苏教版高中数学必修二1.2.3第3课时.docx
苏教版高中数学必修三-第一章-算法初步1.2.3ppt课件
教学时要以选择结构为知识的切入点,从学生的认知水 平和所需的知识特点入手,引导学生结合学过的选择结构, 不断地观察、分析,发现选择结构与循环结构之间的对应关 系;引导学生进行流程图的比较和分析,掌握两种循环结构 的区别和联系,理解循环条件的区别,并通过实例强化对循 环结构的理解和认识;从而化解难点. 引导学生回答所提问题, 理解两种循环结构的应用条件; 通过例题与练习让学生在应用循环结构的过程中体会该种结 构的特点和作用;以强化重点.
●教学建议 学生已经学习了算法的含义、顺序结构、选择结构及简 单的赋值问题.高一学生形象思维、感性认识较强,理性思 维、抽象认识能力还很薄弱,因此教学中选择学生熟悉的, 易懂的实例引入,通过对例子的分析,使学生逐步经历循环 结构设计的全过程,学会有条理的思考问题,表达循环结构, 并整理成流程图.
在教学中,应以学生为主体,教师为主导.指导学生学 会学习.学生在一定情境中对学习材料的亲身经验和发现, 才是学生学习的最有价值的东西.在传授知识的同时,必须 设法教给学生好的学习方法,让他们“会学习”.通过本节 课的教学,让学生学会从不同角度分析问题、解决问题;让 学生学会引申、变更问题,以培养学生发现问题、提出问题 的创造性能力.
【思路探究】 正整数. 【自主解答】 利用循环结构,重复操作,可求出最小
算法如下:
S1 S2 S3
S←1; i←3; 若 S≤5 000,则 S←S×i,i←i+2,重复 S3,否则
高一数学必修2全套教案(共62页)
高中数学新人教版A必修二全部教案第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
高一数学 课时跟踪检测(全一册) 苏教版必修
高一数学课时跟踪检测(全一册)苏教版必修课时跟踪检测一棱柱棱锥和棱台课时跟踪检测二圆柱圆锥圆台和球课时跟踪检测三直观图画法课时跟踪检测四平面的基本性质课时跟踪检测五空间两条直线的位置关系课时跟踪检测六直线与平面平行课时跟踪检测七直线与平面垂直课时跟踪检测八两平面平行课时跟踪检测九两平面垂直课时跟踪检测十空间几何体的表面积课时跟踪检测十一空间几何体的体积课时跟踪检测十二直线的斜率课时跟踪检测十三直线的点斜式方程课时跟踪检测十四直线的两点式方程课时跟踪检测十五直线的一般式方程课时跟踪检测十六两条直线的平行课时跟踪检测十七两条直线的垂直课时跟踪检测十八两条直线的交点课时跟踪检测十九平面上两点之间的距离课时跟踪检测二十点到直线的距离课时跟踪检测二十一圆的标准方程课时跟踪检测二十二圆的一般方程课时跟踪检测二十三直线与圆的位置关系课时跟踪检测二十四圆与圆的位置关系课时跟踪检测二十五空间直角坐标系课时跟踪检测二十六空间两点间的距离课时跟踪检测(一)棱柱、棱锥和棱台层级一学业水平达标1.关于如图所示的4个几何体,说法正确的是( )A.只有②是棱柱B.只有②④是棱柱C.只有①②是棱柱D.只有①②④是棱柱解析:选D 解决这类问题,要紧扣棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.图①②④满足棱柱的定义,正确;图③不满足侧面都是平行四边形,不正确.2.下面结论是棱台具备的性质的是( )①两底面相似;②侧面都是梯形;③侧棱都相等;④侧棱延长后都交于一点.A.①③B.①②④C.②④D.②③④解析:选B 用棱台的定义可知选B.3.下面图形中,为棱锥的是( )A.①③ B.①③④C.①②④ D.①②解析:选 C 根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.4.下列图形中,不能折成三棱柱的是( )解析:选C C中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.5.一个棱锥的各条棱都相等,那么这个棱锥一定不是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥解析:选D 若满足条件的棱锥是六棱锥,则它的六个侧面都是正三角形,侧面的顶角都是60°,其和为360°,则顶点在底面内,与棱锥的定义相矛盾.6.一个棱柱至少有________个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.答案:5 4 37.两个完全相同的长方体,长、宽、高分别为5 cm,4 cm,3 cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,表面积最大的长方体的表面积为________ cm2.解析:将两个长方体侧面积最小的两个面重合在一起,得到的长方体的表面积最大,此时,所得的新长方体的长、宽、高分别为10 cm,4 cm,3 cm,表面积的最大值为2×(10×4+3×4+3×10)=164.答案:1648.如图,三棱台ABCA′B′C′,沿A′BC截去三棱锥A′ABC,则剩余部分是________.解析:在图中截去三棱锥A′ABC后,剩余的是以BCC′B′为底面,A′为顶点的四棱锥.答案:四棱锥A′BCC′B′9.如图,观察并分别判断①中的三棱镜,②中的螺杆头部模型有多少对互相平行的平面,其中能作为棱柱底面的分别有几对.解:图①中有1对互相平行的平面,只有这1对可以作为棱柱的底面.图②中有4对互相平行的平面,只有1对可以作为棱柱的底面.10.在一个长方体的容器中,里面装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解:(1)不对;水面的形状是矩形,不可能是其他非矩形的平行四边形.(2)不对;此几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱,或五棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.层级二 应试能力达标1.下列命题正确的是( )A .有两个面互相平行,其余各面都是四边形的几何体叫做棱柱B .棱柱中互相平行的两个面叫做棱柱的底面C .棱柱的侧面是平行四边形,底面不是平行四边形D .棱柱的侧棱都相等,侧面都是平行四边形解析:选D 根据棱柱的定义可知D 正确.2.下列说法正确的是( )A .有2个面平行,其余各面都是梯形的几何体是棱台B .多面体至少有3个面C .各侧面都是正方形的四棱柱一定是正方体D .九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选D 选项A 错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B 错误;选项C 错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D 正确.3.用一平行于棱锥底面的平面截某棱锥,截得的棱台上、下底面面积比为1∶4,截去的棱锥的高是3 cm,则棱台的高是( )A .12 cmB .9 cmC .6 cmD .3 cm解析:选D 设原棱锥的高为h cm,依题意可得⎝ ⎛⎭⎪⎫3h 2=14,解得h =6,所以棱台的高为6-3=3(cm).4.五棱柱中,不同在任何侧面,且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A .20条B .15条C .12条D .10条解析:选D 由题意,知五棱柱的对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,所以五棱柱共有对角线2×5=10(条).故选D.5.在正方体上任意选择4个顶点,则可以组成的平面图形或几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,另一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:如图,在正方体ABCDA1B1C1D1上,若取A,B,C,D四个顶点,可得矩形;若取D,A,C,D1四个顶点,可得③中所述几何体;若取A,C,D1,B1四个顶点,可得④中所述几何体;若取D,D1,A,B四个顶点,可得⑤中所述几何体.故填①③④⑤.答案:①③④⑤6.如图,M是棱长为2 cm的正方体ABCDA1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:137.根据下列关于空间几何体的描述,说出几何体的名称.(1)由6个平行四边形围成的几何体.(2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形.(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥,其中六边形面是底面,其余的三角形面是侧面.(3)这是一个三棱台,其中相似的两个三角形面是底面,其余三个梯形面是侧面.8.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积为多少?解:(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =32a 2. 课时跟踪检测(二) 圆柱、圆锥、圆台和球层级一 学业水平达标1.有下列四个说法,其中正确的是( )A .圆柱的母线与轴垂直B .圆锥的母线长等于底面圆直径C .圆台的母线与轴平行D .球的直径必过球心解析:选D A :圆柱的母线与轴平行;B :圆锥的母线长与底面圆的直径不具有任何关系;C :圆台的母线延长线与轴相交.故D 正确.2.如图所示的图形中有( )A .圆柱、圆锥、圆台和球B .圆柱、球和圆锥C .球、圆柱和圆台D .棱柱、棱锥、圆锥和球解析:选B 根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.3.下列说法中正确的个数是( )①用一个平面去截一个圆锥得到一个圆锥和一个圆台;②圆锥中过轴的截面是一个等腰三角形;③分别以矩形(非正方形)的长和宽所在直线为旋转轴,旋转一周得到的两个几何体是两个不同的圆柱.A .0B .1C.2 D.3解析:选C ①中,必须用一个平行于底面的平面去截圆锥,才能得到一个圆锥和一个圆台,故①说法错误;显然②③说法正确.故说法正确的有2个.4.如图所示的几何体是由下列哪个平面图形通过旋转得到的( )解析:选A 由题图知平面图应是一个直角三角形和一个直角梯形构成,故A正确.5.一个直角三角形绕斜边旋转360°形成的空间几何体是( )A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台答案:C6.将一个直角梯形绕其较短的底边所在的直线旋转一周得到一个几何体,则该几何体的结构特征是________________________________.答案:一个圆柱被挖去一个圆锥后所剩的几何体7.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这个截面把圆锥的母线分为两段的比是________.解析:∵截面面积与底面面积的比为1∶3,故小圆锥与大圆锥的相似比为1∶3,故小圆锥与大圆锥的母线长之比为1∶3,故小圆锥与所得圆台的母线长比为1∶(3-1).答案:1∶(3-1)8.将边长为4 cm和8 cm的矩形纸片卷成一个圆柱的侧面,则圆柱的轴截面的面积为________cm2.解析:当以4 cm为母线长时,设圆柱底面半径为r,则8=2πr,∴2r=8π.∴S轴截面=4×8π=32π(cm)2.当以8 cm为母线长时,设圆柱底面半径为R,则2πR=4,2R=4π.∴S轴截面=8×4π=32π(cm)2.综上,圆锥的轴截面面积为32πcm 2. 答案:32π9.将长为4宽为3的矩形ABCD 沿对角线AC 折起,折起后A ,B ,C ,D 在同一个球面上吗?若在求出这个球的直径.解:因为对角线AC 是直角三角形ABC 和直角三角形ADC 的公共斜边,所以AC 的中点O 到四个点的距离相等,即O 为该球的球心.所以AC 为球的一条直径,由勾股定理得AC =42+32=5.10.如图所示,直角梯形ABCD 中,AB ⊥BC ,绕着CD 所在直线l 旋转,试画出立体图并指出几何体的结构特征.解:如图①,过A ,B 分别作AO 1⊥CD ,BO 2⊥CD ,垂足分别为O 1,O 2,则Rt △CBO 2绕l 旋转一周所形成的曲面围成几何体是圆锥,直角梯形O 1ABO 2绕l 旋转一周所形成的曲面围成的几何体是圆台,Rt△ADO 1绕l 旋转一周所形成的曲面围成的几何体是圆锥.① ② 综上,所得几何体下面是一个圆锥,上面是一个圆台挖去了一个以圆台上底面为底面的圆锥.(如图②所示).层级二 应试能力达标1.下列结论正确的是( )A .用一个平面去截圆锥,得到一个圆锥和一个圆台B .经过球面上不同的两点只能作一个最大的圆C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D 须用平行于圆锥底面的平面截才能得到圆锥和圆台,故A 错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B错误;正六棱锥的侧棱长必然要大于底面边长,故C错误.故选D.2.若圆柱体被平面截成如图所示的几何体,则它的侧面展开图是( )解析:选D 结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A、B、C错误.3.一个正方体内接于一个球,过球心作一截面,如下图所示,则截面的可能图形是( )A.①②B.②④C.①②③D.②③④解析:选C 当截面平行于正方体的一个侧面时得③,当截面过正方体对角面时得②,当截面不平行于任何侧面也不过对角面时得①,但无论如何都不能得出④.4.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行平面间的距离为( )A.1 B.2C.1或7 D.2或6解析:选C 由截面的周长分别为6π和8π得两个截面半径分别为3和4,又球的半径为5,故圆心到两个截面的距离分别为4和3,故当两个截面在球心同一侧时,平行平面间的距离为4-3=1,当两个截面在球心两侧时,平行平面间的距离为4+3=7.5.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.解析:设底面半径为r,母线为l,则2πr=πl,∴l=2r.故两条母线的夹角为60°.答案:60°6.圆锥底面半径为1 cm,高为 2 cm,其中有一个内接正方体,则这个内接正方体的棱长为________ cm.解析:圆锥的轴截面SEF、正方体对角面ACC 1A1如图.设正方体的棱长为x cm,则AA1=x cm,A1C1=2x cm.作SO ⊥EF 于点O ,则SO = 2 cm,OE =1 cm.∵△EAA 1∽△ESO ,∴AA 1SO =EA 1EO ,即x 2=1-22x1.∴x =22,即该内接正方体的棱长为22 cm. 答案:227.一个圆锥的底面半径为2,高为6,在其中有一个高为x 的内接圆柱.(1)用x 表示圆柱的轴截面面积S ;(2)当x 为何值时,S 最大?解:(1)如图,设内接圆柱的底面圆半径为r , 由已知得6-x 6=r2,∴r =6-x3,∴S =2×6-x3×x =-23x 2+4x (0<x <6).(2)当x =-42×⎝ ⎛⎭⎪⎫-23=3时,S 最大.8.如图所示,已知圆柱的高为80 cm,底面半径为10 cm,轴截面上有P ,Q 两点,且PA =40 cm,B 1Q =30 cm,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?解:将圆柱侧面沿母线AA 1展开,得如图所示矩形.∴A 1B 1=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm),QS =A1B 1=10π(cm).∴PQ=PS2+QS2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.课时跟踪检测(三)直观图画法层级一学业水平达标1.根据斜二测画法的规则画直观图时,把Ox,Oy,Oz轴画成对应的O′x′,O′y′,O′z′,则∠x′O′y′与∠x′O′z′的度数分别为( ) A.90°,90°B.45°,90°C.135°,90° D.45°或135°,90°解析:选D 根据斜二测画法的规则,∠x′O′y′的度数应为45°或135°,∠x′O′z′指的是画立体图形时的横轴与纵轴的夹角,所以度数为90°.2.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,如果按1∶500 的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为( ) A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.4 cm,0.5 cm,1 cm,0.8 cm解析:选C 直观图中长、宽、高应分别按原尺寸的1500,11 000,1500计算,最后单位转化为 cm.3.利用斜二测画法画边长为1 cm的正方形的直观图,可能是下面的( )解析:选C 正方形的直观图是平行四边形,且边长不相等,故选C项.4.如右图所示的水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,且A′D′平行于y′轴,那么A′B′,A′D′,A′C′三条线段对应原图形中线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC解析:选C 因为A′D′∥y′轴,所以在△ABC中,AD⊥BC,又因为D′是B′C′的中点,所以D是BC中点,所以AB=AC>AD.5.水平放置的△ABC ,有一边在水平线上,用斜二测画法作出的直观图是正三角形A ′B ′C ′,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .任意三角形解析:选C 将△A ′B ′C ′还原,由斜二测画法知,△ABC 为钝角三角形. 6.利用斜二测画法得到 ①三角形的直观图是三角形; ②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④矩形的直观图是矩形.以上结论,正确的是________(填序号).解析:斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.答案:①②7.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=3,B ′C ′∥x ′轴,则原平面图形的面积为________.解析:在直观图中,设B ′C ′与y ′轴的交点为D ′,则易得O ′D ′=32,所以原平面图形为一边长为6,高为62的平行四边形,所以其面积为6×62=36 2.答案:36 28.如图,一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是________.解析:由题意知平面图形为直角梯形ABCD ,其中,AD =AD ′=1,BC =B ′C ′=1+2,AB =2,即S 梯形ABCD =(1+1+2)2×2=2+ 2.答案:2+ 29.如图所示,梯形ABCD 中,AB ∥CD ,AB =4 cm,CD =2 cm,∠DAB =30°,AD =3 cm,试画出它的直观图.解:(1)如图(a)所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy .如图(b)所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°.(2)在图(a)中,过D 点作DE ⊥x 轴,垂足为E .在x ′轴上取A ′B ′=AB =4 cm,A ′E ′=AE =3×32≈2.598 (cm);过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连结A ′D ′,B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图(c)所示,则四边形A ′B ′C ′D ′就是所求作的直观图.10.已知底面是正六边形,侧面都是全等的等腰三角形的六棱锥.请画出它的直观图. 解:作法:(1)画六棱锥P ABCDEF 的底面.①在正六边形ABCDEF 中,取AD 所在直线为x 轴,对称轴MN 所在直线为y 轴,两轴交于点O .画相应的x ′轴和y ′轴、z ′轴,三轴交于点O ′,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°.②以O ′为中点,在x ′轴上取A ′D ′=AD ,在y ′轴上取M ′N ′=12MN ,以N ′为中点画B ′C ′,使B ′C ′∥O ′x ′,B ′C ′=BC ;再以M ′为中点画E ′F ′,使E ′F ′∥O ′x ′,E ′F ′=EF .③连结A ′B ′,C ′D ′,D ′E ′,F ′A ′,得到正六边形ABCDEF 水平放置的直观图A ′B ′C ′D ′E ′F ′.(2)画六棱锥的顶点.在O ′z ′上截取点P ,使PO ′=PO .(3)成图,连结PA ′,PB ′,PC ′,PD ′,PE ′,PF ′,并擦去辅助线,改被遮挡部分为虚线,即得六棱锥P ABCDEF 的直观图六棱锥P A ′B ′C ′D ′E ′F ′.层级二 应试能力达标1.已知水平放置的△ABC 按斜二测画法得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( ) A .等边三角形 B .直角三角形C .三边中有两边相等的等腰三角形D .三边互不相等的三角形解析:选A 根据斜二测画法的原则,得BC =B ′C ′=2,OA =2A ′O ′=2×32=3,AO ⊥BC ,∴AB =AC =BC =2,∴△ABC 是等边三角形. 2.用斜二测画法画出的某平面图形的直观图如图所示,AB 边平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形A ′B ′C ′D ′的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意,可知∠BAD =45°,则原平面图形A ′B ′C ′D ′为直角梯形,上、下底边分别为B ′C ′,A ′D ′,且长度分别与BC ,AD 相等,高为A ′B ′,且长度为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.3.如图是利用斜二测画法画出的△ABO 的直观图,已知O ′B ′=4,A ′B ′∥y ′ 轴,且△ABO 的面积为16,过A ′作A ′C ′⊥x ′轴,则A ′C ′的长为( )A .2 2 B. 2 C .16 2D .1解析:选A 因为A ′B ′∥y ′轴,所以在△ABO 中,AB ⊥OB .又△ABO 的面积为16,所以12AB ·OB =16.所以AB =8,所以A ′B ′=4.如图,作A ′C ′⊥O ′B ′于点C ′,所以B ′C ′=A ′C ′,所以A ′C ′的长为4sin 45°=2 2.4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为 2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm解析:选D 圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5 cm,在直观图中与z 轴平行的线段长度不变,仍为5 cm.5.有一个长为5,宽为4 的矩形,则其直观图的面积为________. 解析:由于该矩形的面积为S =5×4=20,所以由公式S ′=24S ,得其直观图的面积为S ′=24S =5 2. 答案:5 26.水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为________.解析:由直观图知,原平面图形为直角三角形,且AC =A ′C ′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.答案:2.57.在水平位置的平面M内有一边长为1的正方形A′B′C′D′.如图,其中对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.解:四边形ABCD的真实图形如图所示.∵A′C′为水平位置,∴四边形ABCD中,DA⊥AC.∵DA=2D′A′=2,AC=A′C′=2,∴S四边形ABCD=AC·AD=2 2.8.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.解:如图,建立直角坐标系xOy,在x轴上取OA=O′A′=1 cm;在y轴上取OB=2O′B′=2 2 cm;在过点B的x轴的平行线上取BC=B′C′=1 cm.连结O,A,B,C各点,即得到了原图形.由作法可知,OABC为平行四边形,OC=OB2+BC2=8+1=3 cm,∴平行四边形OABC的周长为(3+1)×2=8 cm,面积为S=1×22=2 2 cm2.课时跟踪检测(四)平面的基本性质层级一学业水平达标1.如果直线a⊂平面α,直线b⊂平面α,M∈a,N∈b,M∈l,N∈l,则( )A.l⊂αB.l⊄αC.l∩α=M D.l∩α=N解析:选A ∵M∈a,a⊂α,∴M∈α,同理,N∈α,又M∈l,N∈l,故l⊂α.2.下列命题中正确命题的个数是( )①三角形是平面图形;②梯形是平面图形;③四边相等的四边形是平面图形;④圆是平面图形.A.1个B.2个C.3个D.4个解析:选C 根据公理1可知①②④正确,③错误.故选C.3.已知直线m⊂平面α,P∉m,Q∈m,则( )A.P∉α,Q∈αB.P∈α,Q∉αC.P∉α,Q∉αD.Q∈α解析:选D 因为Q∈m,m⊂α,所以Q∈α.因为P∉m,所以有可能P∈α,也可能有P∉α.4.如果两个平面有一个公共点,那么这两个平面( )A.没有其他公共点B.仅有这一个公共点C.仅有两个公共点D.有无数个公共点解析:选D 根据公理2可知,两个平面若有一个公共点,则这两个平面有且只有一个经过该点的公共直线.故选D.5.若直线l上有两个点在平面α外,则( )A.直线l上至少有一个点在平面α内B.直线l上有无穷多个点在平面α内C.直线l上所有点都在平面α外D.直线l上至多有一个点在平面α内解析:选D 由已知得直线l⊄α,故直线l上至多有一个点在平面α内.6.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定平面的个数是________.解析:设四条直线为a,b,c,d,则这四条直线中每两条都确定一个平面,因此,a与b,a 与c,a与d,b与c,b与d,c与d都分别确定一个平面,共6个平面.答案:67.已知α,β是不同的平面,l,m,n是不同的直线,P为空间中一点.若α∩β=l,m⊂α,n⊂β,m∩n=P,则点P与直线l的位置关系用符号表示为________.解析:因为m⊂α,n⊂β,m∩n=P,所以P∈α且P∈β.又α∩β=l,所以点P在直线l上,所以P∈l.答案:P∈l8.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有________个.解析:用平面四边形和三棱锥的四个顶点判断,经过其中三个点的平面有1或4个.答案:1或49.如图,在正方体ABCDA1B1C1D1中,判断下列命题是否正确,并说明理由.(1)由点A,O,C可以确定一个平面;(2)由点A,C1,B1确定的平面为平面ADC1B1.解:(1)不正确.因为点A,O,C在同一条直线上,故不能确定一个平面.(2)正确.因为点A,B1,C1不共线,所以可确定一个平面.又因为AD∥B1C1,所以点D∈平面AB1C1.所以由点A,C1,B1确定的平面为平面ADC1B1.10.如图,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β,求证:AB,CD,l共点(相交于一点).证明:∵在梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴AB,CD必定相交于一点,设AB∩CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β.∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点.层级二应试能力达标1.能确定一个平面的条件是( )A.空间三个点B.一个点和一条直线C.无数个点D.两条相交直线解析:选D 不在同一条直线上的三个点可确定一个平面,A,B,C条件不能保证有不在同一条直线上的三个点,故不正确.2.下列推理错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合解析:选C 当l⊄α,A∈l时,也有可能A∈α,如l∩α=A,故C错.3.如图,已知平面α∩平面β=l,P∈β且P∉l,M∈α,N∈α,又MN∩l=R,M,N,P三点确定的平面记为γ,则β∩γ是( )A.直线MP B.直线NPC.直线PR D.直线MR解析:选C 因为MN⊂γ,R∈MN,所以R∈γ.又α∩β=l,MN∩l=R,所以R∈β.又P ∈β,P∈γ,所以P,R均为平面γ与β的公共点,所以β∩γ=PR.4.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则( )A.P一定在直线BD上B.P一定在直线AC上C.P在直线AC或BD上D.P既不在直线BD上,也不在AC上解析:选B 由题意知GH⊂平面ADC.因为GH,EF交于一点P,所以P∈平面ADC.同理,P ∈平面ABC.因为平面ABC∩平面ADC=AC,由公理2可知点P一定在直线AC上.5.三条直线两两相交,它们可以确定________个平面.解析:若三条直线两两相交,且不共点,则只能确定一个平面;若三条直线两两相交,且共点,则可以确定1个或3个平面.答案:1或36.三个平面两两相交,则将空间分成________个部分.解析:三个平面两两相交(1)若交于同一条直线,则将空间分成6个部分;(2)若交于三条交线①三条交线交于一点,则将空间分成8个部分;②若三条交线互相平行,则将空间分成7个部分;所以,三个这样的平面将空间分成6或7或8个部分.答案:6或7或87. 如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.解:延长AC,BD交于T, 连结ST,∵T∈AC,AC⊂平面SAC,。
高中数学 第二章 第3课时 直线的两点式方程教案 苏教版必修2
第二章 平面解析几何初步
第3课时 直线的两点式方程
教学目标:
1.理解直线方程的两点式、截距式的形式特点和适用范围;
2.能正确利用直线的两点式、截距式公式求直线方程;
教学重点:
直线的两点式、截距式方程
教学过程:
Ⅰ.问题情境
1、利用点斜式解答如下问题:
(1)已知直线l 经过两点)5,3(),2,1(
21P P ,求直线l 的方程.
(2)已知两点)
,(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线
方程.
Ⅱ.建构数学
1.两点式:
2.截距式:
Ⅲ.数学应用
例1:已知直线l 过点A )2,1(和B )1,2(,求直线l 的方程.
练习:已知直线l 过点A )0,0(和B )1,2(,求直线l 的方程.
例2:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a ,求直线l 的方程.
练习:已知直线l 与x 轴的交点为A )0,4(,与y 轴的交点为B )4,0(,求直线l 的方程.
Ⅳ. 课堂检测
1.已知直线l 过点A )2,2(和B )3,3(,则直线l 的方程为 .
2.已知直线l 过点A )2,0(和B )0,2(,则直线l 的方程为 .
3.已知直线l 过点A )2,1(且在两坐标轴上截距相等,则直线l 的方程为 .
Ⅴ.课时小结
Ⅵ.课后作业
书本P 77 1.1),2),3);2.1),2)。
高中数学第1章1.2.3第二课时面面垂直课件新人教B必修2.ppt
性质
性质
3.运用两个平面垂直的性质定理时,一般需作辅
助线,基本作法是过其中一个平面内一点作交线
的垂线,这样把面面垂直转化为线面垂直或线线
垂直.
之间的转化.
跟踪训练3 如图所示,△ABC为正三角形, EC⊥平面ABC,BD∥CE,且CE=CA=2BD, M是EA的中点.求证: (1)DE=DA; (2)平面BDM⊥平面ECA; (3)平面DEA⊥平面ECA.
证明:(1)取EC中点F,连接DF, 由EC⊥平面ABC及BD∥CE, 知EC⊥BC,DB⊥平面ABC. 故DB⊥AB,DB⊥BC,
______________.
课堂互动讲练
考点突破 考点一 面面垂直的判定 用判定定理或定义法来证明面面垂直.
例1 如图,在三棱锥V-ABC中,VC⊥底面 ABC,AC⊥BC,D是AB的中点,且AC=BC= a,求证:平面VAB⊥平面VCD.
【 分 析 】 欲 证 平 面 VAB ⊥ 平 面 VCD , 需 证 AB⊥平面VCD,为此需证VC⊥AB且CD⊥AB.
【分析】 利用面面垂直证明线面垂直,关键在 于证明该直线与交线垂直,即证BG⊥AD,(2)证 明 线 线 垂 直 可 转 化 为 线 面 垂 直 , 即 证 AD ⊥ 平 面
PBG. 【证明】 (1)连接PG,BD,由题知△PAD为正 三角形,G是AD的中点, ∴PG⊥AD.
又平面PAD⊥平面ABCD, ∴PG⊥平面ABCD,∴PG⊥BG. 又∵四边形ABCD是菱形且∠DAB=60°, ∴△ABD为正三角形. ∴BG⊥AD. 又AD∩PG=G,∴BG⊥平面PAD. (2)由(1)可知BG⊥AD,PG⊥AD. 所以AD⊥平面PBG,所以AD⊥PB.
又∵AE⊂平面 ABD,∴平面 ABD⊥平面 BCD.
高中数学必修2解析几何初步教材分析及教学建议之一
高中数学必修2《解析几何初步》教材分析及教学建议之一三明九中李宇宙一、解析几何内容的设计:1. 几何的内容按三个层次设计(1)必修课程中的几何,主要包括:立体几何初步、解析几何初步、平面向量、解三角形等。
(2)选修系列1、系列2中的几何,主要包括:圆锥曲线与方程、空间向量与立体几何。
(3)选修系列3、系列4(专题)中的几何.主要包括:球面上的几何、坐标系与参数方程、几何证明选讲等。
2.解析几何内容的变化突出了用代数方法解决几何问题的过程,同时也强调代数关系的几何意义。
解析几何的内容也是分层次设计的:在必修课程中,主要是直线与方程、圆与方程;圆锥曲线与方程的内容则放在选修系列1、系列2中。
3.必修2削弱的内容两条直线的位置关系(删除了两条直线的夹角)等。
4.必修2增删的内容(1) 解析几何增加的内容:直线与圆、圆与圆的位置关系;空间直角坐标系(2) 解析几何删除的内容:曲线与方程;圆的参数方程;圆锥曲线;线性规划移至必修5(第三章)不等式部分二、数学必修2《解析几何初步》的教学建议认真把握教学要求教学中,注意控制教学的难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。
关注重要数学思想方法的教学重要的数学思想方法不怕重复。
《标准》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
在教学中应自始至终强化这一思想方法,这是解析几何的特点。
教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,应避免只强调“形”到“数”的方面,而忽视“数”到“形”的方面。
关注学生的动手操作和主动参与学习方式的转变是课程改革的重要目标之一。
教学中,注意适当给学生数学活动和交流的机会,引导他们在自主探索的过程中获得知识、增强技能、掌握基本的数学思想方法。
人教高中数学必修二A版《平面向量的应用》平面向量及其应用教学说课复习课件(平面几何中的向量方法)
必修第二册·人教数学A版
返回导航 上页 下页
探究二 平面向量在几何求值中的应用
[例 2] (1)已知边长为 2 的正六边形 ABCDEF,连接 BE,CE,
点 G 是线段 BE 上靠近 B 的四等分点,连接 GF,则G→F·C→E( )
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
的合力的大小为( )
课件
课件
课件
课件
A.5 课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
N
B.5 2 N
C.5 3 N
D.5 6 N
解析:两个力的合力的大小为|F1+F2|= F21+F22+2F1·F2=5 6(N). 答案:D
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
①选取基底;②用基底表示相关向量;③利用向量的线性运算或数量积找相应关系;
④把几何问题向量化.
(2)向量的坐标运算法的四个步骤:
基底表示,利用向量的运算法则、运算律或性质计算.
②坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、
平行、夹角等问题转化为代数运算.
高中数学必修2教案苏教版
高中数学必修2教案苏教版
教学重点:直线与平面的位置关系、直线与平面的夹角关系。
教学难点:直线与平面的方程。
教学准备:教材、教学课件、黑板、教具等。
教学步骤:
一、导入:通过引入一个实际生活中的问题来引起学生的兴趣,如:一个飞机在空中飞行时,飞机的飞行轨迹与地面的关系是怎样的呢?
二、讲解直线与平面的位置关系:首先,向学生介绍直线与平面的基本概念,然后讲解直线与平面的相互位置关系,即直线与平面可能相离、相切或相交。
三、讲解直线与平面的夹角关系:介绍直线与平面之间的夹角,包括直线与平面的垂直、平行和倾斜的夹角关系,并讲解相关理论知识。
四、解题演练:通过几个实例让学生进行实际问题求解,巩固所学知识,培养学生的解题能力。
五、作业布置:布置相关练习题,巩固学生所学内容,并激发他们对数学的兴趣。
六、小结:对本节课学习的重点知识进行总结,并提醒学生注意相关知识点。
教学反思:在教学过程中要注重引导学生思考和实际运用知识,培养学生的数学思维能力和解决问题的能力。
同时,要根据学生的实际情况灵活调整教学方法,提高教学效果。
人教高中数学必修二A版《余弦定理、正弦定理》平面向量及其应用说课复习(余弦定理)
c=2,cos A=23,则 b=( )
A. 2
B. 3
C.2
D.3
栏目 导引
第六章 平面向量及其应用
【解析】 (1)因为 cos C=2cos2 C2-1=2×15-1=-35,所以由余
弦 定 理 , 得 AB2 = AC2 + BC2 - 2AC·BCcos C = 25 + 1 -
课件
课件
课件
栏目 导引
第六章 平面向量及其应用
在△ABC 中,a=2 3,c= 6+ 2,B=45°, 解这个三角形.
解:根据余弦定理得, 课件
课件
课件
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
b2=a2+c2-2accos B=(2 3)2+( 6+ 2)2-2×2 3×( 6+
2)×cos 45°=8,
所以 b=2 2. 又因为 cos A=b2+2cb2c-a2=8+2(×26+2×2()26-+(22)3)2=12,
所以 A=60°,C=180°-(A+B)=75°.
栏目 导引
第六章 平面向量及其应用
已知三边(三边关系)解三角形
(1)在△ABC 中,已知 a=3,b=5,c=
课件
课件
课件
课件
个人简历:课件/j ia nli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
3 课件
高中数学必修一2.3 二次函数与一元二次方程、不等式(课时作业)
2.3二次函数与一元二次方程、不等式课程标准学科素养1.会结合一元二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系.2.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的实际意义. 能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.通过对二次函数与一元二次方程、不等式的学习,提升“逻辑推理”、“数学运算”“直观想象”的核心素养.[对应学生用书P24]知识点一元二次不等式(1)一元二次不等式:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx +c<0.[微思考]不等式x2-y2>0是一元二次不等式吗?提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.(2)二次函数的零点:一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的零点.(3)二次函数与一元二次方程、不等式的解的对应关系Δ>0Δ=0Δ<0 y=ax2+bx+c(a>0)的图象ax2+bx+c=0 (a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2} ∅ ∅[微体验]1.不等式(1-x )(3+x )>0的解集是( ) A .{x |-3<x <1} B .{x |x <-3或x >1} C .{x |-1<x <3}D .{x |x <-1或x >3}A [不等式变为(x -1)(x +3)<0,解得-3<x <1.] 2.不等式x 2-2x -5>2x 的解集是________.解析 由x 2-2x -5>2x ,得x 2-4x -5>0,因为x 2-4x -5=0的两根为-1,5,故x 2-4x -5>0的解集为{x |x <-1或x >5}.答案 {x |x >5或x <-1}3.不等式-3x 2+5x -4>0的解集为________.解析 原不等式变形为3x 2-5x +4<0. 因为Δ=(-5)2-4×3×4=-23<0,所以3x 2-5x +4=0无解.由函数y =3x 2-5x +4的图象可知,3x 2-5x +4<0的解集为∅.答案 ∅4.二次不等式ax 2+2x -1<0的解集为R ,则a 的取值范围是________.解析 由题意得,⎩⎪⎨⎪⎧ a <0,Δ<0⇒⎩⎪⎨⎪⎧a <0,4+4a <0⇒a <-1.答案 a <-1[对应学生用书P 25]探究一 一元二次不等式的解法求不等式4x 2-4x +1>0的解集.解 因为Δ=(-4)2-4×4×1=0, 所以方程4x 2-4x +1=0的解是x 1=x 2=12,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠12. [变式探究] 将本例不等式变为:-x 2+2x -3>0,求解此不等式的解集. 解 不等式可化为x 2-2x +3<0. 因为Δ=(-2)2-4×3=-8<0, 方程x 2-2x +3=0无实数解, 而y =x 2-2x +3的图象开口向上, 所以原不等式的解集是∅. [方法总结]解一元二次不等式的一般步骤:第一步,将一元二次不等式化为一端为0的形式(习惯上二次项系数大于0). 第二步,求出相应一元二次方程的根,或判断出方程没有实根. 第三步,画出相应二次函数示意草图,方程有根的将根标在图中.第四步,观察图象中位于x 轴上方或下方的部分,对比不等式中不等号的方向,写出解集.[跟踪训练1] 求下列一元二次不等式的解集. (1)x 2-5x >6;(2)-x 2+7x >6. 解 (1)由x 2-5x >6,得x 2-5x -6>0. ∵x 2-5x -6=0的两根是x =-1或6, ∴原不等式的解集为{x |x <-1或x >6}. (2)由-x 2+7x >6,得x 2-7x +6<0. ∵x 2-7x +6=0的两个根是x =1或6, ∴不等式x 2-7x +6<0的解集为{x |1<x <6}. 探究二 二次函数与一元二次方程、不等式间的关系已知关于x 的不等式x 2+ax +b <0的解集为{x |1<x <2},试求关于x 的不等式bx 2+ax +1>0的解集.解 由根与系数的关系,可得⎩⎪⎨⎪⎧ -a =1+2,b =1×2,即⎩⎪⎨⎪⎧a =-3,b =2. ∴不等式bx 2+ax +1>0,即2x 2-3x +1>0. 由2x 2-3x +1>0,解得x <12或x >1.∴bx 2+ax +1>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >1. [方法总结]应用三个“二次”之间的关系解题的思想一元二次不等式与其对应的函数与方程之间存在着密切的联系,即给出了一元二次不等式的解集,则可知不等式二次项系数的符号和相应一元二次方程的根.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.[跟踪训练2] 已知不等式ax 2-bx +2<0的解集为{x |1<x <2},求a ,b 的值. 解 方法一:由题设条件知a >0,且1,2是方程ax 2-bx +2=0的两实根.由根与系数的关系,知⎩⎨⎧1+2=b a,1×2=2a,解得⎩⎪⎨⎪⎧a =1,b =3.方法二:把x =1,2分别代入方程ax 2-bx +2=0中,得⎩⎪⎨⎪⎧ a -b +2=0,4a -2b +2=0.解得⎩⎪⎨⎪⎧a =1,b =3.探究三 一元二次不等式的实际应用问题某校园内有一块长为800 m ,宽为600 m 的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.解 设花卉带的宽度为x m(0<x <300), 则中间草坪的长为(800-2x )m ,宽为(600-2x )m. 根据题意可得(800-2x )(600-2x )≥12×800×600,整理得x 2-700x +60 000≥0, 即(x -600)(x -100)≥0,解得0<x ≤100或x ≥600,x ≥600不符合题意,舍去. 故所求花卉带宽度的范围为(0,100]. [方法总结]一元二次不等式应用题常以二次函数为模型,解题时要弄清题意,准确找出其中的不等关系,再利用一元二次不等式求解,确定答案时应注意变量具有的“实际含义”.[跟踪训练3] 在一个限速40 km /h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m. 又知甲、乙两种车型的刹车距离S m 与车速x km/h 之间分别有如下关系:S 甲=0.1x +0.01x 2,S 乙=0.05x +0.005x 2. 问谁超速行驶应负主要责任.解 由题意列出不等式S 甲=0.1x 甲+0.01x 2甲 >12, 解得x 甲<-40或x 甲>30, S 乙=0.05x 乙+0.005x 2乙>10. 解得x 乙<-50或x 乙>40.由于x >0,从而得x 甲>30 km /h ,x 乙>40 km/h. 经比较知乙车超过限速,应负主要责任.[对应学生用书P 26]1.解一元二次不等式的常见方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系求解. (2)代数法:将所给不等式化为一般式后借助分解因式或配方求解. 2.一元二次不等式解集的记忆方法(1)一元二次不等式ax 2+bx +c >0(a >0)与ax 2+bx +c <0(a >0)的解集的记忆口诀:大于取两边,小于取中间.(2)当一元二次不等式ax 2+bx +c >0与ax 2+bx +c <0的二次项系数a <0时,可以转化为a >0.3.解一元二次不等式应用题解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x ,用x 来表示其他未知量,根据题意,列出不等关系再求解.课时作业(十) 二次函数与一元二次方程、不等式[见课时作业(十)P 145]1.不等式9x 2+6x +1≤0的解集是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪x =-13 B .⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤13 C .∅D .⎩⎨⎧⎭⎬⎫-13A [变形为(3x +1)2≤0.∴x =-13.]2.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}B [通解:A ={x |(x -2)(x +1)>0}={x |x <-1或x >2},所以∁R A ={x |-1≤x ≤2}. 优解:因为A ={x |x 2-x -2>0},所以∁R A ={x |x 2-x -2≤0}={x |-1≤x ≤2}.] 3.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}D [由题意知,-b a =1,ca =-2,∴b =-a ,c =-2a ,又∵a <0,∴x 2-x -2≤0,∴-1≤x ≤2.]4.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .{x |0<x <2}B .{x |-2<x <1}C .{x | x <-2或x >1}D .{x |-1<x <2}B [根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)(x -1)<0,故不等式的解集是{x |-2<x <1}.]5.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台C [由条件知25x -y =25x -3 000-20x +0.1x 2=0.1x 2+5x -3 000≥0,即x 2+50x -30 000≥0. ∴(x +200)(x -150)≥0. 解得x ≥150或x ≤-200(舍去).∴最低产量为150台.]6.不等式ax 2+bx +12>0的解集为{x |-3<x <2},则a -b =________.解析 由题意,得⎩⎪⎨⎪⎧a <0,-3+2=-b a ,-3×2=12a,解得⎩⎪⎨⎪⎧a =-2,b =-2.∴a -b =0. 答案 07.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________.解析 A ={x |3x -2-x 2<0}={x |x 2-3x +2>0}={x |x <1或x >2},B ={x |x <a }.若B ⊆A ,如图,则a ≤1.答案 (-∞, 1]8.若方程x 2+(m -3)x +m =0有两个正实根,则m 的取值范围是________. 解析 由题意得,⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m >0,x 1x 2=m >0,解得0<m ≤1.答案 0<m ≤19.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?解 设每盏台灯售价x 元,则x ≥15,并且日销售收入为x [30-2(x -15)],由题意知,当x ≥15时,有x [30-2(x -15)]>400,解得:15≤x <20.所以为了使这批台灯每天获得400元以上的销售收入,应当制定这批台灯的销售价格为x ∈[15,20).10.关于x 的不等式mx 2-mx -6+m <0对x ∈R 恒成立,求实数m 的取值范围. 解 ①若m =0,则问题等价于-6<0对x ∈R 恒成立,显然成立.②若m ≠0,则有⎩⎪⎨⎪⎧ m <0,Δ<0,即⎩⎪⎨⎪⎧m <0,(-m )2-4m (m -6)<0.解得m <0.综上所述,所求m 的取值范围是m ≤0.1.不等式mx 2-ax -1>0(m >0)的解集可能是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >14 B .R C .⎩⎨⎧⎭⎬⎫x ⎪⎪-13<x <32 D .∅A [因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D .]2.不等式组⎩⎪⎨⎪⎧x 2-1<0,x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}C [由⎩⎪⎨⎪⎧ x 2-1<0x 2-3x <0,得⎩⎪⎨⎪⎧-1<x <10<x <3,∴0<x <1.] 3.设a <-1,则关于x 的不等式a (x -a )⎝⎛⎭⎫x -1a <0的解集为________. 解析 因为a <-1,所以a (x -a )·⎝⎛⎭⎫x -1a <0⇔(x -a )·⎝⎛⎭⎫x -1a >0.又a <-1,所以1a>a ,所以x >1a或x <a .答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x <a 或x >1a 4.某商品在最近30天内的价格f (t )与时间t (单位:天)的函数关系是f (t )=t +10(0<t ≤30,t ∈N );销售量g (t )与时间t 的函数关系是g (t )=-t +35(0<t ≤30,t ∈N ),则使这种商品日销售金额不小于500元的t 的范围为________.解析 日销售金额=(t +10)(-t +35),依题意有(t +10)(-t +35)≥500,解得解集为{t |10≤t ≤15,t ∈N }.答案 {t |10≤t ≤15,t ∈N }5.解关于x 的不等式(a ∈R ):x 2-(a +a 2)x +a 3>0. 解 将不等式x 2-(a +a 2)x +a 3>0变形为 (x -a )(x -a 2)>0.当a <0时,有a <a 2,所以不等式的解集为{x |x <a 或x >a 2}; 当a =0时,a =a 2=0,所以不等式的解集为{x |x ∈R ,且x ≠0};当0<a<1时,有a>a2,所以不等式的解集为{x|x<a2或x>a};当a=1时,a=a2=1,所以不等式的解集为{x|x∈R,且x≠1};当a>1时,有a<a2,所以不等式的解集为{x|x<a或x>a2}.6.(拓广探索)某热带风暴中心B位于海港城市A东偏南30°的方向,与A市相距400 km.该热带风暴中心B以40 km/h的速度向正北方向移动,影响范围的半径是350 km.问:从此时起,经多少时间后A市将受热带风暴影响,大约受影响多长时间?解如图,以A市为原点,正东方向为x轴建立直角坐标系.∵AB=400,∠BAx=30°,∴台风中心B的坐标为(2003,-200),x h后台风中心B到达点P(2003,40x-200)处.由已知,A市受台风影响时,有|AP|≤350,即(2003)2+(40x-200)2≤3502,整理得16x2-160x+375≤0,解得,3.75≤x≤6.25,A市受台风影响的时间为6.25-3.75=2.5.故在3.75 h后,A市会受到台风的影响,时间长达2.5 h.。
高中数学-公式-柯西不等式.docx
第一课时3.1二维形式的柯西不等式(一)2.练习:已知°、b、c、d 为实数,求证(a2 + b2)(c2+d2)>(ac+bdf①提出定理1:若a、b、c、d 为实数,则(a2 + lr )(c2 + J2) >(6fc + bd)2.证法一:(比较法)(a2 +b2)(c2 + J2)-(ac + bd)2=....= (ad-be)2 >0证法二:(综合法)(a2 +b2)(c2 +d2)=a2c2 -\-crd1 +b1c1 +b2d2=(ac + bd)2 + (ad -be)2 > (ac + bd)2.(要点:展开配方)证法三:(向量法)设向量m = (a,b), n = (c,d),贝^\\m\=\la2 +b2 , |n|= yjc2 +d2 .T trf n = ac + bd 9n=\m\\n \ cos<m.n>,证法四:(函数法)设/(x) = (a2 + b2)x2 - 2(ac + bd)x + c2 + d2,贝9 f(x) = (ax-c)2 +(bx-d)120 恒成立.・•・ A = {-2{ac + bd)f -4(a2 + b2)(c2 + J2) 0,即..…③二维形式的柯西不等式的一些变式:4cr -^h1A/C2+d2 >| ac+hd \或y/a2 +lr \l(r +d~ >\ac\-^-\hd\或如+戾Jc2+d? »ac + bd ・④提出定理2:设o,0是两个向量,贝I J|Q0|S|Q||0|.即柯西不等式的向量形式(由向量法提出)一讨论:上面时候等号成立?(0是零向量,或者%0共线)⑤练习:己知a、b、c、d 为实数,求证\/a2 + b1 + \/c2 + J2>yj(a-c)2 +(/?-J)2 .证法:(分析法)平方一应用柯西不等式一讨论:其儿何意义?(构造三角形)2.教学三角不等式:_______ _________ _____________________①出示定理3:设兀|,廿,2,丿2 ^尺,则肩 ++ Jxj+ ”2 » J(X| _兀2尸+ O| _ •分析其儿何意义一如何利用柯西不等式证明-变式:若西,必,兀2,力,兀3,〉'3丘尺,则结合以上几何意义,可得到怎样的三角不等式?3.小结:二维柯西床等式的代数形式、向量形式;三角不等式的两种形式(两点、三点)第二课时3」二维形式的柯西不等式(二)教学过程:______ _________ ___________________(/ + b2)(c2 + )»(皿 + bd)2: J兀]2 + yj + Qxj +)叮>』(西一勺尸+(必一力),3.如何利用二维柯西不等式求函数二的最大值?要点:利用变| ac + bd \< ^a2 +b2 y{c2+d2 .二、讲授新课:1・教学最大(小)值:①出示例1:求函数y = 3厶-1 + J10-2兀的最大值?分析:如何变形?->构造柯西不等式的形式〜板演________________—变式:y = >/3x-l + J10-2兀—推广:y = ajbx+c + dje-fic,(a,b,c,d,e,f w&)②练习:已知3x + 2y = l,求x2 + ^2的最小值.解答要点:(凑配法)x2 +y2 =—(x2 + y2)(32 +22)>—(3x+2j)2 =—.-13 13 132.教学不等式的证明:①出示例2:若x,y e, x+y = 2 f求证:丄+丄>2.分析:如何变形后利用柯西不等式?(注意对比一构造)要点:讨论:其它证法(利用基本不等式)②练习:已知a、bw© ,求证:(d + b)(—+ —)^4.a b3.练习:①已知兀,且—+ — = 1,则x+y的最小值.兀>'要点:x+ y = (— + —)(x+ y)= .... f 其它证法兀y②若x,y,zw/?+,且x+y + z = l,求x2 + /+z2的最小值.(要点:利用三维柯西不等式)变式:若兀,y,zw/?+,且x+y + z = l ,求yfx + Jy +\fz的最大值.第三课时3.2 一般形式的柯西不等式2.提问:二维形式的柯两不等式?如何将二维形式的柯两不等式拓广到三维?答案:(a2+b2)(c2+〃2)n(dc+加)2;(a2 + Z?2 4- c2)(d2 +e2+f2)> (ad + be + cf)2二、讲授新课:1.教学一般形式的柯西不等式:①提问:由平面向量的柯西不等式|&0曰&||0|,如果得到空间向量的柯西不等式及代数形式?②猜想:〃维向量的坐标?n维向量的柯西不等式及代数形式?结论:设44,,Q…2,4 wR ,则(q? + 电 + aj)0]2 + 优2 + + b:) > (afy + a2b2 + +ci rl b fl)2讨论:什么时候取等号?(当且仅当半=学=吋取等号,假设勺工0)*优仇联想:设8 =如+也++讷,A = a l2+a22+ a; , C = b;+b/+ +” ,则<B2-AC>0,可联想到一些什么?"③讨论:如何构造二次函数证明兄维形式的柯西不等式?(注意分类)要点:令f(x)=(壬 + a;+ …+ a;)x~ + 2(马勺 + ①b, + …+ ci n b n)x +(b「+/?》+••• + /?;),则/(x) =(6Z I x + /?1)2+(%兀 + 化)2 +•••+ (a“兀+b“)2 >0.又dj+%2+... + a”2>0,从而结合二次函数的图像可知,△ = [2(d]b] + a2b2 + )『—4(d]2 + + a:)(bj + bj + + b:) WO即有要证明的结论成立.(注意:分析什么时候等号成立.)④变式:+ 6f22 + 町X丄(吗+$+…+ %)2.(讨论如何证明)2.教学柯西不等式的应用:①出示例1:己知13x + 2y + z = l,求X2 4- y2 4- z2的最小值.分析:如何变形后构造柯西不等式?一板演一变式:②练习:若x.y.zeR^ ,且丄+丄+ - = 1,求X + —+ -的最小值.兀y z 2 31 1 4③出示例2:若a>b>c,求证: -------- + ----- > ------ .a-h b-c a-c要点:(Q — C)(—「+亠) = [(d-b) + (b-c)](—「+ 亠》(1 + 1)2=4a—b b — c a — b b — c②提出排序不等式(即排序原理):设有两个有序实数组:a{<a2<…<a n;b} <b2<…<b n. c l9c2, ••• c“是b l9b2, ••• ,b n的任一排列,则有+ a2h2 + • • • + a n b n(同序和)>qq + a2c2+ …+ a n c n(乱序和)>a}h n + a2b n_} + ・・・ + a tl h}(反序和)当且仅当a x =(72 =…=ci“或勺=/?2=・•- =b tl 时,反序和等于同序和. (要点:理解長思想,记住其形式]2.教学排序不等式的应用:①出示例1:设即禺,…,%是几个互不相同的正整数,求证:分析:如何构造有序排列?如何运用套用排序不等式?证明过程:设b },b 2.-,b n 是ms …心的一个排列,且b Y <b 2<--<b n ,则勺>\,b 2 …也>n . 又1>丄〉丄>•••>」,由排序不等式,得2- 3- nra +鱼+色+ ... +玉” +色+乞+ (2)1 22 32 H 2_ ' 22 32 才―…小结:分析目标,构造有序排列.②练习:已知 a,b,c 为正数,求证:2(/ + 戾 +cP)>a 2(b + c)+b 2(a-}-c)-}-c 2(a+b).解答要点:由对称性,假设aSbWc ,贝\]a 2<h 2<c\于是 a 2a + b 2h + c 2c > a 2c + b 2a + c 2h , a 2a + b 2h + c 2c > crb + b 2c + c 2a , 两式相加即得. 1冷£ +・士"+斜守+…厂/?2。
高中数学必修一高一数学第五章(第课时)平面向量的坐标运算()公开课教案课件课时训练练习教案课件
课 题: 平面向量的坐标运算(1)教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标, 判断向量是否共线教学重点: 平面向量的坐标运算教学难点: 向量的坐标表示的理解及运算的准确性授课类型: 新授课课时安排: 1课时教 具: 多媒体、实物投影仪教学过程:一、复习引入:1 向量的加法:求两个向量和的运算, 叫做向量的加法向量加法的三角形法则和平行四边形法则2. 向量加法的交换律: + = +3. 向量加法的结合律: ( + ) + = + ( + )4.向量的减法向量a 加上的b 相反向量, 叫做a 与b 的差 即: a ( b = a + ((b)5. 差向量的意义: = a, = b, 则 = a ( b即a b 可以表示为从向量b 的终点指向向量a 的终点的向量6. 实数与向量的积: 实数λ与向量 的积是一个向量, 记作: λ(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =07. 运算定律 λ(μ )=(λμ) , (λ+μ) =λ +μ , λ( + )=λ +λ8. 向量共线定理 向量 与非零向量 共线的充要条件是: 有且只有一个非零实数λ, 使 =λ9.平面向量基本定理:如果 , 是同一平面内的两个不共线向量, 那么对于这一平面内的任一向量 , 有且只有一对实数λ1, λ2使 =λ1 +λ2(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一, 关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时, 分解形式惟一 λ1, λ2是被 , , 唯一确定的数量二、讲解新课:1. 平面向量的坐标表示如图, 在直角坐标系内, 我们分别取与 轴、 轴方向相同的两个单位向量 、 作为基底 任作一个向量 , 由平面向量基本定理知, 有且只有一对实数 、 , 使得yj xi a +=…………○1我们把 叫做向量 的(直角)坐标, 记作),(y x a =…………○2其中 叫做 在 轴上的坐标, 叫做 在 轴上的坐标, 式叫做向量的坐标表示与.a 相等的向量的坐标也为..........),(y x 特别地, , ,如图, 在直角坐标平面内, 以原点O 为起点作 , 则点 的位置由 唯一确定 设 , 则向量 的坐标 就是点 的坐标;反过来, 点 的坐标 也就是向量 的坐标 因此, 在平面直角坐标系内, 每一个平面向量都是可以用一对实数唯一表示2. 平面向量的坐标运算(1) 若 , , 则 ,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差设基底为 、 , 则即 , 同理可得(2) 若 , , 则一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标 AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若 和实数 , 则实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标设基底为 、 , 则 , 即三、讲解范例:例1已知平面上三点的坐标分别为A((2, 1), B((1, 3), C(3, 4), 求点D 的坐标使这四点构成平行四边形四个顶点解: 当平行四边形为ABCD 时, 由 得D1=(2, 2)当平行四边形为ACDB 时, 得D2=(4, 6)当平行四边形为DACB 时, 得D3=((6, 0)例2已知三个力1F (3, 4), 2F (2, -5), 3F (x, y)的合力1F +2F +3F =0 求3F 的坐标解: 由题设 + + = 得: (3, 4)+ (2, (5)+(x, y)=(0, 0)即: ∴ ∴ ((5,1)四、课堂练习:1. 若M(3, -2) N(-5, -1) 且 , 求P 点的坐标;解: 设P(x, y) 则(x-3, y+2)= (-8, 1)=(-4, )⎪⎩⎪⎨⎧=+-=-21243y x ∴⎪⎩⎪⎨⎧-=-=231y x ∴P 点坐标为(-1, -23) 2. 若A(0, 1), B(1, 2), C(3, 4) 则 (2 =(-3,-3)3. 已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求证:四边形ABCD 是梯形解: ∵ =(-2, 3) =(-4, 6) ∴ =2 ∴AB ∥DC 且 |AB |≠|DC | ∴四边形ABCD 是梯形五、小结 1. 向量的坐标概念 2. 向量坐标的运算六、课后作业:七、板书设计(略)八、课后记:活动目的: 教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的, 每个人都要保护它, 做到节约每一滴水, 造福子孙万代。
高中数学第1章三角函数1.2.3三角函数的诱导公式(第2课时)三角函数的诱导公式(五~六)课件苏教版必修4
∴cos α=-13,
∴sinπ2+α=cos α=-13.]
3.已知 sin α=23,则 cosπ2-α= ________.
2 3
[cosπ2-α=sin α=23.]
4.若 sin α= 55,求sinπ2+cαossi3nπ-72πα+ α-1+ cos3π+αssinin525π2π+-αα- sin72π+α的值.
诱导公式在三角形中的应用 【例 3】 在△ABC 中,sinA+B2-C=sinA-B2+C,试判断△ABC 的形状. 思路点拨: sinA+B2-C=sinA-B2+C ―A―+―B―+―C=―π→ 得B,C关系 ―→ △ABC的形状
[解] ∵A+B+C=π, ∴A+B-C=π-2C,A-B+C=π-2B. 又∵sinA+B2-C=sinA-B2+C, ∴sinπ-22C=sinπ-22B,
教师独具 1.本节课的重点是诱导公式五、六及其应用,难点是利用诱导公式 解决条件求值问题. 2.要掌握诱导公式的三个应用 (1)利用诱导公式解决化简求值问题. (2)利用诱导公式解决条件求值问题. (3)利用诱导公式解决三角恒等式的证明问题.
3.本节课要掌握一些常见角的变换技巧 π6+α=π2-π3-α⇔π6+α+π3-α=π2,π4+α=π2-π4-α⇔π4+α+ π4-α=π2,56π+α-π3+α=π2等.
第1章 三角函数
1.2 任意角的三角函数 1.2.3 三角函数的诱导公式 第2课时 三角函数的诱导公式(五~六)
学习目标
核 心 素 养(教师独具)
1.能借助单位圆中的三角函数定义
推导诱导公式五、六.(难点) 通过学习本节内容提升学生的
2.掌握六组诱导公式,能灵活运用诱 数学运算核心素养.
高中数学新教材同步选择性必修第一册 第2章 §2.2 2.2.3 直线的一般式方程
(2)过一点与已知直线平行(垂直)的直线方程的求法 ①由已知直线求出斜率,再利用平行(垂直)的直线斜率之间的关系确定 所求直线的斜率,由点斜式写方程. ②可利用如下待定系数法:与直线Ax+By+C=0(A,B不同时为0)平行 的直线方程可设为Ax+By+C1=0(C1≠C),再由直线所过的点确定C1; 与直线Ax+By+C=0(A,B不同时为0)垂直的直线方程可设为Bx-Ay+ C2=0,再由直线所过的点确定C2.
内容索引
一、直线的一般式方程 二、利用一般式解决直线的平行与垂直问题 三、直线的一般式方程的应用
随堂演练
课时对点练
一、直线的一般式方程
问题1 直线y=2x+1可以化成二元一次方程吗?方程2x-y+3=0表示 一条直线吗? 提示 y=2x+1可以化成2x-y+1=0的形式,可以化为二元一次方程.2x -y+3=0可以化为y=2x+3,可以表示直线.
方法二 由l′与l平行,可设l′的方程为3x+4y+m=0. 将点(-1,3)代入上式得m=-9. ∴所求直线的方程为3x+4y-9=0.
(2)过点(-1,3),且与l垂直.
解 方法一 ∵l′与l垂直, ∴l′的斜率为43,又 l′过点(-1,3), ∴由点斜式可得方程为 y-3=43(x+1), 即4x-3y+13=0. 方法二 由l′与l垂直,可设l′的方程为4x-3y+n=0. 将(-1,3)代入上式得n=13. ∴所求直线的方程为4x-3y+13=0.
∴1b=-1,∴b=-1. 又∵ax+by-1=0 的斜率 k=-ab=a,
且 3x-y- 3=0 的倾斜角为 60°,
∴k=tan 120°=- 3,∴a=- 3,故选 A.
B.2x+y-7=0 D.x-2y+5=0
(新教材)2020-2021学年高中苏教版数学必修2课件:13.2.2.2 异面直线
【拓展训练】如图,已知长方体ABCD-A1B1C1D1中,A1A=AB,E,F分别是BD1和AD的中 点,求证:CD1⊥EF.
类型三 异面直线所成的角(直观想象、逻辑推理、数学运算) 角度1 求异面直线所成的角
【典例】在空间四边形ABCD中,AB=CD,且AB与CD所成锐角为30°,E,F分别为 BC,AD的中点,求EF与AB所成角的大小. 【思路导引】想求EF与AB所成角的大小,需要找到EF与AB所成的角,并将其放到 三角形中进行求解,关键是找异面直线的平行线,找到异面直线所成的角.
【思考】 异面直线就是平面内的一条直线和平面外的一条直线,这种说法正确吗? 提示:平面内的一条直线和平面外的一条直线位置关系可能是相交、平行或异面, 所以定理中的不过该点很重要.所以,这种说法是不正确的.
ቤተ መጻሕፍቲ ባይዱ
2.异面直线所成的角或夹角 定义:a与b是异面直线,经过空间任意一点O,作直线a′∥a,b′∥b,我们把a′ 和b′所成的锐角(或直角)叫作异面直线a,b所成的角或夹角. 若异面直线a,b所成的角是直角,则称异面直线a,b互相垂直,记作a⊥b.
3.已知,在正方体ABCD-A1B1C1D1中,E,F分别为棱BC和棱CC1的中点,求异面直线AC 和EF所成的角.
3.空间四边形ABCD中,E,F分别为AC,BD的中点,若CD=2AB,EF⊥AB,则EF与CD所成 的角为________. 【解析】取AD的中点H,连FH,EH,在△EFH中∠EFH=90°,HE=2HF,从而∠FEH= 30°.
答案:30°
关键能力·合作学习
类型一 异面直线的判断(直观想象、逻辑推理)
【解题策略】 判定两条直线是异面直线的方法 (1)定义法:由定义判断两直线不可能在同一平面内; (2)重要结论:连接平面内一点与平面外一点的直线,和这个平面内不经过此点 的直线是异面直线.用符号语言可表示为A∉α,B∈α,l⊂α,B∉l⇒AB与l是异面直 线(如图).
高中教育数学必修第二册湘教版《2.3.3 辅助角公式》教学课件
π 4
−
x
+
π 3
= 22sin
7π − x
12
.
题型 2 利用辅助角研究三角函数的性质 例2 (1)已知函数f(x)=sin x+a cos x,当x=π4时,f(x)取得最大值, 则a的值为( )
A.- 3
B.-1
C.1
D. 3
答案:C
解析:由题设,f(x)= 1 + a2sin (x+φ)且tan φ=a,
π 3
−
cos
x
sin
π 3
=2sin
x
−
π 3
.
(2) 42sin
π−x
4
+ 46cos
π−x
4
.
解析: 42sin
π 4
−
x
+ 46cos
π 4
−
x
=
2 4
sin
π−x
4
+
3 cos π − x
4
= 42×2 sin
π−x
4
· 1 + cos
2
π−x
4
·3
2
=
2 2
sin
π−x
4
cos π + cos
x−π
4
=45.
4.化简:cos x+sin x=_2_s_in__x +__π4 ___.
解析:根据两角和的正弦公式,可得:cos x+sin x=
2·
2 2
cos
x
+
2 2
sin
x
=
2·sin
π 4
cos
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料
鼎尚图文*整理制作
第3课时直线与平面垂直的判定
【课时目标】1.理解直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理并能灵活应用.
1.如果直线a与平面α内的__________________,我们就说直线a与平面α互相垂直,记作:________.
图形如图所示.
2.从平面外一点引平面的垂线,这个点和________间的距离,叫做这个点到这个平面的距离.
3.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条________直线垂直,那么这条直线______于这个平面.
图形表示:
用符号表示为:______________________________________________________________.
一、选择题
1.下列命题中正确的是________(填序号).
①如果直线l与平面α内的无数条直线垂直,则l⊥α;
②如果直线l与平面α内的一条直线垂直,则l⊥α;
③如果直线l不垂直于α,则α内没有与l垂直的直线;
④如果直线l不垂直于α,则α内也可以有无数条直线与l垂直.
2.直线a⊥直线b,b⊥平面β,则a与β的关系是________.
3.若a、b、c表示直线,α表示平面,下列条件中能使a⊥α为________.(填序号)
①a⊥b,b⊥c,b⊂α,c⊂α;②a⊥b,b∥α;
③a∩b=A,b⊂α,a⊥b;④a∥b,b⊥α.
4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC的形状为__________三角形.
5.如图①所示,在正方形SG1G2G3中,E、F分别是边G1G2、G2G3的中点,D是EF 的中点,现沿SE、SF及EF把这个正方形折成一个几何体(如图②使G1、G2、G3三点重合于一点G),则下列结论中成立的有________(填序号).
①SG⊥面EFG;②SD⊥面EFG;③GF⊥面SEF;
④GD⊥面SEF.
6.△ABC的三条边长分别是5、12、13,点P到三点的距离都等于7,那么P到平面ABC的距离为__________________________________________________________________.7.如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为________.8.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件______时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).9.如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=________.
二、解答题
10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.
11.如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB,PC的中点,PA=AD.
求证:(1)CD⊥PD;
(2)EF⊥平面PCD.
能力提升
12.如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证B1O⊥平面PAC.
13.如图所示,△ABC中,∠ABC=90°,SA⊥平面ABC,过点A向SC和SB引垂线,垂足分别是P、Q,求证:(1)AQ⊥平面SBC;
(2)PQ⊥SC.
1.直线和平面垂直的判定方法 (1)利用线面垂直的定义. (2)利用线面垂直的判定定理.
(3)利用下面两个结论:①若a ∥b ,a ⊥α,则b ⊥α;②若α∥β,a ⊥α,则a ⊥β.
2.在线面垂直的问题中,通过直线与直线垂直,可以证明直线与平面垂直;直线与平面垂直后,直线和平面内的任何直线都垂直.这样,就形成了线线垂直与线面垂直连环使用的思维形式,它对解题方法、策略乃至人们的思维,无疑都是一种提示.
第3课时 直线与平面垂直的判定 答案
知识梳理
1.任意一条直线都垂直 a ⊥α 2.垂足
3.相交 垂直 m ,n ⊂α,m ∩n =O ,l ⊥m ,l ⊥n ⇒l ⊥α 作业设计
1.④ 2.a ⊂β或a ∥β 3.④ 4.直角
解析 易证AC ⊥面PBC ,所以AC ⊥BC . 5.① 6.32
3
解析 由P 到三个顶点距离相等.可知,P 为△ABC 的外心,又△ABC 为直角三角形,
∴P 到平面ABC 的距离为h =PD =72-⎝⎛⎭⎫1322=3
23.
7.4
解析
⎭
⎪⎬⎪⎫PA ⊥平面ABC BC ⊂平面ABC ⇒
⎭
⎪⎬⎪
⎫PA ⊥BC AC ⊥BC ⇒BC ⊥平面PAC ⇒BC ⊥PC ,
∴直角三角形有△PAB 、△PAC 、△ABC 、△PBC . 8.∠A 1C 1B 1=90°
解析
如图所示,连结B 1C ,
由BC =CC 1,可得BC 1⊥B 1C ,
因此,要证AB 1⊥BC 1,则只要证明BC 1⊥平面AB 1C ,
即只要证AC ⊥BC 1即可,由直三棱柱可知,只要证AC ⊥BC 即可. 因为A 1C 1∥AC ,B 1C 1∥BC , 故只要证A 1C 1⊥B 1C 1即可.
(或者能推出A 1C 1⊥B 1C 1的条件,如∠A 1C 1B 1=90°等) 9.90°
解析 ∵B 1C 1⊥面ABB 1A 1, ∴B 1C 1⊥MN . 又∵MN ⊥B 1M , ∴MN ⊥面C 1B 1M , ∴MN ⊥C 1M . ∴∠C 1MN =90°.
10.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF , ∴∠BCF +∠EBC =90°,∴CF ⊥BE ,
又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,AB ∩BE =B ,∴CF ⊥平面EAB . 11.证明 (1)∵PA ⊥底面ABCD , ∴CD ⊥PA .
又矩形ABCD 中,CD ⊥AD ,且AD ∩PA =A , ∴CD ⊥平面PAD , ∴CD ⊥PD .
(2)取PD 的中点G ,连结AG ,FG .又∵G 、F 分别是PD ,PC 的中点,
∴GF 綊1
2
CD ,∴GF 綊AE ,
∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵PA =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD ,
∵CD ⊥平面PAD ,AG ⊂平面PAD . ∴CD ⊥AG .∴EF ⊥CD .
∵PD ∩CD =D ,∴EF ⊥平面PCD .
12.证明 连结AB 1,CB 1,设AB =1. ∴AB 1=CB 1=2,
∵AO =CO ,∴B 1O ⊥AC . 连结PB 1.
∵OB 21=OB 2+BB 21=32
, PB 21=PD 21+B 1D 2
1
=94, OP 2=PD 2+DO 2=3
4,
∴OB 21+OP 2=PB 2
1. ∴B 1O ⊥PO ,
又∵PO ∩AC =O , ∴B 1O ⊥平面PAC .
13.证明 (1)∵SA ⊥平面ABC ,BC ⊂平面ABC , ∴SA ⊥BC .
又∵BC ⊥AB ,SA ∩AB =A , ∴BC ⊥平面SAB . 又∵AQ ⊂平面SAB ,
∴BC ⊥AQ .又∵AQ ⊥SB ,BC ∩SB =B , ∴AQ ⊥平面SBC .
(2)∵AQ ⊥平面SBC ,SC ⊂平面SBC , ∴AQ ⊥SC .
又∵AP ⊥SC ,AQ ∩AP =A , ∴SC ⊥平面APQ .
∵PQ ⊂平面APQ ,∴PQ ⊥SC .。