概率论与数理统计 重要公式

合集下载

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。

2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。

3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。

4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。

二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。

4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。

3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。

4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。

概率论与数理统计超全公式总结

概率论与数理统计超全公式总结

Cov(aX , bY ) = abCo若v(UX~,Yχ)2(n1),
F 分布 正态总体条件下 样本均值的分布:
V ~ χ 2 (n2 ),
则 U / n1 V / n2
~
F (n1, n2 )
σ2 X ~ N(µ, )
n
X − µ ~ N (0,1) σ/ n
样本方差的分布:
(n −1)S 2 σ2
k =1
第二章
二项分布(Bernoulli 分布)——X~B(n,p)
F (x, y) = P{X ≤ x,Y ≤ y} 联合密度与边缘密度
+∞
∫ fX (x) = −∞ f (x, y)dy
+∞
∫ fY (y) = −∞ f (x, y)dx
P(X =k)=Cnkpk(1−p)n−k,(k=0,1,...n, )
泊松分布——X~P(λ)
P( X = k) = λk e−λ, (k = 0,1,...) k!
概率密度函数
+∞
∫ f (x)dx = 1 −∞
怎样计算概率 P(a ≤ X ≤ b)
b
P(a ≤ X ≤ b) = ∫a f (x)dx
均匀分布 X~U(a,b)
1
f (x) =
(a ≤ x ≤ b)
b−a
n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
⎜⎛ x ± zα / 2 ⎝
σ ⎟⎞ n⎠
(3) H0 : µ ≤ µ0 H1 : µ > µ0 右边检验
单正态总体均值的 Z 检验
小样本、正态总体、标 准差σ已知
(大样本情形σ未知时用SZ代=替X)− µ 0 σ/ n

概率论与数理统计公式整理

概率论与数理统计公式整理

概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。

其中概率论是研究随机事件发生的可能性或概率的科学。

而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。

本文将整理概率论与数理统计中常用的公式。

一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。

2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。

3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。

4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。

二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。

2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。

3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。

概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结一、概率论公式:1.基本概率公式:对于随机试验E,事件A的概率可以表示为P(A)=事件A的样本点数/所有样本点数。

2.条件概率公式:对于事件A和事件B,若P(B)>,则事件A在事件B发生的条件下的概率可以表示为P(A,B)=P(A∩B)/P(B)。

3.全概率公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B有P(B)=Σ(P(Ai)×P(B,Ai))。

4.贝叶斯公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B,有P(Ai,B)=(P(B,Ai)×P(Ai))/Σ(P(B,Ai)×P(Ai))。

二、数理统计公式:1.期望:随机变量X的期望E(X)=Σ(Xi×P(Xi)),其中Xi为随机变量X的取值,P(Xi)为随机变量X取值为Xi的概率。

2. 方差:随机变量X的方差Var(X) = Σ((Xi - E(X))^2 ×P(Xi)),其中Xi为随机变量X的取值,E(X)为随机变量X的期望,P(Xi)为随机变量X取值为Xi的概率。

3. 协方差:随机变量X和Y的协方差Cov(X,Y) = E((X - E(X))(Y - E(Y))),其中E(X)和E(Y)分别为随机变量X和Y的期望。

4. 相关系数:随机变量X和Y的相关系数ρ(X,Y) = Cov(X,Y) / √(Var(X) × Var(Y)),其中Cov(X,Y)为随机变量X和Y的协方差,Var(X)和Var(Y)分别为随机变量X和Y的方差。

三、概率论与数理统计定理:1.大数定律:对于独立同分布的随机变量X1,X2,...,Xn,它们的均值X̄=(X1+X2+...+Xn)/n,当n趋向于无穷大时,X̄趋向于X的期望E(X)。

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。

在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。

下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。

无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。

本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。

一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。

- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。

- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。

2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。

- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。

3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。

4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。

- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。

- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。

概率论与数理统计 公式

概率论与数理统计 公式

概率论与数理统计公式概率论与数理统计是现代科学与工程领域中应用最广泛的数学分支之一。

概率论与数理统计涉及众多的公式和理论,是数据分析、预测和决策的重要工具。

在此,我们将介绍概率论与数理统计中常用的公式。

1. 概率计算公式概率计算是概率论中的基础。

以下是概率的定义和概率计算公式。

定义:事件A在随机试验中出现的可能性称为概率P(A)。

公式1:若事件A和事件B相互独立,则P(A∩B)=P(A)×P(B)。

公式2:若事件A和事件B不相互独立,则P(A∩B)=P(A)×P(B|A)。

公式3:若事件A和事件B互为对立事件,则P(A)+P(B)=1 。

公式4:全概率公式:P(B)=∑P(Ai)×P(B|Ai) 。

2. 随机变量和概率分布随机变量是概率论中的重要概念。

以下是随机变量和概率分布函数的定义和公式。

定义1:在随机试验中,对每个样本点都有一个对应的实数值,则这个实数值称为随机变量X。

定义2:X的概率分布函数F(x)定义为:F(x)=P(X≤x)。

公式5:二项分布的概率分布函数为:P(X=k)=C(n,k)p^k*q^(n-k) (其中n表示试验次数,k表示事件A 发生的次数,p表示单次事件A发生的概率,q=1-p )。

公式6:泊松分布的概率分布函数为:P(X=k)=(λ^k/k!)×e^-λ (其中λ是一个正实数)。

公式7:正态分布的概率分布函数为:f(x)=(1/√(2π)σ)×e^-(x-μ)²/(2σ²) (其中μ是分布的均值,σ²是分布的方差)。

3. 样本描述和参数估计样本描述和参数估计是数理统计中的基础。

以下是样本描述和参数估计的公式。

公式8:样本的均值:X=(x1+x2+…+xn)/n 。

公式9:样本的方差:S²=[(x1-X)²+(x2-X)²+…+(xn-X)²]/(n-1) 。

概率论与数理统计笔记(重要公式)

概率论与数理统计笔记(重要公式)

r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0

设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba

概率论与数理统计公式大全

概率论与数理统计公式大全

第1章随机事件及其概率第二章随机变量及其分布Ihl ttamitai'l例1.16设某人从一副扑克中(52张)任取13张,设A为 至少有一张红桃”,B 为恰有2张红桃”,张方块”,求条件概率P( B| A), P( B| C) 解 P(A)1 P(A)P(BA)P(AB) P(A)1 c;3CTG ;c3;C 13 C52C52C39—C13一C 13 C 13C 52 C 39—血39P(AB)P(C)C 13C 39 c ;3P(BC)5 26C13C 13C 2652P(B C )P ( BC ) P(C)C13 C 13 C 2613 --------- C 52C 5 C 8C13 C 39C13~ —C 522 6C 13 C 26C 8C39C 为恰有5 C 23C 3113T -某种动物出生后活到20岁的概率为0.7,活到25岁的概率为0.56,求现 年为20岁的这种动物活到25岁的概率.解 设A 表示事件 活到20岁以上”,B 表示 事件活到25岁以上”, P(A) 0.7 P(B) 0.56P(B A)P(AB) P(A)显然P(AB) 0.56 0.7P(B) 0.560.81例 1.21例1.21 某工厂生产的产品以 超过 4件,且具有如下的概率: 一批产品中的次品数 0概率 0.1 0.2现进行抽样检验,从每批中随机抽取 为该批产品不合格。

求一批产品通过检验的概率。

解设B 表示事件 “一批产品通过检验 品”100 1 2 0.4 0.2 件为一批,假定每一批产品中的次品最多不 3 0.1 10件来检验,若发现其中有次品,则认 ”,A (=0,1,234) 表示 ,贝U A 0 ,A 1 , A 2, A 3, A 4组成样本空间的一个划分, C 10C99 C 10C100P(A) 0.1P(B|") 1P(A) 0.2,P (B |A )0.900 P(A)'一批产品含有 0.4,P(B A 2)i 件次P(A 3) 0.2, P(B A 3)c 10崗 0.727 C 100P(A 4)0.1 , P(B A 4)C 10C 96C 10 C0.652C 1098C 101000.8094P ( A k )P ( B |A k ) k 0 顾客买到的一批合格品中,含次品数为0的概率是类似可以计算顾客买到的一 批合格品中,含次品数为 1、2、 3、 4件的概率分别约 为 0.221 、0.398 、0.179 、 0.080贝叶斯公式(Bayes)P(B) P (A 。

概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)eik则有P(A)=k/n,其中n为样本空间中元素的个数。

在概率论中,样本空间和随机事件是基本概念。

如果事件A发生必然导致事件B发生,则称事件B包含事件A,记作A⊂B。

当A和B中至少有一个发生时,称A∪B为事件A和事件B的和事件。

当A和B同时发生时,称A∩B为事件A和事件B的积事件。

当A发生、B不发生时,称A-B为事件A和事件B的差事件。

如果A和B互不相容,即A∩B=∅,则称A和B是互不相容的,或互斥的,基本事件是两两互不相容的。

如果A∪B=S且A∩B=∅,则称事件A和事件B互为逆事件,又称事件A和事件B互为对立事件。

在概率论中,还有一些运算规则。

交换律指A∪B=B∪A,A∩B=B∩A;结合律指(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C);分配律指A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C);德摩根律指A∪B=A∩B,A∩B=A∪B。

频率与概率是概率论的重要概念。

在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值nAn称为事件A发生的频率。

概率指对于随机试验E的每一事件A赋予一个实数P(A),称为事件的概率。

概率P(A)满足非负性,即对于每一个事件A,0≤P(A)≤1;规范性,即对于必然事件S,P(S)=1;可列可加性,即设A1,A2,…,An是两两互不相容的事件,则有P(∪Ai)=∑P(Ai)(n可以取∞)。

概率还有一些重要性质,包括P(∅)=0,P(∪Ai)=∑P(Ai)(n可以取∞),如果A⊂B,则P(B-A)=P(B)-P(A),P(A)≤1,P(A)=1-P(A'),以及P(A∪B)=P(A)+P(B)-P(A∩B)。

等可能概型又称为古典概型,是指试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同。

如果事件A 包含k个基本事件,即A={e1}∪{e2}∪…∪{ek},则有P(A)=k/n,其中n为样本空间中元素的个数。

概率论重要公式大全必看

概率论重要公式大全必看
4.A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,
称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。 ②运算:
AB AB,AB AB
(3)古典 概型
1° 1, 2 n ,

P(1 )
P( 2
)
P( n
)
1 n

设任一事件 A ,它是由1, 2 m 组成的,则有
F
1 (n2 , n1 )
第四章 随机变量的数字特征
(1) 一维 随机 变量 的数 字特 征
期望 期望就是平均值
函数的期望
离散型
n
E( X ) xk pk k 1
Y=g(X)
n
E(Y ) g(xk ) pk k 1
方差 D(X)=E[X-E(X)]2,
标准差 (X ) D(X ) , D( X ) [xk E( X )]2 pk k
Cii , 2
C
i2
2 i
i
i
若 X1, X2 Xn 相 互 独 立 , 其 分 布 函 数 分 别 为
Fx1 (x),Fx2 (x) Fxn (x) ,则 Z=max,min(X1,X2,…Xn)的分布
函数为:
Fmax(x) Fx1 (x) • Fx2 (x) Fxn (x)
Fmin (x) 1 [1 Fx1 (x)] • [1 Fx2 (x)][1 Fxn (x)]
否是互不影响的。
C Pn(k)
k n
pk qnk

k
0,1,2,, n

第二章 随机变量及其分布
(1)离散 型随机变 量的分布 律
(2)连续 型随机变 量的分布 密度 (3)分布 函数

概率论与数理统计完整公式

概率论与数理统计完整公式

概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。

在概率论与数理统计的学习中,有许多重要的公式需要掌握。

以下是概率论与数理统计的完整公式。

一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。

4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。

2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。

概率论与数理统计公式精选常用公式一览

概率论与数理统计公式精选常用公式一览

概率论与数理统计公式精选常用公式一览为了帮助读者更好地掌握概率论与数理统计的知识,本文将为大家整理并介绍一些常用的公式。

这些公式是在学习和应用概率论与数理统计过程中必备的工具,相信对大家的学习和研究具有重要的参考价值。

一、概率论常用公式1. 概率公式在概率论中,我们经常需要计算事件发生的概率。

以下是几个常用的概率公式:(1)加法公式设A和B为两个事件,则A与B的和事件概率为P(A∪B) = P(A) + P(B) - P(A∩B)。

(2)乘法公式设A和B为两个独立事件,则A与B的积事件概率为P(A∩B) =P(A) * P(B)。

2. 条件概率公式条件概率是指在已知事件B发生的条件下,事件A发生的概率。

以下是条件概率的计算公式:P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示A与B的交事件的概率,P(A|B)表示在B发生的条件下A发生的概率。

3. 贝叶斯公式贝叶斯公式是概率论中非常重要的公式,它用于根据已知条件,计算一个事件的后验概率。

贝叶斯公式如下所示:P(A|B) = P(B|A) * P(A) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(B|A)表示在事件A发生的条件下,事件B发生的概率;P(A)和P(B)分别表示事件A和事件B的先验概率。

二、数理统计常用公式1. 期望和方差在数理统计中,我们经常需要计算一组数据的期望和方差。

以下是期望和方差的计算公式:(1)期望的计算公式设X为一个离散型随机变量,其取值为x1, x2, ..., xn,对应的概率为p1, p2, ..., pn,则X的期望为:E(X) = x1 * p1 + x2 * p2 + ... + xn * pn。

(2)方差的计算公式设X为一个离散型随机变量,其取值为x1, x2, ..., xn,对应的概率为p1, p2, ..., pn,则X的方差为:Var(X) = E[(X - E(X))^2] = (x1 - E(X))^2 * p1 + (x2 - E(X))^2 * p2 + ... + (xn - E(X))^2 * pn。

概率论与数理统计_重要公式

概率论与数理统计_重要公式

、随机事件与概率、随机变量及其分布' P (x =Xk); ,P(a :: X 乞 b) = F(b)-F(a)」(t)dt21、分布函数F(x)二 P(X 乞 x)概率密度函数J f (x)dx = 1JO计算概bP(a 兰 X 兰 b)=J a f(x)dx 率a _ 4 IIP(X < a)= P(X ::: a)(一)P(X _ a) = P(X a) = Ua<TP(a EX 乞b)= :」(b)->(a )ct aF (x)二P(X 乞x)二、P(X = k)k兰xF(x)二P(X 乞x)二f(t)dt般正态分布的分布函数与密度函数的重要关系F '(x)二f (x) F(x)二P(X 乞x) x-f(t)dt4、随机变量函数Y=g(X)的分布离散型:P(Y = yj 二 ' P j,i =1,2,llI,g(X j)=y '连续型:①分布函数法,②公式法f Y(y) = f x (h(y)) h (y) (x = h(y)单调)h(y)是g(x)的反函数三、多维随机变量及其分布1、离散型二维随机变量及其分布分布律:P(X二X i,丫二yj二P j ,i, j =1,2川1联合分布函数F(X,Y)瓦瓦P ijx i _x x _y边缘分布律: 条件分布律: P i = P(x =人)二.p ij p j 二P(Y = y j)八P jj iP i:P(X=xiY=y j)= , i=1,2,111,P(Y =y j X =X i)=Pj联合密度函数f (x, y) f(x, y)—0-be -beL.」”.J(x,y)dxdy =12、连续型二维随机变量及其分布①分布函数及性质概率计算公式分布函数对离散型随机变量对连续型随机变量x y分布函数:F (x , y )= _ f (u , v ) dudv0 乞 F (x, y)叮 F (x, y) = P{X 乞 x,Y 乞 y}分布函数:F x (x)二y-::F Y (y)二f (u,v)dudv_nO _nO-Ho密度函数:f x (x)「 f (x,v)dv-hof Y (y)=.f (u,y)du随机变量X 、丫相互独立=F(x,y)二F x (x)F Y (y), 离 散 型: P{X =i,丫二 j} = P{X =i}P{Y = j} P j 二 P i.p .j, 连续型f(x, y) =f x (x)f Y (y)4、二维随机变量和函数的分布(卷积公式)离散型:P(Z 二zQ 二'、 P(X 二x i ,丫二y j )注意部分可加性 连续型:f z (z)二 _f(x, z-x)dx 二 _f(z-y,y)dy四、随机变量的数字特征1、数学期望②性质:E(C)=C, E[E(X)]=E(X),E(CX)=CE(X),E(X _ Y) = E(X ) _ E(Y)E(XY)二 E(X)E(Y)(正对逆错)i J2、方差①定义:二必护)-[£(七『2③条件概率密度f(x,y) ~<y < 耘,fxY (xy) f YX (yx)=-oOf x (x)' 3、随机变量的独立性二空也:::x< ::fY (y)性质: F(G :"1, -;jj (x,y), P((x,y) "G f(x,y)dxdyf(u,v)dvdu①定义: 离散型 +□0E(X) = W xk p k ,连续型 E(X) =k 二 1xf (x)dx E(aX - b) = aE(X) - b ,当 x 、Y 相互独立时:随机变量g(X)的数学期望②边缘分布函数与边缘密度函数-kcx②性质:D(C)=0,D(aX 士b) = a2D(X),D(X 士Y) = D(X)+D(Y)±2Cov(X,Y) 当X、Y相互独立时:D(X -Y)二D(X) D(Y)3、协方差与相关系数①协方差:Cov(X, Y)二E(X Y)-E(X)E( Y),当 X 、Y 相互独立时:Cov(X , Y) = 0②相关系数:"爲爲,当 X 、Y 相互独立时」XY = 0(X ‘Y不相关) ③协方差和相关系数的性质:Cov(X,X)二D(X) , Cov(X,Y)二Cov(Y,X)Cov(X 1 X 2,Y) =Cov(X 「Y) Cov(X 2,Y) , Cov(aX c,bY d)二 abCov(X,Y)Cov(x,a)=0(a 为常数),D(aX _bY) =a 2D(X) b 2D(Y)_2abCov(X,Y)分布数学期望E (X ) 方差D (X )0-1 分布 b(1, p) p p(1-p) 二项分布b(n, p) npnp(1-p) 泊松分布P 仏) XX均匀分布U(a,b)a +b (b - a)212正态分布N (巴即) 卩2 CT指数分布e(^)112n Z. A五、大数定律与中心极限定理1、 切比雪夫不等式 2D (X )若 E(X) =»,D(X),对于任意 g >0有 P { X —E (X )z2、 大数定律:①切比雪夫大数定律:若X< X n 相互独立,nn2 2 1 p 1E(X i) = #i ,D(X i )=丐 且⑴ i < C ,贝上一^ X i 一一 —J E(X i ),( n T°o ) n i 二 n y②伯努利大数定律:设n A 是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发 生的概率,则> 0,有:1」号,卩- p v 乞=13、★中心极限定理① 列维一林德伯格中心极限定理:独立同分布的随机变量X i (i =1,2,111),均值为,方差为▽2 >0,当 n 充分大时有:Y n=(》X k-n»)/届_=-> N (0,1)kT/② 棣莫弗一拉普拉斯中心极限定理:随机变量X 〜B (n , p ),则对任意x 有:③辛钦大数定律: 若X 1,|)(,X n 独立同分布,且E (X i )」,则X in i =1n>::X —np x ilim P{ x}-——e^dt= >(x)n p(1-p) 二n h_n P③近似计算:P(^ X k^b)—( )-:-( )kj J n^ J n u六、数理统计的基本概念1、总体和样本的分布函数n 设总体X〜F(x),则样本的联合分布函数F(X1,X2…X n)二i【F(x k)k2、统计量样本均值:X i,样本方差:S2(X i -X)2 = 1n y n J吕1n _样本标准差:S=. (X i -X)2,样本k阶原点距:初-—1 n _样本k阶中心距:B k (X i-X)k,k=1,2,3川n i 二n一2、(Xi2— nX ) n—1 y1 n kA k X i ,k 二1,2n y3、三大抽样分布-/ 2(1) 分布(卡方分布):设随机变量X〜B(0,1)(i =1,2,111, n)且相互独立,则称统计量2=X「X「-X-服从自由度为n的2分布,记为2~ 2(n)性质:① E[ 2(n)]=n ,D[ 2(n) ] = 2n ②设X ~ 2(m),Y~ 2(n)且相互独立,则X Y~ 2(m n)⑵t分布:设随机变量X ~N(0,1),Y~ 2( n),且X与Y独立,则称统计量X 自由度为n的t分布,记为T ~ t(n)n性质:① E(T) = 0(n 1),D仃) (n 2)n —21② lim h(x)」(x) = en 一. , 2 二2x~2⑶F分布:设随机变量X ~ 2(m),Y~ 2(n),且X与丫独立,则称统计量F(m, n) 服从第一自由度为m ,第二自由度为n的F分布,记为F〜F(m, n),性质:设F ~ F(m, n),则1F ~ F(n,m)。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率论公式1.概率的基本性质:-非负性:对于任意事件A,有P(A)>=0;-规范性:对于必然事件S,有P(S)=1;-可列可加性:对于互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...)=P(A1)+P(A2)+...。

2.条件概率:-事件B发生的条件下,事件A发生的概率:P(A,B)=P(A∩B)/P(B);-乘法公式:P(A∩B)=P(A,B)*P(B)。

3.全概率公式:-事件A的概率:P(A)=ΣP(A,Bi)*P(Bi),其中Bi为样本空间的一个划分。

4.贝叶斯公式:-事件Bi发生的条件下,事件A发生的概率:P(Bi,A)=P(A,Bi)*P(Bi)/ΣP(A,Bj)*P(Bj),其中Bj为样本空间的一个划分。

5.独立性:-事件A与事件B相互独立的充要条件是P(A∩B)=P(A)*P(B)。

二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布函数:P(X=x);-连续型随机变量的概率密度函数:f(x)。

2.数理统计的基本概念:-样本均值:X̄=ΣXi/n;-样本方差:s^2=Σ(Xi-X̄)^2/(n-1);-样本标准差:s=√s^2;- 样本协方差:sxy = Σ(Xi-X̄)(Yi-Ȳ) / (n-1)。

3.大数定律:-样本均值的大数定律:当样本容量n趋向于无穷大时,样本均值X̄趋向于总体均值μ。

4.中心极限定理:-样本均值的中心极限定理:当样本容量n足够大时,样本均值X̄服从近似正态分布。

5.参数估计:-点估计:用样本统计量对总体参数进行估计;-置信区间估计:用样本统计量构造一个区间,以估计总体参数的范围。

6.假设检验:-假设检验的基本步骤:提出原假设H0和备择假设H1,选择适当的检验统计量,计算拒绝域,进行假设检验。

以上只是概率论与数理统计中的一些重要公式和定理,还有很多其他的公式和定理没有一一列举。

掌握这些公式和定理,可以帮助我们更好地理解和应用概率论与数理统计的知识。

概率论与数理统计重要公式

概率论与数理统计重要公式

概率论与数理统计重要公式⼀、随机事件与概率⼆、随机变量及其分布1、分布函数()()(),()()()()k k x xx P X x F x P X x P a X b F b F a f t dt概率密度函数3、续型型随机变量及其分布1)(dx x f badxx f b X a P )()(⼀般正态分布的概率计算公式分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:4、随机变量函数Y=g(X)的分布离散型:()(),1,2,j i连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y 单调 h(y)是g(x)的反函数三、多维随机变量及其分布1、离散型⼆维随机变量及其分布分布律:(,),,1,2,i j ij P X x Y y p i j L 联合分布函数(,)i i ijx x y yF X Y p边缘分布律:()i i ij jp P X x p ()j j ij ip P Y y p条件分布律:(),1,2,ij i j jp P X x Y y i p L ,(),1,2,ij j i i p P Y y X x j pL联合密度函数2、连续型⼆维随机变量及其分布①分布函数及性质分布函数:x ydudv v u f y x F ),(),(性质:2(,)(,)1,(,),F x y F f x y x y((,))(,)GP x y G f x y dxdy②边缘分布函数与边缘密度函数分布函数:xX dvdu v u f x F ),()( 密度函数:dv v x f x f X ),()(yY dudv v u f y F ),()(du y u f y f Y ),()(③条件概率密度y x f y x f x y f X X Y ,)(),()(, x y f y x f y x f Y Y X ,)(),()(xt f x X P x F )()()( xk k X P x X P x F )()()()()('x f x Fxdtt f x X P x F )()()(1),(0 y x F },{),(y Y x X P y x F ),(y x f 0),( y x f 1),(dxdy y x f )()()(a a X P a X P )(1)()(a a X P a X P )()()(a b b X a P3、随机变量的独⽴性随机变量X 、Y 相互独⽴(,)()()X Y F x y F x F y ,连续型:(,)()()X Y f x y f x f y 离散型:..ij i j p p p ,4、⼆维随机变量和函数的分布(卷积公式)离散型:()(,)i j kk i j x y z P Z z P X x Y y 注意部分可加性连续型:()(,)(,)Z f z f x z x dx f z y y dy四、随机变量的数字特征1、数学期望①定义:离散型1)(k k k p x X E ,连续型x xf X E )()(②性质:(),E C C )()]([X E X E E ,)()(X CE CX E ,)()()(Y E X E Y X Eb X aE b aX E )()( ,当X 、Y 相互独⽴时:)()()(Y E X E XY E (正对逆错)随机变量g(X)的数学期望2、⽅差①定义:②性质:0)( C D ,)()(2X D a b aX D ,),(2)()()(Y X Cov Y D X D Y X D 当X 、Y 相互独⽴时:)()()(Y D X D Y X D3、协⽅差与相关系数①协⽅差:(,)()()()Cov X Y E XY E X E Y ,当X 、Y 相互独⽴时:0),( Y X Cov②相关系数: ()()XY D X D Y ,当X 、Y 相互独⽴时:0 XY (X,Y 不相关)③协⽅差和相关系数的性质:)(),(X D X X Cov ,),(),(X Y Cov Y X Cov),(),(),(2121Y X Cov Y X Cov Y X X Cov ,),(),(Y X abCov d bY c aX CovCov(x,a)=0(a 为常数),),(2)()()(22Y X abCov Y D b X D a bY aX D4、常见随机变量分布的数学期望和⽅差分布数学期望E (X )⽅差D (X )0-1分布 ),1(p b p p(1-p) ⼆项分布 ),(p n b npnp(1-p)泊松分布 )( P均匀分布 ),(b a U2ba 12)(2a b 正态分布 ),(2N2指数分布)( e121}{}{},{j Y P i X P j Y i X P kkk p x g X g E )())((1、切⽐雪夫不等式若,)(,)(2X D X E 对于任意0 有2)(})({X D X E X P2、⼤数定律:①切⽐雪夫⼤数定律:若n X X 1相互独⽴,2)(,)(i i i i X D X E 且C i2 ,则:ni iPni i n X E nX n11)(),(11②伯努利⼤数定律:设n A 是n 次独⽴试验中事件A 发⽣的次数,p 是事件A 在每次试验中发⽣的概率,则0 ,有:lim 1A n n P p n③⾟钦⼤数定律:若1,,n X X L 独⽴同分布,且 )(i X E ,则n Pni i X n 113、★中⼼极限定理①列维—林德伯格中⼼极限定理:独⽴同分布的随机变量(1,2,)i X i L ,均值为,⽅差为02,当n充分⼤时有:1n k k Y X n N②棣莫弗—拉普拉斯中⼼极限定理:随机变量),(~p n B X ,则对任意x 有:22lim }()t x n P x dt x③近似计算:1()nk k P a X b六、数理统计的基本概念1、总体和样本的分布函数设总体X ~F(x),则样本的联合分布函数)(),(121k nk n x F x x x F2、统计量样本均值:ni i X nX 11,样本⽅差:ni i ni i X n X n X X n S 122122)(11)(11 样本标准差:ni iX X n S 12)(11 ,样本k 阶原点距: 2,1,11i ki k样本k 阶中⼼距:11(),1,2,3nk k i i B X X k n L3、三⼤抽样分布(1)2 分布(卡⽅分布):设随机变量X ~B(0,1)(1,2,,)i n L 且相互独⽴,则称统计量222212n X X X 服从⾃由度为n 的2分布,记为)(~22n性质:①n n D n n E 2)]([,)]([22 ②设)(~),(~22n Y m X 且相互独⽴,则)(~2n m Y X(2)t 分布:设随机变量)(~),1,0(~2n Y N X ,且X 与Y 独⽴,则称统计量:nY X T服从⾃由度为n 的t 分布,记为)(~n t T。

概率论与数理统计必背公式

概率论与数理统计必背公式

概率论与数理统计必背公式在概率论与数理统计中,掌握好一些重要的公式是非常重要的,这些公式可以帮助我们解决问题、推导证明以及计算概率和统计量。

下面将介绍一些必须掌握的概率论与数理统计的重要公式。

一、概率论公式:1.加法定理:如果事件A和B是互不相容的(即A和B不会同时发生),则它们的和事件的概率为P(A∪B)=P(A)+P(B)。

2.条件概率公式:对于两个事件A和B,A在给定B发生的条件下发生的概率定义为P(A,B)=P(A∩B)/P(B)。

3.乘法定理:对于两个事件A和B,其交事件的概率可以通过条件概率公式来计算,即P(A∩B)=P(A,B)*P(B)。

4.全概率公式:如果事件B1,B2,...,Bn是一组互不相容的且其并集为样本空间(即事件B1∪B2∪...∪Bn=S),则对于事件A,它的概率可以通过条件概率公式和全概率公式来计算,即P(A)=P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn)。

5.贝叶斯公式:贝叶斯公式是条件概率公式的推广,对于事件A和B,其交事件的概率可以通过贝叶斯公式来计算,即P(A,B)=P(B,A)*P(A)/P(B)。

二、数理统计公式:1.期望:对于一组随机变量X,其期望(也称为均值)定义为E(X)=ΣX*P(X),即随机变量X乘以其概率的和。

2. 方差:对于一组随机变量X,其方差定义为Var(X) = E((X - μ)^2),其中μ为X的期望。

3. 协方差:对于两组随机变量X和Y,其协方差定义为Cov(X,Y) = E((X - μx)(Y - μy)),其中μx和μy分别为X和Y的期望。

4. 标准差:对于一组随机变量X,其标准差定义为σ = √Var(X),即方差的平方根。

5. 协方差矩阵:对于多组随机变量X1,X2,...,Xn,其协方差矩阵定义为Cov(X) = [Cov(Xi,Xj)],其中i和j分别表示第i组和第j组随机变量。

概率论与数理统计第四节全概率公式与贝叶斯公式

概率论与数理统计第四节全概率公式与贝叶斯公式

概率论与数理统计第四节全概率公式与贝叶斯公式全概率公式与贝叶斯公式是概率论与数理统计中非常重要的两个公式。

全概率公式用于求解复杂事件的概率,而贝叶斯公式则用于根据已有信息的更新概率。

本文将详细介绍这两个公式。

1.全概率公式全概率公式是在条件概率的基础上,通过将样本空间划分成互不相交的事件来求解复杂事件的概率。

假设事件A是一个复杂事件,它可以表示为若干个互不相交的事件的并,即A=A1∪A2∪A3∪...∪An。

而这些互不相交的事件A1,A2,...,An又可以被分为若干个相互独立的事件,即A=A1∪A2∪A3∪...∪An=(A1∩B)∪(A2∩B)∪(A3∩B)∪...∪(An∩B)。

那么,全概率公式表示为P(A)=P(A1∩B)+P(A2∩B)+P(A3∩B)+...+P(An∩B)=P(A1)P(B,A1)+P(A2)P(B,A2)+P(A3)P(B,A3)+...+P(An)P(B,An),其中B是样本空间的一个事件。

全概率公式的作用是将复杂事件的概率求解转化为对简单事件的概率求解,从而简化计算。

贝叶斯公式是一种反向概率推理方法,它可以在已知其中一事件发生的条件下,通过已有的先验概率来更新事件的后验概率。

假设事件A和B都是样本空间的事件,且P(A)≠0,那么贝叶斯公式表示为P(B,A)=P(A,B)P(B)/P(A)。

其中,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B)和P(A)分别表示事件B和A的先验概率。

贝叶斯公式的应用非常广泛,尤其在数据挖掘、机器学习等领域有着重要的作用。

通过不断更新概率,可以更准确地预测和推断事件的发生。

3.全概率公式与贝叶斯公式的关系全概率公式和贝叶斯公式是密切相关的,贝叶斯公式可以看作是全概率公式的应用。

通过全概率公式可以将样本空间划分成若干个互不相交的事件,然后根据贝叶斯公式,可以根据已有信息来更新事件的概率。

概率论与数理统计公式超全版

概率论与数理统计公式超全版
所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。
分布满足可加性:设

t分布
设X,Y是两个相互独立的随机变量,且
可以证明函数
的概率密度为
我们称随机变量T服从自由度为n的t分布,记为T~t(n)。
F分布
设 ,且X与Y独立,可以证明 的概率密度函数为
我们称随机变量F服从第一个自由度为n1,第二个自由度为n2的F分布,记为F~f(n1, n2).
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A,B,C,…表示事件,它们是 的子集。
为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算
①关系:
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
均匀分布
设随机变量 的值只落在[a,b]内,其密度函数 在[a,b]上为常数 ,即
a≤x≤b
其他,
则称随机变量 在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为
a≤x≤b
0,x<a,
?
1,x>b。
当a≤x1<x2≤b时,X落在区间( )内的概率为
在已知X=xi的条件下,Y取值的条件分布为
在已知Y=yj的条件下,X取值的条件分布为
连续型
在已知Y=y的条件下,X的条件分布密度为

在已知X=x的条件下,Y的条件分布密度为
(7)独立性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、随机事件与概率二、随机变量及其分布1、分布函数()()(),()()()()k k x xx P X x F x P X x P a X b F b F a f t dt≤-∞⎧=⎪=≤=<≤=-⎨⎪⎩∑⎰ 概率密度函数计算概率:2、离散型随机变量及其分布3、续型型随机变量及其分布1)(=⎰+∞∞-dx x f ⎰=≤≤badxx f b X a P )()(一般正态分布的概率计算公式分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:4、随机变量函数Y=g(X)的分布离散型:()(),1,2,j ii j g x y P Y y p i ====∑,连续型: ①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y '=⋅=单调 h(y)是g(x)的反函数三、多维随机变量及其分布1、离散型二维随机变量及其分布分布律:(,),,1,2,i j ij P X x Y y p i j ==== 联合分布函数(,)i i ijx x y yF X Y p≤≤=∑∑边缘分布律:()i i ij jp P X x p ⋅===∑ ()j j ij ip P Y y p ⋅===∑条件分布律:(),1,2,ij i j jp P X x Y y i p ⋅====,(),1,2,ij j i i p P Y y X x j p ⋅====联合密度函数2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数:⎰⎰∞-∞-=x ydudv v u f y x F ),(),(性质:2(,)(,)1,(,),F x y F f x y x y∂+∞+∞==∂∂((,))(,)GP x y G f x y dxdy ∈=⎰⎰②边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()(⎰∞-=≤=x dt t f x X P x F )()()(∑≤==≤=xk k X P x X P x F )()()()()('x f x F =⎰∞-=≤=xdtt f x X P x F )()()(1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=),(y x f 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(③条件概率密度+∞<<-∞=y x f y x f x y f X X Y ,)(),()(,+∞<<-∞=x y f y x f y x f Y Y X ,)(),()( 3、随机变量的独立性随机变量X 、Y 相互独立(,)()()X Y F x y F x F y ⇔=,连续型:(,)()()X Y f x y f x f y = 离散型:..ij i j p p p = ,4、二维随机变量和函数的分布(卷积公式) 离散型:()(,)i j kk i j x y z P Z z P X x Y y +=====∑注意部分可加性连续型:()(,)(,)Z f z f x z x dx f z y y dy +∞+∞-∞-∞=-=-⎰⎰四、随机变量的数字特征1、数学期望①定义:离散型∑+∞==1)(k k k p x X E ,连续型⎰+∞∞-=dxx xf X E )()(②性质:(),E C C = )()]([X E X E E =,)()(X CE CX E =,)()()(Y E X E Y X E ±=±b X aE b aX E ±=±)()( ,当X 、Y 相互独立时:)()()(Y E X E XY E =(正对逆错)随机变量g(X)的数学期望2、方差 ①定义:②性质:0)(=C D ,)()(2X D a b aX D =±,),(2)()()(Y X Cov Y D X D Y X D ±+=± 当X 、Y 相互独立时:)()()(Y D X D Y X D +=±3、协方差与相关系数①协方差:(,)()()()Cov X Y E XY E X E Y =-,当X 、Y 相互独立时:0),(=Y X Cov②相关系数: ()()XY D X D Y ρ=,当X 、Y 相互独立时:0=XY ρ(X,Y 不相关)③协方差和相关系数的性质:)(),(X D X X Cov =,),(),(X Y Cov Y X Cov =),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+,),(),(Y X abCov d bY c aX Cov =++Cov(x,a)=0(a 为常数),),(2)()()(22Y X abCov Y D b X D a bY aX D ±+=±4分布数学期望E (X )方差D (X )0-1分布 ),1(p b p p(1-p) 二项分布 ),(p n bnp np(1-p)}{}{},{j Y P i X P j Y i X P =====∑=kkk p x g X g E )())((五、大数定律与中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D XE 对于任意0>ε有2)(})({εεX D X E X P ≤≥-2、大数定律:①切比雪夫大数定律:若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且C i ≤2σ,则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11②伯努利大数定律:设n A 是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则0ε∀>,有:lim 1A n n P p n ε→∞⎛⎫-<=⎪⎝⎭③辛钦大数定律:若1,,n X X 独立同分布,且μ=)(i X E ,则μ∞→=−→−∑n Pni i X n113、★中心极限定理①列维—林德伯格中心极限定理:独立同分布的随机变量(1,2,)i X i =,均值为μ,方差为02>σ,当n 充分大时有:1((0,1)~nn k k Y X n N μ==-−−→∑ ②棣莫弗—拉普拉斯中心极限定理:随机变量),(~p n B X ,则对任意x 有:22lim }()t xn P x dt x -→∞≤==Φ⎰③近似计算:1()nk k P a X b =≤≤≈Φ-Φ∑ 六、数理统计的基本概念1、总体和样本的分布函数设总体X ~F(x),则样本的联合分布函数)(),(121k nk n x F x x x F =∏=2、统计量样本均值:∑==ni i X nX 11,样本方差:∑∑==--=--=ni ini i X n X n X X n S 122122)(11)(11 样本标准差:∑=--=ni i X X n S 12)(11 ,样本k 阶原点距: 2,1,11==∑=k X n A ni k i k样本k 阶中心距:11(),1,2,3nk k i i B X X k n ==-=∑3、三大抽样分布(1)2χ分布(卡方分布):设随机变量X ~B(0,1)(1,2,,)i n =且相互独立,则称统计量222212n X X X ++=χ服从自由度为n 的2χ分布,记为)(~22n χχ 性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ(2)t 分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则称统计量:nY X T =服从自由度为n 的t 分布,记为)(~n t T。

性质:①()0(1),()(2)2n E T n D T n n =>=>-②22lim ()()x n n f x x ϕ-→∞== (3)F分布:设随机变量22~(),~()X m Y n χχ,且X 与Y 独立,则称统计量(,)X mF m n Y n=服从第一自由度为m ,第二自由度为n 的F 分布,记为~(,)F F m n ,性质:设~(,)F F m n ,则1~(,)F n m F 。

七、参数估计1.参数估计①定义:用12(,,,)n X X X θ∧估计总体参数θ,称12(,,,)n X X X θ∧为θ的估计量,相应的12(,,,)n x x x θ∧为总体θ的估计值。

2.点估计中的极大似然估计 设12,,n X X X 取自X 的样本,设~(,)X f x θ或~(,)X P x θ, 求法步骤:①似然函数:11()(,)()()(,)()nni i i i i L f x L P x θθθθ====∏∏连续型或离散型②取对数:1ln ()ln (,)ni i L f x θθ==∑ 或1ln ()ln (,)ni i i L p x θθ==∑③解方程:1ln ln 0,,0kLL θθ∂∂==∂∂,解得:111212(,,,)(,,,)n k k n x x x x x x θθθθ∧∧∧∧⎧=⎪⎪⎨⎪=⎪⎩2,,)n x x 和∧的一串估计量,有lim (|n P θ→∞正态总体中,样本均值X 是μ的无偏估计量 修正样本方差2S 是2σ的无偏估计量八、假设检验第一类错误:当H 0为真时,而样本值却落入了拒绝域,应当否定H 0。

“弃真错误”P{拒绝H0|H0为真}=α第二类错误:当H1为真时,而样本值却落入了接受域,应接受H0。

“取伪错误”P{接受H0|H1为真}=β2.单正态总体均值和方差的假设检验。

相关文档
最新文档