角形内角和定理即可求出∠BOA 的度数.【详解】解:AD 是ABC ∆的高90ADC ∴∠=︒在ADC ∆中90907020DAC C ∠=︒-∠=︒-︒=︒在ABC ∆中180180507060ABC BAC C ∠=︒-∠-∠=︒-︒-︒=︒AE ∵、BF 是角平分线11603022∴∠=∠=⨯︒=︒ABO ABC 11502522BAO BAC ∠=∠=⨯︒=︒在ABC ∆中,1801803025125BOA ABO BAO ∠=︒-∠-∠=︒-︒-︒=︒【点睛】本题考查了三角形中的角度计算,熟练掌握高和角平分线的定义以及三角形内角和定理是解题的关键.8.如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD=15°,∠B=40°.(1)求∠C 的度数.(2)若:∠EAD=α,∠B=β,其余条件不变,直接写出用含α,β的式子表示∠C 的度数.【解析】(1)70°;(2)∠C=β+2α.【解析】【分析】(1)根据三角形的内角和定理求出∠BAD ,求出∠BAE ,根据角平分线的定义求出∠BAC ,即可求出答案;(2)根据三角形的内角和定理求出∠BAD ,求出∠BAE ,根据角平分线的定义求出∠BAC ,即可求出答案.【详解】(1)∵AD ⊥BC ,∴∠ADC=∠ADB=90°,∵∠B=40°,∴∠BAD=90°-40°=50°,∵∠EAD=15°,∴∠BAE=50°-15°=35°,∵AE 平分∠BAC ,∴∠CAE=∠BAE=12∠BAC=35°,∴∠BAC=70°,∴∠C=180°-∠BAC-∠B=180°-70°-40°=70°;(2)∵AD ⊥BC ,∴∠ADC=∠ADB=90°,∵∠B=β,∴∠BAD=90°-β,∵∠EAD=α,∴∠BAE=90°-β-α,∵AE 平分∠BAC ,∴∠CAE=∠BAE=12∠BAC=90°-β-α,∴∠BAC=180°-2β-2α,∴∠C=180°-∠BAC-∠B=180°-(180°-2β-2α)-β=β+2α.【点睛】本题考查了三角形的内角和定理,能灵活运用定理进行计算是解此题的关键.9.如图,BD 、BE 分别是ABC ∆的高和角平分线,46A ∠=︒,74ABC ∠=︒,求DBE ∠的度数.【解析】7DBE ∠=︒【解析】【分析】先根据直角三角形两锐角互余求出∠ABD 的度数,再根据角平分线的性质求出∠ABE 的度数,二者作差即可得出答案.【详解】解:∵BD 是ABC ∆的高,∴∠ABD =90904644A ︒-∠=︒-︒=︒,∵BE 是ABC ∆的角平分线,∴∠ABE =11743722ABC ∠=⨯︒=︒,∴44377DBE ABD ABE ∠=∠-∠=︒-︒=︒.【点睛】本题考查了直角三角形两锐角互余、角平分线的性质.在图形中找出DBE ABD ABE ∠=∠-∠这一数量关系是解题的关键.10.如图,在ABC ∆中,CE 是角平分线,D 是AB 延长线上一动点,DF CE ⊥于点下,试探索D ∠与ABC ∠、A ∠的数量关系.【解析】()12D ABC A ∠=∠-∠,见解析.【解析】【分析】过点C 作CG AB ⊥于点G ,首先根据三角形的内角和定理,求出∠BCA 的度数;然后根据角平分线的性质,求出∠ACE ;再根据三角形的外角的性质,求出∠CED 的度数,进而求出∠ECG ,再根据同角的余角相等得出∠ECG=∠D 即可.【详解】解:如图,过点C 作CG AB ⊥于点GDF CE ⊥ ,90GCE CEG D DEF ∴∠+∠=∠+∠=︒,D ECG ∴∠=∠,在ABC ∆中,∠ACB=180°-(∠A+∠ABC )∵CE 是角平分线,∴∠ACE=1ACB 2∠=90°-12∠A-12∠ABC ∴∠DEC=90°+12∠A-12∠ABC ∵CG AB⊥∴∠ECG=90°-∠DEC∴()12ECG ABC A ∠=∠-∠,()12D ABC A ∴∠=∠-∠【点睛】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.此题还考查了三角形的外角的性质,要熟练掌握,解答此题的关键是要明确:三角形的外角等于和它不相邻的两个内角的和.此题还考查了角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:一个角的角平分线把这个角分成两个大小相同的角.11.如图,在ABC ∆中,42A ∠=︒,70B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥于F ,求EDF ∠.【解析】14EDF ∠=︒.【解析】【分析】根据三角形内角和定理求出∠ACB ,根据角平分线的定义求出∠ACE ,根据三角形的外角的性质求出∠FED ,根据三角形内角和定理计算即可.【详解】解:∵∠A=42°,∠B=70°,∴∠ACB=180°-70°-42°=68°,∵CE 平分∠ACB ,∴∠ACE=12∠ACB=34°,∴∠FED=∠A+∠ACE=76°,∵DF ⊥CE ,∴∠EDF=90°-∠FED=14°,故答案为14°.【点睛】本题考查的是三角形内角和定理以及三角形的角平分线的定义,掌握三角形内角和等于180°是解题的关键.12.如图,在ABC ∆中,44BAC BCA ∠=∠= ,M 为ABC ∆内一点,使得30,16MCA MAC ∠=∠= ,求BMC ∠的度数.【解析】150°【解析】【分析】作BD AC ⊥于点D ,延长CM 交BD 于点O ,连接AO ,301614OAM OAC MAC ∠=∠-∠=︒-︒=︒,故BAO MAO ∠=∠,证ABO AMO ∆≅∆,从而OB OM =.由120BOM ∠=︒,得180120302OMB OBM ︒-︒∠=∠==︒,故180BMC OMB ∠=︒-∠.【详解】如图,作BD AC ⊥于点D ,延长CM 交BD 于点O ,连接AO ,则30OAC MAC ∠=∠=︒,443014BAO ∠=︒-︒=︒,301614OAM OAC MAC ∠=∠-∠=︒-︒=︒,得BAO MAO ∠=∠.又9060AOD OAD COD ∠=∠︒=∠︒-=,所以120AOM AOB ∠=︒=∠,又AO AO=因此ABO AMO ∆≅∆,从而OB OM =.由120BOM ∠=︒,得180120302OMB OBM ︒-︒∠=∠==︒,故180********BMC OMB ∠=︒-∠=︒-︒=︒.【点睛】考核知识点:全等三角形判定和性质,等腰三角形性质.作好辅助线是关键.13.如图,在ABC ∆中,AD 是BAC ∠的平分线,G 为AD 上一动点,GH AD ⊥,交BC 的延长线于点H .(1)若30B ∠=︒,40BAC ∠=︒,求H ∠的度数;(2)当点G 在AD 上运动时,探求H ∠与B Ð、ACB ∠之间的数量关系,并证明.【解析】(1)40H ∠=︒,(2)()12H ACB B ∠=∠-∠,见解析.【解析】【分析】(1)先根据三角形外角的性质及角平分线求出ADH ∠的度数,再根据直角三角形两锐角互余即可求出H ∠的度数;(2)先根据三角形外角的性质及角平分线得出12ADH B BAC ∠=∠+∠,再根据直角三角形两锐角互余即可得出H ∠与B Ð、ACB ∠之间的数量关系.【详解】解:(1)∵AD 是BAC ∠的平分线,∴11402022BAD BAC ∠=∠=⨯︒=︒,∴302050ADH B BAD ∠=∠+∠=︒+︒=︒,∵GH AD ⊥,90905040H ADH ∴∠=︒-∠=︒-︒=︒;(2)∵AD 是BAC ∠的平分线,∴12BAD BAC ∠=∠,∴12ADH B BAD B BAC ∠=∠+∠=∠+∠,∵GH AD ⊥,19090()2H ADH B BAC ∴∠=︒-∠=︒-∠+∠;∵180B BAC ACB ∠+∠+∠=︒,∴11190222B BAC ACB ∠+∠+∠=︒1111()2222H B BAC ACB B BAC ∴∠=∠+∠+∠-∠+∠,即()12H ACB B ∠=∠-∠.【点睛】本题考查了三角形内角和定理及其推论、角平分线的性质等知识.熟练应用三角形内角和定理及其推论是解题的关键.14.如图,在ABC ∆中,AB AC =,BD AC ⊥于D ,BE 平分ABC ∠,试用A ∠表示DBE ∠.【解析】3454DEB A ∠=︒-∠.【解析】【分析】先根据等腰三角形的性质及角平分线的性质可得1454ABE A ∠=︒-∠,根据三角形外角的性质得BED A ABE ∠=∠+∠,再根据直角三角形两锐角互余即可得出结论.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∴18019022A ABC A ︒-∠∠==︒-∠,∵BE 平分ABC ∠,∴114524ABE ABC A ∠=∠=︒-∠,∵BD AC ⊥于D ,∴90B E E D D B ∠=︒∠-,∵BED A ABE ∠=∠+∠,∴90901(45)4A A D BE A B A E ∠=︒-︒∠-∠=-︒-∠-∠,即3454DEB A ∠=︒-∠.【点睛】本题考查了等腰三角形的性质、三角形内角和定理及其推论.灵活转化角之间的关系是解题的关键。

北京师范大学常州附属中学七年级下册数学期末压轴难题试题及答案解答

北京师范大学常州附属中学七年级下册数学期末压轴难题试题及答案解答

北京师范大学常州附属中学七年级下册数学期末压轴难题试题及答案解答一、选择题1.下列四个图形中,1∠和2∠是内错角的是( )A .B .C .D .2.下列图形中,哪个可以通过图1平移得到( )A .B .C .D . 3.如图,小手盖住的点的坐标可能为( )A .()2,3B .()2,3-C .()2,3--D .()2,3- 4.下列命题是假命题的是( )A .垂线段最短B .内错角相等C .在同一平面内,不重合的两条直线只有相交和平行两种位置关系D .若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直 5.一副直角三角板如图放置,其中∠F =∠ACB =90°,∠D =45°,∠B =60°,AB //DC ,则∠CAE 的度数为( )A .25°B .20°C .15°D .10°6.如图,数轴上的点A 所表示的数为x ,则x 2﹣10的立方根为( )A .2﹣10B .﹣2﹣10C .2D .﹣27.珠江流域某江段江水流向经过B 、C 、D 三点,拐弯后与原来方向相同.如图,若∠ABC =120°,∠BCD =80°,则∠CDE 等于( )A .20°B .40°C .60°D .80°8.如下图所示,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次运动到点()2,0,第3次运动到点()3,1-,……,按照这样的运动规律,点P 第2021次运动到点( )A .()2021,1B .()2021,0C .()2021,1-D .()2022,0二、填空题9.已知x y 、是实数,且()2230x y -+-=,则xy 的值是_______.10.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.11.如图,C 在直线BE 上,∠ABC 与∠ACE 的角平分线交于点1A ,∠A=m,若再作∠1A BE 、∠1A CE 的平分线,交于点2A ;再作∠2A BE 、∠2A CE 的平分线,交于点3A ;……;依次类推,则A n ∠为_______.12.如图,已知a ∥b ,如果∠1=70°,∠2=35°,那么∠3=_____度.13.如图,将一张长方形纸片沿EF折叠后,点C,D分别落在C',D的位置,若65EFB∠=︒,则AED'∠的度数为______.14.如图,在纸面上有一数轴,点A表示的数为﹣1,点B表示的数为3,点C表示的数为3.若子轩同学先将纸面以点B为中心折叠,然后再次折叠纸面使点A和点B重合,则此时数轴上与点C重合的点所表示的数是_______.15.已知点M在y轴上,纵坐标为4,点P(6,﹣4),则△OMP的面积是__.16.如图,在平面直角坐标系中:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→……的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是________.三、解答题17.计算:(13116+84(2)3232-.18.求下列各式中的x值:(1)16(x+1)2=25; (2)8(1﹣x)3=125 19.如图,∠1+∠2=180°,∠C=∠D.求证:AD//BC.证明:∵∠1+∠2=180°,∠2+∠AED =180°,∴∠1=∠AED ( ), ∴AC // ( ), ∴∠D =∠DAF ( ).∵∠C =∠D ,∴∠DAF = (等量代换).∴AD //BC ( ).20.已知点P (﹣3a ﹣4,a +2).(1)若点P 在y 轴上,试求P 点的坐标;(2)若M (5,8),且PM //x 轴,试求P 点的坐标;(3)若点P 到x 轴,y 轴的距离相等,试求P 点的坐标.21.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用2﹣1来表示2的小数部分,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为4<7<9,即2<7<3,所以7的整数部分为2,小数部分为(7﹣2)请解答:(1)10的整数部分是 ,小数部分是 ;(2)如果5的小数部分为a ,13的整数部分为b ,求a +b ﹣5的值.二十二、解答题22.已知足球场的形状是一个长方形,而国际标准球场的长度a 和宽度b (单位:米)的取值范围分别是100110a ≤≤,6475b ≤≤.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由. 二十三、解答题23.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.24.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.25.如图,已知直线a ∥b ,∠ABC =100°,BD 平分∠ABC 交直线a 于点D ,线段EF 在线段AB 的左侧,线段EF 沿射线AD 的方向平移,在平移的过程中BD 所在的直线与EF 所在的直线交于点P .问∠1的度数与∠EPB 的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P 在直线a 、直线b 之间,求∠EPB 的度数;(2)当∠1=70°,求∠EPB 的度数;(一般化)(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).26.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【参考答案】一、选择题1.C解析:C【分析】根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可.【详解】解:A、∠1与∠2不是内错角,选项错误,不符合题意;B、∠1与∠2不是内错角,选项错误,不符合题意;C、∠1与∠2是内错角,选项正确,符合题意;D、∠1和∠2不是内错角,选项错误,不符合题意;故选:C.【点睛】本题考查了内错角,关键是根据内错角的概念解答.注意:内错角的边构成“Z”形. 2.A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A ,故选A .考点:平移的性质.解析:A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A ,故选A .考点:平移的性质.3.C【分析】根据平面直角坐标系的象限内点的特点判断即可;【详解】∵盖住的点在第三象限,∴()2,3--符合条件;故答案选C .【点睛】本题主要考查了平面直角坐标系象限内点的特征,准确分析判断是解题的关键. 4.B【分析】根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案.【详解】A 、垂线段最短,正确,是真命题,不符合题意;B 、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内错角相等),符合题意;C 、在同一平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意;D 、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等,则四个角一定全相等,都是90︒,所以互相垂直,不符合题意;故选:B .【点睛】题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理.5.C【分析】利用平行线的性质和给出的已知数据即可求出CAE ∠的度数.【详解】解:90F ∠=︒,45D ∠=︒,45DEF ∴∠=︒,90ACB ∠=︒,60B ∠=︒,30BAC ∴∠=︒,//AB DC ,45BAE DEF ∴∠=∠=︒,453015CAE BAE BAC ∴∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质.6.D【分析】先根据在数轴上的直角三角形运用勾股定理可得斜边长,即可得x 的值,进而可得则2(13)x -的值,再根据立方根的定义即可求得其立方根.【详解】根据图象:直角三角形两边长分别为2和1, ∴22215x =+=∴x 在数轴原点左面,∴5x =-,则2135138x -=-=-,则它的立方根为2-;故选:D .【点睛】本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A 点表示的实数.7.A【分析】过点C 作CF ∥AB ,则CF ∥DE ,利用平行线的性质和角的等量代换求解即可.【详解】解:由题意得,AB ∥DE ,过点C 作CF ∥AB ,则CF ∥DE ,∴∠BCF +∠ABC =180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键.8.A【分析】令P点第n次运动到的点为Pn点(n为自然数).列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n +2,0),P4n+3(4解析:A【分析】令P点第n次运动到的点为P n点(n为自然数).列出部分P n点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,−1)”,根据该规律即可得出结论.【详解】解:令P点第n次运动到的点为P n点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,−1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,−1).∵2021=505×4+1,∴P第2021次运动到点(2021,1).故选:A.【点睛】本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.二、填空题9.6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛解析:6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.【详解】解:由题意得,x−2=0,y-3=0,解得,x=2,y=3,xy=6,故答案为:6.【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.10.1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.11.【分析】根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可【详解】当∠A=m时,∠=,以此类推,∠=,∠=,∠=故答案为【点睛】本题主要考查了角平分线性质解析:2nm【分析】根据角平分线定义与三角形的外角等于与其不相邻两个内角和求出规律,利用规律解题即可【详解】当∠A=m时,∠1A=12m,以此类推,∠2A=14m,∠3A=18m,∠nA=12nm故答案为2nm【点睛】本题主要考查了角平分线性质与三角形外角和定理,根据题意以及相关性质找到规律解题是关键12.75【分析】根据平行线的性质和的度数得到,再利用平角的性质可得的度数.【详解】解:如图:,,.,.故答案为:75.【点睛】此题考查了平行线的性质,解题的关键是注意掌握两直线平解析:75【分析】根据平行线的性质和1∠的度数得到4∠,再利用平角的性质可得3∠的度数.【详解】解:如图://a b ,170∠=︒,4170∴∠=∠=︒.235∠=︒,3180703575∴∠=︒-︒-︒=︒.故答案为:75.【点睛】此题考查了平行线的性质,解题的关键是注意掌握两直线平行,同位角相等定理的应用. 13.50°【分析】先根据平行线的性质得出∠DEF 的度数,再根据翻折变换的性质得出∠D′EF 的度数,根据平角的定义即可得出结论.【详解】解:∵AD ∥BC ,∠EFB =65°,∴∠DEF =65°,解析:50°【分析】先根据平行线的性质得出∠DEF 的度数,再根据翻折变换的性质得出∠D ′EF 的度数,根据平角的定义即可得出结论.【详解】解:∵AD ∥BC ,∠EFB =65°,∴∠DEF =65°,又∵∠DEF =∠D ′EF ,∴∠D ′EF =65°,∴∠AED ′=50°.故答案是:50°.【点睛】本题考查的是折叠的性质以及平行线的性质,用到的知识点为:两直线平行,内错角相等.14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A 重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C 点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+(3+1)=7.与C重合的点表示的数:3+(36第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.15.【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.【详解】解:∵M在y轴上,纵坐标为4,∴OM=4,∵P(6,﹣4),∴S△OMP=OM•|xP|=×4×6=12解析:【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.【详解】解:∵M在y轴上,纵坐标为4,∴OM=4,∵P(6,﹣4),∴S△OMP=12OM•|x P|=12×4×6=12.故答案为12.【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键.16.【分析】先求出四边形ABCD 的周长为12,再计算,得到余数为5,由此解题.【详解】解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),四边形ABCD 的周长为2+4+2+4=解析:()1,2--【分析】先求出四边形ABCD 的周长为12,再计算2021121685÷=,得到余数为5,由此解题.【详解】 解:A (1,1),B (﹣1,1),C (﹣1,﹣3),D (1,﹣3),∴四边形ABCD 的周长为2+4+2+4=12,2021121685÷=2AB =∴细线另一端所在位置的点在B 点的下方3个单位的位置,即点的坐标(1,2)--故答案为:(1,2)--.【点睛】本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型.三、解答题17.(1)5;(2)4﹣.【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案.【详解】(1)原式=4+2﹣=5;(2)原式=3﹣(﹣)=3解析:(1)512;(2)【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案.【详解】(1)原式=4+2﹣12=512;(2)原式===【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.(1)或;(2)【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答.【详解】解:(1)等式两边都除以16,得.等式两边开平方,得.所以,得.所以,解析:(1)14x =或94x =-;(2)3.2x =-【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答.【详解】解:(1)等式两边都除以16,得()225116x +=. 等式两边开平方,得514x +=±. 所以,得5511-44x x +=+=或. 所以,19-44x =或(2)等式两边都除以8,得()31251-8x =. 等式两边开立方,得51-2x =. 所以,3.2x =-【点睛】本题考查平方根、立方根,解题关键是熟记平方根、立方根..19.同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;∠C ;同位角相等,两直线平行.【分析】根据平行线的判定和性质定理即可得到结论.【详解】证明:,,(同角的补角相等),解析:同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;∠C ;同位角相等,两直线平行.【分析】根据平行线的判定和性质定理即可得到结论.【详解】证明:12180∠+∠=︒,2180AED ∠+∠=︒,1AED ∴∠=∠(同角的补角相等),//AC DE ∴(内错角相等,两直线平行),D DAF ∴∠=∠(两直线平行,内错角相等),C D ∠=∠,DAF C ∴∠=∠(等量代换),//AD BC ∴(同位角相等,两直线平行).故答案为:同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;C ∠;同位角相等,两直线平行.【点睛】本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键.20.(1)P (0,);(2)P (-22,8);(3)P (,)或P (-1,1).【分析】(1)根据y 轴上的点的坐标特征:横坐标为0列方程求出a 值即可得答案; (2)根据平行于x 轴的直线上的点的纵坐标相解析:(1)P (0,23);(2)P (-22,8);(3)P (12,12)或P (-1,1). 【分析】(1)根据y 轴上的点的坐标特征:横坐标为0列方程求出a 值即可得答案;(2)根据平行于x 轴的直线上的点的纵坐标相等列方程求出a 值即可得答案;(3)根据点P 到x 轴,y 轴的距离相等可得|34||2|a a --=+,解方程求出a 值即可得答案.【详解】(1)∵点P 在y 轴上,∴340a --=,∴43a =-, ∴422233a +=-+= ∴P (0,23). (2)∵PM //x 轴,∴28a +=,∴6a =,此时,3422a --=-,∴P (-22,8)(3)∵若点P 到x 轴,y 轴的距离相等,∴|34||2|a a --=+,∴342a a --=+或34(2)a a --=-+, 解得:32a =-或1a =-, 当32a =-时,﹣3a ﹣4=12,a +2=12, ∴P (12,12),当1a =-时,﹣3a ﹣4=-1,a +2=1,∴P (-1,1),综上所述:P (12,12)或P (-1,1).【点睛】本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质. 21.(1)3, ﹣3;(2)1.【分析】(1)根据解答即可;(2)根据2<<3得出a ,根据3<<4得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵,∴的整数部分是3,小数部分是﹣3,解析:(1)3,3;(2)1.【分析】(1)根据34解答即可;(2)根据23得出a ,根据34得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵34<<, ∴3﹣3,故答案为:3﹣3;(2)∵23,a2,∵34,∴b=3,a+b2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.二十二、解答题22.符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5b×b解析:符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5b×b=7350,∴b=70,或b=-70(舍去),即宽为70米,长为1.5×70=105米,∵100≤105≤110,64≤70≤75,∴符合国际标准球场的长宽标准.【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提.二十三、解答题23.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∠FCQ=60°,∴∠PCQ=12∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可.【详解】解:(1)作EI∥PQ,如图,∵PQ∥MN,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.综上所述,∠BAM的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.25.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;【详解】解:(1)∵BD平分∠ABC,∠ABC=50°,∴∠ABD=∠DBC=12∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;【点睛】考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.26.(1),理由见解析;(2)当点P在B、O两点之间时,;当点P在射线AM上时,.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C∠=∠+∠,理由见解析;解析:(1)CPDαβ∠=∠-∠;(2)当点P在B、O两点之间时,CPDαβ∠=∠-∠.当点P在射线AM上时,CPDβα【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.。

人教版八年级上册第十一章《三角形》尖子生训练卷

人教版八年级上册第十一章《三角形》尖子生训练卷

第十一章《三角形》尖子生训练卷一.选择题1.△ABC中,∠A=∠B>∠C,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不等边三角形2.三角形的周长小于13,且各边长为互不相等的整数,则这样的三角形共有()A.2个B.3个C.4个D.5个3.如图,在△ABC中,AD、BF、CE相交于O点,则图中的三角形的个数是()A.7个B.10个C.15个D.16个4.为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应该是()A.19.5 B.20.5 C.21.5 D.25.55.如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36°B.42°C.45°D.48°6.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A.2对B.3对C.4对D.6对7.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形8.把一副三角尺按如图所示叠放在一起,则下图中∠α=()A.75°B.60°C.65°D.55°9.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为()A.21 B.26 C.37 D.4210.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°11.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.140°B.130°C.110°D.70°12.已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()A.0个B.1个C.2个D.3个二.填空题13.如图,∠ABC=15°,∠ACB=37.5°,∠DAC=75°,DC=2,则BD的长为.14.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.15.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=度.16.如图,△ABC中,AB=AC,与∠BAC相邻的外角为80°,则∠B=度.17.如图是一个五角星图案,中间部分的五边形ABCDE是一个正五边形,则图中∠ABC的度数是度.18.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为.三.解答题19.如图,D是△ABC的BC边上的一点,∠B=∠BAD,∠ADC=80°,∠BAC=70°.(1)求∠B的度数.(2)求∠C的度数.20.平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.21.两条平行直线上各有n个点,用这n对点按如下的规则连接线段;①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;②符合①要求的线段必须全部画出;图1展示了当n=1时的情况,此时图中三角形的个数为0;图2展示了当n=2时的一种情况,此时图中三角形的个数为2;(1)当n=3时,请在图3中画出使三角形个数最少的图形,此时图中三角形的个数为个;(2)试猜想当n对点时,按上述规则画出的图形中,最少有多少个三角形?(3)当n=2006时,按上述规则画出的图形中,最少有多少个三角形?22.已知,在四边形ABCD中,∠A+∠C=160°,BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线.(1)如图1,若BE∥DF,求∠C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∠C的度数.23.(1)阅读材料并填空:运用平行线及其性质,可以推理证明出很多有用的结论,如图甲,点D是△ABC中BC边延长线上的一点,过点C作CE∥AB,则有如下推理证明:∵CE∥AB(已知),∴∠ACE=(两直线平行,).∠ECD=(两直线平行,).∵∠ACD=∠ACE+∠ECD,∴∠ACD=(等量代换).(2)如图乙,根据(1)中的平行线的构造方法,过点D作DE∥AB交BC于点E,运用(1)中的结论,即可推理出四边形ABCD中∠A+∠B+∠C+∠CDA的度数.具体推理步骤如下,请填空:由(1)知:∠BED=∠C+ .∵DE∥AB,∴+∠ADE=180°(两直线平行,),∠B+∠BED=180°(两直线平行,同旁内角互补).∵∠CDA=∠CDE+∠ADE,∴∠A+∠B+∠C+∠CDA=∠A+∠B+∠C+∠CDE+∠ADE=∠A+∠B+∠BED+∠ADE=°(等量代换).24.如图①,∠1、∠2是四边形ABCD的两个不相邻的外角.(1)猜想并说明∠1+∠2与∠A、∠C的数量关系;(2)如图②,在四边形ABCD中,∠ABC与∠ADC的平分线交于点O.若∠A=50°,∠C =150°,求∠BOD的度数;(3)如图③,BO、DO分别是四边形ABCD外角∠CBE、∠CDF的角平分线.请直接写出∠A、∠C与∠O的数量关系.参考答案一.选择题1.解:∵△ABC中,∠A=∠B>∠C,∴∠C<60°,∠A=∠B<90°,△ABC是等腰三角形,故三角形是锐角三角形.故选:A.2.解:根据三角形的两边之和大于第三边以及三角形的周长小于13,则其中的任何一边不能超过5;所有的情况有:1、1、1;1、2、2;1、3、3;1、4、4;1、5、5;2、2、2;2、2、3;2、3、3;2、3、4;2、4、4;2、4、5;2、5、5;3、3、3;3、3、4;3、3、5;3、4、4;3、4、5;4、4、4,再根据两边之差小于第三边,则这样的三角形共有3,4,2;4,5,2;3,4,5三个.故选:B.3.解:6+3+6+1=16个三角形.故选D.4.解:如图,最短总长度应该是:电厂到A,再从A到B、D,然后从D到C,5+4+6+5.5=20.5km.故选:B.5.解:如图,梅花扇的内角的度数是:360°÷3=120°,180°﹣120°=60°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.6.解:△BDC与△BEC、△BDC与△BAC、△BEC与△BAC共三对.故选:B.7.解:当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选:A.8.解:已知,∠ADE=45°,∠F=60°,∴∠α=180°﹣60°﹣45°=75°.故选:A.9.解:多边形的周长=16×2+5×2=42.故选:D.10.解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,∴∠1=∠ACE,∠2=∠ABC,又∵∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,∴∠D=∠A=25°.故选:C.11.解:∵四边形ADA′E的内角和为(4﹣2)•180°=360°,而由折叠可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,∴∠AED+∠A′ED+∠ADE+∠A′DE=360°﹣∠A﹣∠A′=360°﹣2×70°=220°,∴∠1+∠2=180°×2﹣(∠AED+∠A′ED+∠ADE+∠A′DE)=140°.故选:A.12.解:(1)若P点是∠ABC和∠ACB的角平分线的交点,则∠PBC=∠ABC,∠PCB=∠ACB则∠PBC+∠PCB=(∠ABC+∠ACB)=(180°﹣∠A)在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°﹣∠A)=90°+∠A,故成立;(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;(3)若P点是外角∠CBF和∠BCE的角平分线的交点,则∠PBC=∠FBC=(180°﹣∠ABC)=90°﹣∠ABC,∠BCP=∠BCE=90°﹣∠ACB∴∠PBC+∠BCP=180°﹣(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠A∴∠PBC+∠BCP=90°+∠A,在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°+∠A)=90°﹣∠A,故成立.∴说法正确的个数是2个.故选:C.二.填空题(共6小题)13.解:作∠AEB=15°,把△ABD绕点A逆时针旋转150°得到△AEF,连接CF、DF.则∠FEC=30°.由旋转性质可知∠DAF=150°,∵∠DAC=75°,∴∠CAF=75°.又AD=AF,AC=AC,∴△CAD≌△CAF(SAS).∴∠FCD=2∠ACD=75°,CD=CF=2.∴∠CFE=75°﹣30°=45°.则△FCH是等腰Rt△,CF=2,所以CH=FH=.在Rt△CHE中,CH=2,∠CEH=30°,∴EH=.∴EF=FH+HE=.∴BD=EF=.故答案为.14.解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.15.解:∵AE∥BD,∠1=130°,∠2=30°,∴∠CBD=∠1=130°.∵∠BDC=∠2,∴∠BDC=30°.在△BCD中,∠CBD=130°,∠BDC=30°,∴∠C=180°﹣130°﹣30°=20°.16.解:∵∠DAC=80°∴∠BAC=180°﹣∠DAC=180°﹣80°=100°∵在△ABC中,AB=AC∴∠ABC=∠ACB==40°.故填40°.17.解:∵ABCDE是一个正五边形,∴五边形的内角和是(5﹣2)×180°=540°,∴∠ABC=540°÷5=108°.18.解:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).故答案为:n(n+1).三.解答题(共6小题)19.解:(1)∵∠ADC是△ABD的一个外角,∴∠ADC=∠B+∠BAD,又∵∠ADC=80°,∠B=∠BAD,∴∠B=∠ADC=×80°=40°;(2)在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣40°﹣70°=70°.20.解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.21.解:(1)4个;(2)当有n对点时,最少可以画2(n﹣1)个三角形;(3)2×(2006﹣1)=4010个.答:当n=2006时,最少可以画4010个三角形.22.解:(1)如图1,过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)如图2,连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°﹣40°=120°.23.解:(1)如图甲,点D是△ABC中BC边延长线上的一点,过点C作CE∥AB,则有如下推理证明:∵CE∥AB(已知),∴∠ACE=∠A(两直线平行,内错角相等),∠ECD=∠B(两直线平行,同位角相等),∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B(等量代换).(2)如图乙,根据(1)中的平行线的构造方法,过点D作DE∥AB交BC于点E,运用(1)中的结论,即可推理出四边形ABCD中∠A+∠B+∠C+∠CDA的度数.由(1)知:∠BED=∠C+∠CDE.∵DE∥AB,∴∠A+∠ADE=180°(两直线平行,同旁内角互补),∠B+∠BED=180°(两直线平行,同旁内角互补).∵∠CD4=∠CDE+∠ADE,∴∠A+∠B+∠C+∠CDA=∠A+∠B+∠C+∠CDE+∠ADE=∠A+∠B+∠BED+∠ADE=360°(等量代换)故答案为:(1)∠A;内错角相等;∠B;同位角相等;∠A+∠B;(2)∠CDE;∠A;同旁内角互补;360.24.解:(1)猜想:∠1+∠2=∠A+∠C,∵∠1+∠ABC+∠2+∠ADC=360°,又∵∠A+∠ABC+∠C+∠ADC=360°,∴∠1+∠2=∠A+∠C;(2)∵∠A=50°,∠C=150°,∴∠ABC+∠ADC=360°﹣200°=160°,又∵BO、DO分别平分∠ABC与∠ADC,∴∠OBC=∠ABC,∠ODC=∠ADC,∴∠OBC+∠ODC=(∠ABC+∠ADC)=80°,∴∠BOD=360°﹣(∠OBC+∠ODC+∠C)=130°;(3)∠A、∠C与∠O的数量关系为为:∠C﹣∠A=2∠O.理由如下:∵BO、DO分别是四边形ABCD外角∠CBE、∠CDF的角平分线.∴∠FDC=2∠FDO=2∠ODC,∠EBC=2∠EBO=2∠CBO,由(1)可知:∠FDO+∠EBO=∠A+∠O,2∠FDO+2∠EBO=∠A+∠C,∴2∠A+2∠O=∠A+∠C,∴∠C﹣∠A=2∠O.故答案为:∠C﹣∠A=2∠O.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档