MAX485_486

合集下载

MEMORY存储芯片MAX485EEPA+中文规格书

MEMORY存储芯片MAX485EEPA+中文规格书

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers2MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487ABSOLUTE MAXIMUM RATINGSSupply Voltage (V CC ) (12V)Control Input Voltage (RE , DE)...................-0.5V to (V CC + 0.5V)Driver Input Voltage (DI).............................-0.5V to (V CC + 0.5V)Driver Output Voltage (A, B)...................................-8V to +12.5VReceiver Input Voltage (A, B).................................-8V to +12.5VReceiver Output Voltage (RO)....................-0.5V to (V CC + 0.5V)Continuous Power Dissipation (T A = +70°C)8-Pin Plastic DIP (derate 9.09mW/°C above +70°C)....727mW14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)..800mW8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 8-Pin µMAX (derate 4.1mW/°C above +70°C)..............830mW 8-Pin CERDIP (derate 8.00mW/°C above +70°C).........640mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C).......727mW Operating Temperature Ranges MAX4_ _C_ _/MAX1487C_ A...............................0°C to +70°C MAX4__E_ _/MAX1487E_ A.............................-40°C to +85°C MAX4__M_/MAX1487MJA.............................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°C DC ELECTRICAL CHARACTERISTICS(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V V IN = -7V V IN = 12V V IN = -7V V IN = 12V Input Current (A, B)I IN2V TH k Ω48-7V ≤V CM ≤12V, MAX487/MAX1487R INReceiver Input Resistance -7V ≤V CM ≤12V, all devices exceptMAX487/MAX1487R = 27Ω(RS-485), Figure 40.4V ≤V O ≤2.4VR = 50Ω(RS-422)I O = 4mA, V ID = -200mV I O = -4mA, V ID = 200mV V CM = 0V -7V ≤V CM ≤12V DE, DI, REDE, DI, RE MAX487/MAX1487,DE = 0V, V CC = 0V or 5.25VDE, DI, RE R = 27Ωor 50Ω, Figure 4R = 27Ωor 50Ω, Figure 4R = 27Ωor 50Ω, Figure 4DE = 0V;V CC = 0V or 5.25V,all devices exceptMAX487/MAX1487CONDITIONS k Ω12µA ±1I OZR Three-State (high impedance)Output Current at Receiver V 0.4V OL Receiver Output Low Voltage3.5V OH Receiver Output High VoltagemV 70ΔV TH Receiver Input HysteresisV -0.20.2Receiver Differential ThresholdVoltage-0.2mA 0.25mA -0.81.01.55V OD2Differential Driver Output(with load)V 2V 5V OD1Differential Driver Output (no load)µA ±2I IN1Input Current V 0.8V IL Input Low VoltageV 2.0V IH Input High VoltageV 0.2ΔV OD Change in Magnitude of DriverCommon-Mode Output Voltagefor Complementary Output StatesV 0.2ΔV OD Change in Magnitude of DriverDifferential Output Voltage forComplementary Output StatesV 3V OC Driver Common-Mode OutputVoltageUNITS MIN TYP MAX SYMBOL PARAMETERLow-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers7MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487______________________________________________________________Pin DescriptionFigure 1. MAX481/MAX483/MAX485/MAX487/MAX1487 Pin Configuration and Typical Operating Circuit。

max485芯片

max485芯片

max485芯片MAX485是一种用于串行通讯的芯片,它可以实现半双工的通信,常用于RS-485网络中。

这款芯片具有低功耗、高速率、低电压、可靠性高等特点,被广泛应用于工业自动化、远程监控、数据采集等领域。

MAX485芯片采用了双绞四线制接口,可以实现长距离传输,通信距离可达1200米。

其通信速率可以高达2.5Mbps,同时还支持多点连接,可以连接最多32个驱动器和接收器。

MAX485芯片的工作电压范围为3.0V至5.25V,因此可以适应不同的工作环境。

在低功耗模式下,它的供电电流仅为1μA,非常适合电池供电的应用。

此外,MAX485还具有过温保护功能,可以保护芯片免受过热损坏。

MAX485芯片的架构采用了低功耗CMOS技术,具有自动接收释放和禁用保护电路,可以有效地降低功耗。

此外,它还配备了过电流保护和过电压保护电路,可以保护芯片免受电路故障的影响。

MAX485芯片的引脚功能如下:- A/B:差分传输线,用于发送和接收数据。

- RE/DE:接收使能/发送使能引脚,用于控制芯片的发送和接收功能。

- RO/RE:发送使能/接收使能引脚,用于选择芯片的发送和接收功能。

- VCC:供电引脚,具有3.0V至5.25V的宽工作电压范围。

- GND:地线引脚,用于接地连接。

MAX485芯片的工作原理如下:- 发送数据时,通过RE/DE引脚将芯片设置为发送模式,将发送的数据信号输入到A/B差分传输线上。

- 接收数据时,通过RE/DE引脚将芯片设置为接收模式,通过RO/RE引脚选择芯片的发送和接收功能。

接收到的数据信号经过差分收发线转换为通用串行总线信号。

- 在半双工通信时,A/B线上只能有一方发送数据,另一方只能接收数据。

总之,MAX485芯片是一款功能强大且灵活的串行通信芯片,具有高速率、低功耗、可靠性高等特点,被广泛应用于工业自动化、远程监控、数据采集等领域。

它的性能优越和稳定性使得它成为RS-485通信领域中的首选芯片。

MAX485典型电路讲解

MAX485典型电路讲解

管脚的功能如下:
RO:接收器输出端。若A比B大200mV,RO为高;反之为低电平。
RE:接收器输出使能端。RE为低时,RO有效;为高时,RO呈高阻
状态。
DE:驱动器输出使能端。若DE=1,驱动器输
出A和B有效;若DE=0,则它们呈高阻态。若
驱动器输出有效,器件作为线驱动器用,反之
作为线接收器用。
DI:驱动器输入端。DI=0,有A=0,B=1;
WR1: SETB SDA ;此位为 1,发送1
SETB SCL ;时钟脉冲变高电
NOP NOP CLR SCL
;时钟脉冲变低电
CLR SDA DJNZ R7,WLP
RET
(5)字节数据接收子程序
该子程序的功能是在时钟的高电平时数据已稳定,读入一位,经过8 个时钟从SDA线上读入一个字节数据,并将所读字节存于A和R6
当DI=1,则A=1,B=0。
GND:接地。
A:同相接收器输入和同相驱动器输出。
B:反相接收器输入和反相驱动器输出。
图9.1 MAX485芯片的
VCC:电源端,一般接+5V。
DIP封装管脚图
MAX485典型的工作电路如图9.2所示,其中平衡电阻Rp 通常取100~300欧姆。MAX485的收发功能见表9.3。
单片机原理、接口及应用
内容提要
★ RS-485总线扩展 ★ IIC总线扩展接口及应用 ★ SPI总线扩展接口及应用
9.1 RS-485总线扩展
RS-485标准接口是单片机系统种常用的一种串行总线之 一。与RS-232C比较,其性能有许多改进,细节请见表9.1所示。
表9.1 RS-232C与RS-485性能比较
该子程序的入口条件是待发送的字节位于累加器ACC中。

MAX485中文资料

MAX485中文资料

.ylno noitaulave roF moc.erawtfostixof.www//:ptth erawtfoS tixoF © rotaerC FDP tixoF yb detareneG
;++noitcerid ;),A1RSCU(TIB_TES // ;c=0RCDU // ;c=1RDU ;584_DAER
零清位志标束结送发将//;)1CXT(VB_ =| A1RSCU ;)))1CXT<<1(&A1RSCU(!(elihw 空为区冲缓送发待等//;)))1ERDU<<1(&A1RSCU(! (elihw ;)(suByaleD;)(suByaleD;)(suByaleD ;584_DNES {
.ylno noitaulave roF moc.erawtfostixof.www//:ptth erawtfoS tixoF © rotaerC FDP tixoF yb detareneG
} ;1=galf_1cer { }
;1RDU=ffub1cer ))1CXR<<1(&A1RSCU(fi 1 trop laires//)VCER_1TRAU_GIS(LANGIS } {
位止停位 1�能使送发收接�验校无�位据数位 8�k6.9 率特波置设�率频 zhM61// )diov(tini_1trasU diov 10x0=|CTROP 584_DNES enifed# �下如序程 CP 连接短 ER 和 ED 的 584XAM,M61 部外为振晶,过通试调�序程的收接断中信通 584 的 UA61 821agem 于基是 面下。制控向方讯通上加要需序程讯通 584XAM 是只�的样一是上质本在序程讯通 232XAM 与序程讯通 584XAM �口 0 efx0=&CTROP 584_DAER enifed#

max3485中文资料

max3485中文资料

max485接口芯片是Maxim公司的一种RS-485芯片。

简介:MAX485、MAX487-MAX491以及MAX1487是用于RS-485与RS-422通信的低功耗收发器,每个器件中都具有一个驱动器和一个接收器。

MAX483、MAX487、MAX488以及MAX489具有限摆率驱动器,可以减小EMI,并降低由不恰当的终端匹配电缆引起的反射,实现最高250kbps的无差错数据传输。

MAX481、MAX485、MAX490、MAX491、MAX1487的驱动器摆率不受限制,可以实现最高2.5Mbps的传输速率。

这些收发器在驱动器禁用的空载或满载状态下,吸取的电源电流在120&micro;A至500&micro;A之间。

另外,MAX481、MAX483与MAX487具有低电流关断模式,仅消耗0.1&micro;A。

所有器件都工作在5V单电源下。

采用单一电源+5 V工作,额定电流为300 μA,采用半双工通讯方式。

它完成将TTL电平转换为RS-485电平的功能。

MAX485芯片的结构和引脚都非常简单,内部含有一个驱动器和接收器。

RO和DI 端分别为接收器的输出和驱动器的输入端,与单片机连接时只需分别与单片机的RXD和TXD相连即可;/RE和DE端分别为接收和发送的使能端,当/RE为逻辑0时,器件处于接收状态;当DE为逻辑1时,器件处于发送状态,因为MAX485工作在半双工状态,所以只需用单片机的一个管脚控制这两个引脚即可;A端和B端分别为接收和发送的差分信号端,当A引脚的电平高于B时,代表发送的数据为1;当A的电平低于B端时,代表发送的数据为0。

在与单片机连接时接线非常简单。

只需要一个信号控制MAX485的接收和发送即可。

同时将A和B端之间加匹配电阻,一般可选100Ω的电阻。

基本参数:半双工;限摆率:NO;低电流关断模式:NO;接收允许控制:YES;静态电流300uA;引脚数:8。

Max485使用说明

Max485使用说明

一 485模块描述
1、板载MAX485芯片,是一款用于RS-485通信的低功耗、限摆率收发器
2、板载接5.08(mm)间距2P接线柱,方便RS-485通信接线prefix = o ns = "urn:schemas-microsoft-com:office:office"
3、引出通讯及控制引脚,可连接单片机控制操作
4、工作电压:5V
5、板子尺寸:37(mm)x17.5(mm),设有3MM固定孔
二小板接口说明(4线制)
1 VCC 电源正极(+5V)
2 GND 电源负极
3 RO 接收器输出,连接RXD接口
4 DI 驱动器输入,连接TXD接口
3 RE 接收器输出使能,连接IO口控制
4 DE 驱动器输出使能,连接IO口控制
三使用说明
RE和DE连接说明:
1,分别使用两个IO口控制收发:
RE:接收开关 RE=0:打开 RE=1:关闭
DE:发射开关 DE=0:关闭 DE=1:打开
2,使用一个IO口控制:
RE和DE相连接至一个IO口,IO=0:只接收,IO=1:只发射参考图如下:
两种控制方式取决于系统的设计
3,如果你的系统只有RXD和TXD信号而无控制IO口,则可以由外部直接打开使能,但注意,只能做发射器或接收器。

因板带上拉电阻,RE和DE不连接时(悬空)为高电平,即只做发射器,如需改为接收器使用,则将RE和DE接低电平(接GND端)。

MAX485CSA+中文资料

MAX485CSA+中文资料

For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .General DescriptionThe MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 are low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and one receiver. The MAX483, MAX487, MAX488, and MAX489feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables,thus allowing error-free data transmission up to 250kbps.The driver slew rates of the MAX481, MAX485, MAX490,MAX491, and MAX1487 are not limited, allowing them to transmit up to 2.5Mbps.These transceivers draw between 120µA and 500µA of supply current when unloaded or fully loaded with disabled drivers. Additionally, the MAX481, MAX483, and MAX487have a low-current shutdown mode in which they consume only 0.1µA. All parts operate from a single 5V supply.Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-imped-ance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit.The MAX487 and MAX1487 feature quarter-unit-load receiver input impedance, allowing up to 128 MAX487/MAX1487 transceivers on the bus. Full-duplex communi-cations are obtained using the MAX488–MAX491, while the MAX481, MAX483, MAX485, MAX487, and MAX1487are designed for half-duplex applications.________________________ApplicationsLow-Power RS-485 Transceivers Low-Power RS-422 Transceivers Level TranslatorsTransceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks__Next Generation Device Features♦For Fault-Tolerant ApplicationsMAX3430: ±80V Fault-Protected, Fail-Safe, 1/4Unit Load, +3.3V, RS-485 TransceiverMAX3440E–MAX3444E: ±15kV ESD-Protected,±60V Fault-Protected, 10Mbps, Fail-Safe, RS-485/J1708 Transceivers♦For Space-Constrained ApplicationsMAX3460–MAX3464: +5V, Fail-Safe, 20Mbps,Profibus RS-485/RS-422 TransceiversMAX3362: +3.3V, High-Speed, RS-485/RS-422Transceiver in a SOT23 PackageMAX3280E–MAX3284E: ±15kV ESD-Protected,52Mbps, +3V to +5.5V, SOT23, RS-485/RS-422,True Fail-Safe ReceiversMAX3293/MAX3294/MAX3295: 20Mbps, +3.3V,SOT23, RS-855/RS-422 Transmitters ♦For Multiple Transceiver ApplicationsMAX3030E–MAX3033E: ±15kV ESD-Protected,+3.3V, Quad RS-422 Transmitters ♦For Fail-Safe ApplicationsMAX3080–MAX3089: Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422Transceivers♦For Low-Voltage ApplicationsMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V Powered, ±15kV ESD-Protected, 12Mbps, Slew-Rate-Limited,True RS-485/RS-422 TransceiversMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers______________________________________________________________Selection Table19-0122; Rev 8; 10/03Ordering Information appears at end of data sheet.M A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSSupply Voltage (V CC ).............................................................12V Control Input Voltage (RE , DE)...................-0.5V to (V CC + 0.5V)Driver Input Voltage (DI).............................-0.5V to (V CC + 0.5V)Driver Output Voltage (A, B)...................................-8V to +12.5V Receiver Input Voltage (A, B).................................-8V to +12.5V Receiver Output Voltage (RO).....................-0.5V to (V CC +0.5V)Continuous Power Dissipation (T A = +70°C)8-Pin Plastic DIP (derate 9.09mW/°C above +70°C)....727mW 14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)..800mW 8-Pin SO (derate 5.88mW/°C above +70°C).................471mW14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW 8-Pin µMAX (derate 4.1mW/°C above +70°C)..............830mW 8-Pin CERDIP (derate 8.00mW/°C above +70°C).........640mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C).......727mW Operating Temperature RangesMAX4_ _C_ _/MAX1487C_ A...............................0°C to +70°C MAX4__E_ _/MAX1487E_ A.............................-40°C to +85°C MAX4__MJ_/MAX1487MJA...........................-55°C to +125°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CDC ELECTRICAL CHARACTERISTICS(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.VV IN = -7VV IN = 12V V IN = -7V V IN = 12V Input Current (A, B)I IN2V TH k Ω48-7V ≤V CM ≤12V, MAX487/MAX1487R INReceiver Input Resistance -7V ≤V CM ≤12V, all devices except MAX487/MAX1487R = 27Ω(RS-485), Figure 40.4V ≤V O ≤2.4VR = 50Ω(RS-422)I O = 4mA, V ID = -200mV I O = -4mA, V ID = 200mV V CM = 0V-7V ≤V CM ≤12V DE, DI, RE DE, DI, RE MAX487/MAX1487,DE = 0V, V CC = 0V or 5.25VDE, DI, RE R = 27Ωor 50Ω, Figure 4R = 27Ωor 50Ω, Figure 4R = 27Ωor 50Ω, Figure 4DE = 0V;V CC = 0V or 5.25V,all devices except MAX487/MAX1487CONDITIONSk Ω12µA ±1I OZRThree-State (high impedance)Output Current at ReceiverV 0.4V OL Receiver Output Low Voltage 3.5V OH Receiver Output High Voltage mV 70∆V TH Receiver Input Hysteresis V -0.20.2Receiver Differential Threshold Voltage-0.2mA 0.25mA-0.81.01.55V OD2Differential Driver Output (with load)V 2V 5V OD1Differential Driver Output (no load)µA±2I IN1Input CurrentV 0.8V IL Input Low Voltage V 2.0V IH Input High Voltage V 0.2∆V OD Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States V 0.2∆V OD Change in Magnitude of Driver Differential Output Voltage for Complementary Output States V 3V OC Driver Common-Mode Output VoltageUNITS MINTYPMAX SYMBOL PARAMETERMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers_______________________________________________________________________________________3SWITCHING CHARACTERISTICS—MAX481/MAX485, MAX490/MAX491, MAX1487(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)DC ELECTRICAL CHARACTERISTICS (continued)(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)ns 103060t PHLDriver Rise or Fall Time Figures 6 and 8, R DIFF = 54Ω, C L1= C L2= 100pF ns MAX490M, MAX491M MAX490C/E, MAX491C/E2090150MAX481, MAX485, MAX1487MAX490M, MAX491MMAX490C/E, MAX491C/E MAX481, MAX485, MAX1487Figures 6 and 8, R DIFF = 54Ω,C L1= C L2= 100pF MAX481 (Note 5)Figures 5 and 11, C RL = 15pF, S2 closedFigures 5 and 11, C RL = 15pF, S1 closed Figures 5 and 11, C RL = 15pF, S2 closed Figures 5 and 11, C RL = 15pF, S1 closed Figures 6 and 10, R DIFF = 54Ω,C L1= C L2= 100pFFigures 6 and 8,R DIFF = 54Ω,C L1= C L2= 100pF Figures 6 and 10,R DIFF = 54Ω,C L1= C L2= 100pF CONDITIONS ns 510t SKEW ns50200600t SHDNTime to ShutdownMbps 2.5f MAX Maximum Data Rate ns 2050t HZ Receiver Disable Time from High ns 103060t PLH 2050t LZ Receiver Disable Time from Low ns 2050t ZH Driver Input to Output Receiver Enable to Output High ns 2050t ZL Receiver Enable to Output Low 2090200ns ns 134070t HZ t SKD Driver Disable Time from High |t PLH - t PHL |DifferentialReceiver Skewns 4070t LZ Driver Disable Time from Low ns 4070t ZL Driver Enable to Output Low 31540ns51525ns 31540t R , t F 2090200Driver Output Skew to Output t PLH , t PHL Receiver Input to Output4070t ZH Driver Enable to Output High UNITS MIN TYP MAX SYMBOL PARAMETERFigures 7 and 9, C L = 100pF, S2 closed Figures 7 and 9, C L = 100pF, S1 closed Figures 7 and 9, C L = 15pF, S1 closed Figures 7 and 9, C L = 15pF, S2 closedM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 4_______________________________________________________________________________________SWITCHING CHARACTERISTICS—MAX483, MAX487/MAX488/MAX489(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)SWITCHING CHARACTERISTICS—MAX481/MAX485, MAX490/MAX491, MAX1487 (continued)(V CC = 5V ±5%, T A = T MIN to T MAX , unless otherwise noted.) (Notes 1, 2)3001000Figures 7 and 9, C L = 100pF, S2 closed Figures 7 and 9, C L = 100pF, S1 closed Figures 5 and 11, C L = 15pF, S2 closed,A - B = 2VCONDITIONSns 40100t ZH(SHDN)Driver Enable from Shutdown toOutput High (MAX481)nsFigures 5 and 11, C L = 15pF, S1 closed,B - A = 2Vt ZL(SHDN)Receiver Enable from Shutdownto Output Low (MAX481)ns 40100t ZL(SHDN)Driver Enable from Shutdown toOutput Low (MAX481)ns 3001000t ZH(SHDN)Receiver Enable from Shutdownto Output High (MAX481)UNITS MINTYP MAX SYMBOLPARAMETERtPLH t SKEW Figures 6 and 8, R DIFF = 54Ω,C L1= C L2= 100pFt PHL Figures 6 and 8, R DIFF = 54Ω,C L1= C L2= 100pFDriver Input to Output Driver Output Skew to Output ns 100800ns ns 2000MAX483/MAX487, Figures 7 and 9,C L = 100pF, S2 closedt ZH(SHDN)Driver Enable from Shutdown to Output High2502000ns2500MAX483/MAX487, Figures 5 and 11,C L = 15pF, S1 closedt ZL(SHDN)Receiver Enable from Shutdown to Output Lowns 2500MAX483/MAX487, Figures 5 and 11,C L = 15pF, S2 closedt ZH(SHDN)Receiver Enable from Shutdown to Output Highns 2000MAX483/MAX487, Figures 7 and 9,C L = 100pF, S1 closedt ZL(SHDN)Driver Enable from Shutdown to Output Lowns 50200600MAX483/MAX487 (Note 5) t SHDN Time to Shutdownt PHL t PLH , t PHL < 50% of data period Figures 5 and 11, C RL = 15pF, S2 closed Figures 5 and 11, C RL = 15pF, S1 closed Figures 5 and 11, C RL = 15pF, S2 closed Figures 5 and 11, C RL = 15pF, S1 closed Figures 7 and 9, C L = 15pF, S2 closed Figures 6 and 10, R DIFF = 54Ω,C L1= C L2= 100pFFigures 7 and 9, C L = 15pF, S1 closed Figures 7 and 9, C L = 100pF, S1 closed Figures 7 and 9, C L = 100pF, S2 closed CONDITIONSkbps 250f MAX 2508002000Maximum Data Rate ns 2050t HZ Receiver Disable Time from High ns 25080020002050t LZ Receiver Disable Time from Low ns 2050t ZH Receiver Enable to Output High ns 2050t ZL Receiver Enable to Output Low ns ns 1003003000t HZ t SKD Driver Disable Time from High I t PLH - t PHL I DifferentialReceiver SkewFigures 6 and 10, R DIFF = 54Ω,C L1= C L2= 100pFns 3003000t LZ Driver Disable Time from Low ns 2502000t ZL Driver Enable to Output Low ns Figures 6 and 8, R DIFF = 54Ω,C L1= C L2= 100pFns 2502000t R , t F 2502000Driver Rise or Fall Time ns t PLH Receiver Input to Output2502000t ZH Driver Enable to Output High UNITS MIN TYP MAX SYMBOL PARAMETERMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers_______________________________________________________________________________________530002.5OUTPUT CURRENT vs.RECEIVER OUTPUT LOW VOLTAGE525M A X 481-01OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )1.515100.51.02.0203540450.90.1-50-252575RECEIVER OUTPUT LOW VOLTAGE vs.TEMPERATURE0.30.7TEMPERATURE (°C)O U T P U TL O W V O L T A G E (V )500.50.80.20.60.40100125-20-41.5 2.0 3.0 5.0OUTPUT CURRENT vs.RECEIVER OUTPUT HIGH VOLTAGE-8-16M A X 481-02OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )2.5 4.0-12-18-6-14-10-203.54.5 4.83.2-50-252575RECEIVER OUTPUT HIGH VOLTAGE vs.TEMPERATURE3.64.4TEMPERATURE (°C)O U T P UT H I G H V O L T A G E (V )0504.04.63.44.23.83.01001259000 1.0 3.0 4.5DRIVER OUTPUT CURRENT vs.DIFFERENTIAL OUTPUT VOLTAGE1070M A X 481-05DIFFERENTIAL OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )2.0 4.05030806040200.5 1.5 2.53.5 2.31.5-50-2525125DRIVER DIFFERENTIAL OUTPUT VOLTAGEvs. TEMPERATURE1.72.1TEMPERATURE (°C)D I F FE R E N T I A L O U T P U TV O L T A G E (V )751.92.21.62.01.8100502.4__________________________________________Typical Operating Characteristics(V CC = 5V, T A = +25°C, unless otherwise noted.)NOTES FOR ELECTRICAL/SWITCHING CHARACTERISTICSNote 1:All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to deviceground unless otherwise specified.Note 2:All typical specifications are given for V CC = 5V and T A = +25°C.Note 3:Supply current specification is valid for loaded transmitters when DE = 0V.Note 4:Applies to peak current. See Typical Operating Characteristics.Note 5:The MAX481/MAX483/MAX487 are put into shutdown by bringing RE high and DE low. If the inputs are in this state for lessthan 50ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.M A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 6___________________________________________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = 5V, T A = +25°C, unless otherwise noted.)120008OUTPUT CURRENT vs.DRIVER OUTPUT LOW VOLTAGE20100M A X 481-07OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )6604024801012140-1200-7-5-15OUTPUT CURRENT vs.DRIVER OUTPUT HIGH VOLTAGE-20-80M A X 481-08OUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )-31-603-6-4-2024-100-40100-40-60-2040100120MAX1487SUPPLY CURRENT vs. TEMPERATURE300TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )20608050020060040000140100-50-2550100MAX481/MAX485/MAX490/MAX491SUPPLY CURRENT vs. TEMPERATURE300TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )257550020060040000125100-50-2550100MAX483/MAX487–MAX489SUPPLY CURRENT vs. TEMPERATURE300TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )257550020060040000125MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers_______________________________________________________________________________________7______________________________________________________________Pin DescriptionFigure 1. MAX481/MAX483/MAX485/MAX487/MAX1487 Pin Configuration and Typical Operating CircuitM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487__________Applications InformationThe MAX481/MAX483/MAX485/MAX487–MAX491 and MAX1487 are low-power transceivers for RS-485 and RS-422 communications. The MAX481, MAX485, MAX490,MAX491, and MAX1487 can transmit and receive at data rates up to 2.5Mbps, while the MAX483, MAX487,MAX488, and MAX489 are specified for data rates up to 250kbps. The MAX488–MAX491 are full-duplex trans-ceivers while the MAX481, MAX483, MAX485, MAX487,and MAX1487 are half-duplex. In addition, Driver Enable (DE) and Receiver Enable (RE) pins are included on the MAX481, MAX483, MAX485, MAX487, MAX489,MAX491, and MAX1487. When disabled, the driver and receiver outputs are high impedance.MAX487/MAX1487:128 Transceivers on the BusThe 48k Ω, 1/4-unit-load receiver input impedance of the MAX487 and MAX1487 allows up to 128 transceivers on a bus, compared to the 1-unit load (12k Ωinput impedance) of standard RS-485 drivers (32 trans-ceivers maximum). Any combination of MAX487/MAX1487 and other RS-485 transceivers with a total of 32 unit loads or less can be put on the bus. The MAX481/MAX483/MAX485 and MAX488–MAX491 have standard 12k ΩReceiver Input impedance.Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 8_______________________________________________________________________________________Figure 2. MAX488/MAX490 Pin Configuration and Typical Operating CircuitFigure 3. MAX489/MAX491 Pin Configuration and Typical Operating CircuitMAX483/MAX487/MAX488/MAX489:Reduced EMI and ReflectionsThe MAX483 and MAX487–MAX489 are slew-rate limit-ed, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 12 shows the dri-ver output waveform and its Fourier analysis of a 150kHz signal transmitted by a MAX481, MAX485,MAX490, MAX491, or MAX1487. High-frequency har-monics with large amplitudes are evident. Figure 13shows the same information displayed for a MAX483,MAX487, MAX488, or MAX489 transmitting under the same conditions. Figure 13’s high-frequency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced.MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers_______________________________________________________________________________________9_________________________________________________________________Test CircuitsFigure 4. Driver DC Test Load Figure 5. Receiver Timing Test LoadFigure 6. Driver/Receiver Timing Test Circuit Figure 7. Driver Timing Test LoadM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers 10_______________________________________________________Switching Waveforms_________________Function Tables (MAX481/MAX483/MAX485/MAX487/MAX1487)Figure 8. Driver Propagation DelaysFigure 9. Driver Enable and Disable Times (except MAX488 and MAX490)Figure 10. Receiver Propagation DelaysFigure 11. Receiver Enable and Disable Times (except MAX488and MAX490)Table 1. TransmittingTable 2. ReceivingLow-Power Shutdown Mode (MAX481/MAX483/MAX487)A low-power shutdown mode is initiated by bringing both RE high and DE low. The devices will not shut down unless both the driver and receiver are disabled.In shutdown, the devices typically draw only 0.1µA of supply current.RE and DE may be driven simultaneously; the parts are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 600ns, the parts are guaranteed to entershutdown.For the MAX481, MAX483, and MAX487, the t ZH and t ZL enable times assume the part was not in the low-power shutdown state (the MAX485/MAX488–MAX491and MAX1487 can not be shut down). The tZH(SHDN)and t ZL(SHDN)enable times assume the parts were shut down (see Electrical Characteristics ).It takes the drivers and receivers longer to become enabled from the low-power shutdown state(t ZH(SHDN ), t ZL(SHDN)) than from the operating mode(t ZH , t ZL ). (The parts are in operating mode if the –R —E –,DE inputs equal a logical 0,1 or 1,1 or 0, 0.)Driver Output Protection Excessive output current and power dissipation causedby faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short cir-cuits over the whole common-mode voltage range (see Typical Operating Characteristics ). In addition, a ther-mal shutdown circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively.Propagation DelayMany digital encoding schemes depend on the differ-ence between the driver and receiver propagation delay times. Typical propagation delays are shown in Figures 15–18 using Figure 14’s test circuit.The difference in receiver delay times, | t PLH - t PHL |, istypically under 13ns for the MAX481, MAX485,MAX490, MAX491, and MAX1487 and is typically lessthan 100ns for the MAX483 and MAX487–MAX489.The driver skew times are typically 5ns (10ns max) for the MAX481, MAX485, MAX490, MAX491, and MAX1487, and are typically 100ns (800ns max) for theMAX483 and MAX487–MAX489.MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers______________________________________________________________________________________1110dB/div0Hz 5MHz 500kHz/div 10dB/div0Hz 5MHz500kHz/divFigure 12. Driver Output Waveform and FFT Plot of MAX481/MAX485/MAX490/MAX491/MAX1487 Transmitting a 150kHzSignalFigure 13. Driver Output Waveform and FFT Plot of MAX483/MAX487–MAX489 Transmitting a 150kHz SignalM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers12______________________________________________________________________________________V CC = 5V T A = +25°C V CC = 5V T A = +25°C V CC = 5V T A = +25°CV CC = 5V T A = +25°C Figure 14. Receiver Propagation Delay Test Circuit Figure 15. MAX481/MAX485/MAX490/MAX491/MAX1487Receiver t PHL Figure 16. MAX481/MAX485/MAX490/MAX491/MAX1487Receiver t PLH PHL Figure 18. MAX483, MAX487–MAX489 Receiver t PLHLine Length vs. Data Rate The RS-485/RS-422 standard covers line lengths up to 4000 feet. For line lengths greater than 4000 feet, see Figure 23.Figures 19 and 20 show the system differential voltage for the parts driving 4000 feet of 26AWG twisted-pair wire at 110kHz into 120Ωloads.Typical Applications The MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 transceivers are designed for bidirectional datacommunications on multipoint bus transmission lines.Figures 21 and 22 show typical network applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet, as shown in Figure 23.To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possi-ble. The slew-rate-limited MAX483 and MAX487–MAX489are more tolerant of imperfect termination.MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers______________________________________________________________________________________13DI V Y -V Z RO 5V 0V 1V 0V -1V 5V 0V 2µs/divFigure 19. MAX481/MAX485/MAX490/MAX491/MAX1487 System Differential Voltage at 110kHz Driving 4000ft of Cable Figure 20. MAX483, MAX487–MAX489 System Differential Voltage at 110kHz Driving 4000ft of CableFigure 21. MAX481/MAX483/MAX485/MAX487/MAX1487 Typical Half-Duplex RS-485 NetworkM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers14______________________________________________________________________________________Figure 22. MAX488–MAX491 Full-Duplex RS-485 NetworkFigure 23. Line Repeater for MAX488–MAX491Isolated RS-485For isolated RS-485 applications, see the MAX253 and MAX1480 data sheets.MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers______________________________________________________________________________________15_______________Ordering Information _________________Chip Topographies MAX481/MAX483/MAX485/MAX487/MAX1487N.C. RO 0.054"(1.372mm)0.080"(2.032mm)DE DI GNDB N.C.VCCA RE * Contact factory for dice specifications.__Ordering Information (continued)M A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers16______________________________________________________________________________________TRANSISTOR COUNT: 248SUBSTRATE CONNECTED TO GNDMAX488/MAX490B RO 0.054"(1.372mm)0.080"(2.032mm) N.C. DI GND Z A V CC Y N.C._____________________________________________Chip Topographies (continued)MAX489/MAX491B RO 0.054"(1.372mm)0.080"(2.032mm) DE DI GND Z A V CC Y REMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers______________________________________________________________________________________17Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)SO IC N.E PSM A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers18______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX481/MAX483/MAX485/MAX487–MAX491Low-Power, Slew-Rate-Limited RS-485/RS-422 TransceiversMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses areimplied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________19©2003 Maxim Integrated Products Printed USAis a registered trademark of Maxim Integrated Products.M A X 481/M A X 483/M A X 485/M A X 487–M A X 491/M A X 1487PD I P N.E PS Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages.)。

max485esa中文资料

max485esa中文资料

General DescriptionThe MAX481, MAX483, MAX485, MAX487–MAX491, andMAX1487 are low-power transceivers for RS-485 and RS-422 communication. Each part contains one driver and onereceiver. The MAX483, MAX487, MAX488, and MAX489feature reduced slew-rate drivers that minimize E MI andreduce reflections caused by improperly terminated cables,thus allowing error-free data transmission up to 250kbps.The driver slew rates of the MAX481, MAX485, MAX490,MAX491, and MAX1487 are not limited, allowing them totransmit up to 2.5Mbps.These transceivers draw between 120µA and 500µA ofsupply current when unloaded or fully loaded with disableddrivers. Additionally, the MAX481, MAX483, and MAX487have a low-current shutdown mode in which they consumeonly 0.1µA. All parts operate from a single 5V supply.Drivers are short-circuit current limited and are protectedagainst excessive power dissipation by thermal shutdowncircuitry that places the driver outputs into a high-imped-ance state. The receiver input has a fail-safe feature thatguarantees a logic-high output if the input is open circuit.The MAX487 and MAX1487 feature quarter-unit-loadreceiver input impedance, allowing up to 128 MAX487/MAX1487 transceivers on the bus. Full-duplex communi-cations are obtained using the MAX488–MAX491, whilethe MAX481, MAX483, MAX485, MAX487, and MAX1487are designed for half-duplex applications.________________________Applications Low-Power RS-485 Transceivers Low-Power RS-422 Transceivers Level Translators Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks__Next Generation Device Features o For Fault-Tolerant Applications MAX3430: ±80V Fault-Protected, Fail-Safe, 1/4Unit Load, +3.3V, RS-485 Transceiver MAX3440E–MAX3444E: ±15kV ESD-Protected,±60V Fault-Protected, 10Mbps, Fail-Safe, RS-485/J1708 Transceivers o For Space-Constrained Applications MAX3460–MAX3464: +5V, Fail-Safe, 20Mbps,Profibus RS-485/RS-422 Transceivers MAX3362: +3.3V, High-Speed, RS-485/RS-422Transceiver in a SOT23 Package MAX3280E–MAX3284E: ±15kV ESD-Protected,52Mbps, +3V to +5.5V, SOT23, RS-485/RS-422,True Fail-Safe Receivers MAX3293/MAX3294/MAX3295: 20Mbps, +3.3V,SOT23, RS-485/RS-422 Transmitters o For Multiple Transceiver Applications MAX3030E–MAX3033E: ±15kV ESD-Protected,+3.3V, Quad RS-422 Transmitters o For Fail-Safe Applications MAX3080–MAX3089: Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422Transceiverso For Low-Voltage ApplicationsMAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V Powered, ±15kVESD-Protected, 12Mbps, Slew-Rate-Limited,True RS-485/RS-422 Transceivers For pricing, delivery, and ordering information, please contact Maxim Direct at1-888-629-4642, or visit Maxim Integrated’s website at .______________________________________________________________Selection Table19-0122; Rev 10; 9/14PARTNUMBERHALF/FULL DUPLEX DATA RATE (Mbps) SLEW-RATE LIMITED LOW-POWER SHUTDOWN RECEIVER/DRIVER ENABLE QUIESCENT CURRENT (μA) NUMBER OF RECEIVERS ON BUS PIN COUNT MAX481Half 2.5No Yes Yes 300328MAX483Half 0.25Yes Yes Yes 120328MAX485Half 2.5No No Yes 300328MAX487Half 0.25Yes Yes Yes 1201288MAX488Full 0.25Yes No No 120328MAX489Full 0.25Yes No Yes 1203214MAX490Full 2.5No No No 300328MAX491Full 2.5No No Yes 3003214MAX1487 Half 2.5No No Yes 2301288Ordering Information appears at end of data sheet.找电子元器件上宇航军工MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Low-Power, Slew-Rate-LimitedRS-485/RS-422 TransceiversPackage Information For the latest package outline information and land patterns, go to . Note that a “+”, “#”, or “-”in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.16Low-Power, Slew-Rate-Limited RS-485/RS-422 TransceiversMAX481/MAX483/MAX485/MAX487–MAX491/MAX1487Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-100017©2014 Maxim Integrated Products, Inc.Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.。

MEMORY存储芯片MAX485ESA中文规格书

MEMORY存储芯片MAX485ESA中文规格书

PARAMETER
SYMBOL
CONDITIONS
MIN TYP MAX UNITS
MAX488/MAX489, DE, DI, RE = 0V or VCC
120
250
MAX490/MAX491, DE, DI, RE = 0V or VCC
300
500
No-Load Supply Current (Note 3)
35
250
mA
Driver Short-Circuit Current, VO = Low
IOSD2 -7V ≤ VO ≤12V (Note 4)
35
250
mA
Receiver Short-Circuit Current
IOSR 0V ≤ VO ≤ VCC
7
95
mA
SWITCHING CHARACTERISTICS—MAX481/MAX485, MAX490/MAX491, MAX1487
o For Multiple Transceiver Applications MAX3030E–MAX3033E: ±15kV ESD-Protected, +3.3V, Quad RS-422 Transmitters
o For Fail-Safe Applications MAX3080–MAX3089: Fail-Safe, High-Speed (10Mbps), Slew-Rate-Limited RS-485/RS-422 Transceivers
MAX481
Half
MAX483
Half
MAX485
Half
MAX487
Half
MAX488

485双机通信案例原理与测试说明

485双机通信案例原理与测试说明

“485双机通信”功能实现说明1程序设计目标及程序运行效果说明程序设计目标:通过本例程理解RS485通信方式,实现双机通信。

程序运行效果:将两块带有485模块的51单片机通过485外接引脚A、B连接起来,单片机上电烧写程序后485模块的D/R引脚所对应的二极管均点亮,然后通过按键KEY3、KEY2控制数码管上的数值进行加减处理,两块单片机起始都默认为接收状态,最后按下KEY1发送键,将数据传送给另一块单片机,而此时接收方数码管上的数值发生相应的改变,与发送方数码管上的数值一致。

2程序相关电路及工作原理说明2.1 RS485通信原理RS232接口是1970年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。

针对RS232的不足,于是不断出现了新的接口标准,RS485就是其中的一种。

RS485接口的最大传输距离标准值为4000英尺,实际上可达 3000米,另外RS232接口在总线上只允许连接1个收发器,即单站能力。

而RS485接口在总线上是允许连接多达128个收发器。

即具有多站能力,这样用户可以利用单一的RS485接口方便地建立起设备网络。

RS485属于半双工通信,数据可以在一个信号载体的两个方向上传输,但是不能同时进行传输。

电平转换采用差分电路方式,A、B两线的电压差大于0.2认为是逻辑“1”,小于-0.2认为是逻辑“0”,方便与TTL电路连接。

使用RS485进行通信与RS232通信的逻辑是一致的,但RS485抗干扰性更强,传输距离更远。

RS485广泛运用在工业自动化控制、视频监控、门禁对讲以及楼宇报警等各个领域。

图1 485模块电路原理图MAX485芯片的功能是将TTL电平转换为RS485电平,引脚功能如下:(1)485 D/R输出、接收信号控制引脚:当该引脚为低电平时,485为接收态,MAX485通过485_RXD把来自总线的信号输出给单片机;当该引脚为高电平时,485为发送态,来自485_TXD的输出信号通过A、B引脚加载到总线上。

max485 ab之间 电容

max485 ab之间 电容

max485 ab之间电容什么是电容?电容是电路中常见的一种被动元件,用于储存电荷并调节电路的电压。

它通常由两个金属板之间夹着一层绝缘材料组成,例如电解质、聚酯薄膜等。

当电容器被连接到电源正负极时,正极上的板子获得了一些正电荷,而负极上的板子获得了一些负电荷。

这种电荷的累积导致了电容器两端的电势差或电压。

因此,电容可以储存电能,并在需要时释放出来。

电容的单位电容的常用单位是法拉(Farad,F),以国际物理学家迈克尔·法拉第(Michael Faraday)的名字命名。

标准国际单位制中的法拉定义为:当两极板之间的电势差为1伏特(V)时,如果储存的电荷为1库仑(C),则电容为1法拉。

不过,法拉数量级在大多数电路中较少使用,常用的是毫法拉(millifarads,mF)、微法拉(microfarads,μF)和皮法拉(picofarads,pF)。

电容的计算公式电容的大小可以通过其几何形状、绝缘材料的性质以及两板之间的距离等因素来确定。

一种常用的计算电容的方法是通过以下公式:C = ε₀εᵣA/d其中,C是电容的大小,ε₀是自由空间的介电常数(ε₀≈8.85 * 10⁻¹²F/m),εᵣ是绝缘材料的相对电容性能,A是两极板之间的有效面积,d是两极板之间的间距。

通过这个公式,我们可以看到电容与绝缘材料的介电常数和两板之间的面积成正比,与两板之间的间距成反比。

如何连接电容?电容的连接方式主要有两种:串联和并联。

串联连接是将电容的正极与负极依次相连,形成一个电容链。

在串联连接中,电容值相加以得到等效电容。

例如,两个串联的电容C₁和C₂的等效电容Cₑ为:1/Cₑ= 1/C₁+ 1/C₂而并联连接是将电容的正极连接在一起,负极连接在一起。

在并联连接中,电容值直接相加以得到等效电容。

例如,两个并联的电容C₃和C₄的等效电容Cₑ为:Cₑ= C₃+ C₄并联连接通常用于增加总电容,而串联连接通常用于减小总电容。

MAX485简介

MAX485简介

⊙,MAX485简介MAX485是一个8个引脚的芯片,它是一个标准的RS485收发器,只能进行半双工的通讯,内含一个输出驱动器和一个信号接收器。

MAX485具有低功耗设计,静态电流仅为300uA。

MAX485具有三态输出特性,在使用MAX485时,总线最多可以同时连接32个MAX485芯片。

通讯波特率可以达到2.。

5M 图 1是MAX485的俯视图和逻辑图。

图 1 MAX485逻辑图下面是MAX485的引脚定义:RO(引脚1):接收信号的输出引脚。

可以把来自A和B引脚的总线信号,输出给单片机。

是COMS电平,可以直接连接到单片机。

RE(引脚2):接收信号的控制引脚。

当这个引脚低电平时,RO引脚有效,MAX485通过RO把来自总线的信号输出到单片机;当这个引脚高电平时,RO引脚处于高阻状态。

DE(引脚3):输出信号的控制引脚。

当这个引脚低电平时,输出驱动器无效;当这个引脚高电平时,输出驱动器有效,来自DI引脚的输出信号通过A和B引脚被加载到总线上。

是COMS电平,可以直接连接到单片机。

DI(引脚4):输出驱动器的输入引脚。

是COMS电平,可以直接连接到单片机。

当DE是高电平时,这个引脚的信号通过A和B脚被加载给总线。

GND(引脚5):电源地线。

A(引脚6):连接到RS485总线的A端。

B(引脚7):连接到RS485总线的B端。

Vcc(引脚8):电源线引脚。

电源4.≤Vcc≤5.。

25V75V⊙,MAX485和单片机的连接在一般情况下,可以直接把MAX485和单片机连接在一起。

连接方法如图 2所示。

图 2 单片机和MAX485连接MAX485的控制引脚2和引脚3可以分别控制,也可以共同控制如图 2所示,在图 2中当P1.为高电平时,MAX485作为输出驱动器使用,来自单片机TXD的输出信号通过A和B引脚加载到RS485总线上;当P1.为低电平时,MAX485作为信号接收器使用,来自RS485总线的信号通过RO(1号引脚)被读到单片机的RXD。

MAX485两单片机半双工通信

MAX485两单片机半双工通信

#include<reg52.h>#define uint unsigned int#define uchar unsigned charsbit P0_0=P0^0; //定义P0^0为MAX485使能控制端口ucharidatatable[17]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f,0xaa,0xbd,0xee,0xdd,0x99,0xfd,0xff, 0xff}; //定义灯的16种状态uchar idata table2[10]; //定义接收数据存放数组uchar num,temp; //设置temp变量,num为对应按键设定的编号uchar num1=0,flag; //设置flag为标志位,num1为发送和接收方选择变量/************延时子函数*********/void delay(uint z) //延时自函数{uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}uchar keyscan();/************外部中断INT0实现接收子函数*********/void int0(void) interrupt 0{ int m;P1=0xff; //接收前先使接收方灯全部熄灭for(m=0;m<5;m++) //输出按键发送的5次灯的状态{ P1=table2[m];delay(500); //调用延时子函数}}/***********T1,INT0中断初始化函数**************/void init(){ TMOD=0x20; //设置定时器1为工作方式2TH1=0xe8; //赋计数初值,对应定时26usTL1=0xe8;TR1=1; //T1中断开启EA=1; //总中断开启EX0=1; //外部中断INT0开启IT0=1; //INT0方式下降沿有效REN=1; //串行接收允许SM0=0; //串行通信方式选择方式1SM1=1;}/************接收子函数receive()***************/void receive() //接收子函数{ RI=0; //接收中断开启P0_0=0; //MAX485接收中断有效do //握手过程{SBUF=0x01; //接收方向发送方发送0x01while(TI==0); //发送,如果没发完则继续等待TI=0; //发送成功,那么0->TIwhile(RI==0); //发送方接收接受方的握手信号,若没收到继续等待RI=0; //接收后,0-RI}while(SBUF!=0x02) ; //接收到信号如果等于0x02那么握手成功,否则继续重新收发while(!RI); //如果没收到,继续等待delay(500); //调用延时函数P1=SBUF; //将收到的数据送到P1口显示m=SBUF; //将收到的数据送到接收数组table2[n]中存放table2[n]=m;n++;RI=0; //再次开启接收中断}/*************发送子函数send()************/void send(){ flag=1; //flag标志位赋值,控制按键有效do //握手信号{ SBUF=0x02; //发送方给接收方发送握手信号0x02while(TI==0); //如果没发送完,那么继续等待TI=0; //发送成功,那么0->TIwhile(RI==0); //发送方接收接受方发送的握手信号,若没收到,继续等待RI=0; //若收到,0->RI}while(SBUF!=0x01);//接收到信号如果等于0x01那么握手成功,否则继续重新收发while(flag) i=keyscan(); //将扫描的键盘编码对应的num号码赋值给iflag=1;P0_0=1; //设置MAX485发送使能端有效TI=0; //开启发送中断SBUF=table[i-1]; //将设置数组中的数赋值给发送缓冲区while (!TI); //如果没发送完,那么继续等待P1=table[i-1]; //将设置数组中的数赋值给发送P1TI=0; //若收到,0->TI}/*************主函数main()*************/void main(){ uchar n=0; //设定初始变量n,m,iuchar m;uchar i=0;flag=1; //flag标志位赋值,控制按键有效void init(); //调用T1,INT0中断初始化函数while(flag) i=keyscan(); //将扫描的键盘编码对应的num号码赋值给iflag=1; //flag标志位赋值,控制按键有效while(1){ if(num1==0) //如果num1=0,那么对应为接收方{void receive(); //调用接收子函数}else if(num1==1) //如果num1=1,那么对应为发送方{void send(); //调用发送子函数}}}/**************矩阵键盘4*4函数*************/uchar keyscan(){ P2=0xfe; //选中第四列temp=P2;temp=temp&0xf0; //取P2口数据的高四位,对应为按键的行扫描码while(temp!=0xf0) //如果有按键按下执行以下子函数,软件防抖动{ delay(5); //延时函数调用temp=P2; //P2口数据送入temptemp=temp&0xf0; //取P2口数据的高四位,对应为按键的行扫描码while(temp!=0xf0) //如果有按键按下执行以下子函数{ temp=P2; //P2口数据送入tempswitch(temp) //选择所按键的键码{case 0xee:{num=1;flag=0;} break; //第四列第一行按键编号为1case 0xde:{num=2; flag=0;} break; //第四列第二行按键编号为2case 0xbe:{num=3; flag=0;} break; //第四列第三行按键编号为3case 0x7e:{num=4; flag=0;} break; //第四列第四行按键编号为4}while(temp!=0xf0) //去抖动,并且实现下一次按键的扫描{ temp=P2;temp=temp&0xf0;}}}P2=0xfd; //选中第三列temp=P2;temp=temp&0xf0; //取P2口数据的高四位,对应为按键的行扫描码while(temp!=0xf0) //如果有按键按下执行以下子函数,软件防抖动{ delay(5); //延时函数调用temp=P2; //P2口数据送入temptemp=temp&0xf0; //取P2口数据的高四位,对应为按键的行扫描码while(temp!=0xf0) //如果有按键按下执行以下子函数{ temp=P2; //P2口数据送入tempswitch(temp) //选择所按键的键码{ case 0xed:{num=5;flag=0;} break; //第三列第一行按键编号为5 case 0xdd:{num=6;flag=0;} break; //第三列第二行按键编号为6case 0xbd:{num=7;flag=0;} break; //第三列第三行按键编号为7case 0x7d:{num=8;flag=0;} break; //第三列第四行按键编号为8 }while(temp!=0xf0) //去抖动,并且实现下一次按键的扫描{ temp=P2;temp=temp&0xf0;}}}P2=0xfb; //选中第二列temp=P2;temp=temp&0xf0; //取P2口数据的高四位,对应为按键的行扫描码while(temp!=0xf0) //如果有按键按下执行以下子函数,软件防抖动{ delay(5); //延时函数调用temp=P2; //P2口数据送入temptemp=temp&0xf0; //取P2口数据的高四位,对应为按键的行扫描码while(temp!=0xf0) //如果有按键按下执行以下子函数{ temp=P2; //P2口数据送入tempswitch(temp) //选择所按键的键码{ case 0xeb:{num=9; flag=0;} break; //第二列第一行按键编号为9 case 0xdb:{num=10; flag=0;} break; //第二列第二行按键编号为10case 0xbb:{num=11;flag=0;} break; //第二列第三行按键编号为11case 0x7b:{num=12; flag=0;} break; //第二列第四行按键编号为12 }while(temp!=0xf0) //去抖动,并且实现下一次按键的扫描{ temp=P2;temp=temp&0xf0;}}}P2=0xf7; //选中第一列temp=P2;temp=temp&0xf0; //取P2口数据的高四位,对应为按键的行扫描码while(temp!=0xf0) //如果有按键按下执行以下子函数,软件防抖动{ delay(5); //延时函数调用temp=P2; //P2口数据送入temptemp=temp&0xf0; //取P2口数据的高四位,对应为按键的行扫描码while(temp!=0xf0) //如果有按键按下执行以下子函数{ temp=P2; //P2口数据送入tempswitch(temp) //选择所按键的键码{ case 0xe7:{num=13; flag=0;} break; //第一列第一行按键编号为13 case 0xd7:{num=14; flag=0;} break; //第一列第二行按键编号为14case 0xb7:{num=15;num1=1;flag=0;} break; //第一列第三行按键编号为15case 0x77:{num=16; flag=0;num1=0;} break; //第一列第四行按键编号为16 }while(temp!=0xf0) //去抖动,并且实现下一次按键的扫描{ temp=P2;temp=temp&0xf0;}}}return num; //返回对应按键的标号return flag; //返回对应按键子函数的控制标志位}图:硬件仿真总原理图如图所示,系统总的硬件仿真原理图中包含了单片机系统的时钟电路,复位电路,矩阵键盘4*4电路,即灯显示电路,MAX485串行半双工连接电路的相应电路模块,其中通过选择第三行第一列的按键为发送方,选择第四行第一列的按键为接收方,而且在同一个矩阵键盘中不可以同时按这两个键,通过这种选择可是实现分时的发送和接收,满足半双工的通信方式,其中选择完后,在发送方的矩阵键盘中选择按键,每按一个按键,对应的灯状态在发送和接收两方的P1口显示其的灯状态,连续按5次后,对应灯状态也显示5次,再在接收方的INT0按键按下,可以再次显示刚才5次按键对应灯状态的连续显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

```````````````````````````````````গၤNBY24596F0NBY24597Fဵ,6W৙࢟Ăۍၷ৔Ă௥ᎌ±26lW!FTEۣઐࡼST.596၃ख໭Lj۞਺ጙവདࣅ໭ਜ਼ጙവ୻၃໭ăᑚೝ౒໭ୈ۞౪ပ቉ۣઐ࢟വLjᏴ୻၃໭ၒྜྷఎവ૞࣢വࡼ༽ౚሆཀྵۣၒ߲൝૷঱࢟ຳăྙਫਂ୻Ᏼ࣡୻ᔐሣ࿟ࡼჅᎌख႙໭௿ۻண፿)঱ᔜ*Lj୻၃໭୓ၒ߲൝૷঱࢟ຳăNBY24596F0NBY24597F௥ᎌེރڰ৖ถLjభጲሿ߹࿟࢟૞ེރྜྷဟᔐሣ࿟ࡼ৺ᑇၾܤቧ੓ăNBY24596F௥ᎌሢڼൈདࣅ໭Ljถ৫ଢ଼ࢅFNJਜ਼ݙ໵ࡩࡼ࢟಄࣡୻Ⴥ፛໦ࡼन࿴Ljဣሚ঱ࡉ611lcqtࡼᇄᇙ൩ၫ௣ࠅၒăNBY24597Fདࣅ໭඗ᎌ࣪ڼൈଝጲሢᒜLjᏤ኏঱ࡉ27NcqtࡼࠅၒႥൈăNBY24596F0NBY24597Fࡼ୻၃໭ၒྜྷᔜఝᆐ205࡝ᆡঌᏲLjᏤ኏ࣶࡉ239ৈ၃ख໭ਂ୻Ᏼᔐሣ࿟Ljೝ౒໭ୈ፿᎖ۍၷ৔ᄰቧăჅᎌདࣅ໭ၒ߲ᄋ৙±26lWཽᄏෝါFTEۣઐăNBY24596F0NBY24597Fݧ፿9፛୭TP૞ஂဏహମࡼ9፛୭μEGOॖᓤLj৔ᔫ᎖.51°Dᒗ,96°D౫ᐱ଀ᆨࣞपᆍă```````````````````````````````````።፿࢟ܭ৔ጓ఼ᒜ৔ጓ࢟૦དࣅᔈࣅIWBDᇹᄻ```````````````````````````````````ᄂቶ♦,6W৔ᔫ࢟ኹ♦ᑞᑵࡼပ቉ۣઐ୻၃໭Ljରྏ᎖FJB0UJB.596♦௥ᎌེރڰ৖ถLjး੝࢟ቧ።፿♦ᐐ༓ሢڼൈ৖ถᎌᓐ᎖ဣሚᇄᇙ൩ၫ௣ࠅၒ)NBY24596F*♦঱Ⴅ໭ୈ)NBY24597F*భဣሚ঱ࡉ27NcqtࡼࠅၒႥൈ♦ᆐST.5960ST.533!J0P፛୭ᄋ৙±26lWᐐ༓ቯཽᄏෝါFTEۣઐ♦205࡝ᆡঌᏲLjᄴጙᔐሣ࿟Ꮴ኏ਂ୻ࣶࡉ239ৈ၃ख໭♦ݧ፿ஂဏహମࡼ9፛୭μEGO૞৔ጓܪᓰࡼ9፛୭TP ॖᓤNBY24596F0NBY24597Fۍၷ৔ST.5960ST.533၃ख໭LjμEGOॖᓤ________________________________________________________________Maxim Integrated Products 119-0742; Rev 0; 1/07۾ᆪဵNbyjnᑵါ፞ᆪᓾ೯ࡼፉᆪLjNbyjnݙ࣪डፉᒦࡀᏴࡼތፊ૞ᎅࠥޘညࡼࡇᇙঌᐊă༿ᓖፀፉᆪᒦభถࡀᏴᆪᔊᔝᒅ૞डፉࡇᇙLjྙኊཀྵཱྀྀੜࠤᎫࡼᓰཀྵቶLj༿ݬఠNbyjnᄋ৙ࡼ፞ᆪۈᓾ೯ăჃན඾ॅዹອਜ਼ᔢቤۈࡼၫ௣ᓾ೯Lj༿षᆰNbyjnࡼᓍ጑ǖxxx/nbyjn.jd/dpn/doă```````````````````````ࢾ৪ቧᇦ0ኡቯᒎฉ,ܭာᇄ໺ॖᓤăᓖǖჅᎌ໭ୈ৔ᔫ᎖.51°Dᒗ,96°Dᆨࣞपᆍă``````````````````````````````````````````````````````````````````````````````፛୭๼ᒙN B Y 24596F 0N B Y 24597Fۍၷ৔ST.5960ST.533၃ख໭LjμEGOॖᓤ2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All voltages referenced to GND.)V CC ........................................................................................+6V DE, RE , DI.................................................................-0.3V to +6V A, B..............................................................................-8V to 13V Short-Circuit Duration (RO, A, B) to GND..................Continuous Continuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.9mW/°C above +70°C)..................471mW 8-Pin μDFN (derate 4.8mW/°C above +70°C)..........380.6mWOperating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICS(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.) (Notes 1, 2)NBY24596F0NBY24597Fۍၷ৔ST.5960ST.533၃ख໭LjμEGOॖᓤELECTRICAL CHARACTERISTICS (continued)(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.) (Notes 1, 2)SWITCHING CHARACTERISTICS—MAX13485E(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.) (Note 1)N B Y 24596F 0N B Y 24597Fۍၷ৔ST.5960ST.533၃ख໭LjμEGOॖᓤ4_______________________________________________________________________________________SWITCHING CHARACTERISTICS—MAX13485E (continued)(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.) (Note 1)SWITCHING CHARACTERISTICS—MAX13486E(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.) (Note 1)NBY24596F0NBY24597Fۍၷ৔ST.5960ST.533၃ख໭LjμEGOॖᓤ_______________________________________________________________________________________5SWITCHING CHARACTERISTICS—MAX13486E (continued)(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.) (Note 1)Note 1:μDFN devices production tested at +25°C. Overtemperature limits are generated by design.Note 2:All currents into the device are positive. All currents out of the device are negative. All voltages referred to device ground,unless otherwise noted.Note 3:ΔV OD and ΔV OC are the changes in V OD and V OC when the DI input changes states.Note 4:The short-circuit output current applied to peak current just prior to foldback current limiting. The short-circuit foldbackoutput current applies during current limiting to allow a recovery from bus contention.```````````````````````````````````````````````````````````````````````࢜ቯ৔ᔫᄂቶ(V CC = +5V, T A = +25°C, unless otherwise noted.)3.03.23.63.43.84.0-4010-15356085SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )721142835021345OUTPUT CURRENT vs. RECEIVEROUTPUT HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )201040305060021345OUTPUT CURRENT vs. RECEIVEROUTPUT LOW VOLTAGEM A X 13485-86E t o c 03OUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )N B Y 24596F 0N B Y 24597Fۍၷ৔ST.5960ST.533၃ख໭LjμEGOॖᓤ6_______________________________________________________________________________________``````````````````````````````````````````````````````````````````````࢜ቯ৔ᔫᄂቶ)ኚ*(V CC = +5V, T A = +25°C, unless otherwise noted.)4.04.44.24.84.65.25.05.4-4010-15356085RECEIVER OUTPUT HIGH VOLTAGE vs. TEMPERATURETEMPERATURE (°C)O U T P U T H I G H V O L T A G E (V )0.10.30.20.40.5-4010-15356085RECEIVER OUTPUT LOW VOLTAGE vs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )DIFFERENTIAL OUPUT CURRENT vs. DIFFERENTIAL OUTPUT VOLTAGEM A X 13485-86E t o c 06OUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )432120406080051.00.52.01.52.53.0-4010-15356085DRIVER-DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURETEMPERATURE (°C)D I F F E R E N T I A L O U T P U T V O L T A G E (V )40208060100120-7-5-4-3-6-20-112345OUTPUT CURRENT vs. TRANSMITTEROUTPUT HIGH VOLTAGEOUTPUT HIGH VOLTAGE (V)O U T P U T C U R R E N T (m A )40208060100120046281012OUTPUT CURRENT vs. TRANSMITTEROUTPUT LOW VOLTAGEOUTPUT LOW VOLTAGE (V)O U T P U T C U R R E N T (m A )032145678910-4010-15356085SHUTDOWN CURRENT vs. TEMPERATUREM A X 13485-86E t o c 10TEMPERATURE (°C)S H U T D O W N C U R R E N T (μA )300400350500450550600-4010-15356085DRIVER PROPAGATIONvs. TEMPERATURE (MAX13485E)TEMPERATURE (°C)D R I V E R P R O P A G A T I O N D E L A Y (n s )10520152530-4010-15356085DRIVER PROPAGATION DELAY vs. TEMPERATURE (MAX13486E)TEMPERATURE (°C)D R I VE R P R O P A G A T I O N D E L A Y (n s )NBY24596F0NBY24597Fۍၷ৔ST.5960ST.533၃ख໭LjμEGOॖᓤ_______________________________________________________________________________________7``````````````````````````````````````````````````````````````````````࢜ቯ৔ᔫᄂቶ)ኚ*(V CC = +5V, T A = +25°C, unless otherwise noted.)RECEIVER PROPAGATION vs. TEMPERATURE (MAX13485E)TEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )603510-15204060800-4085RECEIVER PROPAGATION vs. TEMPERATURE (MAX13486E)TEMPERATURE (°C)R E C E I V E R P R O P A G A T I O N (n s )603510-1510203040-4085400ns/divDRIVER PROPAGATION (500kbps)(MAX13485E)DI 2V/divMAX13485/86E toc15A-B 5V/div10ns/div DRIVER PROPAGATION (16Mbps)(MAX13486E)DI 2V/divMAX13485/86E toc16A-B 5V/div 10ns/divRECEIVER PROPAGATION (16Mbps)(MAX13486E)B 2V/divMAX13485/86E toc17RO 2V/divA 2V/divN B Y 24596F 0N B Y 24597Fۍၷ৔ST.5960ST.533၃ख໭LjμEGOॖᓤ8_______________________________________________________________________________________ᅄ2/!དࣅ໭ᒇഗހ၂ঌᏲᅄ3/!དࣅ໭ဟኔހ၂࢟വᅄ4/!དࣅ໭ࠅၒዓဟ```````````````````````````````````````````````````````````````````````ހ၂࢟വਜ਼݆ተNBY24596F0NBY24597Fۍၷ৔ST.5960ST.533၃ख໭LjμEGOॖᓤ_______________________________________________________________________________________9ᅄ5/!དࣅ໭ဧถਜ਼ண፿ဟኔᅄ7/!୻၃໭ࠅၒዓဟހ၂࢟വᅄ6/!དࣅ໭ဧถਜ਼ண፿ဟኔހ၂ঌᏲᅄ8/!୻၃໭ࠅၒዓဟ``````````````````````````````````````````````````````````````````ހ၂࢟വਜ਼݆ተ)ኚ*N B Y 24596F 0N B Y 24597Fۍၷ৔ST.5960ST.533၃ख໭LjμEGOॖᓤ10______________________________________________________________________________________```````````````````````````````````````````````````````````````````````````````፛୭ႁී`````````````````````````````````৖ถܭY!>!ᇄਈǗਈࣥෝါሆLjདࣅ໭ਜ਼୻၃໭ၒ߲௿ᆐ঱ᔜზăNBY24596F0NBY24597F______________________________________________________________________________________11ᅄ9/!୻၃໭ဧถਜ਼ண፿ဟኔ``````````````````````````````````````````````````````````````````ހ၂࢟വਜ਼݆ተ)ኚ*N B Y 24596F 0N B Y 24597F```````````````````````````````ሮᇼႁීNBY24596F0NBY24597Fᆐۍၷ৔Ă঱ႥST.5960ST.533၃ख໭Lj۞౪ጙവདࣅ໭ਜ਼ጙവ୻၃໭ăᑚೝ౒໭ୈ௥ᎌပ቉ۣઐ࢟വLjᏴ୻၃໭ၒྜྷఎവ૞࣢വ༽ౚሆLj૞ࡩ࣡୻ᔐሣࡼჅᎌདࣅ໭௿ࠀ᎖ண፿ᓨზဟLjభཀྵۣ୻၃໭ၒ߲൝૷঱࢟ຳ)ݬఠပ቉ۣઐݝॊ*ăNBY24596F0NBY24597F થ௥ᎌེރڰ৖ถLjᏤ኏ᔐሣ࿟ࡼེރྜྷLjऎ༦ݙ્ޘညၫ௣ࠅၒࡇᇙ)ݬఠེރڰ৖ถݝॊ*ăNBY24596Fࡼሢڼൈདࣅ໭ᎌᓐ᎖ଢ଼ࢅFNJLj݀ିቃᎅ᎖ݙ໵ࡩࡼ࢟಄࣡୻ऎ፛໦ࡼन࿴Ljถ৫ဣሚᔢࡍ611lcqtࡼᇄᇙ൩ၫ௣ࠅၒǗNBY24597Fདࣅ໭ݙ௥۸ڼൈሢᒜLjถ৫ဣሚᔢࡍ27NcqtࡼࠅၒႥൈăပ቉ۣઐ୻၃໭ၒྜྷ࣢വ૞ఎവLj૞ਂ୻Ᏼ࣡୻ᔐሣ࿟ࡼჅᎌདࣅ໭௿ࠀ᎖ண፿ᓨზဟLjNBY24596F0NBY24597Fభཀྵۣ୻၃໭ၒ߲൝૷঱࢟ຳăᑚဵᄰਭ୓୻၃໭ၒྜྷඡሢॊܰ࿸ᒙᆐ.61nWਜ਼.311nWဣሚࡼăྦތॊ୻၃໭ၒྜྷ࢟ኹ)B .C*ࡍ᎖૞ࢀ᎖.61nWLjSPᆐ൝૷঱࢟ຳǗྦ࢟ኹ)B .C*ቃ᎖૞ࢀ᎖.311nWLjSPᆐ൝૷ࢅ࢟ຳăࡩਂ୻Ᏼ࣡୻ᔐሣ࿟ࡼჅᎌख႙໭࣒ண፿ဟLj୻၃໭ތॊၒྜྷ࢟ኹ୓ᄰਭᒫ࣡ປ๼࢟ᔜ౯ᒗ1Wăጞ௣NBY24596F0NBY24597F ࡼ୻၃໭ඡሢLjభᄋ৙௥ᎌ61nWᔢቃᐅဉྏሢࡼ൝૷঱࢟ຳăᎧጲᆁࡼပ቉ۣઐ໭ୈݙᄴLj.61nWᒗ.311nWඡሢ࢟ኹ९੝±311nWࡼFJB0UJB.596ܪᓰăེރڰ৖ถེރڰၒྜྷڳ࢟വۇރྜྷࡒ࢟૞ᑵᏴ৔ᔫࡼ۳ۇဟLjၫ௣ᔐሣࡼތॊছཷభถࡴᒘၫ௣ࡇᇙă࢟വۇރྜྷ۳ۇဟLjၫ௣ᄰቧࠀಯ໭໪ࣅጙࠨ࿟࢟ਭ߈ăᏴࠥਭ߈ᒦLjࠀಯ໭ࡼ൝૷ၒ߲དࣅᒗ঱ᔜზLjݙถ୓ᑚቋ໭ୈࡼEFਜ਼RE ၒྜྷᒙ᎖ਖࢾࡼ൝૷࢟ຳăࠀಯ໭ࡼ൝૷དࣅᏴ঱ᔜზဟభถ્ᎌ঱ࡉ±21μBࡼധ࢟ഗLjᑚ્፛໦၃ख໭ࡼܪᓰDNPT ൝૷ဧถၒྜྷࡉࡵጙৈݙᑵཀྵࡼ൝૷࢟ຳăࠥᅪLj࢟വۇ଎ည࢟ྏથ્୓W DD ૞HOEẮ੝ᒗဧถၒྜྷ࣡Ljྙਫݙ௥۸ེރڰถೆLjጲ࿟ፐႤ્ࡇᇙ࢐ဧถ၃ख໭ࡼདࣅ໭૞୻၃໭ăW DD ࿟ဍဟLjดݝሆ౯࢟വۣߒEFᆐࢅ࢟ຳĂRE ᆐ঱࢟ຳăᅲ߅߱ဪ࿟࢟ਭ߈ઁLjሆ౯࢟വݙ໦ᔫ፿Lj݀আᆡེރڰၒྜྷ࣡ăེރڰၒྜྷ࢟വဧถၒྜྷ௥۸ེރڰถೆLjၒྜྷ࣡ᎌೝৈoNPT໭ୈǖN2ਜ਼N3)ᅄ:*ăࡩW DD ᎅഃఎဪ࿟ဍဟLjดݝ8μtࢾဟ໭ࡌఎN3Lj࿸ᒙTSჄࡀ໭LjऎჄࡀ໭᎒ᄴဟࡌఎN2ă஭ᄏ਌N3భᇢ၃2/6nB࢟ഗLjN2భᇢ၃611μB࢟ഗLjᄰਭጙৈ6l Ω࢟ᔜ୓EFሆ౯ᒗHOEăᆐऴᒏ঱ࡉ211qGࡼᅪݝ଎ည࢟ྏ୓EFདࣅᒗ঱࢟ຳLjN3୓EF౯ᒗண፿ᓨზă8μt ᒄઁLjࢾဟ໭ਈܕN3LjN2ଖኚࡴᄰLjጲۣߒEFᆐࢅ࢟ຳLj݀ऴᒏྯზധ࢟ഗ୓EFདࣅᒗ঱࢟ຳăᒇࡵᅪݝདࣅ໭ᄋ৙Ⴥኊࡼၒྜྷ࢟ഗઁݣ્ਈܕN2ăࠥဟLjTSჄࡀ໭আᆡLjN2ਈܕăN2ਈܕဟLjEF ૂআࡵܪᓰࡼ঱ᔜDNPTၒྜྷăᒑገW DD ଢ଼ᒗ2WጲሆLj௓્আᆡེރڰၒྜྷ࢟വă࣪᎖RE Ljઑݗ࢟വݧ፿ೝৈqNPT໭ୈ୓RE ࿟౯ᒗW DD ă12______________________________________________________________________________________ᅄ:/!དࣅ໭ဧถ࣡)EF*଼છஉ৩±26lW!FTEۣઐᎧNbyjnࡼ໚჈໭ୈಢ႒LjჅᎌ፛୭࣒ݧ፿೫FTEۣઐஉ৩LjᏴݷᔫᎧᓤ๼ਭ߈ᒦ߲ሚஸ࢟ह࢟ဟభ࣪໭ୈᄋ৙ۣઐăNBY24596F0NBY24597Fࡼདࣅ໭ၒ߲Ꭷ୻၃໭ၒྜྷ௥ᎌऄᅪࡼஸۣ࢟ઐถೆăNbyjnࡼ৔߈နጯఎख߲෹༄ଆၣၺຳᔢ঱ࡼ࢟വஉ৩Ljᆐᑚቋ፛୭ᄋ৙ۣઐLjဧ໚ถ৫ߌ၊±26lWࡼFTEߡૣăFTEۣઐଦ৩ᏴჅᎌᓨზሆ࣒భߌ၊঱FTEߡૣLj۞౪ܪᓰ৔ᔫෝါĂਈࣥਜ਼ࣥ࢟ෝါă၊ࡵFTEߡૣઁLjNBY24596F0NBY24597Fถ৫ଖኚ৔ᔫऎݙ્ܕჄ૞ႼડăFTEۣઐభጲݧ፿ݙᄴऱजހ၂ăNBY24596F0NBY24597F ࡼख႙໭ၒ߲Ꭷ୻၃໭ၒྜྷᄋ৙ጲሆۣઐǖ•±26lWLjཽᄏෝါ•±26lWLjJFD 72111.5.3໮ᇺह࢟ෝါ)NBY24596F*FTEހ၂ᄟୈFTEቶถན௼᎖ࣶᒬᄟୈLjྙਫኊገ۞౪ހ၂ᄟୈĂऱजਜ਼ހ၂உਫᏴดࡼభణቶۨসLj༿ᎧNbyjnೊᇹăཽᄏෝါᅄ21bჅာᆐཽᄏހ၂ෝቯLj࣪ࢅᔜह࢟ဟޘညࡼ࢟ഗ݆ተྙᅄ21cჅာăকෝቯ۞౪ጙৈ211qG࢟ྏLjሌߠ࢟ᒗჅኊࡼFTE࢟ኹLj཭ઁᄰਭ2/6l Ω࢟ᔜሶۻހ໭ୈह࢟ăJFD!72111.5.3JFD!72111.5.3ܪᓰ਻ঙ೫߅ອ࿸۸ࡼFTEހ၂ᎧቶถLjࡣ჈݀ݙᑣ࣪ૹ߅࢟വăNBY24596F0NBY24597Fถ৫ۑᓐ፿ઓ࿸ଐ९੝JFD!72111.5.3ገཇࡼ࿸۸LjऎݙኊገऄᅪࡼFTEۣઐᏄୈăဧ፿ཽᄏෝቯᎧJFD!72111.5.3஠ቲހ၂ࡼᓍገཌܰᏴ᎖JFD!72111.5.3ހ၂ࡼख़ᒋ࢟ഗৎ঱Ljᑚဵᎅ᎖JFD!72111.5.3ෝቯ௥ᎌৎቃࡼࠈೊ࢟ᔜăፐࠥLjJFD!72111.5.3ހ၂ࡼFTEง၊࢟ኹᄰޟࢅ᎖ဧ፿ཽᄏෝቯހ၂ࡼஉਫăᅄ21d ჅာᆐJFD 72111.5.3ෝቯLjᅄ21eჅာᆐJFD!72111.5.3!FTE ୻߿ह࢟ހ၂ࡼ࢟ഗ݆ተăNBY24596F0NBY24597F______________________________________________________________________________________13ᅄ21d/!JFD!72111.5.3!FTEހ၂ෝቯN B Y 24596F 0N B Y 24597F૦໭ෝါ૦໭ෝါFTEހ၂ݧ፿311qGࡀ߼࢟ྏਜ਼ഃह࢟࢟ᔜ࣪Ⴥᎌ፛୭஠ቲހ၂ă໚෹ࡼဵෝผހ၂ਜ਼ᓤ๼ਭ߈ᒦݷᔫ࿸۸୻߿J0P፛୭ဟޘညࡼஸ࢟ߡૣăࡩ཭Ⴥᎌ፛୭࣒ኊገᑚᒬۣઐLjऎݙᒑဵST.596ၒྜྷĂၒ߲፛୭ă໮ᇺह࢟ހ၂ᒦဧ፿ߠ࢟ࡼყᑣ୻த໭ୈă୻߿ह࢟ෝါဵᏴყᑣଝ࢟༄Ꭷ໭ୈೌ୻ă```````````````````````````````።፿ቧᇦᔐሣ࿟ਂ୻239ৈ၃ख໭ܪᓰST.596୻၃໭ࡼၒྜྷᔜఝᆐ23l Ω)2ৈ࡝ᆡঌᏲ*Ljܪᓰདࣅ໭భᔢࣶདࣅ43ৈ࡝ᆡঌᏲăNBY24596F0NBY24597F ၃ख໭ࡼ୻၃໭௥ᎌ205࡝ᆡঌᏲၒྜྷᔜఝ)59l Ω*LjᏤ኏ᔢࣶ239ৈ၃ख໭ਂ୻Ᏼᄴጙᄰቧᔐሣăᑚቋ໭ୈభྀፀᔝ੝Lj૞Ꭷ໚჈ST.596၃ख໭஠ቲᔝ੝LjᒑገᔐঌᏲݙިਭ43ৈ࡝ᆡঌᏲLj࣒భጲਂ୻Ᏼᄴጙᔐሣ࿟ăଢ଼ࢅFNJਜ਼न࿴NBY24596Fࡼሢڼൈདࣅ໭భጲଢ଼ࢅFNJLjିቃᎅ᎖ݙ໵ࡩࡼᒫ࣡ປ๼࢟಄Ⴥ፛໦ࡼन࿴Ljဣሚᔢ঱611lcqtࡼᇄᇙ൩ၫ௣ࠅၒăࢅ৖੒ਈࣥෝါRE ୻঱࢟ຳ༦EF୻ࢅ࢟ຳဟLj஠ྜྷࢅ৖੒ਈࣥෝါăਈࣥෝါሆLj໭ୈஞሿ੒ᔢࡍ21μBࡼ࢟Ꮞ࢟ഗăభጲᄴဟདࣅRE ਜ਼EFLjྙਫRE ᆐ঱࢟ຳ༦EFᆐࢅ࢟ຳࡼߒኚဟମቃ᎖61otLj໭ୈݙ્஠ྜྷਈࣥෝါăྙਫၒྜྷ࣡ᆒߒᑚᒬᓨზ811otጲ࿟Ljᐌཀྵۣ໭ୈ஠ྜྷਈࣥෝါăဧถဟମu [I Ꭷu [M )୅Txjudijoh!Dibsbdufsjtujdt ݝॊ*ଣࢾ໭ୈ݀ᆚࠀ᎖ࢅ৖੒ਈࣥᓨზǗဧถဟମu [I)TIEO*Ꭷu [M)TIEO*ଣࢾ໭ୈࠀ᎖ਈࣥᓨზă࠭ࢅ৖੒ਈࣥෝါࡵདࣅ໭ਜ਼୻၃໭ᎌ቉Ⴥኊገࡼဟମ)u [I)TIEO*Ău [M)TIEO**Ljገ܈࠭ண፿ෝါਭࣟࡵᎌ቉ᓨზჅኊገࡼဟମ)u [I Ău [M *ޠăࠅၒሣ௦ಭST.5960ST.533ܪᓰਖࢾᔢࡍ5111፞ߛࡼࠅၒ௦ಭă࢜ቯ።፿NBY24596F0NBY24597F၃ख໭፿᎖ࣶ࢛ᔐሣ࿟ࡼۍၷ৔Ăၷሶၫ௣ᄰቧăᅄ22৊߲೫࢜ቯࡼᆀ൥።፿࢟വLjᆐିቃन࿴Lj።ࡩᏴࠅၒሣೝ࣡ጲ໚ᄂቶᔜఝ஠ቲᒫ࣡ປ๼Ljᓍছሣጲᅪࡼॊᑽೌሣ።஧భถ࣢ă௥ᎌڼൈሢᒜࡼNBY24596FᏤ኏ݙ೜ᒫ࣡ປ๼ă```````````````````````````````በຢቧᇦPROCESS: BiCMOS14______________________________________________________________________________________ᅄ22/!࢜ቯۍၷ৔ST.596ᆀ൥NBY24596F0NBY24597F______________________________________________________________________________________15`````````````````````````````````````````````````````````````````````````````ॖᓤቧᇦ(۾ၫ௣ᓾ೯ᄋ৙ࡼॖᓤᅄభถݙဵᔢதࡼਖৃLjྙኊᔢதࡼॖᓤᅪተቧᇦLj༿އኯ/packages ă)````````````````````````````````````````````````````````````````````````````````ॖᓤቧᇦ)ኚ*(۾ၫ௣ᓾ೯ᄋ৙ࡼॖᓤᅄభถݙဵᔢதࡼਖৃLjྙኊᔢதࡼॖᓤᅪተቧᇦLj༿އኯ/packages ă)N B Y 24596F 0N B Y 24597FNbyjnݙ࣪Nbyjnޘອጲᅪࡼྀੜ࢟വဧ፿ঌᐊLjጐݙᄋ৙໚ᓜಽ኏భăNbyjnۣഔᏴྀੜဟମĂ඗ᎌྀੜᄰۨࡼ༄ᄋሆኀখޘອᓾ೯ਜ਼ਖৃࡼཚಽă16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2007 Maxim Integrated ProductsဵNbyjn!Joufhsbufe!Qspevdut-!Jod/ࡼᓖݿ࿜ܪă。

相关文档
最新文档