深圳北大附中深圳南山分校七年级上册数学期末试卷及答案-百度文库

合集下载

广东省深圳市南山北师大七年级上期末数学试卷(有答案)

广东省深圳市南山北师大七年级上期末数学试卷(有答案)

广东省深圳市南山七年级(上)期末数学试卷一、选择题(共12小题;共36分)1.在圆柱、正方体、长方体中,主视图可能一样的是()A.仅圆柱和正方体B.仅圆柱和长方体C.仅正方体和长方体D.圆柱、正方体和长方体2.﹣2的绝对值是()A.2B.﹣2C.D.3.下列计算正确的一个是()A.a5+a5=2a5B.a5+a5=a10C.a5+a5=a D.2y+y2=23y34.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1085.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大6.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<07.下列调查方式中,采用了“普查”方式的是()A.调查某品牌手机的市场占有率B.调查电视网(芈月传)在全国的收视率C.调查我校初一(1)班的男女同学的比率D.调查某型号节能灯泡的使用寿命8.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm9.下列说法中,正确的有()①的系数是;②﹣22ab2的次数是5;③多项式mn2+2mn﹣3n﹣1的次数是3;④a﹣b和都是整式.A.1个B.2个C.3个D.4个10.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元11.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于的方程正确的是()A.5+4(+2)=44B.5+4(﹣2)=44C.9(+2)=44D.9(+2)﹣4×2=4412.设一列数中相邻的三个数依次为m,n,p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b=()A.118B.128C.178D.188二、填空题(共4小题;共12分)13.钟面上12点30分,时针与分针的夹角是度.14.若|a+|+(b﹣2)2=0,则(ab)2015=.15.若(a﹣1)|a|+3=6是关于的一元一次方程,则a=.16.如图图形是由相同的小五角星按一定的规律排列组合而成,其中第一个图形有6个五角星,第二个图形有10个五角星,第三个图形有16个五角星,第四个图形有24个五角星……则第十个图形有个五角星.三、解答题(共7小题;共52分)17.(6分)计算题(1)(﹣45)÷(﹣9)×(﹣3)(2)﹣23×+|﹣4|3÷(﹣2)4.18.(6分)先化简,再求值:23﹣(72﹣9)﹣2(3﹣32+4),其中=﹣1.19.(12分)解方程:(1)12+8=8﹣4(2)+3=﹣2(3)4﹣10=6(﹣2)(4)﹣=120.(5分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.21.(7分)某校八年级共有800名学生,准备调查他们对“低碳”知识的了解程度.(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查八年级部分女生;方案二:调查八年级部分男生;方案三:到八年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)请你估计该校八年级约有多少名学生比较了解“低碳”知识.22.(8分)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.23.(9分)如图,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO=cm (用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.广东省深圳市南山七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题;共36分)1.在圆柱、正方体、长方体中,主视图可能一样的是()A.仅圆柱和正方体B.仅圆柱和长方体C.仅正方体和长方体D.圆柱、正方体和长方体【分析】主视图是从几何体的正面看所得到的视图,分别分析出三个几何体的主视图可得答案.【解答】解:圆柱的主视图是长方形或正方形;正方体的主视图是正方形;长方体的主视图是长方形或正方形,因此主视图可能一样的是圆柱、正方体和长方体,故选:D.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置:是从几何体的正面看所得到的视图.2.﹣2的绝对值是()A.2B.﹣2C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.3.下列计算正确的一个是()A.a5+a5=2a5B.a5+a5=a10C.a5+a5=a D.2y+y2=23y3【分析】根据合并同类项的法则,合并同类项时字母和字母的指数不变把系数相加减.【解答】解:A、正确;B、a5+a5=2a5;C、a5+a5=2a5;D、2y+y2=(+y)y.故选:A.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.合并同类项时字母和字母的指数不变把系数相加减.4.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大【分析】此题根据有理数的加法和乘法法则解答.【解答】解:两个有理数的积是正数,说明两数同号,和也是正数,说明均为正数,A正确.故选:A.【点评】有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加.6.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<0【分析】本题利用数与数轴的关系及数形结合解答.【解答】解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.【点评】本题主要是利用数形结合的思想,用排除法选项.7.下列调查方式中,采用了“普查”方式的是()A.调查某品牌手机的市场占有率B.调查电视网(芈月传)在全国的收视率C.调查我校初一(1)班的男女同学的比率D.调查某型号节能灯泡的使用寿命【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查某品牌手机的市场占有率,范围较广,人数众多,应采用抽样调查,故此选项错误;B、调查电视网(芈月传)在全国的收视率,范围较广,人数众多,应采用抽样调查,故此选项错误;C、调查我校初一(1)班的男女同学的比率,人数较少,应采用普查,故此选项正确;D、调查某型号节能灯泡的使用寿命,普查具有破坏性,应采用抽样调查,故此选项错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【分析】先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC的长即可.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选:B.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.9.下列说法中,正确的有()①的系数是;②﹣22ab2的次数是5;③多项式mn2+2mn﹣3n﹣1的次数是3;④a﹣b和都是整式.A.1个B.2个C.3个D.4个【分析】根据单项式中的数字因数叫做单项式的系数可得①正确;根据一个单项式中所有字母的指数的和叫做单项式的次数可得②错误;根据多项式中次数最高的项的次数叫做多项式的次数可得③正确;根据单项式和多项式合称整式可得④正确.【解答】解:①的系数是,说法正确;②﹣22ab2的次数是5,说法错误,次数是3;③多项式mn2+2mn﹣3n﹣1的次数是3,说法正确;④a﹣b和都是整式,说法正确;正确的说法是3个,故选:C.【点评】此题主要考查了单项式和多项式,关键是掌握单项式次数的定义,多项式次数的定义,不要混肴.10.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【分析】设这种商品每件的进价为元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为元,由题意得:330×0.8﹣=10%,解得:=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.11.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于的方程正确的是()A.5+4(+2)=44B.5+4(﹣2)=44C.9(+2)=44D.9(+2)﹣4×2=44【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,5+(9﹣5)(+2)=5+4(+2)=44,故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是明确题意,列出相应的方程.12.设一列数中相邻的三个数依次为m,n,p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b=()A.118B.128C.178D.188【分析】根据题意求出a,再代入关系式即可得出b的值.【解答】解:根据题意得:a=32﹣(﹣2)=11,则b=112﹣(﹣7)=128.故选:B.【点评】本题考查了规律型:数字的变化类;熟练掌握变化规律,根据题意求出a是解决问题的关键.二、填空题(共4小题;共12分)13.钟面上12点30分,时针与分针的夹角是165度.【分析】画出图形,利用钟表表盘的特征解答.【解答】解:12点半时,时针指向1和12中间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,半个格是15°,因此12点半时,分针与时针的夹角正好是30°×5+15°=165°.【点评】本题是一个钟表问题,钟表12个数字,每相邻两个数字之间的夹角为30°.借助图形,更容易解决.14.若|a+|+(b﹣2)2=0,则(ab)2015=﹣1.【分析】根据非负数的性质可求出a、b的值,再将它们代入(ab)2015中求解即可.【解答】解:∵|a+|+(b﹣2)2=0,∴a+=0,b﹣2=0;a=﹣,b=2;则(ab)2015=(﹣×2)2015=﹣1.故答案为﹣1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.15.若(a﹣1)|a|+3=6是关于的一元一次方程,则a=﹣1.【分析】根据一元一次方程的特点求出a的值.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是a+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得,解得:a=﹣1.故答案为:﹣1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.如图图形是由相同的小五角星按一定的规律排列组合而成,其中第一个图形有6个五角星,第二个图形有10个五角星,第三个图形有16个五角星,第四个图形有24个五角星……则第十个图形有114个五角星.【分析】根据已知图形得出第n个图形中五角星个数为4+n(n+1),据此可得.【解答】解:∵第一个图形中五角星的个数6=4+1×2,第二个图形中五角星的个数10=4+2×3,第三个图形中五角星的个数16=4+3×4,……∴第十个图形中五角星的个数为4+10×11=114,故答案为:114.【点评】本题主要考查图形的变化规律,解题的关键是将已知图形分割成两部分,并从中找到总个数的通项公式4+n(n+1).三、解答题(共7小题;共52分)17.(6分)计算题(1)(﹣45)÷(﹣9)×(﹣3)(2)﹣23×+|﹣4|3÷(﹣2)4.【分析】(1)先算除法,再算乘法;(2)先算乘方和绝对值,再算乘除,最后算加法.【解答】解:(1)原式=5×(﹣3)=﹣15;(2)原式=﹣8×+64÷16=﹣2+4=2.【点评】此题考查有理数的混合运算,掌握运算顺序、符号的判定与计算方法是解决问题的关键.18.(6分)先化简,再求值:23﹣(72﹣9)﹣2(3﹣32+4),其中=﹣1.【分析】本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣2+(4分),当=﹣1时,原式=﹣2.【点评】此题解题关键是化简整式,要注意整式运算中的去括号和合并同类项时的符号处理.19.(12分)解方程:(1)12+8=8﹣4(2)+3=﹣2(3)4﹣10=6(﹣2)(4)﹣=1【分析】各方程去分母,去括号,移项合并,把系数化为1,即可求出解.【解答】解:(1)移项合并得:4=﹣12,解得:=﹣3;(2)去分母得:8+36=9﹣24,移项合并得:﹣=﹣60,解得:=60;(3)去括号得:4﹣10=6﹣12,移项合并得:﹣2=﹣2,解得:=1;(4)去分母得:5﹣15﹣8﹣2=10,移项合并得:﹣3=27,解得:=﹣9.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.(5分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.【分析】利用图中角与角的关系即可求得.【解答】解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.21.(7分)某校八年级共有800名学生,准备调查他们对“低碳”知识的了解程度.(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查八年级部分女生;方案二:调查八年级部分男生;方案三:到八年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是三;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)请你估计该校八年级约有多少名学生比较了解“低碳”知识.【分析】(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,则应选方案三;(2)根据不了解为5人,所占百分比为10%,得出调查的总人数,再用总人数减去不了解和比较了解的人数得出了解一点的人数和所占的百分比,再用整体1减去了解一点的和不了解的所占的百分比求出比较了解所占的百分比,从而补全统计图;(3)用总人数乘以“比较了解”所占百分比即可求解.【解答】解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,则应选方案三;故答案为:三;(2)根据题意得:=50(人),了解一点的人数是:50﹣5﹣15=30(人),了解一点的人数所占的百分比是:×100%=60%;比较了解的所占的百分是:1﹣60%﹣10%=30%,补图如下:(4)根据题意得:800×30%=240(名),答:该校八年级约有240名学生比较了解“低碳”知识.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.【分析】(1)等量关系为:2×暖瓶单价+3×(38﹣暖瓶单价)=84;(2)甲商场付费:暖瓶和水杯总价之和×90%;乙商场付费:4×暖瓶单价+(15﹣4)×水杯单价.【解答】解:(1)设一个暖瓶元,则一个水杯(38﹣)元,根据题意得:2+3(38﹣)=84.解得:=30.一个水杯=38﹣30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15﹣4)×8=208元.因为208<216.所以到乙家商场购买更合算.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.需注意乙商场有4个水杯不用付费.23.(9分)如图,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO=(18﹣2t)cm (用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.【分析】(1)利用P点运动速度以及OM的距离进而得出答案;(2)利用OP=OQ列出方程求出即可;(3)利用假设追上时,求出所用时间,进而得出答案.【解答】解:(1)∵P点运动速度为2cm/s,MO=18cm,∴当点P在MO上运动时,PO=(18﹣2t)cm,故答案为:(18﹣2t);(2)当OP=OQ时,则有18﹣2t=t,解这个方程,得t=6,即t=6时,能使OP=OQ;(3)不能.理由如下:设当t秒时点P追上点Q,则2t=t+18,解这个方程,得t=18,即点P追上点Q需要18s,此时点Q已经停止运动.【点评】此题主要考查了一元一次方程的应用以及动点问题,注意点的运动速度与方向是解题关键.。

2022-2023学年广东深圳南山区七年级上册期末数学试卷及答案

2022-2023学年广东深圳南山区七年级上册期末数学试卷及答案

2022-2023学年广东深圳南山区七年级上册期末数学试卷及答案第一部分选择题一、选择题(本部分共10小题,每小题3分,共30分,每小题给出4个选项,其中只有一个是正确的)1. 的绝对值是() 12022-A. -2022B.C. 2022D. 12022 12022-【答案】B2. 如图所示,用一个平面分别去截下列水平放置的几何体,所截得的截面是圆的是() A.B.C. D.【答案】B3. 根据深圳市第七次人口普查数据结果,南山区常住人口约180万人,其中180万用科学记数法表示为()A. B. C. D. 21.810⨯31.810⨯61.810⨯51810⨯【答案】C4. 下列调查活动,适合使用全面调查的是()A. 调查某班同学课外体育锻炼时间;B. 调查全市植树节中栽植树苗的成活率;C. 调查某种品牌照明灯的使用寿命;D. 调查抗美援朝纪录片《为了和平》在线收视率.【答案】A5. 已知有理数a ,b ,c 在数轴上的对应点的位置如图所示,则下列结论不正确的是()A. B. C. D. a b >0a c ->0bc <0a b +>【答案】D6. 已知x =2是关于x 的一元一次方程mx+2=0的解,则m 的值为()A. ﹣1B. 0C. 1D. 2【答案】A7. 下列说法错误的是()A. 整数和分数统称有理数B. 和是同类项 2a b 2ba -C. 8点30分时,时针和分针的夹角是D. 的次数是5 75︒222a b 【答案】D8. 如图所示,,若,,则的度数为AOD BOC ∠=∠100AOB ∠=︒40COD ∠=︒BOD ∠( )A.B. C. D.100︒40︒30︒25︒【答案】C 9. 元代名著《算学启蒙》中有一题:驽马日行一百五十里,良马日行二百四十里.驽马先行一十二日,问良马几何追及之.译文是:跑得慢的马每天走150里,跑得快的马每天走240里.慢马先走12天,问快马需要几天可追上慢马?若设快马需要x 天可追上慢马,则由题意,可列方程为( )A. 150×12+x =240xB. 150(12+x )=240xC. 150x =240(x﹣12)D. 150x =240(x+12)【答案】B 10. 如图,将一个边长为1的正方形纸片分割成7个图形,图形①面积是正方形纸片面积的,图形②面积是图形①面积的2倍的,图形③面积是图形②面积的2倍的,……,131313图形⑥面积是图形⑤面积的2倍的,图形⑦面积是图形⑥面积的2倍.计算13的值为() 56242927331++++A. B. C. D. 6657296472917924364243【答案】A第二部分非选择题二、填空题:(本大题共5小题,每小题3分,共15分)11. 比较大小:_____(填写“<”或“>”或“=”号). 56-34-【答案】<12. 如图,若为线段的中点,在线段上,,,则的长度C AB D CB 6DA =4DB =CD 是_________.【答案】113. 过某个多边形一个顶点的所有对角线,将此多边形分成7个三角形,则此多边形的边数______.【答案】914. 已知,则代数式的值是___________.221a a -=2364a a --【答案】1-15. 一商店在某一时间以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损10元,则a 的值为_____.【答案】75三、解答题(本大题共7小题,其中第16题9分,第17题8分,第18题7分,第19题6分,第20题8分,第21题8分,第22题9分,共55分)16. 计算:(1) 5191612⎛⎫--- ⎪⎝⎭(2) ()32116278133⎛⎫÷---⨯ ⎪⎝⎭(3)先化简,再求值:,其中. ()211428142x x x ⎛⎫-+--- ⎪⎝⎭=1x -【答案】(1)14(2) 12(3),21x --2-【分析】(1)把减化为加,再通分计算加法;(2)先算乘方,再算乘除,最后算加减;(3)先去括号,再合并同类项,将原整式化简,然后再将x 的值代入求解即可.【小问1详解】解:原式 1119612=-; 14=【小问2详解】解:原式 2116(8)7878133=÷--⨯+⨯21226=--+;12=【小问3详解】解:原式 2112122x x x =-+--+,21x =--当时,原式1x =-112=--=-17. 解方程(1)4x﹣3(20﹣x)=﹣4(2). 2151136x x +--=【答案】(1)x=3;(2)x=﹣3.【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)去括号得:4x ﹣15+3x=6,移项合并得:7x=21,解得:x=3;(2)去分母得:2(2x+1)﹣(5x ﹣1)=6,去括号得:4x+2﹣5x+1=6,移项得:4x ﹣5x=6﹣1﹣2,合并同类项得:﹣x=3,两边同除以﹣1得:x=﹣3. 18. 如图是由六块大小相同的小正方体搭成的几何体.(1)请在方格中画出该几何体从正面、左面、上面所看到的形状图.(2)如果在这个几何体上再添加一些小正方体,并保持从正面和从左面看到的形状图不变,最多可以再添加______块小正方体.【答案】(1)见解析 (2)1【分析】(1)利用三视图的画法在网格中画图即可;(2)把视图还原几何体,再确定能够添加的位置和数量.【小问1详解】如图所示,下图依次是从正面、左面、上面所看到的形状图,【小问2详解】主视图需满足的几何体是2层3列,左视图需满足的几何体是2层2排,最上层只有1个立方体,保持从正面和从左面看到的形状图不变,即几何体有2层3列2排,最上层只有1个立方体,因此可以添加的是下层前排中间的空缺位置,即最多可以再添加1块小正方体.19. “天宫课堂”第二课于2022年3月23日开讲啦!神舟十三号乘组航天员翟志刚、王亚平、叶光富3名航天员在轨介绍展示中国空间站工作生活场景,演示了微重力环境下的四个实验现象,并与地面课堂进行实时交流.课堂中展示了四个实验:A 、太空冰雪实验;B 、液桥演示实验;C 、水油分离实验;D 、太空抛物实验,某校七年级数学兴趣小组成员随机抽取了本年级的部分同学,调查他们对这四个实验中最感兴趣的一个,并绘制了两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次调查的样本容量为______;(2)样本中对实验最感兴趣的人数为______人,并补全条形统计图;B (3)若该校七年级共有1200名学生,估计全年级对太空抛物实验最感兴趣的学生有多少名?【答案】(1)80 (2)12,图见解析(3)300人【分析】(1)用对水油分离实验最感兴趣的人数除以其所占的百分比,即可求解;(2)求出样本中对实验最感兴趣的人数,即可求解;B (3)用1200乘以对太空抛物实验最感兴趣的学生人数所占的百分比,即可求解.【小问1详解】解:本次调查的样本容量为;2025%80÷=故答案为:80【小问2详解】解:样本中对实验最感兴趣的人数为人;B 8015%12⨯=补全条形统计图,如下:【小问3详解】解:全年级对太空抛物实验最感兴趣的学生有人, 20120030080⨯=20. 如图,将一张正方形纸片剪去一个宽为的长方形纸条,再从剩下的长方形纸片上剪3cm 去一个宽为的长方形纸条. 1cm(1)如果第一次剪下的长方形纸条的周长恰好是第二次剪下的长方形纸条周长的2倍,求原正方形纸片的边长;(2)第一次剪下的长方形纸条的面积能否是第二次剪下的长方形纸条面积的2倍?如果能,请求出正方形纸片的面积;如果不能,请说明理由.【答案】(1)原正方形纸片的边长为7cm (2)第一次剪下的长方形纸条的面积不可能是第二次剪下的长方形纸条面积的2倍,理由见解析【分析】(1)设原正方形纸片的边长为,根据第一次剪下的长方形纸条的周长恰好是cm x 第二次剪下的长方形纸条周长的2倍,列出方程,即可求解;(2)设原正方形纸片的边长为,假设第一次剪下的长方形纸条的面积是第二次剪下的cm y 长方形纸条面积的2倍,列出方程,即可求解.【小问1详解】解:设原正方形纸片的边长为,cm x根据题意得:,()()232231x x +=⨯-+解得:.7x =答:原正方形纸片的边长为.7cm 【小问2详解】解:设原正方形纸片的边长为,cm y 假设第一次剪下的长方形纸条的面积是第二次剪下的长方形纸条面积的2倍,则()3213y y =⨯⨯-解得,y =-6由于x 是正整数,所以不符合题意,y =-6所以第一次剪下的长方形纸条的面积可不可能是第二次剪下的长方形纸条面积的2倍.21. 若一个两位数十位、个位上的数字分别为m ,n ,我们可将这个两位数记为,易知mn ;同理,一个三位数也可以用此记法,如.10mm m n =+10010abc a b c =++【基础训练】(1)填空:①若,则______.4t =9358t t -=②若,则x=______.2345x x +=【能力提升】(2)交换一个两位数的个位数字与十位数字,可得到一个新两位数,如果所得的mn nm 新两位数比原两位数大9,那么请求出这样的两位数.【探索发现】(3)数学中有一个有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用),再将这532235297-=个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.通过探索发现:该“卡普雷卡尔黑洞数”为______.【答案】(1)①;②55-2(2)这样的两位数为:98,87,76,65,54,43,32,21(3)495【分析】(1)①根据新定义求解;②根据新定义列方程求解;(2)根据题意列方程求解;(3)根据新定义,计算求解.【小问1详解】 解:∵,10mn m n =+∴①若,则;4t =935849354855t t -=-=-②,232010345x x x x +=+++=解得.2x =【小问2详解】解:由题意知:()()101099m n n m n m +-+=-=--∴即满足.1n m -=∴这样的两位数为:98,87,76,65,54,43,32,21【小问3详解】解:方法一:若选的数为325,则用,以下按照上述规则继续计算 532235297-=,972279693-=,963369594-=,954459495-=954459495-=⋅⋅⋅故“卡普雷卡尔黑洞数”是495.故答案为:495;方法二:当任选的三位数为时,第一次运算后得:abc ,()100101001099()a b c c b a a c ++-++=-结果为99的倍数,由于,故a b c >>12a b c ≥+≥+∴,2a c -≥又∵,90a c ≥>≥∴,9a c -<∴,3,4,5,6,7,8,2a c -=∴第一次运算后可能得到:198,297,396,495,594,693,792,891,再让这些数字经过运算,分别可以得到:,981189792-=,972279693-=,963369594-=,954459495-=954459495-=⋅⋅⋅故可产生“卡普雷卡尔黑洞数”.22. 已知:是直线上的一点,是直角,平分钝角.O AB COD ∠OE BOC ∠(1)如图1,若,求的度数;40AOC ∠=︒DOE ∠(2)如图2,平分,求的度数;OF BOD ∠EOF ∠(3)当时,绕点以每秒沿逆时针方向旋转秒,请40AOC ∠=︒COD ∠O 5︒t (036)t <<探究和之间的数量关系.(直接写出结果)AOC ∠DOE ∠【答案】(1)20︒(2)45︒(3)时,时,,.08t <≤2836AOC DOE t ∠=∠<<;2360AOC DOE ∠+∠=︒【分析】(1)由补角及直角的定义可求得的度数,结合角平分线的定义可求解BOD ∠的度数;DOE ∠(2)由角平分线的定义可得,进而可求解; 12EOF COD ∠=∠(3)可分两总情况:①时,时,分别计算可求解.08t <≤836t <<【小问1详解】解:∵,40AOC ∠=︒∴, 180140BOC AOC ∠=︒-∠=︒∵是直角,COD ∠∴,90COD ∠=︒∴,1409050BOD BOC COD ∠=∠-∠=︒-︒=︒∵平分,OE BOC ∠∴, 1702BOE BOC ∠=∠=︒∴;705020DOE BOE BOD ∠=∠-∠=︒-︒=︒【小问2详解】解:∵平分平分,OE BOC OF ∠,BOD ∠∴, 1122BOE BOC BOF BOD ∠=∠∠=∠,∴, ()1122EOF BOE BOF BOC BOD COD ∠=∠-∠=∠-∠=∠∵,90COD ∠=︒∴;45EOF ∠=︒【小问3详解】解:①时,由题意得,08t <≤405AOC t ∠=︒-︒∴DOE COD COE ∠=∠-∠ ()1901804052t ⎡⎤=︒-︒-︒-︒⎣⎦, 5202t ⎛⎫=︒-︒ ⎪⎝⎭∴;2AOC DOE ∠=∠②时,836t <<由题意得, 540AOC t ∠=︒-︒∴ DOE COD COE ∠=∠+∠ ()1901805402t ⎡⎤=︒+︒-︒-︒⎣⎦, 52002t ⎛⎫=︒-︒ ⎪⎝⎭∴.2360AOC DOE ∠+∠=︒综上,时,时,. 08t <≤2836AOC DOE t ∠=∠<<;2360AOC DOE ∠+∠=︒。

深圳北师大南山附属学校中学部七年级上册数学期末试题及答案解答

深圳北师大南山附属学校中学部七年级上册数学期末试题及答案解答

深圳北师大南山附属学校中学部七年级上册数学期末试题及答案解答一、选择题1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟B .35分钟C .42011分钟 D .36011分钟 3.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )A .10-B .10C .5-D .55.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5926.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 7.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3 B .-3 C .±3 D .+6 8.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y9.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >010.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105 B .33.1×105 C .3.31×106 D .3.31×107 11.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( )A .﹣4B .﹣2C .4D .212.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A .不赔不赚B .赚了9元C .赚了18元D .赔了18元13.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .114.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元15.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题16.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.17.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.18.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.19.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为______________.20.单项式22ab -的系数是________.21.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 22.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.23.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.24.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.25.若∠1=35°21′,则∠1的余角是__.26.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)27.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.28.若2a +1与212a +互为相反数,则a =_____. 29.当12点20分时,钟表上时针和分针所成的角度是___________.30.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.32.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.33.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.34.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个. 35.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.36.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.37.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数38.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.2.D解析:D 【解析】 【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可. 【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分. 设小强做数学作业花了x 分钟, 由题意得 6x -0.5x =180, 解之得x = 36011. 故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3.A解析:A 【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.D解析:D 【解析】 【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k 的值. 【详解】解:∵方程2k-3x=4与x-2=0的解相同, ∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5. 故选:D . 【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.5.C解析:C 【解析】 【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.6.C解析:C 【解析】 【分析】无理数就是无限不循环小数,依据定义即可判断. 【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个, 故选:C . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.8.B解析:B 【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可. 详解:原式=2x ﹣3y ﹣12x +6y =﹣10x +3y .故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.9.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.10.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.12.D解析:D【解析】试题分析:设盈利的这件成本为x 元,则135-x=25%x ,解得:x=108元;亏本的这件成本为y 元,则y -135=25%y ,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.13.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 14.D解析:D【解析】【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.15.C解析:C【解析】【分析】根据MN =CM +CN =12AC +12CB =12(AC +BC )=12AB 即可求解. 【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题16.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.17.684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,<-,直接输出即可,此时结果1-.故答案为:5【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意. 19.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键20.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:1-2【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】 解:单项式22ab -的系数是12-, 故答案为:12-. 【点睛】此题主要考查了单项式,正确把握相关定义是解题关键. 21.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.22.-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.23.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,∴=,b3a2=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.24.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.25.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.26.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x ,根据OC 平分∠AOD ,∠COE =α,可得∠COD=α-x ,由∠BOD =4∠DOE ,可得∠BOD=4x ,由平角∠AOB=180°列出关于x 的一次方程式,求解即可.【详解】设∠DOE=x ,根据OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,∴∠BOD=4x ,∠AOC=∠COD=α-x ,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.27.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.28.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:a 2a 11022+++= 去分母得:a+2+2a+1=0,移项合并得:3a =﹣3,解得:a =﹣1,故答案为:﹣1【点睛】 本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.29.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.30.-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a和b是解决问题的关键.三、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】 【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案 (3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解 【详解】(1)数轴上A 、B 两点对应的数分别是-4、12, ∴AB=16,∵CE=8,CF=1,∴EF=7, ∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2, 故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF , 设AF=EF=x,∴CF=8﹣x , ∴BE=16﹣2x=2(8﹣x ), ∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21,解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.33.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.34.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个). 故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题. 35.(1)41°;(2)见解析. 【解析】 【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可. 【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化,如图,当OA 在BOD ∠内部,。

深圳北师大南山附属学校中学部七年级上册数学期末试题及答案解答

深圳北师大南山附属学校中学部七年级上册数学期末试题及答案解答

深圳北师大南山附属学校中学部七年级上册数学期末试题及答案解答一、选择题1.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23B .3C .2-D .2272.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =13.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .14.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm5.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =136.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对7.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×28.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯ B .5510⨯ C .6510⨯ D .510⨯ 9.若2m ab -与162n a b -是同类项,则m n +=( )A .3B .4C .5D .710.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD ∠的度数为( )A .100B .120C .135D .15011.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .112.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.16.把53°24′用度表示为_____. 17.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 18.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.19.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)20.用度、分、秒表示24.29°=_____.21.若523m x y +与2n x y 的和仍为单项式,则n m =__________.22.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.23.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).26.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.27.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.28.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.29.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.30.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.31.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,3是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,22是分数,是有理数,不符合题意,7故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.2.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.3.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B﹣1,∴A,B﹣1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.4.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.5.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.6.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC 的长度即可. 【详解】解:当点C 在线段AB 上时,如图,∵AC=AB−BC , 又∵AB=5,BC=3, ∴AC=5−3=2;②当点C 在线段AB 的延长线上时,如图,∵AC=AB+BC , 又∵AB=5,BC=3, ∴AC=5+3=8. 综上可得:AC=2或8. 故选C . 【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.7.A解析:A 【解析】 【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程. 【详解】解:长方形的一边为10厘米,故设另一边为x 厘米. 根据题意得:2×(10+x )=10×4+6×2. 故选:A . 【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.8.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.9.C解析:C【解析】【分析】根据同类项的概念求得m 、n 的值,代入m n +即可.【详解】解:∵2m ab -与162n a b -是同类项,∴2m=6,n-1=1,∴m=3,n=2,则325m n +=+=.故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.10.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB 平分∠COD ,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C .【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.11.D解析:D【解析】【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 12.D解析:D【解析】【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.二、填空题13.【解析】【分析】设这个角度的度数为x 度,根据题意列出方程即可求解.【详解】设这个角度的度数为x 度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x 度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.14.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 15.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.16.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.17.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.18.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 19.270°-3α【解析】【分析】设∠DOE=x,根据OC 平分∠AOD,∠COE=α,可得∠COD=α-x ,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x 的一次方程解析:270°-3α【解析】【分析】设∠DOE=x ,根据OC 平分∠AOD ,∠COE =α,可得∠COD=α-x ,由∠BOD =4∠DOE ,可得∠BOD=4x ,由平角∠AOB=180°列出关于x 的一次方程式,求解即可.【详解】设∠DOE=x ,根据OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,∴∠BOD=4x ,∠AOC=∠COD=α-x ,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.20.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″. 故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.21.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.22.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x 首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 23.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的 .考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.24.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.三、压轴题25.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 26.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.27.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON =12×90°+90°=135°;图3中∠MON =12∠AOC +12∠BOD +∠COD =12(∠AOC +∠BOD )+90°=12⨯90°+90°=135°; 故答案为:135,135;(2)∵∠COD =90°,∴∠AOC +∠BOD =180°﹣∠COD =90°,∵OM 和ON 是∠AOC 和∠BOD 的角平分线,∴∠MOC +∠NOD =12∠AOC +12∠BOD =12(∠AOC +∠BOD )=45°, ∴∠MON =(∠MOC +∠NOD )+∠COD =45°+90°=135°;(3)同意,设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,∵OM 和ON 是∠AOC 和∠BOD 的角平分线,∴∠MOC =12∠AOC =12(180°﹣x °)=90°﹣12x °, ∠BON =12∠BOD =12(90°﹣x °)=45°﹣12x °, ∴∠MON =∠MOC +∠BOC +∠BON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【点睛】 本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.28.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 29.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.30.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键. 31.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.32.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm,AB=12cm,即可推出BC=8cm,然后根据点D、E分别是AC 和BC的中点,即可推出AD=DC=2cm,BE=EC=4cm,即可推出DE的长度,(2)设AC=acm,然后通过点D、E分别是AC和BC的中点,即可推出DE=12(AC+BC)=12AB=2acm,即可推出结论,(3)分两种情况,OC在∠AOB内部和外部结果都是∠DOE=12∠AOB试题解析:(1))∵AB=12cm,∴AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴CD=2cm,CE=4cm,∴DE=6cm;(2) 设AC=acm,∵点D、E分别是AC和BC的中点,∴DE=CD+CE=12(AC+BC)=12AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变;(3)①当OC在∠AOB内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。

深圳大学附属中学人教版七年级上册数学期末试卷及答案-百度文库

深圳大学附属中学人教版七年级上册数学期末试卷及答案-百度文库

深圳大学附属中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.以下选项中比-2小的是( ) A .0B .1C .-1.5D .-2.52.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23B .3C .2-D .2273.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠4.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 5.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣36.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 7.下列各数中,绝对值最大的是( ) A .2 B .﹣1 C .0 D .﹣3 8.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°9.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°10.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯B .5510⨯C .6510⨯D .510⨯11.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-112.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题13.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________. 14.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.15.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.16.写出一个比4大的无理数:____________. 17.若3750'A ∠=︒,则A ∠的补角的度数为__________.18.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.19.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 20.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 21.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 22.化简:2x+1﹣(x+1)=_____.23.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、压轴题25.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?26.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.27.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.28.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点. (1)求点K 的坐标;(2)若长方形PMNQ 以每秒1个单位长度的速度向正下方运动,(点A 、B 、C 、D 、E 分别是点M 、N 、Q 、P 、K 的对应点),当BC 与x 轴重合时停止运动,连接OA 、OE ,设运动时间为t 秒,请用含t 的式子表示三角形OAE 的面积S (不要求写出t 的取值范围); (3)在(2)的条件下,连接OB 、OD ,问是否存在某一时刻t ,使三角形OBD 的面积等于三角形OAE 的面积?若存在,请求出t 值;若不存在,请说明理由.29.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.30.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.31.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).32.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.【详解】根据题意可得:-<-<-<<,2.52 1.501故答案为:D.【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.2.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可. 【详解】0.23是有限小数,是有理数,不符合题意,3是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意, 故选:B. 【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.3.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.4.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB ,∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.5.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.6.C解析:C 【解析】 【分析】根据题意分两种情况讨论:①当点C 在线段AB 上时,②当点C 在线段AB 的延长线上时,分别根据线段的和差求出AC 的长度即可. 【详解】解:当点C 在线段AB 上时,如图,∵AC=AB−BC , 又∵AB=5,BC=3, ∴AC=5−3=2;②当点C 在线段AB 的延长线上时,如图,∵AC=AB+BC , 又∵AB=5,BC=3, ∴AC=5+3=8. 综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.7.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.8.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.9.B解析:B【解析】【分析】利用直角和角的组成即角的和差关系计算.【详解】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选B.【点睛】本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.10.B解析:B【解析】【分析】科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案. 【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.11.A解析:A 【解析】 【分析】根据A 、D 两点在数轴上所表示的数,求得AD 的长度,然后根据2AB=BC=3CD ,求得AB 、BD 的长度,从而找到BD 的中点E 所表示的数. 【详解】 解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD , ∴AB=1.5CD , ∴1.5CD+3CD+CD=11, ∴CD=2, ∴AB=3, ∴BD=8,∴ED=12BD=4, ∴|6-E|=4,∴点E 所表示的数是:6-4=2. ∴离线段BD 的中点最近的整数是2. 故选:A . 【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.12.C解析:C 【解析】 【分析】 根据MN =CM +CN =12AC +12CB =12(AC +BC )=12AB 即可求解. 【详解】解:∵M 、N 分别是AC 、BC 的中点, ∴CM =12AC ,CN =12BC ,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.15.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.18.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键. 19.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键20.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.21.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.22.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.23.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm ,∵BE=8cm ,∴CE=BE-BC=8-3=5cm ,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键. 24.46°【解析】【分析】根据∠2=180°-∠COE -∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE -∠1=180°-90°-44°=46°.故答案为:46°.【点睛】解析:46°【解析】【分析】根据∠2=180°-∠COE-∠1,可得出答案.【详解】解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.故答案为:46°.【点睛】本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB 是平角且它等于∠1、∠2和∠COE 三个角之和是解题关键.三、压轴题25.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.26.(1)135,135;(2)∠MON =135°;(3)同意,∠MON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【解析】【分析】(1)由题意可得,∠MON =12×90°+90°,∠MON =12∠AOC +12∠BOD +∠COD ,即可得出答案;(2)根据“OM 和ON 是∠AOC 和∠BOD 的角平分线”可求出∠MOC +∠NOD ,又∠MON =(∠MOC +∠NOD )+∠COD ,即可得出答案;(3)设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,进而求出∠MOC 和∠BON ,又∠MON =∠MOC +∠BOC +∠BON ,即可得出答案.【详解】 解:(1)图2中∠MON =12×90°+90°=135°;图3中∠MON =12∠AOC +12∠BOD +∠COD =12(∠AOC +∠BOD )+90°=12⨯90°+90°=135°; 故答案为:135,135;(2)∵∠COD =90°,∴∠AOC +∠BOD =180°﹣∠COD =90°,∵OM 和ON 是∠AOC 和∠BOD 的角平分线,∴∠MOC +∠NOD =12∠AOC +12∠BOD =12(∠AOC +∠BOD )=45°, ∴∠MON =(∠MOC +∠NOD )+∠COD =45°+90°=135°;(3)同意,设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,∵OM 和ON 是∠AOC 和∠BOD 的角平分线,∴∠MOC =12∠AOC =12(180°﹣x °)=90°﹣12x °, ∠BON =12∠BOD =12(90°﹣x °)=45°﹣12x °, ∴∠MON =∠MOC +∠BOC +∠BON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.27.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=- =1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化,如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.28.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12OF•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t)+12×4(6﹣t+8﹣t)﹣12×6(8﹣t),=10﹣2t,∵S△OBD=S△OAE,∴10﹣2t=8﹣t,t=2;②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=12OH•DH ﹣12(BG+DH )•GH ﹣12OG•BG , =12×2(8-t )﹣12×4(6﹣t+8﹣t )﹣12×2(6﹣t ), =2t ﹣10,∵S △OBD =S △OAE ,∴2t ﹣10=8﹣t ,t =6;综上,t 的值是2秒或6秒.【点睛】 本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.29.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127;当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.30.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE=∠COD+∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°, ∴∠DOE=∠COD+∠COE=45°; (2)∠DOE 的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB )=12∠AOB=45°; (3)∠DOE 的大小发生变化情况为:如图③,则∠DOE 为45°;如图④,则∠DOE 为135°,分两种情况:如图3所示,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=12∠AOC ,∠COE=12∠BOC , ∴∠DOE=∠COD ﹣∠COE=12(∠AOC ﹣∠BOC )=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.31.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,证明:延长AP交ON于点D,∵∠ADB是△AOD的外角,∴∠ADB=∠PAO+∠AOD,∵∠AP B是△PDB的外角,∴∠APB=∠PDB+∠PBO,∴∠APB=∠MON+∠PAO+∠PBO;(2)设∠MON=2m°,∠APB=2n°,∵OC平分∠MON,∴∠AOC=∠MON=m°,∵PQ平分∠APB,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.32.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.【解析】整体分析:(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM平分∠BOC,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=12∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。

深圳市南山区2022年七年级上册《数学》期末试卷与参考答案

深圳市南山区2022年七年级上册《数学》期末试卷与参考答案

深圳市南山区2022年七年级上册《数学》期末试卷与参考答案一、选择题本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的。

1. 相反数是( )A. B. ﹣5C. 5D. 答案:A 2. 2021年上半年广东各市GDP 已经出炉,深圳以14324.47亿的总量继续保持榜首位置.14324.47亿可以用科学记数法表示为()A. 14.32447×1011B. 1.4×1012C. 1.432447×1012D. 0.1432447×1013答案:C3. 下列式子中正确的是()A. ﹣|﹣31|=31B (﹣5)+(﹣5)+(﹣5)+(﹣5)+(﹣5)=(﹣5)5C. ﹣8÷(2﹣4)=﹣4+2=﹣2D. |﹣3﹣1|=|﹣3|+|﹣1|答案:D .15 151254. 下列调查最适合普查的是( )A. 调查某中学适宜接种新冠疫苗人员的实际接种情况B. 调查国庆期间全国观众最喜爱的电影C. 调查“深圳读书月”活动中市民的读书情况D. 了解一批哈密瓜是否甜答案:A5. 下列说法错误的是( )A. 的系数是B. x 2﹣2xy+y 2是二次三项式C. a 可以表示负数,a 的系数为0D. ﹣1是单项式答案:C6. 如图,下列说法不正确的是( )A. 直线m 与直线n 相交于点DB. 点A 在直线n 上C. DA +DB <CA +CBD. 直线m上共有两点3310a π-310π-答案:D7. 一个正方体的表面分别标有百、年、峥、嵘、岁、月,下面是该正方体的一个展开图,已知“嵘”的对面为“岁”,则( )A. ▲代表“岁”B. ▲代表“月”C. ★代表“月”D. ◆代表“月”答案:B8. 在光明区举办的“周年艺术季”期间,小颖一家去欣赏了一台音乐剧,路上预计用时25分钟,但由于堵车,所以实际车速比预计的每小时慢了10千米,且路上多用了5分钟.设预计车速为x 千米/时,根据题意可列方程为( )A. B. C. 25x =30x﹣10D. 答案:D2530(10)6060x x =+2530(10)6060x x +=2530(10)6060x x =-9. 数轴上点A ,B 表示的数分别为a ,b ,位置如图所示,下列式子中计算结果为负数的是( )A. b 2﹣bB. ﹣a+bC. |ab|+0.3D. ﹣1﹣a答案:A10. 对于代数式,第三学习小组讨论后得出如下结论:①代数式还可以写成;②如图,较大正方形的边长为y ,较小正方形的边长为1,则代数式表示阴影部分的面积;③其可以叙述为:y 与1的平方差的一半;④代数式的值可能是﹣1,其中正确的个数为( )A. 1B. 2C. 3D. 4答案:C二、填空题212y -2122y -11. 若单项式3a m b 6与﹣8a 3b n +2是同类项,则m﹣n=_____.答案:﹣112. 由若干大小相同的小立方块搭成的几何体从上面和正面看到的形状如图所示,则这个几何体的小立方块最少是______个.答案:913. 若x =﹣3是关于x 的方程ax +1=x 的解,则a =_____.答案:14. 如图,点C 是线段AB 的中点,CD AC ,若CB﹣CD=8cm ,则AB =_____cm .答案:2415. 如图是2021年7月份的日历表,用形如的框架框住日历表中的五个数,对于框架框住的五个数字之和,小明的计算结果有45,55,60,75,小华说有结果是错误的.通过计算,可知小明的计算结果中错误的是______.4313答案:55三、解答题16. 计算。

最新广东省深圳市南山北师大七年级上期末数学试卷(有答案)-精品推荐

最新广东省深圳市南山北师大七年级上期末数学试卷(有答案)-精品推荐

广东省深圳市南山七年级(上)期末数学试卷一、选择题(共12小题;共36分)1.在圆柱、正方体、长方体中,主视图可能一样的是()A.仅圆柱和正方体B.仅圆柱和长方体C.仅正方体和长方体D.圆柱、正方体和长方体2.﹣2的绝对值是()A.2B.﹣2C.D.3.下列计算正确的一个是()A.a5+a5=2a5B.a5+a5=a10C.a5+a5=a D.x2y+xy2=2x3y34.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1085.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大6.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<07.下列调查方式中,采用了“普查”方式的是()A.调查某品牌手机的市场占有率B.调查电视网(芈月传)在全国的收视率C.调查我校初一(1)班的男女同学的比率D.调查某型号节能灯泡的使用寿命8.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm9.下列说法中,正确的有()①的系数是;②﹣22ab2的次数是5;③多项式mn2+2mn﹣3n﹣1的次数是3;④a﹣b和都是整式.A.1个B.2个C.3个D.4个10.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元11.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44B.5x+4(x﹣2)=44C.9(x+2)=44D.9(x+2)﹣4×2=4412.设一列数中相邻的三个数依次为m,n,p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b=()A.118B.128C.178D.188二、填空题(共4小题;共12分)13.钟面上12点30分,时针与分针的夹角是度.14.若|a+|+(b﹣2)2=0,则(ab)2015= .15.若(a﹣1)x|a|+3=6是关于x的一元一次方程,则a= .16.如图图形是由相同的小五角星按一定的规律排列组合而成,其中第一个图形有6个五角星,第二个图形有10个五角星,第三个图形有16个五角星,第四个图形有24个五角星……则第十个图形有个五角星.三、解答题(共7小题;共52分)17.(6分)计算题(1)(﹣45)÷(﹣9)×(﹣3)(2)﹣23×+|﹣4|3÷(﹣2)4.18.(6分)先化简,再求值:2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.19.(12分)解方程:(1)12x+8=8x﹣4(2)x+3=x﹣2(3)4x﹣10=6(x﹣2)(4)﹣=120.(5分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.21.(7分)某校八年级共有800名学生,准备调查他们对“低碳”知识的了解程度.(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查八年级部分女生;方案二:调查八年级部分男生;方案三:到八年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)请你估计该校八年级约有多少名学生比较了解“低碳”知识.22.(8分)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.23.(9分)如图,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q 同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO= cm (用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.2017-2018学年广东省深圳市南山七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题;共36分)1.在圆柱、正方体、长方体中,主视图可能一样的是()A.仅圆柱和正方体B.仅圆柱和长方体C.仅正方体和长方体D.圆柱、正方体和长方体【分析】主视图是从几何体的正面看所得到的视图,分别分析出三个几何体的主视图可得答案.【解答】解:圆柱的主视图是长方形或正方形;正方体的主视图是正方形;长方体的主视图是长方形或正方形,因此主视图可能一样的是圆柱、正方体和长方体,故选:D.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置:是从几何体的正面看所得到的视图.2.﹣2的绝对值是()A.2B.﹣2C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.3.下列计算正确的一个是()A.a5+a5=2a5B.a5+a5=a10C.a5+a5=a D.x2y+xy2=2x3y3【分析】根据合并同类项的法则,合并同类项时字母和字母的指数不变把系数相加减.【解答】解:A、正确;B、a5+a5=2a5;C、a5+a5=2a5;D、x2y+xy2=(x+y)xy.故选:A.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.合并同类项时字母和字母的指数不变把系数相加减.4.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大【分析】此题根据有理数的加法和乘法法则解答.【解答】解:两个有理数的积是正数,说明两数同号,和也是正数,说明均为正数,A正确.故选:A.【点评】有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加.6.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<0【分析】本题利用数与数轴的关系及数形结合解答.【解答】解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.【点评】本题主要是利用数形结合的思想,用排除法选项.7.下列调查方式中,采用了“普查”方式的是()A.调查某品牌手机的市场占有率B.调查电视网(芈月传)在全国的收视率C.调查我校初一(1)班的男女同学的比率D.调查某型号节能灯泡的使用寿命【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查某品牌手机的市场占有率,范围较广,人数众多,应采用抽样调查,故此选项错误;B、调查电视网(芈月传)在全国的收视率,范围较广,人数众多,应采用抽样调查,故此选项错误;C、调查我校初一(1)班的男女同学的比率,人数较少,应采用普查,故此选项正确;D、调查某型号节能灯泡的使用寿命,普查具有破坏性,应采用抽样调查,故此选项错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【分析】先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC的长即可.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选:B.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.9.下列说法中,正确的有()①的系数是;②﹣22ab2的次数是5;③多项式mn2+2mn﹣3n﹣1的次数是3;④a﹣b和都是整式.A.1个B.2个C.3个D.4个【分析】根据单项式中的数字因数叫做单项式的系数可得①正确;根据一个单项式中所有字母的指数的和叫做单项式的次数可得②错误;根据多项式中次数最高的项的次数叫做多项式的次数可得③正确;根据单项式和多项式合称整式可得④正确.【解答】解:①的系数是,说法正确;②﹣22ab2的次数是5,说法错误,次数是3;③多项式mn2+2mn﹣3n﹣1的次数是3,说法正确;④a﹣b和都是整式,说法正确;正确的说法是3个,故选:C.【点评】此题主要考查了单项式和多项式,关键是掌握单项式次数的定义,多项式次数的定义,不要混肴.10.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.11.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44B.5x+4(x﹣2)=44C.9(x+2)=44D.9(x+2)﹣4×2=44【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,5x+(9﹣5)(x+2)=5x+4(x+2)=44,故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是明确题意,列出相应的方程.12.设一列数中相邻的三个数依次为m,n,p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b=()A.118B.128C.178D.188【分析】根据题意求出a,再代入关系式即可得出b的值.【解答】解:根据题意得:a=32﹣(﹣2)=11,则b=112﹣(﹣7)=128.故选:B.【点评】本题考查了规律型:数字的变化类;熟练掌握变化规律,根据题意求出a是解决问题的关键.二、填空题(共4小题;共12分)13.钟面上12点30分,时针与分针的夹角是165 度.【分析】画出图形,利用钟表表盘的特征解答.【解答】解:12点半时,时针指向1和12中间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,半个格是15°,因此12点半时,分针与时针的夹角正好是30°×5+15°=165°.【点评】本题是一个钟表问题,钟表12个数字,每相邻两个数字之间的夹角为30°.借助图形,更容易解决.14.若|a+|+(b﹣2)2=0,则(ab)2015= ﹣1 .【分析】根据非负数的性质可求出a、b的值,再将它们代入(ab)2015中求解即可.【解答】解:∵|a+|+(b﹣2)2=0,∴a+=0,b﹣2=0;a=﹣,b=2;则(ab)2015=(﹣×2)2015=﹣1.故答案为﹣1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.15.若(a﹣1)x|a|+3=6是关于x的一元一次方程,则a= ﹣1 .【分析】根据一元一次方程的特点求出a的值.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得,解得:a=﹣1.故答案为:﹣1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.如图图形是由相同的小五角星按一定的规律排列组合而成,其中第一个图形有6个五角星,第二个图形有10个五角星,第三个图形有16个五角星,第四个图形有24个五角星……则第十个图形有114 个五角星.【分析】根据已知图形得出第n个图形中五角星个数为4+n(n+1),据此可得.【解答】解:∵第一个图形中五角星的个数6=4+1×2,第二个图形中五角星的个数10=4+2×3,第三个图形中五角星的个数16=4+3×4,……∴第十个图形中五角星的个数为4+10×11=114,故答案为:114.【点评】本题主要考查图形的变化规律,解题的关键是将已知图形分割成两部分,并从中找到总个数的通项公式4+n(n+1).三、解答题(共7小题;共52分)17.(6分)计算题(1)(﹣45)÷(﹣9)×(﹣3)(2)﹣23×+|﹣4|3÷(﹣2)4.【分析】(1)先算除法,再算乘法;(2)先算乘方和绝对值,再算乘除,最后算加法.【解答】解:(1)原式=5×(﹣3)=﹣15;(2)原式=﹣8×+64÷16=﹣2+4=2.【点评】此题考查有理数的混合运算,掌握运算顺序、符号的判定与计算方法是解决问题的关键.18.(6分)先化简,再求值:2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.【分析】本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把x的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣x2+x(4分),当x=﹣1时,原式=﹣2.【点评】此题解题关键是化简整式,要注意整式运算中的去括号和合并同类项时的符号处理.19.(12分)解方程:(1)12x+8=8x﹣4(2)x+3=x﹣2(3)4x﹣10=6(x﹣2)(4)﹣=1【分析】各方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:4x=﹣12,解得:x=﹣3;(2)去分母得:8x+36=9x﹣24,移项合并得:﹣x=﹣60,解得:x=60;(3)去括号得:4x﹣10=6x﹣12,移项合并得:﹣2x=﹣2,解得:x=1;(4)去分母得:5x﹣15﹣8x﹣2=10,移项合并得:﹣3x=27,解得:x=﹣9.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.(5分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.【分析】利用图中角与角的关系即可求得.【解答】解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.21.(7分)某校八年级共有800名学生,准备调查他们对“低碳”知识的了解程度.(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查八年级部分女生;方案二:调查八年级部分男生;方案三:到八年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是三;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)请你估计该校八年级约有多少名学生比较了解“低碳”知识.【分析】(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,则应选方案三;(2)根据不了解为5人,所占百分比为10%,得出调查的总人数,再用总人数减去不了解和比较了解的人数得出了解一点的人数和所占的百分比,再用整体1减去了解一点的和不了解的所占的百分比求出比较了解所占的百分比,从而补全统计图;(3)用总人数乘以“比较了解”所占百分比即可求解.【解答】解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,则应选方案三;故答案为:三;(2)根据题意得:=50(人),了解一点的人数是:50﹣5﹣15=30(人),了解一点的人数所占的百分比是:×100%=60%;比较了解的所占的百分是:1﹣60%﹣10%=30%,补图如下:(4)根据题意得:800×30%=240(名),答:该校八年级约有240名学生比较了解“低碳”知识.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.【分析】(1)等量关系为:2×暖瓶单价+3×(38﹣暖瓶单价)=84;(2)甲商场付费:暖瓶和水杯总价之和×90%;乙商场付费:4×暖瓶单价+(15﹣4)×水杯单价.【解答】解:(1)设一个暖瓶x元,则一个水杯(38﹣x)元,根据题意得:2x+3(38﹣x)=84.解得:x=30.一个水杯=38﹣30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15﹣4)×8=208元.因为208<216.所以到乙家商场购买更合算.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.需注意乙商场有4个水杯不用付费.23.(9分)如图,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q 同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO= (18﹣2t) cm (用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.【分析】(1)利用P点运动速度以及OM的距离进而得出答案;(2)利用OP=OQ列出方程求出即可;(3)利用假设追上时,求出所用时间,进而得出答案.【解答】解:(1)∵P点运动速度为2cm/s,MO=18cm,∴当点P在MO上运动时,PO=(18﹣2t)cm,故答案为:(18﹣2t);(2)当OP=OQ时,则有18﹣2t=t,解这个方程,得t=6,即t=6时,能使OP=OQ;(3)不能.理由如下:设当t秒时点P追上点Q,则2t=t+18,解这个方程,得t=18,即点P追上点Q需要18s,此时点Q已经停止运动.【点评】此题主要考查了一元一次方程的应用以及动点问题,注意点的运动速度与方向是解题关键.。

27.北师版·广东省深圳市北大附中南山分校2020-2021学年度七年级上期期末数学试题.docx

27.北师版·广东省深圳市北大附中南山分校2020-2021学年度七年级上期期末数学试题.docx

2020-2021学年广东省深圳市北大附中南山分校七年级(上)期中数学试卷一、选择题(12题,每题3分,共36分)(下面每题都有一个正确的答案,把正确答案的选项填在答题卡指定的位置)1. 一个数的相反数是-2020,则这个数是()A. 2020B. - 2020C. —」D. 一」2020 20202. - 2的绝对值是()A. 2B. AC. - AD. - 22 23.光年是天文学中的距离单位,1光年大约是9500000000000"〃,这个数据用科学记数法表示是()A.0.95X1013切?B. 9.5X10%C. 95X10n fa7iD. 9.5X10%?.4.下列语句正确的是()A."+15米”表示向东走15米B.0°C表示没有温度C.-a可以表示正数D.0既是正数也是负数5.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()A. aMB. 4—m3C. x~i-y D. - —a27.下列说法正确的是()A. 卫兰的系数是-35B. 2巾2〃的次数是2次C.芸五是多项式D. 1的常数项是138. 下列计算正确的是( )10.下列结论错误的个数为( ) (1)若 a=b,贝!J ac - 3=bc - 3; (2)ax —ay,贝!j x —y ; (3)若旦典,则a=b ; C C (4) 若0・3x-0. 2=2 则3x-20.55 A. 0个 B. 1个 11. 小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12饥就会迟 到5分钟.问他家到学校的路程是多少初z?设他家到学校的路程是Mm,则据题意列出 的方程是( )A.圣■三二-一LB.旦垃工£ 15 60 12 60 15 60 12 6012. 已知:x=3n +l, y=3X9"-2,那么用x 的代数式表示y 正确的是()A. y=3 (x-1) 2 - 2B. y=3x 2 - 2C. y=x' - 2D. y= (x - 1) 2 - 2 二、填空题(共4题,每题3分,共12分)13. 若x=l 是方程破+2x=6的解,则a 的值是.14. 已知|a-2|+ 3+3) 2=0,则矿的值等于. 15. 将一个底面直径长是20厘米,高为9厘米的“矮胖”形圆柱,锻压成底面直径长是10 厘米的“瘦高”形圆柱,此时高变成了 _______ 厘米.B. 3决-(r=3 D. - a 2b+2c^b=a 2'b c,并求出了它们的和为39,则这三个数在日C. 2个D. 3个A. 3。

七年级上册深圳北师大南山附属学校中学部数学期末试卷达标检测(Word版 含解析)

七年级上册深圳北师大南山附属学校中学部数学期末试卷达标检测(Word版 含解析)

七年级上册深圳北师大南山附属学校中学部数学期末试卷达标检测(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.3.如图1,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA 绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP=________度.【答案】(1)解:由题意可得:∠AOB=60°,∠AOP=∠A′OP,∵OB平分∠A′OP,∴∠A′OP=2∠POB,∴∠AOP=∠A′OP=2∠POB,∴∠AOB=∠AOP+∠POB=3∠POB=60°,∴∠POB=20°,∴∠AOP=2∠POB=40°(2)解:①当点O运动到使点A在射线OP的左侧,且射线OB在在∠A′OP的内部时,如图1,设∠A′OB=x,则∠AOM=3∠A′OB=3x,∠A OA′= ,∵OP⊥MN,∴∠AON=180°-3,∠AOP=90°-3x,∴,∵∠AOP=∠A′OP,∴∠AOP=∠A′OP=∴,解得:,∴;②当点O运动到使A在射线OP的左侧,但是射线OB在∠A′ON内部时,如图2,设∠A′OB=x,则∠AOM=3x,∠AON= ,∠AOA′= ,∵∠AOP=∠A′OP,∴∠AOP=∠A′OP= ,∵OP⊥MN,∴∠AOP=90-∠AOM=90-3x,∴,解得:,∴;(3)解:①如图3,当∠A′OB=150°时,由图可得:∠A′OA=∠A′OB-∠AOB=150°-60°=90°,又∵∠AOP=∠A′OP,∴∠AOP=45°,∴∠BOP=60°+45°=105°;②如图4,当∠A′OB=150°时,由图可得∠A′OA=360°-150°-60°=150°,又∵∠AOP=∠A′OP,∴∠AOP=75°,∴∠BOP=60°+75°=135°;综上所述:∠BOP的度数为105°或135°.【解析】【分析】(1)由角平分线的性质和∠ AOP=∠A′OP可得∠POB= ∠AOB,∠AOP=∠AOB,则∠POA的度数可求解;(2)由题意可分两种情况:①当点O运动到使点A在射线OP的左侧,且射线OB在在∠A′OP的内部时,由角的构成易得∠AOP= -∠AOM= -3∠A′OB,∠AOA′=+∠A′OB,由角平分线的性质可得∠AOP=∠A′OP,于是可得关于∠A′OB的方程,解方程可求得∠A′OB的度数,则可求解;②当点O运动到使A在射线OP的左侧,但是射线OB在∠A′ON内部时,同理可求解;(3)由题意可分两种情况讨论求解:①当∠A′OB沿顺时针成150°时,结合已知条件易求解;②当∠A′OB沿时针方向成 150°时,结合题意易求解。

2020-2021学年深圳市南山区七年级上学期期末数学试卷(附答案解析)

2020-2021学年深圳市南山区七年级上学期期末数学试卷(附答案解析)

2020-2021学年深圳市南山区七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,是负整数的是()A. −6B. 3C. 0D. 122.下列说法正确的是()A. 为检测某市正在销售的酸奶质量,应采用抽样调查的方式B. 两名同学连续六次的数学测试平均分相同,那么方差较大的同学的数学成绩更稳定C. 抛掷一个正方体骰子,点数为奇数的概率是14D. “打开电视,正在播放动画片”是必然事件3.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为()A. 5.46×108B. 5.46×109C. 5.46×1010D. 5.46×10114.如图一个正方体的平面展开图如图所示,将它折成正方体后,“保”字对面的字是()A. 碳B. 低C. 绿D. 色5.若a=|3|,|b|=4且a>b,则a−b=()A. 7B. −1C. 7,1D. 7,−76.下列说法正确的是()A. 带负号的数一定是负数B. 方程x+2=1是一元一次方程xC. 单项式−2x2y的次数是3D. 单项式与单项式的和一定是多项式7.如图,在△ABC中,∠C=90°,AC=BC=a,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=8,则△DEB的周长为()A. 2a−8B. 4+aC. 8D. a8.已知有理数a,b,c在数轴上的位置如图所示,则代数式|a|−|c−a|+|c−b|−|b|的值为()A. −2cB. 0C. 2cD. 2a−2b+2c9.2015年5月10日央行宣布,从5月11日起人民币贷款及存款基准利率下调,一年定期存款利率从2.50%下调到2.25%,某人于2015年5月21日存入定期为1年的人民币5000元,设到期后银行应向储户支付现金x元,则所列方程为()A. x−5000=5000×2.50%B. x−5000=5000×2.25%C. x+5000×2.50%=5000×(1+2.50%)D. x+5000×2.25%=5000×(1+2.25%)10.有理数a、b在数轴上的对应的位置如图所示,则下列各式①a+b<0;②a−b>0;③ab>0;④|a|>b;⑤1−b>0;⑥a+1<0,一定成立的有()A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共5小题,共15.0分)11.(−3)4的底数是______ ,指数是______ ,读作______ .12.已知a是最小的正整数,b是a的相反数,c的绝对值为3,则a+b+c的值为______.13.已知点A、B、C在同一条直线上,且线段AB=5,BC=4,则A、C两点间的距离是______.14.若一个多边形从一个顶点可以引8条对角线,则这个多边形的边数是______,这个多边形一共有______条对角线.它的内角和是______度.15.观察这一行数字的规律:2,−4,8,−16,,若设某个数是x,它和后面两个数的和是a,则应列方程为.三、解答题(本大题共7小题,共55.0分)16.计算:(1)57÷(−225)−57×512−53÷4;(2)18+32÷(−2)3−(−4)2×5;(3)−(−3)×(−4)+(−2)−(−6)÷(−2)×37;(4)(−12+13)×0.6÷(−134)×|−2.5|.17.小明在解方程5a−x=13(x为未知数)时,误将−x看作+x,得方程的解为x=−2,求原方程的解.18.一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请画出从正面、左面看到的这个几何体的形状图.19.某校为了解本校的选修课教学,校教务处在七、八年级所有班级中,每班随机抽取了6名学生,并对他们的选修课喜欢程度情况进行了问卷调查,喜欢程度分为:“A−非常喜欢”、“B−比较喜欢”、“C−不太喜欢”、“D−很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项.现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)若接核七、八年级共有700名学生,请你估境该年级学生中对远修课“不太喜欢”的有多少人?20.如图,在△ABC中,CD⊥AB于点D,∠1=∠2,AF是△ABC的角平分线,交CD于点E,求证:∠ACB=90°.21.一组连续奇数按如图方式排列,请你解决下列问题:(1)第7行最后一个数字是______,在第15行第4列的数字是______;(2)请用n的代数式表示第n行的第1个数字和最后一个数字;(3)现用一个正方形框去围出相邻两行中的4个数字(例如:第4行和第5行的15,17,23,25),请问能否在第50行和第51行中围出4个数字的和是10016?若能,请求出这4个数字;若不能,请说明理由.22.如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到点C,使BC=3AB(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,如果点D为线段BC的中点,且AB=2,求线段AD的长度;(3)在以上的条件下,若点P从A点出发,以每秒1个单位长度的速度向点C移动,到点C时停止.设点P的运动时间为t秒,是否存在某时刻t,使得PB=PA−PC?若存在,求出时间t:若不存在,请说明理由.参考答案及解析1.答案:A解析:解:A、−6为负整数,故选项正确;B、3为正整数,故选项错误;C、0不是正数,也不是负数,故选项错误;D、1为正分数,故选项错误.2故选:A.根据负整数的定义即可判定选择项.本题主要考查了实数的相关概念及其分类方法,然后就可以熟练进行判断,难度适中.2.答案:A解析:解:A、为检测某市正在销售的酸奶质量,具有破坏性,应采用抽样调查的方式,此选项正确;B、两名同学连续六次的数学测试平均分相同,那么方差较小的同学的数学成绩更稳定,此选项错误;C、抛掷一个正方体骰子,点数为奇数的概率是1,此选项错误;2D、“打开电视,正在播放动画片”是随机事件,此选项错误;故选:A.根据全面调查和抽样调查、方差的意义、概率公式的应用及随机事件逐一判断可得.此题考查了全面调查和抽样调查、方差的意义、概率公式的应用及随机事件.熟练掌握概率公式是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.3.答案:C解析:解:546亿=5.46×1010.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.据此进行解答即可.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:A解析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“保”字相对的面上的汉字是“碳”.故选A.5.答案:C解析:解:∵|a|=3,|b|=4,∴a=±3,b=±4,∵a>b,∴a=3时,b=−4,a−b=3+4=7,或a=−3时,b=−4,a−b=−3+4=1,综上所述,a−b的值为1或7.故选:C.根据绝对值的性质求出a、b的值,然后确定出对应关系,再相减即可.本题考查了有理数的减法,绝对值的性质,是基础题,判断出a、b的对应关系是解题的关键.6.答案:C解析:解:A、带负号的数一定是负数,错误;B、方程x+2=1是分式方程,故此选项错误;xC、单项式−2x2y的次数是3,正确;D、单项式与单项式的和一定是多项式,错误.故选:C.直接利用单项式以及多项式和一元一次方程的定义分别分析得出答案.此题主要考查了单项式以及多项式和一元一次方程的定义,正确把握相关定义是解题关键.7.答案:C解析:解:∵AD平分∠CAB交BC于点D∴∠CAD=∠EAD∵DE⊥AB∴∠AED=∠C=90∵AD=AD∴△ACD≌△AED.(AAS)∴AC=AE,CD=DE.∵AC=BC,∴BC=AE.∴△DEB的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=AB=8.故选:C.先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE,再证明△DEB的周长等于AB的长即可.本题考查等腰直角三角形的性质、角平分线的定义、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.8.答案:A解析:解:∵a<c<0<b,∴|a|−|c−a|+|c−b|−|b|=−a−(c−a)+b−c−b=−a−c+a+b−c−b=−2c.故选:A.根据有理数a、b、c在数轴上的位置,可知a<c<0<b,即可对式子去绝对值,即可得出答案.本题考查了数轴,绝对值,代数式求值,关键是根据数在数轴上的位置判断其符号以及组成的一些代数式的符号进行化简求值.9.答案:B解析:解:设到期后银行应向储户支付现金x元,则所列方程为:x−5000=5000×2.25%.故选:B.首先理解题意找出题中存在的等量关系:一年本息和−本金=利息,根据此等式列方程即可.此题主要考查了由实际问题抽象出一元一次方程,注意本金、利息、利息税、利率之间的关系是解题关键.10.答案:B解析:解:由数轴可得:a<−1<0<b<1,则a+b<0;a−b<0;ab<0;|a|>b;1−b>0;a+1<0,正确的有:①④⑤⑥,共4个;故选:B.根据数轴确定a,b的范围,即可解答.本题考查了数轴,解决本题的关键确定a,b的范围.11.答案:−3;4;−3的4次方解析:解:(−3)4的底数是−3,指数是4,读作−3的4次方.根据乘方的意义.熟练识记乘方的意义是关键.12.答案:3或−3解析:解:由a是最小的正整数,可知a=1,又b是a的相反数,所以b=−1,|c|=3,所以c=±3,当a=1,b=−1,c=3时,a+b+c=1−1+3=3;当a=1,b=−1,c=−3时,a+b+c=1−1−3=−3,∴a+b+c的值为3或−3.故答案为:3或−3.由a是最小的正整数,b是a的相反数,c的绝对值为3,可以分别求得a=1,b=−1,c=±3,然后分c=3和c=−3两种情况分别代入求值即可.本题主要考查有理数的加法,由条件分别求出a、b、c的值是解题的关键.13.答案:1或9解析:本题考查了线段的和差,两点间的距离,利用线段的和差是解题关键,要分类讨论,以防遗漏.分C在线段上和C在线段AB的延长线上两种情况,根据线段的和差,可得答案.解:当C在线段AB上时,AC=AB−BC=5−4=1,当C在线段AB的延长线上时,AC=AB+BC=5+4=9,故答案为:1或9.14.答案:11441620解析:解:∵一个多边形从一个顶点可以引8条对角线,∴这个多边形的边数是8+3=11,∴这个多边形共有对角线:11×82=44(条),这个多边形的内角和=(11−2)×180°=1620°.故答案为:11,44,1620.先由n边形从一个顶点出发可引出(n−3)条对角线,求出n的值,再根据n边形对角线的总条数为n(n−3)2即可求出这个多边形所有对角线的条数,然后根据多边形的内角和定理计算即可求解.本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n边形从一个顶点出发可引出(n−3)条对角线及n边形对角线的总条数为n(n−3)2是解题的关键,同时考查了多边形的内角和定理.15.答案:x−2x+4x=a解析:观察这一行数字的规律:2,−4,8,−16,,可以得出后面的数是前面数的−2倍,即:−4=−2×2,8=−2×(−4),−16=−2×8…由此可得方程.设某个数是x,则下一个为:−2x,第三个为:−2×(−2x)=4x,由题意可得:x+(−2x)+4x=a,即x−2x+4x=a.故答案为:x−2x+4x=a.16.答案:解:(1)原式=57×(−512)−57×512−53×14=(−512)×(57+57+1)=(−512)×177=−8584;(2)原式=18+32÷(−8)−16×5=18−4−80 =−66;(3)原式=−12−2−3×37=−14−9 7=−1527;(4)原式=−16×35×(−47)×52=17.解析:(1)将除法转化为乘法,再提取公因数−512,继而计算括号内的加法,最后计算乘法即可得;(2)先计算乘方,再计算乘除,最后计算加减可得;(3)先计算乘法和除法,再计算加减可得;(4)先计算括号内加法、将除法转化为乘法,最后计算乘法即可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.17.答案:解:把x=−2代入方程5a+x=13得:5a−2=13,解得:a=3,即方程为15−x=13,解得:x=2.解析:把x=−2代入方程5a+x=13,求出a,得出方程为15−x=13,求出方程的解即可.本题考查了一元一次方程的解和解一元一次方程,能求出a的值是解此题的关键.18.答案:解:如图所示:解析:由已知条件可知,主视图有3列,每列小正方形数目分别为2,2,3;左视图有2列,每列小正方形数目分别为2,3.据此可画出图形.本题考查几何体的三视图画法.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有2列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.19.答案:解:(1)调查的学生有:12÷10%=120(人),喜欢A的有:120−30−12−6=72(人),B所占的百分比是:30÷120×100%=25%,A所占的百分比是:72÷120×100%=60%,补图如下:(2)根据题意得:700×10%=70(人),答:该年级学生中对远修课“不太喜欢”的有70人.解析:(1)根据不太喜欢的人数和所占的百分比求出调查的总人数,再用总人数减去其它人数求出非常喜欢的人数,再用各自的人数除以总人数求出各自所占的百分比,从而补全统计图;(2)用总人数乘以不太喜欢所占的百分比即可.本题考查了扇形统计图、条形统计图以及用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答问题.20.答案:证明:∵AF是△ABC的角平分线,∴∠CAF=∠BAF,∵∠1=∠2,∠1=∠AED(对顶角相等),∴∠2=∠AED,∵CD⊥AB,∴∠BAF+∠AED=90°,∴∠CAF+∠2=90°,∴∠ACB=90°.解析:本题考查了三角形的内角和定理,角平分线的定义,对顶角相等的性质,熟记定义与定理并准确识图是解题的关键.根据角平分线的定义可得∠CAF=∠BAF,然后根据三角形的内角和定理求出∠CAF+∠2=90°,从而求出∠ACB=90°.21.答案:解:(1)55,217;(2)第n行的第1个数字为1+2×[1+2+3+⋯+(n−1)]=1+n(n−1)=n2−n+1;第n行的最后一个数字为1+2×(1+2+3+⋯+n)−2=1+n(n+1)−2=n2+n−1;(3)能.理由如下:∵第50行的第一个数字为502−50+1=2451,第51行的第一个数字为512−51+1=2551,∴第50行第k个数为2451+2k、第k+1个数为2451+2(k+1);第51行第k个数为2551+2k、第k+1个数为2551+2(k+1),∴2451+2k+2451+2(k+1)+2551+2k+2551+2(k+1)=10016,即10008+4k=10016,解得:k=2,∴这四个数分别为:2453,2455,2553,2555.根据连续奇数的排列方式可得出:第n行有n个数,且每个数均为奇数.解析:解:观察发现:第1行1个数,第2行2个数,第3行3个数,第4行4个数,…,∴第n行有n个数,且每个数均为奇数.(1)∵第6行最后一个数字为41,∴第7行最后一个数字为41+2×7=55;∵第15行第1列数字为1+(1+2+3+⋯+14)×2=211,∴第15行第4列数字为211+2×3=217.故答案为:55;217.(2)见答案;(3)见答案.(1)根据第6行的最后一个数字,将其+2×7即可得出第7行的最后一个数字,由第15行第一个数字为1+(1+2+3+⋯+14)×2,将其+2×3即可得出第15行第4列数字;(2)根据第1、2、3、…、(n−1)行数的个数结合第一行第1个数字即可得出第n行第1个数字;再由第n行最后一个数字为第(n+1)行第一个数字−2即可得出结论;(3)根据(2)找出第50、51行第一个数字,由此即可找出第50、51行第k、(k+1)列的四个数,将其相加令其=10016即可得出关于k的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用、列代数式以及规律型中数字的变化类,解题的关键是:(1)根据的数字的分布找出每行中数字的个数;(2)根据第n行数字的个数为n找出第n行第1个、最后一个数字;(3)根据4个数之和为10016列出关于k的一元一次方程.22.答案:解:(1)点C位置如图所示,延长线段AB到点C,使BC=3AB;(2)∵AB=2,∴BC=3AB=6,∵点D为线段BC的中点,BC=3,∴BD=12∴AD=AB+BD=5.答:线段AD的长度为5;(3)点P从A点出发,以每秒1个单位长度的速度向点C移动,到点C时停止.设点P的运动时间为t秒,∵AC=AB+BC=8,则PB=|t−2|,PA=t,PC=8−t,PB=PA−PC即|t−2|=t−(8−t).解得t=6或103.答:时间t为6或103解析:本题考查了作图−基本作图、一元一次方程的应用、两点间的距离,解决本题的关键是根据图形和动点求值.(1)延长线段AB到点C,使BC=3AB即可;BC=3,即可求线段AD的长度;(2)在(1)的条件下,求得BD=12(3)设点P的运动时间为t秒,则PB=|t−2|,PA=t,PC=8−t,由PB=PA−PC即可列式求出时间t.。

深圳大学附属中学人教版七年级上册数学期末试卷及答案-百度文库

深圳大学附属中学人教版七年级上册数学期末试卷及答案-百度文库

深圳大学附属中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b2.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=3.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=D .32(72)30x x +-=4.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =15.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3806.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或737.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④8.21(2)0x y -+=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-9.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°10.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 11.计算:2.5°=( )A .15′B .25′C .150′D .250′12.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥13.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0m B .0.8m C .0.8m - D .0.5m - 14.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定15.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题16.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.17.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.18.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 19. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.20.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________ 21.已知23,9n mn aa -==,则m a =___________.22.如图,若12l l //,1x ∠=︒,则2∠=______.23.|﹣12|=_____. 24.化简:2x+1﹣(x+1)=_____.25.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.26.-2的相反数是__.27.当12点20分时,钟表上时针和分针所成的角度是___________.28.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.29.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.30.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题31.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.32.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.33.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?34.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)35.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n 的式子表示第n 个图的钢管总数. (分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S 表示钢管总数) (解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.36.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.37.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.38.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.2.C解析:C【解析】【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.3.A解析:A 【解析】 【分析】设女生x 人,男生就有(30-x )人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可. 【详解】 设女生x 人, ∵共有学生30名, ∴男生有(30-x )名,∵女生每人种2棵,男生每人种3棵, ∴女生种树2x 棵,男生植树3(30-x )棵, ∵共种树72棵, ∴2x+3(30-x)=72, 故选:A. 【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.4.A解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.5.B解析:B【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.详解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B.点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.6.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.7.A解析:A 【解析】 【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案. 【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误; 根据客车数列方程,应该为2554045n n ++=,③正确,②错误; 所以正确的是①③. 故选A . 【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.8.A解析:A 【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y )2015=(1﹣2)2015=﹣1. 故选A9.A解析:A 【解析】 【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果. 【详解】解:OB 平分AOC ∠,18AOB ∠=︒,236AOC AOB ∴∠=∠=︒, 又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A . 【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.10.D解析:D 【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.11.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C.【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.12.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.13.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】+,解∵水位升高0.6m时水位变化记作0.6m-,∴水位下降0.8m时水位变化记作0.8m故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.14.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】或6.解:如果一个有理数的绝对值是6,那么这个数一定是6故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.A解析:A【解析】【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A.【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题16.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.17.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.18.【解析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.19.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.20.-5【解析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a 与b的值即可得出结果.【详解】解:根据题意得:=(a-1)x2+(b-6)x+1,由结果与x取值解析:-5【解析】【分析】合并同类项后,由结果与x的取值无关,则可知含x各此项的系数为0,求出a与b的值即可得出结果.【详解】解:根据题意得:2261-++-+=(a-1)x2+(b-6)x+1,x bx ax x由结果与x取值无关,得到a-1=0,b-6=0,解得:a=1,b=6.∴a-b=-5.【点睛】此题考查了整式的加减,熟练掌握运算法则以及理解“与x的取值无关”的意义是解本题的关键.21.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.23.【解析】【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣|=.故答案为:【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0解析:1 2【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】解:|﹣12|=12.故答案为:1 2【点睛】考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.25.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.26.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.27.110°【解析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.28.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.故答案为:﹣3cm.【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.29.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.30.-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a和b是解决问题的关键.三、压轴题31.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.32.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.33.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P 在原点左边,那么AB+BP =10+(6+3)=19,t =192. 【点睛】 本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.34.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即可解题;(4)根据第三问点P 运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25- ,35(2)设运动时间为x 秒13x 2x 2535+=+解得 x 4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P 运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P 所在的位置表示的数为5 .(4)由(3)得:点P 运动了6个来回后,又运动了30个单位长度,∴点P 和点Q 一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.35.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:。

深圳北师大南山附属学校中学部七年级上册期末数学模拟试卷及答案

深圳北师大南山附属学校中学部七年级上册期末数学模拟试卷及答案

深圳北师大南山附属学校中学部七年级上册期末数学模拟试卷及答案一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .33.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22 B .70 C .182 D .206 4.在0,1-, 2.5-,3这四个数中,最小的数是( )A .0B .1-C . 2.5-D .35.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .76.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边C .在点 A, C 之间D .以上都有可能7.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105 B .33.1×105C .3.31×106D .3.31×1078.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+9.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .2010.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=D .32(72)30x x +-=二、填空题11.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.12.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.13.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.14.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.15.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.16.计算:3+2×(﹣4)=_____.17.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______18.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).19.设一列数中相邻的三个数依次为m,n,p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,b,128…,则b=________.20.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程_____.三、解答题21.阅读下面解题过程:计算:13 (15)3632⎛⎫-÷--⨯⎪⎝⎭解:原式=25(15)66⎛⎫-÷-⨯⎪⎝⎭(第一步)=25(15)66⎛⎫-÷-⨯⎪⎝⎭(第二步)=(﹣15)÷(﹣25)(第三步)=﹣35(第四步)回答:(1)上面解题过程中有两个错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是;(2)正确的结果是.22.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x天可追上弩马.(1)当良马追上驽马时,驽马行了里(用x的代数式表示).(2)求x的值.(3)若两匹马先在A站,再从A站出发行往B站,并停留在B站,且A、B两站之间的路程为7500里,请问驽马出发几天后与良马相距450里?23.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(P+q)x+pq得x2+(p+q)x+Pq=(x+P)(x+q)利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2所以x2+3x+2=x2+(1+2)x+1×2,x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+6x-27(2)若x 2+px+8可分解为两个一次因式的积,则整数p 的所有可能值是____ (3)利用因式分解法解方程:x 2-4x-12=024.一件商品先按成本价提高50%后标价,再以8折销售,售价为180元. (1)这件商品的成本价是多少? (2)求此件商品的利润率. 25.计算:﹣0.52+14﹣|22﹣4| 26.某快车的计费规则如表1,小明几次乘坐快车的情况如表2,请仔细观察分析表格解答以下问题:(1)填空:a = ,b = ; (2)列方程求解表1中的x ;(3)小明的爸爸23:10打快车从机场回家,快车行驶的平均速度是100公里/小时,到家后小明爸爸支付车费603元,请问机场到小明家的路程是多少公里?(用方程解决此问题)表1:某快车的计费规则(说明:总费用=里程费+时长费+远途费) 表2:小明几次乘坐快车信息27.已知,若2(1)20a b ++-=,关于x 的方程2x+c=1的解为-1.求代数式22282(4)abc a b ab a b ---的值.28.用白色棋子摆出下列一组图形:(1)填写下表: 图形编号(1) (2) (3) (4) (5) (6) ...图形中的棋子(2)照这样的方式摆下去,写出摆第个图形棋子的枚数; (3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?29.如图,已知数轴上有、、A B C 三个点,它们表示的数分别是24,10,10--.(1)填空:AB = ,BC = .(2)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC AB -的值是否随着时间t 的变化而改变? 请说明理由。

2019-2020年深圳市南山七年级上册期末数学试卷(有答案)

2019-2020年深圳市南山七年级上册期末数学试卷(有答案)

广东省深圳市南山七年级(上)期末数学试卷一、选择题(共12小题;共36分)1.在圆柱、正方体、长方体中,主视图可能一样的是()A.仅圆柱和正方体B.仅圆柱和长方体C.仅正方体和长方体D.圆柱、正方体和长方体2.﹣2的绝对值是()A.2B.﹣2C.D.3.下列计算正确的一个是()A.a5+a5=2a5B.a5+a5=a10C.a5+a5=a D.2y+y2=23y34.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1085.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大6.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<07.下列调查方式中,采用了“普查”方式的是()A.调查某品牌手机的市场占有率B.调查电视网(芈月传)在全国的收视率C.调查我校初一(1)班的男女同学的比率D.调查某型号节能灯泡的使用寿命8.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm9.下列说法中,正确的有()①的系数是;②﹣22ab2的次数是5;③多项式mn2+2mn﹣3n﹣1的次数是3;④a﹣b和都是整式.A.1个B.2个C.3个D.4个10.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元11.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于的方程正确的是()A.5+4(+2)=44B.5+4(﹣2)=44C.9(+2)=44D.9(+2)﹣4×2=4412.设一列数中相邻的三个数依次为m,n,p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b=()A.118B.128C.178D.188二、填空题(共4小题;共12分)13.钟面上12点30分,时针与分针的夹角是度.14.若|a+|+(b﹣2)2=0,则(ab)2015=.15.若(a﹣1)|a|+3=6是关于的一元一次方程,则a=.16.如图图形是由相同的小五角星按一定的规律排列组合而成,其中第一个图形有6个五角星,第二个图形有10个五角星,第三个图形有16个五角星,第四个图形有24个五角星……则第十个图形有个五角星.三、解答题(共7小题;共52分)17.(6分)计算题(1)(﹣45)÷(﹣9)×(﹣3)(2)﹣23×+|﹣4|3÷(﹣2)4.18.(6分)先化简,再求值:23﹣(72﹣9)﹣2(3﹣32+4),其中=﹣1.19.(12分)解方程:(1)12+8=8﹣4(2)+3=﹣2(3)4﹣10=6(﹣2)(4)﹣=120.(5分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.21.(7分)某校八年级共有800名学生,准备调查他们对“低碳”知识的了解程度.(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查八年级部分女生;方案二:调查八年级部分男生;方案三:到八年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)请你估计该校八年级约有多少名学生比较了解“低碳”知识.22.(8分)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.23.(9分)如图,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO=cm (用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.广东省深圳市南山七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题;共36分)1.在圆柱、正方体、长方体中,主视图可能一样的是()A.仅圆柱和正方体B.仅圆柱和长方体C.仅正方体和长方体D.圆柱、正方体和长方体【分析】主视图是从几何体的正面看所得到的视图,分别分析出三个几何体的主视图可得答案.【解答】解:圆柱的主视图是长方形或正方形;正方体的主视图是正方形;长方体的主视图是长方形或正方形,因此主视图可能一样的是圆柱、正方体和长方体,故选:D.【点评】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置:是从几何体的正面看所得到的视图.2.﹣2的绝对值是()A.2B.﹣2C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.3.下列计算正确的一个是()A.a5+a5=2a5B.a5+a5=a10C.a5+a5=a D.2y+y2=23y3【分析】根据合并同类项的法则,合并同类项时字母和字母的指数不变把系数相加减.【解答】解:A、正确;B、a5+a5=2a5;C、a5+a5=2a5;D、2y+y2=(+y)y.故选:A.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.合并同类项时字母和字母的指数不变把系数相加减.4.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大【分析】此题根据有理数的加法和乘法法则解答.【解答】解:两个有理数的积是正数,说明两数同号,和也是正数,说明均为正数,A正确.故选:A.【点评】有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加.6.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<0【分析】本题利用数与数轴的关系及数形结合解答.【解答】解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.【点评】本题主要是利用数形结合的思想,用排除法选项.7.下列调查方式中,采用了“普查”方式的是()A.调查某品牌手机的市场占有率B.调查电视网(芈月传)在全国的收视率C.调查我校初一(1)班的男女同学的比率D.调查某型号节能灯泡的使用寿命【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查某品牌手机的市场占有率,范围较广,人数众多,应采用抽样调查,故此选项错误;B、调查电视网(芈月传)在全国的收视率,范围较广,人数众多,应采用抽样调查,故此选项错误;C、调查我校初一(1)班的男女同学的比率,人数较少,应采用普查,故此选项正确;D、调查某型号节能灯泡的使用寿命,普查具有破坏性,应采用抽样调查,故此选项错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【分析】先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC的长即可.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选:B.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.9.下列说法中,正确的有()①的系数是;②﹣22ab2的次数是5;③多项式mn2+2mn﹣3n﹣1的次数是3;④a﹣b和都是整式.A.1个B.2个C.3个D.4个【分析】根据单项式中的数字因数叫做单项式的系数可得①正确;根据一个单项式中所有字母的指数的和叫做单项式的次数可得②错误;根据多项式中次数最高的项的次数叫做多项式的次数可得③正确;根据单项式和多项式合称整式可得④正确.【解答】解:①的系数是,说法正确;②﹣22ab2的次数是5,说法错误,次数是3;③多项式mn2+2mn﹣3n﹣1的次数是3,说法正确;④a﹣b和都是整式,说法正确;正确的说法是3个,故选:C.【点评】此题主要考查了单项式和多项式,关键是掌握单项式次数的定义,多项式次数的定义,不要混肴.10.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【分析】设这种商品每件的进价为元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为元,由题意得:330×0.8﹣=10%,解得:=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.11.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于的方程正确的是()A.5+4(+2)=44B.5+4(﹣2)=44C.9(+2)=44D.9(+2)﹣4×2=44【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,5+(9﹣5)(+2)=5+4(+2)=44,故选:A.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是明确题意,列出相应的方程.12.设一列数中相邻的三个数依次为m,n,p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b=()A.118B.128C.178D.188【分析】根据题意求出a,再代入关系式即可得出b的值.【解答】解:根据题意得:a=32﹣(﹣2)=11,则b=112﹣(﹣7)=128.故选:B.【点评】本题考查了规律型:数字的变化类;熟练掌握变化规律,根据题意求出a是解决问题的关键.二、填空题(共4小题;共12分)13.钟面上12点30分,时针与分针的夹角是165度.【分析】画出图形,利用钟表表盘的特征解答.【解答】解:12点半时,时针指向1和12中间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,半个格是15°,因此12点半时,分针与时针的夹角正好是30°×5+15°=165°.【点评】本题是一个钟表问题,钟表12个数字,每相邻两个数字之间的夹角为30°.借助图形,更容易解决.14.若|a+|+(b﹣2)2=0,则(ab)2015=﹣1.【分析】根据非负数的性质可求出a、b的值,再将它们代入(ab)2015中求解即可.【解答】解:∵|a+|+(b﹣2)2=0,∴a+=0,b﹣2=0;a=﹣,b=2;则(ab)2015=(﹣×2)2015=﹣1.故答案为﹣1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.15.若(a﹣1)|a|+3=6是关于的一元一次方程,则a=﹣1.【分析】根据一元一次方程的特点求出a的值.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是a+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得,解得:a=﹣1.故答案为:﹣1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.如图图形是由相同的小五角星按一定的规律排列组合而成,其中第一个图形有6个五角星,第二个图形有10个五角星,第三个图形有16个五角星,第四个图形有24个五角星……则第十个图形有114个五角星.【分析】根据已知图形得出第n个图形中五角星个数为4+n(n+1),据此可得.【解答】解:∵第一个图形中五角星的个数6=4+1×2,第二个图形中五角星的个数10=4+2×3,第三个图形中五角星的个数16=4+3×4,……∴第十个图形中五角星的个数为4+10×11=114,故答案为:114.【点评】本题主要考查图形的变化规律,解题的关键是将已知图形分割成两部分,并从中找到总个数的通项公式4+n(n+1).三、解答题(共7小题;共52分)17.(6分)计算题(1)(﹣45)÷(﹣9)×(﹣3)(2)﹣23×+|﹣4|3÷(﹣2)4.【分析】(1)先算除法,再算乘法;(2)先算乘方和绝对值,再算乘除,最后算加法.【解答】解:(1)原式=5×(﹣3)=﹣15;(2)原式=﹣8×+64÷16=﹣2+4=2.【点评】此题考查有理数的混合运算,掌握运算顺序、符号的判定与计算方法是解决问题的关键.18.(6分)先化简,再求值:23﹣(72﹣9)﹣2(3﹣32+4),其中=﹣1.【分析】本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=﹣2+(4分),当=﹣1时,原式=﹣2.【点评】此题解题关键是化简整式,要注意整式运算中的去括号和合并同类项时的符号处理.19.(12分)解方程:(1)12+8=8﹣4(2)+3=﹣2(3)4﹣10=6(﹣2)(4)﹣=1【分析】各方程去分母,去括号,移项合并,把系数化为1,即可求出解.【解答】解:(1)移项合并得:4=﹣12,解得:=﹣3;(2)去分母得:8+36=9﹣24,移项合并得:﹣=﹣60,解得:=60;(3)去括号得:4﹣10=6﹣12,移项合并得:﹣2=﹣2,解得:=1;(4)去分母得:5﹣15﹣8﹣2=10,移项合并得:﹣3=27,解得:=﹣9.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.(5分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.【分析】利用图中角与角的关系即可求得.【解答】解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.21.(7分)某校八年级共有800名学生,准备调查他们对“低碳”知识的了解程度.(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查八年级部分女生;方案二:调查八年级部分男生;方案三:到八年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是三;(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)请你估计该校八年级约有多少名学生比较了解“低碳”知识.【分析】(1)由于学生总数比较多,采用抽样调查方式,方案一、方案二只涉及到男生和女生一个方面,过于片面,则应选方案三;(2)根据不了解为5人,所占百分比为10%,得出调查的总人数,再用总人数减去不了解和比较了解的人数得出了解一点的人数和所占的百分比,再用整体1减去了解一点的和不了解的所占的百分比求出比较了解所占的百分比,从而补全统计图;(3)用总人数乘以“比较了解”所占百分比即可求解.【解答】解:(1)方案一、方案二只涉及到男生和女生一个方面,过于片面,则应选方案三;故答案为:三;(2)根据题意得:=50(人),了解一点的人数是:50﹣5﹣15=30(人),了解一点的人数所占的百分比是:×100%=60%;比较了解的所占的百分是:1﹣60%﹣10%=30%,补图如下:(4)根据题意得:800×30%=240(名),答:该校八年级约有240名学生比较了解“低碳”知识.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.【分析】(1)等量关系为:2×暖瓶单价+3×(38﹣暖瓶单价)=84;(2)甲商场付费:暖瓶和水杯总价之和×90%;乙商场付费:4×暖瓶单价+(15﹣4)×水杯单价.【解答】解:(1)设一个暖瓶元,则一个水杯(38﹣)元,根据题意得:2+3(38﹣)=84.解得:=30.一个水杯=38﹣30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15﹣4)×8=208元.因为208<216.所以到乙家商场购买更合算.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.需注意乙商场有4个水杯不用付费.23.(9分)如图,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO,射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为1cm/s.P、Q同时出发,设运动时间是t(s).(1)当点P在MO上运动时,PO=(18﹣2t)cm (用含t的代数式表示);(2)当点P在MO上运动时,t为何值,能使OP=OQ?(3)若点Q运动到距离O点16cm的点N处停止,在点Q停止运动前,点P能否追上点Q?如果能,求出t的值;如果不能,请说出理由.【分析】(1)利用P点运动速度以及OM的距离进而得出答案;(2)利用OP=OQ列出方程求出即可;(3)利用假设追上时,求出所用时间,进而得出答案.【解答】解:(1)∵P点运动速度为2cm/s,MO=18cm,∴当点P在MO上运动时,PO=(18﹣2t)cm,故答案为:(18﹣2t);(2)当OP=OQ时,则有18﹣2t=t,解这个方程,得t=6,即t=6时,能使OP=OQ;(3)不能.理由如下:设当t秒时点P追上点Q,则2t=t+18,解这个方程,得t=18,即点P追上点Q需要18s,此时点Q已经停止运动.【点评】此题主要考查了一元一次方程的应用以及动点问题,注意点的运动速度与方向是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳北大附中深圳南山分校七年级上册数学期末试卷及答案-百度文库一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90°2.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .4.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( )A .两点之间线段最短B .两点确定一条直线C .垂线段最短D .两点之间直线最短5.-2的倒数是( )A .-2B .12-C .12D .26.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab += 7.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( )A .1个B .2个C .3个D .4个8.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首.A .28B .30C .32D .349.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .112 10.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=6 11.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.14.9的算术平方根是________15.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.16.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.17.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.18.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.19.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.21.将520000用科学记数法表示为_____.22.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.23.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.27.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a +|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.28.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.29.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.30.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合;(3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示).(4)直接写出点B 为AC 中点时的t 的值.31.阅读下列材料,并解决有关问题: 我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+;(2)当1-≤2x <时,原式()()123x x =+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ;(2)化简式子324x x -++.32.如图,已知线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若AC=4cm ,求DE 的长;(2)试利用“字母代替数”的方法,说明不论AC 取何值(不超过12cm ),DE 的长不变; (3)知识迁移:如图②,已知∠AOB=α,过点O 画射线OC ,使∠AOB:∠BOC=3:1若OD 、OE 分别平分∠AOC 和∠BOC ,试探究∠DOE 与∠AOB 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.【详解】解:∵一个角的补角是130︒,∴这个角为:50︒,∴这个角的余角的度数是:40︒.故选:B .【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.2.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =,12BC AB =, 28AB x ∴==.故答案为:C.【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.3.A解析:A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A .【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.5.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握 6.B【解析】【分析】根据整式的加减法法则即可得答案.【详解】A.5x-3x=2x,故该选项计算错误,不符合题意,B.2ab ab ab-=,计算正确,符合题意,C.-2a+3a=a,故该选项计算错误,不符合题意,D.2a与3b不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.7.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.9.B解析:B【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n 个图中,有2×(2n+1)+n=5n+2(个).∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .10.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.11.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.12.D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.15.5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.16.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.17.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,∴=,b3a2=-=-,则原式495故答案为5-【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.18.6×【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 0解析:6×910【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.19.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.20.1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.21.2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.22.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.23.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.24.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.三、压轴题25.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.26.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.27.(1)B点坐标为(0,﹣6),C点坐标为(4,﹣6)(2)S△OPM=4t或S△OPM=﹣3t+21(3)当t为2秒或133秒时,△OPM的面积是长方形OBCD面积的13.此时点P的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a,b,c的值,即可得到B、C两点的坐标;(2)分两种情况:①P在OB上时,直接根据三角形面积公式可得结论;②P在BC上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM的面积为8,根据(2)中的结论分别代入可得对应t的值,并计算此时点P的坐标.【详解】(1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.28.(1)-14,8-4t (2)点P 运动11秒时追上点Q (3)103或4(4)线段MN 的长度不发生变化,都等于11【解析】【分析】(1)根据AB 长度即可求得BO 长度,根据t 即可求得AP 长度,即可解题;(2)点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,根据AC-BC=AB ,列出方程求解即可;(3)分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.29.(1)13;(2)P出发23秒或43秒;(3)见解析.【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43,此时满足条件的点C 即为Q 点,所表示的数为43-, 综上所述,点C 所表示的数分别为-53和-43. 【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.30.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.【解析】【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A 、B 、C 表示的数为,用含t 的代数式表示出AB 、AC 、BC 即可;(4)由点B 为AC 中点,得到AB =BC ,列方程,求解即可.【详解】(1)∵|a +2|+(c ﹣7)2=0,∴a +2=0,c ﹣7=0,解得:a =﹣2,c =7.∵b 是最小的正整数,∴b =1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A 表示的数为:-2-t ,点B 表示的数为:1+2t ,点C 表示的数为:7+4t ,则AB =t +2t +3=3t +3,AC =t +4t +9=5t +9,BC =2t +6.故答案为3t +3,5t +9,2t +6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.31.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x-=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.32.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D 、E 分别是AC 和BC 的中点,∴DE=CD+CE=12(AC+BC )=12AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;(3)①当OC 在∠AOB 内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。

相关文档
最新文档