高二会考数学重点知识点梳理五篇
高二数学知识点总结归纳5篇
高二数学知识点总结归纳5篇
高二数学知识点1
1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.
2、倾斜角α的取值范围:0°≤α<180°.
当直线l与x轴垂直时,α=90°.
3、直线的斜率:
一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα
⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;
⑵当直线l与x轴垂直时,α=90°,k不存在.
由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.
4、直线的斜率公式:
给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:
斜率公式:
3.1.2两条直线的平行与垂直
1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有
L1∥L2
2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即
3.2.1直线的点斜式方程
1、直线的点斜式方程:直线经过点且斜率为
2、、直线的斜截式方程:已知直线的斜率为
3.2.2直线的两点式方程
1、直线的两点式方程:已知两点
2、直线的截距式方程:已知直线
3.2.3直线的一般式方程
高二数学知识点总结梳理五篇分享
高二数学知识点总结梳理五篇分享
总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,让我们一起来学习写总结吧。你想知道总结怎么写吗?以下是小编整理的高二数学知识点总结梳理五篇分享,欢迎阅读与收藏。
高二数学知识点总结梳理五篇分享1
一、直线与圆:
1、直线的倾斜角的范围是
在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;
2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.
过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,
⑵斜截式:直线在轴上的截距为和斜率,则直线方程为
4、直线与直线的位置关系:
(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0
5、点到直线的距离公式;
两条平行线与的距离是
6、圆的标准方程:.⑵圆的一般方程:
注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长
高二数学知识点及公式总结5篇
高二数学知识点及公式总结5篇
第一篇:高二数学必备知识点及公式总结
1.函数的概念及其性质
函数是一种特殊的关系,它将一组自变量的值映射到另一组因变量的值上。函数的三要素为定义域、值域和对应关系。常见的函数有一次函数、二次函数、指数函数、对数函数等,不同的函数具有不同的性质。
常见函数的公式:
一次函数:y = kx + b
二次函数:y = ax^2 + bx + c
指数函数:y = a^x (a > 0, a ≠ 1)
对数函数:y = loga(x) (a > 0, a ≠ 1)
2.三角函数及其应用
三角函数是指正弦函数、余弦函数、正切函数等。由于三角函数具有周期性、奇偶性、单调性等特点,因此在物理、工程、数学等领域中被广泛应用。
三角函数的公式:
正弦函数:y = sinx
余弦函数:y = cosx
正切函数:y = tanx
割函数:y = secx
余割函数:y = cotx
3.微积分基础
微积分是研究函数变化的过程的一门学科,包括导数和积分两个方面。导数表示函数在某一点的变化率,积分则表示函数在一段区间内的累积变化量。微积分在自然科学、社会科学、工程技术等领域中均有广泛应用。
微积分的公式:
导数公式:f'(x) = lim├_(∆x→0) (f(x + ∆x) - f(x))/∆x
积分公式:∫_a^b f(x)dx = lim├_n→∞ □(□(□(Δx )))Σ▒f(xi)Δx
第二篇:高二数学解析几何知识点及公式总结
1.向量及其运算
向量是数学中的一种对象,具有大小和方向两个要素。向量的
高二会考数学重要知识点整理分享【5篇】
高二会考数学重要知识点整理分享
【5篇】
学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个知识点,这样也方便同学们日后的复习。下面就是给大家带来的高二会考数学知识点,希望能帮助到大家!
高二会考数学知识点1
一、集合、简易逻辑(14课时,8个)
1.集合;
2.子集;
3.补集;
4.交集;
5.并集;
6.逻辑连结词;
7.四种命题;
8.充要条件。
二、函数(30课时,12个)
1.映射;
2.函数;
3.函数的单调性;
4.反函数;
5.互为反函数的函数图象间的关系;
6.指数概念的扩充;
7.有理指数幂的运算;
8.指数函数;
9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)
1.数列;
2.等差数列及其通项公式;
3.等差数列前n项和公式;
4.等比数列及其通顶公式;
5.等比数列前n项和公式。
四、三角函数(46课时,17个)
1.角的概念的推广;
2.弧度制;
3.任意角的三角函数;
4.单位圆
中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)
1.向量;
2.向量的加法与减法;
3.实数与向量的积;
4.平面向量
的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
高二数学必考知识点精选归纳【五篇】
高二数学必考知识点精选归纳【五篇】
高二数学知识点总结1
分层抽样
1.分层抽样(类型抽样):
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
两种方法:
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
分层标准:
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。
3.分层的比例问题:
(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
高二数学知识点总结2
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
高二数学必考知识点精选归纳【五篇】
高二数学必考知识点精选归纳【五
篇】
学任何一门功课,都不能只有三分钟热度,而要一鼓作气,天天坚持,久而久之,不论是状元还是伊人,都会向你招手。下面就是给大家带来的高二数学知识点总结,希望能帮助到大家!
高二数学知识点总结1
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B 互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则
P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
高二会考数学知识点精选整理【5篇】
高二会考数学知识点精选整理【5篇】
高二变化的大背景,便是文理分科(或七选三)。在对各个学科都有了初步了解后,学生们需要对自己未来的发展科目有所选择、有所侧重。这可谓是学生们第一次完全自己把握、风险未知高二会考数学知识点1
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本
事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B 互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则
P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
高二数学知识点重点梳理最新5篇精选
高二数学知识点重点梳理最新5篇精选
直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。另一方面通过自学主动获取知识。能否顺利实现转变,是成绩能否突破的关键。
高二数学知识点总结1
1.解不等式问题的分类
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化为一元一次或一元二次不等式的不等式.
①解一元高次不等式;
②解分式不等式;
③解无理不等式;
④解指数不等式;
⑤解对数不等式;
⑥解带绝对值的不等式;
⑦解不等式组.
2.解不等式时应特别注意下列几点:
(1)正确应用不等式的基本性质.
(2)正确应用幂函数、指数函数和对数函数的增、减性.
(3)注意代数式中未知数的取值范围.
3.不等式的同解性
(5)|f(x)|
(6)|f(x)|g(x)①与f(x)g(x)或f(x)-g(x)(其中g(x)≥0)同解;②与g(x)0同解.
(9)当a1时,af(x)ag(x)与f(x)g(x)同解,当0ag(x)与f(x)
高二数学知识点总结2
用样本的数字特征估计总体的数字特征
1、本均值:
2、样本标准差:
3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变
高二重点数学知识点总结归纳五篇
高二重点数学知识点总结归纳五篇
高二数学知识点1
1.圆的定义
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
2.圆的方程
(_-a) +(y-b) =r
(1)标准方程,圆心(a,b),半径为r;
(2)求圆方程的方法:
一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
3.直线与圆的位置关系
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(_-a)2+(y-b)2=r2,圆上一点为(_0,y0),则过此点的切线方程为(_0-a)(_-a)+(y0-b)(y-b)=r2
练习题:
2.若圆(_-a)2+(y-b)2=r2过原点,则()
A.a2-b2=0
B.a2+b2=r2
C.a2+b2+r2=0
D.a=0,b=0
【解析】选B.因为圆过原点,所以(0,0)满足方程,
即(0-a)2+(0-b)2=r2,
所以a2+b2=r2.
高二数学知识点2
1.圆的定义:
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
2.圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形.
高二数学知识点重点梳理归纳5篇
高二数学知识点重点梳理归纳5篇
直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。另一方面通过自学主动获取知识。能否顺利实现转变,是成绩能否突破的关键。
高二数学知识点总结1
1.解不等式问题的分类
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化为一元一次或一元二次不等式的不等式.
①解一元高次不等式;
②解分式不等式;
③解无理不等式;
④解指数不等式;
⑤解对数不等式;
⑥解带绝对值的不等式;
⑦解不等式组.
2.解不等式时应特别注意下列几点:
(1)正确应用不等式的基本性质.
(2)正确应用幂函数、指数函数和对数函数的增、减性.
(3)注意代数式中未知数的取值范围.
3.不等式的同解性
(5)|f(x)|
(6)|f(x)|g(x)①与f(x)g(x)或f(x)-g(x)(其中g(x)≥0)同解;②与g(x)0同解.
(9)当a1时,af(x)ag(x)与f(x)g(x)同解,当0ag(x)与f(x)
高二数学知识点总结2
用样本的数字特征估计总体的数字特征
1、本均值:
2、样本标准差:
3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变
高二数学重点复习知识点归纳5篇
高二数学重点复习知识点归纳5篇
高二数学是一门很重要的学科,它不仅是其它学科的基础,还是升学和工作的重要一环。由于数学内容较多,知识点也较为深奥,复习难度较大,因此,在复习高二数学时,学生们需要对各个知识点进行分类、整理和归纳. 以下是五种重点复习知
识点的归纳。
1. 函数与导数
函数与导数是高二数学中的核心知识点,也是后续理论的基础,因此非常重要。在复习时,可以重点复习以下重要知识点:
(1)常见函数及其性质,如常函数、幂函数、指数函数、对
数函数、三角函数等;
(2)函数的定义域、值域、单调性及极值等;
(3)导数的定义、求导法则及其应用;
(4)二阶导数的概念与应用;
(5)函数的极值、曲线形状及其与导数的关系等。
2. 三角恒等式
三角恒等式也是高二数学中的重点,几乎涉及全部内容,考试时也经常考查,因此需要重视。在复习时,可以重点复习以下
重要知识点:
(1)正弦、余弦、正切、余切等三角函数的定义及其图像;
(2)三角函数的基本恒等式、和差化积恒等式等;
(3)三角函数的奇偶性、单调性、周期性等;
(4)三角函数的简单变形及其应用。
3. 数列与数学归纳法
数列与数学归纳法也是高二数学中的重点知识点,也是考试中经常考查的内容。在复习时,可以重点复习以下重要知识点:
(1)基本概念,如等差数列、等比数列、递推公式等;
(2)数列的通项公式及其应用;
(3)数列的极限及其性质;
(4)数学归纳法的概念、步骤及其应用。
例如:
1. 一等差数列的第6项是10,第10项是22,求第20项的值。
2. 若等比数列的第3项是12,第6项是162,第10项是5832,
高二数学必考知识点整理5篇分享
高二数学必考知识点整理5篇分享
高二数学知识点1
考点一:向量的概念.向量的基本定理
【内容解读】了解向量的实际背景,掌握向量.零向量.平行向量.共线向量.单位向量.相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理.
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小.
考点二:向量的运算
【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则.三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系.
【命题规律】命题形式主要以选择.填空题型出现,难度不大,考查重点为模和向量夹角的定义.夹角公式.向量的坐标运算,有时也会与其它内容相结合.
考点三:定比分点
【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解.
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般.由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目.
考点四:向量与三角函数的综合问题
【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求.
高二会考数学必考知识点总结【五篇】
高二会考数学必考知识点总结【五篇】
高二会考数学必考知识点总结【一篇】:
高二数学的学习相比于初中数学来说,难度更高,知识点更加繁多,而且高二数学是高考数学的重要基础。因此,考生在备考高考时必须充分理解各种知识点,并将它们融会贯通,才能在高考中取得好成绩。本文将列举出高二会考数学必考知识点,希望对各位考生有所帮助。
1.直线方程的表示
高考数学中相信每一位同学都了解到直线的方程是很重要的,上数学老师都会告诉我们,直线的方程有三种表示方法,它们分别是一般式、点斜式、截距式。
一般式:Ax+By+C=0
点斜式:y-y1=k(x-x1) (k为斜率)
截距式:y=kx+b (k为斜率,b为截矩)
2.平面直角坐标系上的曲线
在平面直角坐标系上,曲线有不同的类型,如函数图像、二次函数图像、指数函数图像、对数函数图像、正弦函数图像、余弦函数图像等。而每一种曲线又各自有不同的性质和特点。
例如,二次函数图像呈现出一个“U”型,判断一个二次函数的
开口方向,可通过判定它的次数和二次系数的正负来确定。如果二次系数大于0,则曲线开口朝上;如果二次系数小于0,
则曲线开口朝下。
3.三角函数
三角函数是高考数学的复习重点,主要包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。正弦函数和余弦函数幅度都在-1和1之间,它们分别表示一个标准角的正弦和余弦;正切函数和余切函数的定义分别是正弦和余弦的商,正割函数和余割函数则是余弦和正弦的商。
考生需要掌握三角函数的各种公式和性质,例如和差公式、倍角公式、半角公式和余弦定理等,同时也要能够运用三角函数解决各种实际问题。
高二会考数学必考知识点总结【五篇】
高二会考数学必考知识点总结【五篇】
高二会考数学知识点1
圆的方程
1圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
高二会考数学知识点2
1圆的定义:
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
高二会考数学知识点总结分享【五篇】
高二会考数学知识点总结分享【五篇】
第一篇:高二会考数学知识点总结——函数与解析几何
函数:函数是一种数学关系,将一个自变量映射到一个因变量上。高考中常考的内容包括函数的定义,函数的图像,函数的性质,函数的值域和模型应用等。
例子:
1. f(x) = x^2-2x+1 在直角坐标系内的图像是一个开口朝上的抛物线,顶点坐标为(1,0);
2. 函数f(x) = cosx 在 [-π,π] 的定义域上取最大值为1,最小值为-1;
3. 函数f(x) = 1/(x-2) 在定义域 (-∞,2) U (2,+∞)上具有单射性。
解析几何:解析几何是三维空间中平面与直线的研究。高考中常考的知识点包括点、直线、平面的向量表示和相关性质,以及平面与直线之间的位置关系等。
例子:
1. 直线 L1 ∶ { 3x + 4y - 5z = 0, x - y + z = 0 } 与直线 L2 ∶ { 2x + y + z = 0, 3x - y -3z = 0 } 的距离为 5/7;
2. 平面α ∶ { x + y - z = 1, x - z = 0 } 与直线 L ∶ { x - y + z = 2, y - z = 1 } 的位置关系是相交;
3. 向量 a = (2,4,1), b = (1,-3,2) 的点积为 -4。
第二篇:高二会考数学知识点总结——数系与函数初步
数系:数系是指不同类型的数的集合。高考中涉及到的数系包括自然数、整数、有理数、无理数、实数和复数等。
例子:
1. 0.2是一个有理数;
2. √2是一个无理数;
高二数学必考知识点总结分享【5篇】
高二数学知识点1
一、集合、简易逻辑(14课时,8个)
1.集合;
2.子集;
3.补集;
4.交集;
5.并集;
6.逻辑连结词;
7.四种命题;
8.充要条件。
二、函数(30课时,12个)
1.映射;
2.函数;
3.函数的单调性;
4.反函数;
5.互为反函数的函数图象间的关系;
6.指数概念的扩充;
7.有理指数幂的运算;
8.指数函数;
9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)
1.数列;
2.等差数列及其通项公式;
3.等差数列前n项和公式;
4.等比数列及其通顶公式;
5.等比数列前n项和公式。
四、三角函数(46课时,17个)
1.角的概念的推广;
2.弧度制;
3.任意角的三角函数;
4.单位圆中的三角函数线;
5.同角三角函数的基本关系式;
6.正弦、余弦的诱导公式;
7.两角和与差的正弦、余弦、正切;
8.二倍角的正弦、余弦、正切;
9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)
1.向量;
2.向量的加法与减法;
3.实数与向量的积;
4.平面向量的坐标表示;
5.线段的定比分点;
6.平面向量的数量积;
7.平面两点间的距离;
8.平移。
六、不等式(22课时,5个)
1.不等式;
2.不等式的基本性质;
3.不等式的证明;
4.不等式的解法;
5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二会考数学重点知识点梳理五篇
高二会考数学知识点1
空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.
线线平行线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那么这条直线和交线平行.线面平行线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.
(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)
高二会考数学知识点2
导数是微积分中的重要基础概念。当函数y=f(x)的自变量x 在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的
线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x?f(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也****于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
高二会考数学知识点3
第一章:集合和函数的基本概念,错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数:指数、对数、幂函数三大函数的运算性质及图像。函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及
函数值的大小关系,这也是常考常错点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化问题也要了解清楚。
第三章:函数的应用。主要就是函数与方程的结合。其实就是的实根,即函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间的灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这是这一章的难点,这几种证明方法都要记得,多练习强化。这二次函数的零点的Δ判别法,这个倒不算难。
高二会考数学知识点4
导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;
⑤;⑥;⑦;⑧。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤: