氰化参考资料法提金的基本原理1121212
提炼金属方法
氰化物溶解金的反应和速度[导读]氰化物之所以能选择性地溶解金、银和它们的某些复合物,是由于往碱金属(或碱土金属)氰化液充气。
实践中,通常使用氰化钠(或氰化钙)的充气溶液,同时加入若干碱(通常用石灰)。
碱的加入是为了抑制氰化物的水解作用,以免生成氰氢酸挥发损失。
氰化物之所以能选择性地溶解金、银和它们的某些复合物,是由于往碱金属(或碱土金属)氰化液充气。
实践中,通常使用氰化钠(或氰化钙)的充气溶液,同时加入若干碱(通常用石灰)。
碱的加入是为了抑制氰化物的水解作用,以免生成氰氢酸挥发损失。
如果把溶解反应看作是电化学侵蚀过程,那么,也可以把金的溶解看作是阳极表面的金溶解进入溶液的过程(图1)。
当阴极表面的氧得到电子时,阳极和阴极区间的反应为:阳极区 Au+2CN- Au(CN)2-+e阴极区 O2+2H2O+2e- H2O2+2OH-进一步反应时 H2O2+2e 2OH-在电化学腐蚀系统中,影响阴、阳极极化的最重要因素是浓差极化,它由菲克定律确定:A1〔(O2)-(O2)i〕(1)A2〔(CN-)-(CN-)i〕(2)式中和-分别为CN-和O2的扩散速度,mol(分子)/s;D CN和-分别为氰化物和溶解的氧的扩散系数,cm2/s;(CN-)和(O2)-分别为整体溶液中CN-和O2的浓度,mol(分子)∕mL;(CN-)i和(O2)i-分别为界面处CN-和O2的浓度,mol(分子)∕mL;A1和A2-分别为阴极和阳极发生反应的表面面积,cm2;δ-能斯特界面层厚度,cm。
图1 金在氰化物溶液中溶解的图解以金属界面处CN-和O2穿过停滞层的速度相比较,假设该界面上的化学反应速度很快的话,那么,当它们刚一到达金属表面便立即被消耗掉,也就是说:(CN-)i=0 (O2)i=0因而可把式(1)、(2)简化为:A1〔O2〕A2〔CN-〕因为金属溶解速度是氧消耗速度的两倍,是氰化物消耗速度的二分之一,故:金的溶解速度=2 A1〔O2〕或金的溶解速度= A2〔CN-〕当上列反应式达到平衡时,2 A1〔O2〕= A2〔CN-〕但因为和水相相接触的金属总表面面积A=A1+A2,因而:金的溶解速度=(3)从此式可见,当氰化物浓度低时,和分母的第二项相比,其第一项可以忽略不计,因此,等式(3)可简化为:金的溶解速度=(CN-)=k1(CN-)用这式计算的值与图2的实验结果相符,即氰化物浓度低时,溶解速度仅取决于氰化物浓度。
氰化法提金的基本原理21212
氰化法提金的基本原理21212
1.破碎和磨矿:首先,原料黄金矿石会经过破碎和磨矿的过程,将矿石变为细小的颗粒,以增加表面积,使金与化学试剂更容易接触。
2.溶解黄金:破碎和磨矿后的矿石会被加入到含有氢氧化钠和氰化物的溶液中。
氢氧化钠的作用是将金矿石中的杂质分离出来,而氰化物则会将黄金溶解。
溶解反应的化学方程式为:
Au+2CN-+O2+H2O→[Au(CN)2]-+OH-
3.吸附黄金:溶液中的黄金离子[Au(CN)2]-会与活性炭或其他吸附剂反应,形成火山状吸附剂。
Au(CN)2-+C→Au(CN)2-+C
这一步是为了将黄金固定在吸附剂上,以便后续步骤进一步提取。
4.脱附黄金:吸附剂上的黄金会被用氢氧化钠和碳酸钠的混合物中的氧气氧化。
反应方程式为:
Au(CN)2-+2OH-→Au(OH)2-+2CN-
Au(CN)2-+4CN-→[Au(CN)4]2-
5.脱水和回收黄金:在脱附过程中得到的金化合物会被过滤和干燥,然后经过水解反应生成金粉:
[Au(CN)4]2-+2H2O→2Au+4CN-+4OH-
这样得到的是主要含有黄金的固体金粉。
总结:氰化法提金的基本原理是先将黄金矿石破碎和磨矿,使黄金更易溶解。
然后将矿石放入氢氧化钠和氰化物的溶液中进行溶解反应,形成黄金离子。
接下来,通过吸附剂将黄金离子固定在活性炭等吸附剂上。
脱附步骤将黄金离子转化为黄金化合物,然后脱水和回收黄金,得到最终的金粉。
该方法具有高效、高回收率和相对较低的成本,并被广泛应用于金矿加工。
提金技术工艺大全(专利)
提金技术工艺大全(专利)一、氰化法提金工艺氰化法提金工艺是目前应用最广泛的一种提金方法,具有处理量大、金回收率高等优点。
其主要工艺流程如下:1. 矿石破碎与磨矿:将矿石破碎至一定粒度,然后进行磨矿,使金粒充分暴露。
2. 氰化浸出:将磨矿后的矿石与氰化物溶液混合,使金粒与氰化物发生化学反应,氰化金。
3. 氰化物溶液的净化:通过吸附、电解等方法,将氰化物溶液中的杂质去除,提高金的纯度。
4. 金的提取:将净化后的氰化物溶液中的金提取出来,得到粗金。
5. 金的精炼:将粗金进行精炼,去除杂质,得到高纯度的金。
二、炭浆法提金工艺炭浆法提金工艺是一种高效、低成本的提金方法,主要适用于含金品位较低的矿石。
其主要工艺流程如下:1. 矿石破碎与磨矿:将矿石破碎至一定粒度,然后进行磨矿,使金粒充分暴露。
2. 氰化浸出:将磨矿后的矿石与氰化物溶液混合,使金粒与氰化物发生化学反应,氰化金。
3. 炭浆吸附:将氰化物溶液通过活性炭吸附,使金吸附在活性炭上。
4. 解吸:将吸附了金的活性炭进行解吸,使金从活性炭上脱离。
5. 金的精炼:将解吸后的金进行精炼,去除杂质,得到高纯度的金。
三、树脂法提金工艺树脂法提金工艺是一种新型、高效的提金方法,具有处理量大、金回收率高等优点。
其主要工艺流程如下:1. 矿石破碎与磨矿:将矿石破碎至一定粒度,然后进行磨矿,使金粒充分暴露。
2. 氰化浸出:将磨矿后的矿石与氰化物溶液混合,使金粒与氰化物发生化学反应,氰化金。
3. 树脂吸附:将氰化物溶液通过树脂吸附,使金吸附在树脂上。
4. 解吸:将吸附了金的树脂进行解吸,使金从树脂上脱离。
5. 金的精炼:将解吸后的金进行精炼,去除杂质,得到高纯度的金。
四、生物法提金工艺生物法提金工艺是一种环保、低成本的提金方法,主要适用于含金品位较低的矿石。
其主要工艺流程如下:1. 矿石破碎与磨矿:将矿石破碎至一定粒度,然后进行磨矿,使金粒充分暴露。
2. 生物氧化:将磨矿后的矿石与生物氧化剂混合,使金粒与氧化剂发生反应,可溶性金。
几种氰化法提金介绍备课讲稿
几种氰化法提金介绍2016-12-06 廖德华紫金矿业HOT全球矿业资讯1.氰化法提金概述氰化法提金是以氰化物的水溶液作溶剂,浸出含金矿石中的金,然后再从含金浸出液中提取金的方法。
氰化法提金主要包括如下两个步骤:(1)氰化浸出:在稀薄的氰化溶液中,并有氧(或氧化剂)存在的条件下,含金矿石中的金与氰化物反应生成一价金的络合物而溶解进入溶液中,得到浸出液以氰化钾为例,反应式为:4Au+8KCN+2H2O→4KAu(CN)2+4KOH氰化浸出金的工艺方法有槽浸氰化法和堆浸氰化法两类。
槽浸氰化法是传统的浸金方法,又分渗滤氰化法和搅拌氰化法两种;堆浸法是近20年来才出现的新技术,主要用于处理低品位氧化矿。
自1887发现氰化液可以溶金以来,氰化法浸出至今已有近百年的生产实践,工艺比较成熟,回收率高,对矿石适应性强,能就地产金,所以至今仍是黄金浸出生产的主要方法。
(2)沉积提金:从氰化浸出液中提取金。
工艺方法有加锌置换法(锌丝置换法和锌粉置换法)、活性炭吸附法(炭浆法CIP和炭浸法CIL)、离子交换树脂法(树脂矿浆法RIP和RIL)、电解沉积法、磁炭法等。
锌粉(丝)置换法是较为传统的提金方法,在黄金矿山应用较多;炭浆法是目前新建金矿的首选方法,其产金量占世界产金量的50%以上;其余方法在黄金矿山也正日渐得到应用。
2.渗滤氰化法渗滤氰化法是氰化浸出的工艺方法之一,是基于氰化溶液渗透通过矿石层而使含金矿石中的金浸出的方法,适用于砂矿和疏松多孔物料。
渗滤氰化法的主要设备是渗滤浸出槽。
渗滤浸出槽通常为木槽、铁槽或水泥槽。
槽底水平或稍倾斜,呈圆形、长方形或正方形。
槽的直径或边长一般为5~12米,高度一般为2~2.5米,容积一般为50~150吨。
渗滤氰化法的工艺过程:(1)装入矿砂及碱:要求布料均匀,粒度一致,疏松一致。
有干法和湿法两种装法。
干法适于水分在20%以下的矿砂,可用人工或机械装矿。
湿法是将矿浆用水稀释后,用砂泵扬送或沿槽自流入槽内。
氰化浸出金银的理论依据和选择较佳工艺条件的方法
氰化浸出金银的理论依据和选择较佳工艺条件的方法
陈文山
【期刊名称】《琼州学院学报》
【年(卷),期】1999(0)2
【摘要】浸出是溶剂选择性地溶解矿物原料中某些组分的工艺过程。
氰化物(如NaCN、KCN等)是浸出溶剂中的一类。
氰化浸出金银的工艺至今已有一百多年的历史,是目前国内外从矿物中浸取金银的常规方法。
此法既适用于大型矿山的工业生产,也适用于小型分散矿点的民间作业。
然而,在生产中也存在着不少认识上和技术上问题。
尤其是小型分散矿点的民间作业,由于不甚了解浸出机理,因此不知如何确定浸出液的浓度和用量、浸出时间、浸出液酸碱度等。
本文分析氰化浸出金银的热力学、动力学依据,并通过有关计算和试验,总结出较佳的工艺条件,为解决上述问题提供参考。
【总页数】6页(P26-31)
【作者】陈文山
【作者单位】琼州大学化生系;主任、副教授
【正文语种】中文
【中图分类】TF831
【相关文献】
1.金银氰化浸出中高铅贵液的产生原因及处理方法 [J], 王文强;王金超;姜传进
2.氰化尾渣中铁的浸出对金银浸出率的影响 [J], 张跃红;李云;魏晋;王云;栾东武;刘
洪晓
3.云南某金银铁多金属氧化矿石加压氰化浸出试验研究 [J], 聂祖明;姜亚雄;黄丽娟
4.复杂金矿物氧化焙烧-硫酸浸出-氰化法回收金银模拟计算 [J], 王瑞祥;刘茶香;杨裕东;袁远亮;周杰;王艳阳;徐志峰
5.某浮选尾矿氧压预处理—氰化浸出金银试验研究 [J], 白成庆;陈国兰;付绸琳;付高明
因版权原因,仅展示原文概要,查看原文内容请购买。
氰化法提金工艺大全(1-6) 氰化法选金矿工艺流程
高效浓密机的特点是矿浆先经脱气槽除气后供人混合竖筒,在这里与絮凝剂混合均匀, 再从竖筒下端的扩散板沿水平方向往四面扩散供入矿泥层中,它可防止矿浆中 空气形 成气泡。搅动矿泥层,供入的矿浆也不会冲击矿泥层破坏沉淀。此时,已絮凝成团的矿 泥向下沉淀,并由耙臂耙入排料口排出;未絮凝的细粒矿泥和液体,通 过矿泥层上部松 散层时矿泥被“过滤”并凝集,液体则上升为上清液。因而作业过程中上清液与矿泥层界 面清楚,溢流含固体物的质量浓度不超过 200mg/L。
目前国内外氰化厂用于洗涤的浓密机种类较多,若按浓密机的层数可分为单层和多层; 若按传动方式又可分为中心传动式和周边传动式。近年来,国内还引进和仿制 了一种 新型浓密机,即高效浓密机。无论脱水或洗涤,高效浓密机的效果都要比同规格的单层 浓密机高出 2~3 倍。如果加絮凝剂之后,其效果要高出 5 倍以上。
①浸出——矿石中固体金溶解于含氧的氰化物溶液中的过程。
②洗涤——为回收浸出后的含金溶液,用水洗涤矿粒表面以及矿粒之间的已溶 金,以实现固液分离的过程。
③置换——用金属锌从含金溶液中使其还原、沉淀,回收金的过程。
20 世纪以来,从氰化矿浆中回收金是先进行矿浆的洗涤,然后进行贵液的澄清、 除气。从澄清的贵液中沉淀金,一直沿用锌置换法。20 世纪 60 年代以来才发展 起来的向矿浆中加入活性炭的“炭浆法”发展很快。随着对离子交换剂应用的研 究,采用离子交换树脂从氰化液或氰化矿浆中吸附金的方法亦具有重要的实用价
第二次浸出作业产出的含金溶液,通常含金较少,可用作下批原料的一次浸出用,第三 次浸出液用作下批原料的二次浸出用,这些溶液经不断使用,直至含金达规定浓度后送 沉淀金。
氰化法提金树脂的工作原理与选用
氰化法提金树脂的工作原理与选用氰化法提金树脂的工作原理与选用他的特点有:1.他的吸附量较大,树脂的饱和吸附量达10~16,2.他的吸附速度快,是一般椰壳碳吸附速度的五倍以上,使用吸附柱串联起来进行吸附的方法有很高的吸附速度3.选择性较好,对其他金属离子(如铜,镍,铁,铅等)的干扰程度小4.抗污染性能较好,可以用纯洁水或氯化钠溶液对他进行清洗5.适用范围较广,重要应用于氰化溶液中金的吸附,也可以适用于对酸性溶液甚至王水中溶解的金的吸附6.适应条件宽,他对吸附条件PH值的要求不是太苛刻7.提炼金的后处置方法多样,可以进行液体解吸再火法提炼,也可以直接炭化后烧掉,直接提炼成单质金颗粒,回收率较高8.可以对超低浓度的金贫液进行吸附,*小的金溶液浓度可以实现1PPM,这样可以对含量超低的金贫液和废液进行合理的回收及利用,削减不必须的挥霍和损失氰化法提金树脂的工作原理与选用一、离子交换树脂的工作原理离子交换树脂是一种聚合物,带有相应的功能基团。
一般情况下,常规的钠离子交换树脂带有大量的钠离子。
当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降。
硬水就变为软水,这是软化水设备的工作过程。
离子交换树脂当树脂上的大量功能基团与钙镁离子结合后,树脂的软化本领下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换本领,这个过程叫作“再生”。
由于实际工作的需要,软化水设备的标准工作流程重要包含:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。
不同软化水设备的全部工序特别接近,只是由于实际工艺的不同或掌控的需要,可能会有一些附加的流程。
任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上进展来的(其中,全自动软化水设备会加添盐水重注过程)。
离子交换树脂二、离子交换树脂的选用在离子交换水处置的设计中,应依据原水的水质。
几种氰化法提金介绍
几种氰化法提金介绍
氰化法提金是一种常用的提金方法,通过将含金矿石与氰化剂反应,
使金溶于溶液中,然后通过沉淀或吸附的方式将金分离出来。
下面将介绍
几种常用的氰化法提金方法。
1.氰化浸出法
氰化浸出法是最常用的提金方法之一、该方法将破碎的金矿石与氰化
剂溶液反应,使金溶于溶液中,形成含金氰化物。
接着,通过吸附、沉淀、电解等方式将金从溶液中分离出来。
氰化浸出法具有操作简便、适用范围
广的优点,但也存在环境污染的隐患,对环境安全要求较高。
2.碱浸法
碱浸法是氰化法提金的一种改进方法。
该方法使用碱性溶液代替传统
的含氰酸性溶液进行浸出,使金矿石中的金溶于碱性溶液中。
此方法相对
于传统的氰化浸出法而言,操作更为简单,操作过程中不需要添加氰化剂,减少了环境污染的风险。
3.硫化浸出法
硫化浸出法是一种通过反应还原金矿石中的金,使其转变为溶解性金
硫化物,再用氰化剂溶出金的方法。
该方法适用于那些金矿石中金含量较低、硫化物含量较高的情况。
硫化浸出法能够提高金的回收率,但操作较
为复杂,处理过程中需要控制反应条件,避免产生有毒的气体。
总体而言,氰化法提金是一种常用的提金方法,具有操作简便、回收
率高的特点。
但由于其对环境的危害性较大,需要严格控制操作条件,避
免对生态环境造成污染。
在实际应用中,还可以结合其他方法,如浮选、压磨等,来提高金的提取率和回收率,降低环境风险。
氰化物炼金原理
氰化物炼金原理炼金术作为古代一种重要的科学研究领域,深受人们的兴趣。
其中,氰化物炼金原理作为炼金术的重要一环,具有重要的探索和应用价值。
本文将从氰化物炼金原理的概念、历史、实验方法以及应用方面进行探讨。
一、概念氰化物炼金是一种通过利用氰化物化合物进行金属提取和转化的炼金方法。
氰化物是一种由氰基(CN-)与其他原子或原子团组成的化合物。
氰化物炼金的基本原理是通过氰化物与金属离子形成络合物,从而使金属离子易于被提取或转化。
二、历史氰化物炼金可以追溯到古代埃及和古希腊时期。
在埃及,人们发现了氰化物矿石中的金属含量较高,并通过将矿石与氰化物反应,将金属提取出来。
而在希腊,人们则通过将黄金与氰化物混合,制造出一种可以涂在物体表面的金属涂层。
三、实验方法1. 氰化物浸取法:将含金矿石与氰化物溶液混合,使金属与氰化物形成络合物,然后通过过滤、沉淀等步骤将金属离子与络合物分离,最终得到金属。
2. 氰化物还原法:将金属氧化物与氰化物混合,通过还原反应将金属离子还原为金属,并与氰化物形成络合物,然后通过一系列步骤将金属离子与络合物分离,最终得到金属。
3. 氰化物合成法:通过将金属离子与氰化物反应,生成金属氰化物。
这种方法通常用于制备金属氰化物化合物,而不是提取金属。
四、应用1. 金矿提取:氰化物浸取法是目前最常用的金矿提取方法之一。
通过将含金矿石与氰化物溶液反应,形成金氰化物络合物,再将络合物分离出来,进一步处理得到金属金。
2. 金属加工:氰化物电镀是一种常见的金属加工方法。
通过将金属与氰化物溶液中的金属离子反应,将金属离子还原为金属,并在金属表面形成一层金属涂层,从而起到保护和美化的作用。
3. 化学合成:氰化物在有机合成中起到重要的作用。
例如,氰化物可以作为一种碳源,与其他化合物反应生成有机化合物。
此外,氰化物还可用于制备药物、染料等化学品。
氰化物炼金原理作为炼金术的重要一环,具有广泛的应用价值。
通过氰化物与金属离子的络合作用,可以实现金属的提取、转化和合成。
氰化法提金工艺讲解
• 国外先进技术和设备的引进消化(如美国的高效 浓密机,双螺旋搅拌浸出槽,日本的马尔斯泵,
带式过滤机等),使我国黄金生产在装备水平和
技术水平上又有了进一步的提高,同时也促进了
我国黄金生产设备向高效、节能、大型化、自动
化方向发展。在硫脲提金、硫代硫酸盐提金,预
氧化细菌浸出,加压催化浸出,树脂吸附等新工 艺的科学研究方面,近年来也有新的进展。1979 年长春黄金研究所进行硫脲提金试验获得成功, 并于1984年在广西龙水矿建成一座日处理浮选金 精矿10~20t的硫脲提金车间(1987年通过部级 鉴定)。其他工艺虽处于试验研究阶段和正准备
不断降低,并使浸出率逐渐趋近于某一极限值。
杂质离子的影响
• 金通常是以自然金、银金矿、碲金矿等存在,共生金属矿物有黄铁矿、砷黄 铁矿、方铅矿、闪锌矿、黄铜矿、毒砂、辉铋矿等。脉石矿物有石英、长石 等、在氰化物溶液中,多数的伴生矿物都不同程度地溶解,给金的浸出带来 影响。其中金属矿物的影响比较严重,有的会加速金的溶解,而有的会阻滞 金的溶解 增速效应:适量的铅、汞、铋和铊的存在,对金的溶解是有利的。
• 矿浆浓度的高低,表明单位数量矿浆中固体矿物的多少。当矿浆浓度提高时,液体与 固体的比值就会降低,这时氰化液中金的品位和其他杂质的浓度就会提高,从而降低 了氰化物溶液的溶金活性。采用低浓度浸出时,虽然对金的浸出有利,但由于矿浆体 积的增加,在浸出时间与药剂浓度相同的条件下,增加了浸出设备的数量和药耗。同 时,液体量的增加,还会给后继的作业增加负荷。
• 例如,铅离子(Pb+2),当加入适量的铅盐时,对金的溶解有增速效应。这 是由于铅与金构成原电池,金在原电池中为阳极,而促进金转入溶液。
• 阻滞效应:在氰化物溶液中,由于某些杂质的存在,对金的溶解会带来不良 的影响。
氰化法提取金银
5.4 从银锌壳中提取银
火法炼铅时,铅精矿中的贵金属几乎全部进入粗铅。 粗铅如果采用电解精炼,则贵金属进入阳极泥,然 后从阳极泥中回收这些贵金属;如果采用火法精炼, 则是用加锌提银法,此时把金属锌加到含银的粗铅 中,银与锌结合成银锌合金而与铅水分离。此种银 锌合金称为银锌壳,其成分见表5-1。
所谓灰吹便是将贵铅进行氧化熔炼。当往熔融的贵铅吹风时, 由于铅对氧的亲和力比贵金属对氧的亲和力大,所以铅被氧 化为氧化铅,而贵金属不被氧化。灰吹炉的炉底一般用骨灰 或炭灰筑成,它能吸收氧化铅熔体,所以称此法为灰吹法。 灰吹炉是一个炉床可移动的烧重油的小反射炉(图5-6)。操 作时将贵铅锭在炉床上熔化,提温(900~100℃)并向熔体鼓 风,放出覆盖在熔体表面的熔融氧化铅后再加入贵铅,直至 液面出现银的闪光为止。此时加入少量硝石以加速铅和杂质 的氧化,至接近终点时,投入木炭脱氧,然后撇去浮渣,放 银铸绽。银锭含银约99%,送去分离金银。
5.5.1 阳极泥脱铜脱硒
焙烧的反应为: Cu + H2SO4 =CuSO4 + 2H2O + SO2
Cu2S + 6H2SO4 = 2 CuSO4 + 6H2O + 5SO2 硒在低温(240~300℃)的反应为:
Ag2Se + 3H2SO4 = Ag2SeO3 + 3H2O + 3SO2 Cu2Se + 2H2SO4 = CuSe + CuSO4+ 2H2O + SO2 硒在高温(500~700℃)的反应为:
Na2Zn(CN)4 = Zn(CN)2↓ + NaCN
加锌沉淀法
氧对沉金是不利的,上式产生的氢起到了脱 氧作用,减少了沉金的反溶。沉金前的氰化 液要预先抽真空脱氧。脱氧可防止 Zn + O2 + H2O = Zn(OH)2 反应的发生,降低锌 的消耗和避免锌粉表面 形成妨碍置换的Zn(OH)2薄膜。
金的冶炼方法原理
金的冶炼方法原理
金的主要提取方法是氰化浸出法。
其具体过程如下:
1. 破碎和磨细:将含金矿石经过破碎设备粉碎至合适的粒度。
2. 浸出:将粉碎后的矿石与氰化物混合,浸泡在含有氧气的水中,使金与氰化物形成配合物(如Au(CN)2-)被水吸收。
3. 吸附:将经浸出后的金的配合物溶液与活性炭混合,使金的配合物吸附在活性炭表面,形成金/活性炭复合物。
4. 脱附:用盐酸或硫酸溶液冲洗金/活性炭复合物,使金的配合物分解成金和氰化物,并被带出来。
在种金过程中,实际上是慢慢脱除金和氰化物的复合物。
5. 浓缩:用重力分离或浮选的方法从混合物中获得含金矿物,然后通过熔炼、萃取、电解等方法提取金。
总之,金的提取主要靠氰化物溶液将金从矿石中分离出来,再通过吸附、脱附等方法得到纯金。
但是,这种方法需要非常小心和仔细,因为氰化物有毒性,使用时应注意安全问题。
氰化法提金——精选推荐
1、氰 化浸出的药剂
在金的氰化浸出中常用的药剂主要有两类:浸出剂氰 化物和保护碱。
氰化物:工业上使用的氰化物常用的在氰化钠、氰化 钾、氰化钙和氰化铵。
在工业上应用最广泛的是固体氰化钠,因其溶金能力 强,价格合理,使用方便。近年来液体氰化钠因价格便宜 被越来越多的氰化厂采用。
• 氰化钠在运输、储存过程中要注意密封、干燥,保持通风良好,不能与 酸性物质放在一起。
2、保护碱 氰化物的水解是浸出过程极不希望发生的,这会导致氰化物的
损失,而且放出剧毒的氰化氢气体污染车间。因此在氰化系统中通常添 加少量的碱(CaO或NaOH)以防止氰化物的水解,称之为保护碱。
保护碱除抑制氰化物的水解外还能中和溶于水中的二氧化碳及 硫化物氧化所生产的硫酸和碳酸,以防止氰化物的水解。
G 2o9
=
8
-
235.42kJ
G2o98=- 16.6kJ
——————————————
4 Au O2 (溶解) 8CN 2H2O = 4Au(CN )2 4OH
G2o98=- 406.7kJ
K = 1.82 1071
11
2.1.2 氰化溶解金银的劢力学
氰化溶解的速度主要取决于:
溶液中O2 的扩散速度;
;
pH
9.3
时
,
[HCN ] [CN ]
1
图2 氰化液中[CN-]和[HCN]的
比值与pH值的关系
24
2.2.1 氰化试剂及浓度
(3) 氰化物的消耗
c. 伴生组分消耗氰化物 铜矿物、硫化铁矿物、砷锑矿物等及其分解产物与CN-反应;
d. 氰化矿浆中应保持一定的 [CN-] 剩余浓度
氰化法提金的基本原理1121212
氰化法提金的基本原理?888(2006-1-10)氰化法提金的基本原理?氰化法提金浸出的主要影响因素?氰化法提金是从金矿石中提取金的主要方法之一。
氰化物对金溶解作用机理的解释目前尚不一致,多数认为金在氰化溶中有氧存在的情况下可以生成一种金的络合而溶解其基本反应式为:4Au+8KCN+O2+2H2O—4KAu(CN)2+4KOH一般认为金被氰化物溶解发生两步反应:2Au+4KCN+O2+2H2O—2(CN2+H2O+2KOH 2Au+4KCN+O2+H2O2—2KAu(CN)2+2KOH金的表面在氰化物溶液中逐渐地由表及里地溶解。
溶液中氧的浓度与金的溶解速度有关. 浸出时氰化物浓度一般为,金的溶解速度随氰化物浓度的提高而呈直线上升到最大值。
然后缓慢上升,当氰化物浓度达时,金的溶解速度和氰化物浓度无关,甚至下降(因氰化物水解)。
金的溶解速度随氧浓度上升而增大,采用富氧溶被或高压充气氰化可以强化金的溶解。
氰化试剂溶解金银的能力为:氰化铵>氰化钙氰化钠>氰化钾。
氰化钾的价格最贵,目前多数使用氰化钠,氰化物的耗量取决于物料性质和操作因素,常为理论量的20-200倍.物料性质影晌金的浸出率。
氰化法虽是目前提金的主要方法,但某些含金矿物原料不宜直接采用氰化法处理,若矿石中铜、砷、锑、铋、硫、磷、磁铁矿、白铁矿等组分含量高时将大大增加氰化物耗量成消耗矿桨中的氧。
降低金的浸出率,矿石中含碳高时,碳会吸附已溶金而随尾矿损失。
预先氧化焙烧或浮选方法可除去有害杂质的影晌。
氰化物水解反应为:KCN+H2OyKOH+HCN因此会挥发出有毒的HCN;加入石灰是氰化物水解减弱,上式反应向左方向进行,减少氰化物的损失。
石灰还有中和酸类物质作用并可沉淀矿浆中得有害离子,使金的溶解处于最佳条件,常用石灰作保护碱。
石灰加入量使矿浆值达到11~12为宜,矿浆lang=EN-值过高时对溶金不利。
金粒大小主要影晌氰化时间,粗拉金(>74微米)的溶解速度慢。
氰化法提金
主要教学内容
3.1 氰化过程的物理化学 3.2 矿石预处理 3.3 氰化过程 3.4 从氰化物溶液中沉淀金、银 从氰化物溶液中沉淀金、 3.5 碳浆法 3.6 树脂矿浆法
3.1 氰化过程的物理化学
3.1.1 概述 氰化法是以碱金属氰化物( 氰化法是以碱金属氰化物(KCN、NaCN) 、 ) 的水溶液作溶剂,浸出金、银矿石中的金、 的水溶液作溶剂,浸出金、银矿石中的金、 然后从含金、银的浸出液中提取金、 银,然后从含金、银的浸出液中提取金、银 的方法。 的方法。 尽管氰化物有剧毒,但是氰化法在提金 尽管氰化物有剧毒, 方法中仍占统治地位。因为氰化法的成本低, 方法中仍占统治地位。因为氰化法的成本低, 氰化法的成本低 金回收率高,对矿石的适应性强。 金回收率高,对矿石的适应性强。
图3-4
阳极和阴极极化曲线重叠
研究表明,金氰化反应速度常数 与温 研究表明,金氰化反应速度常数K与温 的关系式为: 度T的关系式为: 的关系式为
762 lg κ = −3.423 − T
相应的活化能为15kJ/mol。 相应的活化能为15kJ/mol。在高氰化物 15kJ/mol 浓度下活化能更低, 6kJ/mol.说明氰化 浓度下活化能更低,约6kJ/mol.说明氰化 过程属于典型的扩散过程。 过程属于典型的扩散过程。
图3-2 氰化溶金示意图
图 3-3 氰化物浓度和氧分压对金溶解速率的影 响
和氰化物溶液的相互作用, 金(银)和氰化物溶液的相互作用,发生 银 和氰化物溶液的相互作用 在固-液相界面上 因此, 液相界面上。 在固 液相界面上。因此,氰化过程是典 型的多相反应, 型的多相反应,它的速度应该服从于一般 多相反应动力学规律。 多相反应动力学规律。 结论:反应速度在高氧浓度时取决于 结论: 氰化物离子通过扩散层向阳极区的扩散; 氰化物离子通过扩散层向阳极区的扩散; 在高氰化物浓度时, 在高氰化物浓度时,则取决于氧通过扩散 层向阴极区的扩散。 层向阴极区的扩散。
氰化法提金工艺
氰化法提金工艺1、氰化物溶金机理氰化法是用氰化物从矿石中浸取金并把溶液中的金分离出来的方法,其基本化学反应式为:4AU+8NaCN+O2+2H2O→4Na AU(CN)2+4NaOH它包括氧的吸收溶解,其组分扩散到金表面,吸附,电化学反应等步骤。
其中O2和CN –的扩散对金的浸出速率起到至关重要的作用。
2、浸出药剂可用于溶金的氰化物有:KCN、NaCN、NH4CN、Ca(CN)2选择氰化物时,应综合考虑氰化物对金的溶解能力、化学稳定性、耗量及价格等。
我国黄金矿山大多采用NaCN。
3、保护碱氰化物损耗除了机械原因外,还有化学原因:一是氰化物的水解生成HCN气体挥发造成损失和危害;二是溶液中存在的二氧化碳及硫化物氧化生成的酸(H2SO3,H2SO4)也与氰化物作用生成HCN气体;三是黄铁矿氧化时,除生成H2 SO4外,还生成一些硫酸亚铁(Fe SO4),与氰化物作用生成Fe (CN)6 ,而当溶液中有碱和氧时,Fe SO4可氧化为Fe2(SO4)3,再与碱作用生成Fe(OH)3沉淀,Fe(OH)3不与氰化物反应,因而,加入碱起到保护氰化物的作用,加入的碱叫做保护碱。
生产中通常用石灰作保护碱。
4、影响金溶解速度的主要因素4.1、氰化物和氧的浓度氰化物的浓度和溶液中溶解氧的浓度是决定金溶解速度两个主要因素。
金在稀氰化物溶液中溶解速度大,这是因为氧在稀氰化物溶液中溶解度较大,扩散速度也较快,因而保证了溶金需要的最低氧浓度。
不同矿石的氰化物耗量不同是因为矿石中含有不同量消耗氰化物的杂质。
常规的氰化物浓度一般在0.03%~0.10%之间。
4.2、温度金在氰化液中的溶解速度与温度有关,通常温度高溶解速度快,在无特殊工艺要求的条件下,使矿浆温度维持在150C~250C即可满足浸出的要求。
4.3、金粒的大小和形状金的溶解速度与金粒暴露的表面积成正比,因此氰化作业的磨矿粒度要比浮选更细一些。
4.4、矿浆浓度和矿泥矿浆浓度和矿泥含量直接影响溶剂的扩散速度和溶剂与金粒的接触。
几种氰化法提金介绍
2016-12-06 廖德华紫金矿业HOT全球矿业资讯1.氰化法提金概述氰化法提金是以氰化物的水溶液作溶剂,浸出含金矿石中的金,然后再从含金浸出液中提取金的方法。
氰化法提金主要包括如下两个步骤:(1)氰化浸出:在稀薄的氰化溶液中,并有氧(或氧化剂)存在的条件下,含金矿石中的金与氰化物反应生成一价金的络合物而溶解进入溶液中,得到浸出液以氰化钾为例,反应式为:4Au+8KCN+2H2O→4KAu(CN)2+4KOH氰化浸出金的工艺方法有槽浸氰化法和堆浸氰化法两类。
槽浸氰化法是传统的浸金方法,又分渗滤氰化法和搅拌氰化法两种;堆浸法是近20年来才出现的新技术,主要用于处理低品位氧化矿。
自1887发现氰化液可以溶金以来,氰化法浸出至今已有近百年的生产实践,工艺比较成熟,回收率高,对矿石适应性强,能就地产金,所以至今仍是黄金浸出生产的主要方法。
(2)沉积提金:从氰化浸出液中提取金。
工艺方法有加锌置换法(锌丝置换法和锌粉置换法)、活性炭吸附法(炭浆法CIP和炭浸法CIL)、离子交换树脂法(树脂矿浆法RIP和RIL)、电解沉积法、磁炭法等。
锌粉(丝)置换法是较为传统的提金方法,在黄金矿山应用较多;炭浆法是目前新建金矿的首选方法,其产金量占世界产金量的50%以上;其余方法在黄金矿山也正日渐得到应用。
2.渗滤氰化法渗滤氰化法是氰化浸出的工艺方法之一,是基于氰化溶液渗透通过矿石层而使含金矿石中的金浸出的方法,适用于砂矿和疏松多孔物料。
渗滤氰化法的主要设备是渗滤浸出槽。
渗滤浸出槽通常为木槽、铁槽或水泥槽。
槽底水平或稍倾斜,呈圆形、长方形或正方形。
槽的直径或边长一般为5~12米,高度一般为2~2.5米,容积一般为50~150吨。
渗滤氰化法的工艺过程:(1)装入矿砂及碱:要求布料均匀,粒度一致,疏松一致。
有干法和湿法两种装法。
干法适于水分在20%以下的矿砂,可用人工或机械装矿。
湿法是将矿浆用水稀释后,用砂泵扬送或沿槽自流入槽内。
贵金属选冶理论与技术_第三章_氰化法提金工艺
(6)第六种流程:适应于含有机物较多,含重金 属较少的金矿石堆浸。 A.国外研究的较多(原苏联),目前工业上 使用较少; B.树脂吸附的优点:吸附容量较大,载金树 脂可在常温下解吸,能抗有机物中毒,不需 高温活化即可返回使用; C.树脂吸附的缺点:吸附的选择性差。
第二节 全泥氰化锌置换法(CCD)
(2)第二种流程:适合于金矿石含银或其它重金 属成份较高。 A.由于矿石中银或铜等重金属含量高时,氰 化浸出液中这些组分的含量较高,采用炭吸 附可产生竞争吸附; B. 由于竞争吸附需大量的活性炭,增大解吸 电解处理量,必然增加炭损耗量,不经济; C.采用锌置换法相于炭吸附法的技术要求比 较严格,流程复杂;要求浸出液中浓度:金 >1.5mg/L,氰化物>0.1g/L,氧<0.5mg/L。 浸出前必须脱氧,故该流程操作比较复杂。
三、锌丝置换法
1、锌丝置换法工艺 氰化提金产出的贵液经砂滤箱和 储液池沉淀,除去部分悬浮物, 加入置换箱进行置换。一般在 砂滤之前加入适量的铅盐,在 置换箱里预先加入足量锌丝, 含金银的溶液通过置换箱后金 银被锌置换而留在箱中。置换 出的金银呈微小颗粒在锌丝表 面析出,增大到一定的程度后, 则以粒团形成靠自重从锌丝上 脱落,并沉淀在箱的底部,而 贫液则从箱的尾端排出。 置换时间:是指溶液通过铺满锌 丝的置换箱所需时间,一般约 30~120分钟。 生产中氰化物浓度在0.04%以上。
4、铅盐的作用 (1)铅在锌置换过程与锌形成电偶电极加速金的置换,铅析出的 H2与贵液中的O2作用生成H2O,从而降低贵液中的含氧量。 (2)铅离子还具有除去溶液中杂质的作用,如溶液中硫离子与铅 离子反应,可以生成硫化铅沉淀而被除去。 (3)生产中常采用的醋酸铅,有时也采用硝酸铅。 (4)用量不宜过大,生产中,全泥氰化铅盐用量为5~10g/m3贵 液,精矿氰化为30~80g/m3贵注。 5、温度 锌置换金的反应速度与温度有关,置换反应速度取决于金氰络 离子向锌表面扩散的速度。温度增高,扩散速度加快,反应 速度增加。温度低于10℃反应速度很慢。 因此,在生产中一般保证贵液温度在15~25℃之间为宜。
氰化矿提金树脂的原理与基本内容
氰化矿提金树脂的原理与基本内容氰化矿提金树脂的原理与基本内容产品技术标准:HG/T2165包装:编织袋,内衬塑料袋。
塑料桶,内衬塑料袋。
使用时参考指标:1.PH范围:092.允许温度(℃):≤1003.膨胀率:(OH→Cl)≤354.工业用树脂层高度:m 1.03.05.再生液浓度:NaOH:2.04.06.再生剂用量(按100计), kg/m3湿树脂:NaOH(工业):40707.再生液流速:m/h 468.再生接触时间:minute: 30509.正洗流速:m/h:152510.正洗时间:minute:约2511.运行流速:m/h, 152512.工作交换容量:mmol/l(湿树脂)≥950或对六价铬吸附量g/l (湿树脂)≥75主要性能指标:指标名称D301D301FCD301SC全交换容量mmol/g≥4.8强地基团容量mmol/g≥ 1.0体积交换容量mmol/ml≥ 1.4含水量4858湿视密度g/ml0.650.72湿真密度g/ml1.031.06粒度(0.315(0.45(0.315有效粒径mm0.400.70≥0.50.350.50均一系数≤1.601.601.40磨后圆球率≥95转型膨胀率≤283028外观乳白色或淡黄色不透明球状颗粒乳白色或淡黄色不透明球状颗粒乳白色或淡黄色不透明球状颗粒出厂型式游离胺游离胺游离胺用途通用浮动床双层床一、树脂的运输和贮存:离子交换树脂内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水份。
如果贮存过程中树脂脱了水,应先用浓食盐水(810)浸泡12小时,再逐渐稀释,不得直接放于水中,以免树脂急剧膨胀而破碎。
树脂在贮存或运输过程中,应保持在5新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。
当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。
所以,新树脂在投运前要进行预处理。
金的氰化过程要点
六、金的热力学理论
• 金的电位是1.73V 氧的电位是0.15V。 • 根据热力学理论可知低电位的氧化剂不能 思考题:为什么氧 能在氰化物溶液中 氧化出高电位的金属。
氧化金?金的氰化 过程可以进行?
金的热力学理论
能斯特方程指出,金属在它的溶液中的电 位与这个金属的离子活度有关。 (RT / nF) ln n Me 25℃时金的电位方程为: (2) 1.73 0.059 ㏑ Au Au 和 CN 形成非常牢固的络合离子Au(CN ) 它 的离解平衡为 A过程反应
2 Au 4CN O2 2H2O 2 Au (CN) 2OH H2O2
2
1.73V (1) 根据热力学理论,金的标准电位非常高。
Au e Au
氰化物溶液呈碱性。在碱性介质中,使用最 广泛的氧化剂是氧,其反应有: 0.15V O2 2H 2O 2e H 2O2 2OH
K 1.4 1018 G298 0.15 (0.686) 2 96500 103 103.4kJ
七、结论
如此大的平衡常数和自由能减小表 明方程(1)是朝着溶金方向进行的。 从而证明了金可以被氧氧化以金的络合 离子形式进入溶液的热力学可能性。
谢
谢
冶金热力学在金的氰化过
程中的应用
胡斌 邹剑 温小椿 管新地
冶金动力学在金的氰化过
程中的应用
胡斌 邹剑 温小椿 管新地
革命烈士永垂不朽 ——毛泽东
一、黄金的物理性质 黄金具有绚丽的黄色 金属光泽,导热性导 电性很好,可塑性好 且便于加工。
二、古代炼金技术
三、氰化法炼金
氰化法炼金是以碱金属氰化物(KCN) 的水溶液作溶剂,浸出金矿物中的金,然 后从含金的浸出液中提取金。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氰化法提金的基本原理?888
(2006-1-10)
氰化法提金的基本原理?氰化法提金浸出的主要影响因素?
氰化法提金是从金矿石中提取金的主要方法之一。
氰化物对金溶解作用机理的解释目前尚不一致,多数认为金在氰化溶中有氧存在的情况下可以
生成一种金的络合而溶解其基本反应式为: 4Au+8KCN+O
2+2H
2
O—
4KAu(CN)
2
+4KOH
一般认为金被氰化物溶解发生两步反应:
2Au+4KCN+O
2+2H
2
O—
2(CN
2+H
2
O+2KOH 2Au+4KCN+O
2
+H
2
O
2
—2KAu(CN)
2
+2KOH
金的表面在氰化物溶液中逐渐地由表及里地溶解。
溶液中氧的浓度与金的溶解速度有关. 浸出时氰化物浓度一般为,金的溶解速度随氰化物浓度的提高而呈直线上升到最大值。
然后缓慢上升,当氰化物浓度达时,金的溶解速度和氰化物浓度无关,甚至下降(因氰化物水解)。
金的溶解速度随氧浓度上升而增大,采用富氧溶被或高压充气氰化可以强化金的溶解。
氰化试剂溶解金银的能力为:氰化铵>氰化钙氰化钠>氰化钾。
氰化钾的价格最贵,目前多数使用氰化钠,氰化物的耗量取决于物料性质和操作因素,常为理论量的20-200倍.
物料性质影晌金的浸出率。
氰化法虽是目前提金的主要方法,但某些含金矿物原料不宜直接采用氰化法处理,若矿石中铜、砷、锑、铋、硫、磷、磁铁矿、白铁矿等组分含量高时将大大增加氰化物耗量成消耗矿桨中的氧。
降低金的浸出率,矿石中含碳高时,碳会吸附已溶金而随尾矿损失。
预先氧化焙烧或浮选方法可除去有害杂质的影晌。
氰化物水解反应为:
KCN+H
2
OyKOH+HCN因此会挥发出有毒的HCN;加入石灰是氰化物水解减弱,上式反应向左方向进行,减少氰化物的损失。
石灰还有中和酸类物质作用并可沉淀矿浆中得有害离子,使金的溶解处于最佳条件,常用石灰作保护碱。
石灰加入量使矿浆值达到11~12为宜,矿浆lang=EN-值过高时对溶金不利。
金粒大小主要影晌氰化时间,粗拉金(>74微米)的溶解速度慢。
所以氰化前采用混汞、重选或浮选预先回收粗粒金是合理的。
在磨矿过程中使细金粒充分单体解离仍是提高金的浸出率重要因素。
氰化时矿泥含量和矿浆浓度直接影晌组分扩散速度。
矿浆浓度应小于
30~33%。
矿泥多时矿浆浓度应小于22-25%,但浓度不宜过低,否则增加氰化物的消耗。
氰化时间取决于物料性质、氰化方式及氰化条件而异。
一般搅拌氰化浸出
时间常大于24小时,有时长达40小时以上,氰化碲时需72小时,渗滤氰化浸出需五天以上。
从氰化浸出液中提金的方法有哪些方法?
从氰化浸出液中提金的方法比较多,如果用炭浆法(CIP).炭浸法(CIC),磁碳法(MCIP)或树脂交换法可以去固液分离作业。
一般氰化矿浆经固液分离得到贵液(含金溶液).从贵液中提金的方法有锌置换沉淀法、活性炭吸附法、离子交换树脂吸附法或电解沉积法。
用金属锌丝或锌粉从贵液中把金置换沉淀是常用的方法。
贵液在进入置换沉淀作业之前经澄清以除去其中的矿泥和悬浮物,因这些杂质对下一步的置换沉淀作业有害.
锌置换沉淀金的基本原理是:在贵液中的锌会溶解于溶液中而使金沉淀出来,贵液中的离子Au(CN)2-与Zn作用的反应式通常写成:
2KAu(CN) 2+3Zn+4KCN+2H2O
2Au↓+2K2Zn(CN)4+K2ZnO2+H2
锌置换时溶液中必须有足够的氰化物和碱,否则含金溶液中的溶解氧会是已沉淀的金粉再溶解而使锌氧化成Zn(OH)2沉淀
还有溶液中的K2Zn(CN)4会分解成不溶的氰化锌沉淀
这些氢氧化锌和氰化锌为白色沉淀会罩在金属锌表面形成一层薄膜,而妨碍了锌从贵液中对金的置换作用。
所以往沉淀箱中加入少量的醋酸铅和硝酸铅有助于锌的溶解而更好置换沉淀金。
贵液中含有可溶性硫化物.汞.铜等渣置均有碍于金的置换沉淀。
氰化碳浆法提金的基本原理?其工艺过程的主要作业有哪些?
炭浆法提金工艺是氰化提金的方法之一。
是含金物料氰化出完成之后,一价金氰化物〔KAu(CN)2〕进行炭吸附的工艺过程。
人们早已发现活性炭可以从溶液中吸附贵金属的特性,开始只从清液中吸附金,将载金炭熔炼以回收金。
由于氰化矿浆须经固液分离得到清液和活性炭不能返回使用,此法在工业上无法与广泛使用的锌换法竞争。
后来用活性炭直接从氰化矿浆中吸附金,这样就省去了固液分离作业;载金活性炭用氢氧化钠和氰化钠混合液解吸金银,活性炭经过活化处理可以返回使用。
因此近年来炭浆法提金发展成为提金新工艺,我国在河南省灵湖金矿和吉林省赤卫沟金矿等建成了应用炭浆法提金工艺的生产工厂。
炭浆法提金工艺过程包括原料制备及活性炭再生等主要作业组成。
其工艺流程见图6-l 2。
一、原料制备
把含金物料碎磨至适于氰化粒度,一般要求小于目,并除去木屑等杂质,经浓缩脱水使浸出矿浆浓度达到-Roman">45~50%为宜二搅拌浸出
与常规氰化法相同,一般为5~8个搅拌槽。
三. 炭吸附
氰化矿浆进入搅拌吸附槽(炭浆槽),河南省灵湖金矿在吸浆槽中装有格式筛和矿浆提升器,用它实现活性炭和矿浆逆向流动,吸附矿浆中已溶的金,目前格式筛的筛孔易被活性炭堵塞,要用压缩空气清扫。
四、载金炭解吸
目前可用四种方法解吸:(1)热苛性氰化钠溶液解吸;(2)低浓度苛性氰化钠溶液加酒精解吸;(8)在加温加压条件下用苛性氰化钠溶液解吸;(4)高浓度苛性氰化钠溶液解吸。
五、电积法或常规锌粉置换沉淀金
载金炭解吸可得到含金达600克/米3的高品位贵液,经电积或锌置换法得到金粉,并送熔炼得到金锭。
六、活性炭的再生利用
解吸后的活性炭先用稀硫酸(硝酸)酸洗,以除去碳酸盐等聚积物,经几次返回使用后需进行热力活化以恢复炭的吸附活性。
炭浆法提金主要适用于矿泥含量高的含金氧化矿石,由于矿石含泥高,固液分离困难,现有的过滤机不能使贵液和矿渣有效分离,因此常规的氰化法不能得到
较好的技术经济指标。
实践表明:炭浆法提金在工业生产上取得了好成果,灵湖金矿含金8克/吨左右,金的总回收率达到93~94%。
硫脲法提金的基本原理?影响硫脲溶金的主要因素有哪些?
硫脲又名硫化尿素,分子式为SCN2H4,结构式为
NH2.
S=C<,白色具光泽菱形六面体,味苦,密度为1.405 NH 2
克/厘米,易溶于水,水溶液呈中性。
硫脲毒性小。
无腐蚀性对人体无损害。
硫脲能溶金为试脸所证实,在氧化剂存在下,金呈Au(SCN2H4)2+络阳离子形态转人硫脲酸性液中。
硫脲溶金是电化学腐蚀过程,其他化学方程式可以用下式表示:
Au+2SCN2H4Au(SCN2H4)+2+e
选择适宜的氧化剂是硫脲酸性溶金的关键问题,较适宜的氧化剂为Fe3+和溶解氧,因此硫脲溶金的化学反应式可表为:
硫脲溶金所得贵液,根据其所合金量的高低,可采用铁、铝置换或电积方法沉金,金泥熔炼得到合质金。
金泥熔炼工艺与氰化金泥相同。
硫脲溶金时的氰出率主要取决于介质PH值、氧化剂类型与用量、硫脲用量.矿物组成及金粒大小、浸出温度、浸出时间及浸金工艺等因素。
硫脲在碱性液中不稳定,易分解为硫化物和氨基氰。
但硫脲在酸性介质中较稳定。
因此从硫脲的稳定性考虑,硫脲提金时一般采用硫脲的稀硫酸溶液作浸出剂,而且应该注意先加酸后加硫脲,以免矿浆局部温度过高而使硫脲水解失效。
介质酸度与硫脲浓度有关,酸度在随硫脲浓度提高而降低,在常用硫脲用量条件下介质PH值小于1.5为宜,但酸度不宜太大,否则会增加杂质的酸溶量。
硫脲溶金时需增加一定量的氧化剂,较为理想的氧化剂为二氧化锰、二硫甲脒、高价铁盐和溶解氧。
硫脲酸性液溶金时只要维持矿浆中溶解氧的浓度,高价铁盐可得到再生。
硫脲为有机络合物,在酸性液中可以和许多金属阳离子形成络阳离子,除汞外,其他金属的硫脲络阳离子的稳定性小,因此硫脲酸性液溶金具有较高的选择性。
但原料中的铜、铋氧化物会酸溶,并与硫脲络合而降低硫脲浸金效果和增加硫脲用量,原料中含较多量的酸溶物(如二价铁、碳酸盐、有色金属氧化物等)和还原性组分时会增加氧化剂及硫酸的消耗,并降低金的浸出率。
但铜、砷、锑、铅等硫化矿物对硫脲溶金的有害影响较小,因此硫脲酸性液溶金可以从复杂的难选金矿物原料选择性提取金银。
金粒大小是影响金浸出率的因素之一。
硫脲溶金速度随浸出温度上升而提高,但硫脲的热稳定小,温度过高易发
生水解而失效,矿浆温度不宜超过55℃,一般在室温下进行硫脲提金。
金的浸出率一般随硫脲用量的增大而提高,由于硫脲提金主要靠高价铁离子作氧化剂,溶液中高价铁离子浓度远较溶解氧浓度高而且可以调节,所以硫脲溶金的硫脲浓度较高,硫脲用量随原料含金量而异,其单耗(千克/吨)为几千克至几十千克。
金的浸出率一般随浸出时间的增加而提高。
金的浸出率与浸金工艺有关,采用一步法(如炭浆法、炭浸
法)提金工艺可以显著缩短浸金时间
硫脲法提金是一项无毒提金新工艺,我国已采用此法来处理重选金精矿和浮选金精矿。
但此工艺目前仍存在成本较高的问题。