平方差、完全平方公式的应用(拔高类试题)

合集下载

(完整版)平方差完全平方公式提高练习题

(完整版)平方差完全平方公式提高练习题

平方差公式专项练习题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+,ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(,bc ac ab c b a c b a 222)(2222---++=++ 练一练 A 组: 1.已知()5,3a b ab -==求2()a b +与223()a b +的值。

平方差公式与完全平方公式试题(含答案)

平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差与完全平方公式运用练习题

平方差与完全平方公式运用练习题
1、 。
2、已知
5
教学效果
上课情况:。
课后需要巩固的内容:。
3、完全平方公式的特点:
左边是二项式的完全平方,右边是一个二次三项式,其中的两项是左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍,其符号取决于左边二项式中间的符号。
4、完全平方公式中字母的含义:公式中字母a、b可以是具体的数,也可是任意一个单项式或多项式。
5、完全平方公式
还可以逆用:
拓展应用: ,

6、例题讲解:
例题1:用完全平方公式进行计算:
(1) (2)
(3) (4)
3
例题2:计算
(1) (2)
(3) (4)
例题3:用完全平方公式进行计算:
(1) (2)
(3)
例题4:
(1)已知
(2)已知
4
例题5:多项式 加上一个单项式后能成为一个整式的完全平方式,那么这个单项式是多少。(该题一共有5个答案)
5、例题讲解:
例题1:(1) (2)
(3) (4)
1
例题2:计算
例题3:用平方差公式进行计算:
(1)102 98 (2)10.3 9.7
(3)
例题4:先化简,再求值:
(1) 。
(2) 。
2
二、完全平方公式:
1、完全平方公式 。
即两个数的和的平方和加上它们乘积的2倍。
2ቤተ መጻሕፍቲ ባይዱ完全平方公式 。
即两个数的差的平方和减去它们乘积的2倍。
例题6:某加工车间要在边长为(a+3)cm的正方形的钢板上,从中间挖去一个边长为(a-1)cm的小正方形,求剩余部分的面积是多少?
【课后练习】
一、填空题:

平方差、完全平方公式的应用(拔高类试题)

平方差、完全平方公式的应用(拔高类试题)

平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5 二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++已知 2()16,4,a b ab +==求223a b +与2()a b -的值。

人教版八年级数学上《完全平方公式》拔高练习

人教版八年级数学上《完全平方公式》拔高练习

《完全平方公式》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例,这个三角形给出了(a+b)n(n=1,2,3,4,5,6)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应着(a+b)2=a2+2ab+b2展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着(a+b)4=a4+4a3b+6a2b2+4ab3+b4展开式中各项的系数,等等.有如下三个结论:①当a=1,b=1时,代数式a4+4a3b+6a2b2+4ab3+b4的值是1.②当a=﹣1,b=2时,代数式a4+4a3b+6a2b2+4ab3+b4的值是1③当代数式a4+4×3a3+6×9a2+4×27a+81的值是1时,a的值是﹣2或﹣4.上述结论中,所有正确结论的序号为()A.①②B.②C.③D.②③2.(5分)已知x+y=4,xy=3,则x2+y2的值为()A.22B.16C.10D.43.(5分)已知x+y=﹣4,xy=2,则x2+y2的值()A.10B.11C.12D.134.(5分)若a=2017×2018﹣1,b=20172﹣2017×2018+20182,则下列判断结果正确的是()A.a<b B.a>b C.a=b D.无法判断5.(5分)利用乘法公式计算(3a+b)2等于()A.3a2+b2B.9a2+b2C.9a2+3ab+b2D.9a2+6ab+b2二、填空题(本大题共5小题,共25.0分)6.(5分)已知(x+y)2=25,x2+y2=15,则xy=.7.(5分)已知a+b=6,ab=3,则﹣ab=.8.(5分)若a+b=5,ab=3,则3a2+3b2=.9.(5分)计算1012=.10.(5分)已知(x+y)2=25,(x﹣y)2=9,则x2+y2=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知x2+y2=19,x﹣y=5,求下列各式的值.(1)xy;(2)x+y.12.(10分)阅读:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.请你根据上述解题思路解答下面问题:(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.(2)已知a﹣c﹣b=﹣10,(a﹣b)•c=﹣12,求(a﹣b)2+c2的值.13.(10分)阅读下列计算过程:99×99+199=992+2×99+1=(99+1)2=1002=104(1)计算:999×999+1999====;9999×9999+19999====(2)猜想9999999999×9999999999+19999999999等于多少?写出计算过程.14.(10分)若x+y=5,xy=4.(1)求x2+y2的值;(2)求x﹣y的值.15.(10分)已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.《完全平方公式》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例,这个三角形给出了(a+b)n(n=1,2,3,4,5,6)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应着(a+b)2=a2+2ab+b2展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着(a+b)4=a4+4a3b+6a2b2+4ab3+b4展开式中各项的系数,等等.有如下三个结论:①当a=1,b=1时,代数式a4+4a3b+6a2b2+4ab3+b4的值是1.②当a=﹣1,b=2时,代数式a4+4a3b+6a2b2+4ab3+b4的值是1③当代数式a4+4×3a3+6×9a2+4×27a+81的值是1时,a的值是﹣2或﹣4.上述结论中,所有正确结论的序号为()A.①②B.②C.③D.②③【分析】依据(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可代入a,b的值,得到代数式a4+4a3b+6a2b2+4ab3+b4的值.【解答】解:∵(a+b)4=a4+4a3b+6a2b2+4ab3+b4,∴当a=1,b=1时,代数式a4+4a3b+6a2b2+4ab3+b4的值是16,故①错误;当a=﹣1,b=2时,代数式a4+4a3b+6a2b2+4ab3+b4的值是1,故②正确;当代数式a4+4×3a3+6×9a2+4×27a+81的值是1时,(a+3)4=1,∴a的值是﹣2或﹣4,故③正确.故选:D.【点评】本题考查了完全平方公式,(a+b)n展开后各项是按a的降幂排列的,系数依次是从左到右(a+b)n﹣1系数之和,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.2.(5分)已知x+y=4,xy=3,则x2+y2的值为()A.22B.16C.10D.4【分析】根据完全平方公式得出x2+y2=(x+y)2﹣2xy,代入求出即可.【解答】解:∵x+y=4,xy=3,∴x2+y2=(x+y)2﹣2xy=42﹣2×3=10.故选:C.【点评】本题考查了完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.3.(5分)已知x+y=﹣4,xy=2,则x2+y2的值()A.10B.11C.12D.13【分析】先根据完全平方公式进行变形,再整体代入求出即可.【解答】解:∵x+y=﹣4,xy=2,∴x2+y2=(x+y)2﹣2xy=(﹣4)2﹣2×2=12,故选:C.【点评】本题考查了对完全平方公式的应用,能正确根据公式进行变形是解此题的关键.4.(5分)若a=2017×2018﹣1,b=20172﹣2017×2018+20182,则下列判断结果正确的是()A.a<b B.a>b C.a=b D.无法判断【分析】根据完全平方公式得到b=20172﹣2017×2018+20182=(2017﹣2018)2+2017×2018=1+2017×2018,再与a=2017×2018﹣1比较大小即可求解.【解答】解:∵a=2017×2018﹣1,b=20172﹣2017×2018+20182=(2017﹣2018)2+2017×2018=1+2017×2018,∴2017×2018﹣1<1+2017×2018,∴a<b.故选:A.【点评】考查了完全平方公式,解决本题的关键是利用完全平方公式计算b得到b=1+2017×2018.5.(5分)利用乘法公式计算(3a+b)2等于()A.3a2+b2B.9a2+b2C.9a2+3ab+b2D.9a2+6ab+b2【分析】依据完全平方公式进行计算即可.【解答】解:原式=(3a)2+2•3a•b=b2=9a2+6ab=b2.故选:D.【点评】本题主要考查的是完全平方公式的应用,熟练掌握公式是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)已知(x+y)2=25,x2+y2=15,则xy=5.【分析】把第一个等式左边利用完全平方公式化简,将第二个等式代入计算即可求出所求.【解答】解:把(x+y)2=25,化简得:x2+y2+2xy=25,将x2+y2=15代入得:15+2xy=25,解得:xy=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(5分)已知a+b=6,ab=3,则﹣ab=12.【分析】先把a+b=6两边乘方,再把ab=3代入即可求解.【解答】解:∵a+b=6,∴(a+b)2=a2+2ab+b2=36,∵ab=3,∴a2+2×3+b2=36,解得a2+b2=36﹣6=30.所以:,故答案为:12.【点评】本题是对完全平方公式的考查,学生经常漏掉乘积二倍项而导致出错.8.(5分)若a+b=5,ab=3,则3a2+3b2=57.【分析】首先根据完全平方公式将a2+b2用(a+b)与ab的代数式表示,然后把a+b,ab 的值整体代入计算.【解答】解:∵a+b=5,ab=3,∴3a2+3b2=3(a+b)2﹣6ab,=3×52+6×3,=57.【点评】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.解此题的关键是要了解a2+b2与(a﹣b)2之间的联系.9.(5分)计算1012=10201.【分析】根据完全平方公式解答即可.【解答】解:1012=(100+1)2=10000+200+1=10201,故答案为:10201.【点评】此题考查完全平方公式,关键是根据完全平方公式解答.10.(5分)已知(x+y)2=25,(x﹣y)2=9,则x2+y2=17.【分析】已知等式利用完全平方公式化简,相加即可求出所求.【解答】解:∵(x+y)2=x2+2xy+y2=25①,(x﹣y)2=x2﹣2xy+y2=9②,∴①+②得:2(x2+y2)=34,则x2+y2=17,故答案为:17【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)已知x2+y2=19,x﹣y=5,求下列各式的值.(1)xy;(2)x+y.【分析】(1)根据完全平方公式,即可解答.(2)根据完全平方公式,即可解答.【解答】解:(1)x﹣y=5,(x﹣y)2=52x2﹣2xy+y2=252xy=(x2+y2)﹣252xy=19﹣252xy=﹣6xy=﹣3.(2)(x+y)2=x2+2xy+y2=19+2×(﹣3)=13,x+y=±.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.12.(10分)阅读:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.请你根据上述解题思路解答下面问题:(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.(2)已知a﹣c﹣b=﹣10,(a﹣b)•c=﹣12,求(a﹣b)2+c2的值.【分析】(1)由于(a﹣b)2=(a+b)2﹣4ab,故采用整体代入法求解;(2)根据完全平分公式,即可解答.【解答】解:(1)∵a﹣b=﹣3,ab=﹣2,∴(a+b)(a2﹣b2)=(a+b)2(a﹣b)=[(a﹣b)2+4ab](a﹣b)=[(﹣3)2+4×(﹣2)]×(﹣3)=﹣3.(2)(a﹣b)2+c2=[(a﹣b)﹣c]2+2(a﹣b)c=(﹣10)2+2×(﹣12)=76.【点评】本题考查了完全平方公式,关键是要灵活应用完全平方公式及其变形公式.13.(10分)阅读下列计算过程:99×99+199=992+2×99+1=(99+1)2=1002=104(1)计算:999×999+1999=9992+2×999+1==(999+1)2=10002=106;9999×9999+19999=99992+2×9999+1=(9999+1)2=100002=108(2)猜想9999999999×9999999999+19999999999等于多少?写出计算过程.【分析】(1)根据99×99+199=992+2×99+1=(99+1)2=1002=104所示规律,通过变形,将999×999+1999和9999×9999+19999化为完全平方的形式,即可轻松计算;(2)根据(1)总结的规律,列出完全平方式计算.【解答】解:(1)根据99×99+199=992+2×99+1=(99+1)2=1002=104所示规律,得999×999+1999=9992+2×999+1=(999+1)2=10002=106;9999×9999+19999=99992+2×9999+1=(9999+1)2=100002=108.(2)根据(1)中规律,9999999999×9999999999+19999999999=(9999999999+1)2=100000000002=1020.【点评】此题是一道规律探索题,以完全平方公式为依托,展现了探索发现的过程:由特殊问题找到一般规律,再利用规律解题.14.(10分)若x+y=5,xy=4.(1)求x2+y2的值;(2)求x﹣y的值.【分析】(1)先依据完全平方公式得到x2+y2=(x+y)2﹣2xy,然后代入计算即可;(2)先求得(x﹣y)2的值,然后,再利用平方根的定义求解即可.【解答】解:(1)当x+y=5,xy=4时,x2+y2=(x+y)2﹣2xy=52﹣2×4=25﹣8=17.(2)∵(x﹣y)2=x2+y2﹣2xy=17﹣2×4=9,∴x﹣y=±3.【点评】本题主要考查的是完全平方公式的应用,利用完全平方公式对所求代数式进行适当的变形是解题的关键.15.(10分)已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.【分析】直接利用完全平方公式将原式变形,进而得出答案.【解答】解:∵(x+y)2=9,(x﹣y)2=25,∴两式相加,得(x+y)2+(x﹣y)2=2x2+2y2=34,则x2+y2=17;两式相减,得(x+y)2﹣(x﹣y)2=4xy=﹣16,则xy=﹣4.【点评】此题主要考查了完全平方公式的运用,正确将已知条件变形是解题的关键.。

(完整版)实用版平方差、完全平方公式专项练习题(精品)

(完整版)实用版平方差、完全平方公式专项练习题(精品)

其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(

(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072

2008 2006
20072

2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,?x ?y ???y ?x ??x 2?y 2 ② 符号变化,??x ?y ???x ?y ????x ?2?y 2? x 2?y 2 ③ 指数变化,?x 2?y 2??x 2?y 2??x 4?y 4 ④ 系数变化,?2a ?b ??2a ?b ??4a 2?b 2⑤ 换式变化,?xy ??z ?m ???xy ??z ?m ????xy ?2??z ?m ?2? x 2y 2??z 2?2zm +m 2??x 2y 2?z 2?2zm ?m 2 ⑥ 增项变化,?x ?y ?z ??x ?y ?z ???x ?y ?2?z 2 ?x 2?2xy ?y 2?z 2⑦ 连用公式变化,?x ?y ??x ?y ??x 2?y 2???x 2?y 2??x 2?y 2??x 4?y 4⑧ 逆用公式变化,?x ?y ?z ?2??x ?y ?z ?2???x ?y ?z ???x ?y ?z ????x ?y ?z ???x ?y ?z ???2x ??2y ?2z ? ??4xy ?4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,?x ?y ???y ?x ??x 2?y 2 ② 符号变化,??x ?y ???x ?y ????x ?2?y 2? x 2?y 2 ③ 指数变化,?x 2?y 2??x 2?y 2??x 4?y 4 ④ 系数变化,?2a ?b ??2a ?b ??4a 2?b 2⑤ 换式变化,?xy ??z ?m ???xy ??z ?m ????xy ?2??z ?m ?2? x 2y 2??z 2?2zm +m 2??x 2y 2?z 2?2zm ?m 2 ⑥ 增项变化,?x ?y ?z ??x ?y ?z ???x ?y ?2?z 2 ?x 2?2xy ?y 2?z 2⑦ 连用公式变化,?x ?y ??x ?y ??x 2?y 2???x 2?y 2??x 2?y 2??x 4?y 4⑧ 逆用公式变化,?x ?y ?z ?2??x ?y ?z ?2???x ?y ?z ???x ?y ?z ????x ?y ?z ???x ?y ?z ???2x ??2y ?2z ? ??4xy ?4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

平方差公式与完全平方公式试题(含答案)

平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例22解:∵(∴+)(b a ∵+b a 例3解:例4解:a 2+b (例5x-z 的积得来例61=(2-1)和解:( =( =24096 =161024因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6。

例7.运用公式简便计算 (1)1032 (2)1982 解:(1)1032=(100+3)2 =1002+2⨯100⨯3+32 =10000+600+9 =10609(2)1982=(200-2)2 =2002-2⨯200⨯2+22 =40000-800+4 =39204 例8.计算(1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2) 解:(1)原式=[(a -3c )+4b ][(a -3c )-4b ]=(a -3c )2-(4b )2=a 2-6ac +9c 2-16b 2 (2)原式=[3x +(y -2)][3x -(y -2)]=9x 2-( y 2-4y +4)=9x 2-y 2+4y -4 例9.解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。

平方差公式与完全平方公式试题(含答案)

平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方差完全平方公式专项练习题
1.下列计算中,错误的有()
①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;
③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.
A.1个B.2个C.3个D.4个
2.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5 3.(-2x+y)(-2x-y)=______.4.(-3x2+2y2)(______)=9x4-4y4.
5.(a+b-1)(a-b+1)=(_____)2-(_____)2.
6.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.
7.利用平方差公式计算:202
3
×21
1
3
.8.计算:(a+2)(a2+4)(a4+16)(a-2).
B卷:提高题
1、(1)(2+1)(22+1)(24+1)…(22n+1)+1(2)(3+1)(32+1)(34+1)…(32008+1)-
4016
3
2

2.(一题多变题)利用平方差公式计算:2009×2007-20082.
(1)一变:
22007
200720082006
-⨯.(2)二变:
2
2007
200820061
⨯+

3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).
4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?
5.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.
(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)
(2)根据你的猜想计算:
①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+…+2n =______(n 为正整数).
③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.
(3)通过以上规律请你进行下面的探索:
①(a -b )(a+b )=_______. ②(a -b )(a 2+ab+b 2)=______. ③(a -b )(a 3+a 2b+ab 2+b 3)=______.
6.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.
7. 从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A. a 2-b 2=(a-b )2B. (a+b )2=a 2+2ab+b 2C. (a-b )2=a 2-2ab+b 2D. a 2-b 2=(a+b )(a-b )
完全平方式常见的变形有:
(1)ab b a b a 2)(222-+=+(2)ab b a b a 2)(222+-=+ (3)ab b a b a 4)(22=--+)(
(4)2)(c b a ++=
1.已知()5,3a b ab -==求2()a b +与223()a b +的值。

2.已知6,4a b a b +=-=求ab 与22a b +的值3.已知224,4a b a b +=+=求22a b 与2()a b -的值。

4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值
5.已知222450x y x y +--+=,求21(1)2
x xy --的值。

相关文档
最新文档