高三物理动量专题练习1
高三物理动量守恒定律作业
动量守恒定律一、选择题(本题共10小题,每小题6分,共60分。
其中1~5题为单选,6~10题为多选)1.两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上。
现在,其中一人向另一个人抛出一个篮球,另一人接球后再抛回。
如此反复进行几次之后,甲和乙最后的速率关系是( )A .若甲最先抛球,则一定是v 甲>v 乙B .若乙最后接球,则一定是v 甲>v 乙C .只有甲先抛球,乙最后接球,才有v 甲>v 乙D .无论怎样抛球和接球,都是v 甲>v 乙答案 B解析 两人及篮球组成的系统动量守恒,且总动量为零,由于两人质量相等,故最后球在谁手中,谁的总质量就较大,则速度较小,故B 正确,A 、C 、D 错误。
2. (2020·四川省雅安市模拟)如图所示,子弹水平射入放在光滑水平地面上静止的木块,子弹未穿透木块,此过程木块的动能增加了6 J ,那么此过程产生的内能可能为( )A .16 JB.2 JC.6 JD.4 J答案 A解析 设子弹的质量为m 0,初速度为v 0,木块的质量为m ,子弹打入木块的过程中,子弹与木块组成的系统动量守恒,即m 0v 0=(m +m 0)v ,此过程产生的内能等于系统损失的动能,即ΔE =12m 0v 20-12(m +m 0)v 2=m +m 0m 0·12m v 2,而木块获得的动能E k 木=12m v 2=6 J ,则ΔE >6 J ,A 正确。
3.(2020·河北衡水中学4月教学质量监测)有一只小船停靠在湖边码头,小船又窄又长(估计重一吨左右)。
一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船。
用卷尺测出船后退的距离d,然后用卷尺测出船长L。
已知他的自身质量为m,水的阻力不计,船的质量为()A.m(L-d)d B.m(L+d)dC.mLd D.m(L+d)L答案 A解析设人走动时船的速度大小为v,人的速度大小为v′,人从船尾走到船头所用时间为t。
高三物理《动量 机械能》测试题附答案
《动量机械能》测试题一、本题共10小题;每小题4分,共40分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对的得4分,选不全的得2分,有选错或不答的得0分。
1.下面的说法正确的是()A.物体运动的方向就是它的动量的方向B.如果物体的速度发生变化,则可以肯定它受到的合外力的冲量不为零C.如果合外力对物体的冲量不为零,则合外力一定使物体的动能增大D.作用在物体上的合外力冲量不一定能改变物体速度的大小2.在光滑水平面上有两个质量均为2kg的质点,质点a在水平恒力F a=4N作用下由静止出发运动4s,质点b在水平恒力F b=4N作用下由静止出发运动4m,比较这两质点所经历的过程,可以得到的正确结论是()A.质点a的位移比质点b的位移大B.质点a的末速度比质点b的末速度小C.力F a做的功比力F b做的功多D.力F a的冲量比力F b的冲量小3.一质量为2kg的质点从静止开始沿某一方向做匀加速直线运动,它的动量p 随位移x变化的关系式为s8⋅p/=,关于质点的说法错误的是mxkg()A.加速度为8m/s2B.2s内受到的冲量为32N·sC.在相同的时间内,动量的增量一定相等D.通过相同的距离,动量的增量也可能相等4.一轻杆下端固定一个质量为M的小球上,上端连在轴上,并可绕轴在竖直平面内运动,不计一切阻力。
当小球在最低点时,受到水平的瞬时冲量I0,刚好能到达最高点。
若小球在最低点受到的瞬时冲量从I0不断增大,则可知()A.小球在最高点对杆的作用力不断增大B.小球在最高点对杆的作用力先减小后增大C.小球在最低点对杆的作用力先减小后增大D.小球在最低点对杆的作用力先增大后减小5.质量为m的物体沿直线运动,只受到力F的作用。
物体受到的冲量I、位移s、速度v和加速度a随时间变化的图像,其中不可能的是()6.如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一质量为m 的木块,车的右端固定一个轻质弹簧,现给木块一个水平向右的瞬时冲量I ,使木块m 沿车上表面向右滑行,在木块与弹簧相碰后又沿原路返回,并且恰好能到达小车的左端而相对小车静止,关于木块m 、平板小车M 的运动状态,动量和能量转化情况的下列说法中正确的是( ) A .木块m 的运动速度最小时,系统的弹性势能最大 B .木块m 所受的弹力和摩擦力始终对m 作负功C .平板小车M 的运动速度先增大后减少,最后与木块m 的运动速度相同;木块m 的运动速度先减少后增大,最后与平板小车M 的运动速度相同D .由于弹簧的弹力对木块m 和平板小车M 组成的系统是内力,故系统的动量和机械能均守恒7.美国著名的网球运动员罗迪克的发球时速最快可达214.35km/h ,这也是最新的网球发球时速的世界记录,若将罗迪克的发球过程看作网球在球拍作用下沿水平方向的匀加速直线运动,质量为57.5g 的网球从静止开始经0.5m 的水平位移后速度增加到214.35km/h ,则在上述过程中,网球拍对网球的作用力大小为 ( ) A .154N B .258N C .556N D .1225N8.如图3,质量为M 的小车静止于光滑的水平面上,小车上AB 部分是半径R 的四分之一光滑圆弧,BC 部分是粗糙的水平面。
高三物理动量、能量计算题专题训练
动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。
现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。
小物块恰能到达圆弧轨道的最高点A 。
取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。
(2)小物块与车最终相对静止时,它距O ′点的距离。
(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。
3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。
高三总复习物理检测题 动量 动量定理
动量 动量定理1.两只完全相同的鸡蛋A 、B 自同一高度由静止释放,分别落在海绵和石头上,鸡蛋A 完好(未反弹),鸡蛋B 碎了。
不计空气阻力,对这一结果,下列说法正确的是( )A .下落过程中鸡蛋B 所受重力的冲量更大一些B .下落过程中鸡蛋B 的末动量更大一些C .碰撞过程中鸡蛋B 动量减小得更多一些D .碰撞过程中鸡蛋B 的动量变化率更大解析:D 两鸡蛋从同一高度开始做自由落体运动,由h =12gt 2得t =2h g,则两鸡蛋下落过程所用的时间相同,由I G =mgt 知,两鸡蛋下落过程中重力的冲量相同,由v 2=2gh 得v =2gh ,则两鸡蛋下落过程的末速度相同,所以下落过程中两鸡蛋的末动量相同,A 、B 错误;碰撞过程中,两鸡蛋都从相同的速度减为0,则动量减小量相同,C 错误;碰撞过程中,由于两鸡蛋动量变化量相同,鸡蛋B 与石头作用时间短,则动量变化率Δp Δt更大,D 正确。
2.竖直放置的轻质弹簧,下端固定在水平地面上,一小球从弹簧正上方某一高度处自由下落,从小球开始接触弹簧到将弹簧压缩至最短的过程中,下列说法正确的是( )A .小球和弹簧组成的系统动量守恒B .小球的动量一直减小C .弹簧对小球冲量的大小大于重力对小球冲量的大小D .小球所受合外力对小球的冲量为0解析:C 小球和弹簧组成的系统合外力不为零,动量不守恒,A 错误;当小球重力与弹簧弹力平衡时,小球速度最大,动量也最大,所以小球动量先增大后减小,B 错误;从小球开始接触弹簧到将弹簧压缩至最短的过程中,因为小球动量变化的方向向上,所以合力的冲量向上,即弹簧对小球冲量的大小大于重力对小球冲量的大小,C 正确,D 错误。
3.(多选)如图所示,垫球是排球运动中通过手臂的迎击动作使来球从垫击面上反弹出去的一项击球技术。
若某次排球从垫击面上反弹出去竖直向上运动,之后又落回到原位置,设整个运动过程中排球所受空气阻力大小不变,则()A.球从击出到落回的时间内,重力的冲量为零B.球从击出到落回的时间内,空气阻力的冲量为零C.球上升阶段空气阻力的冲量小于下降阶段空气阻力的冲量D.若不计空气阻力,球上升阶段动量的变化等于下降阶段动量的变化解析:CD整个过程中,重力不为零,作用时间不为零,根据I G=mgt知,重力的冲量不为零,A错误;由于空气阻力的作用,上升阶段的平均速度大于下降阶段的平均速度,上升过程所用时间比下降过程所用时间少,空气阻力大小不变,根据I=F f t可知,上升阶段空气阻力的冲量小于下降阶段空气阻力的冲量,整个过程中空气阻力的冲量不为零,B错误,C正确;若不计空气阻力,并规定向上为正方向,设初速度为v0,则上升阶段,初速度为v0,末速度为零,动量变化量为Δp1=0-m v0=-m v0,下降阶段,初速度为零,末速度为-v0,动量变化量为Δp2=-m v0-0=-m v0,所以两者相等,D正确。
2021届高三物理一轮复习力学动量守恒定律的应用专题练习
2021届高三物理一轮复习力学动量动量守恒定律的应用专题练习一、填空题1.质量分别为m1和m2的两个小球在光滑的水平面上分别以速度v1、v2同向运动并发生对心碰撞,碰后m2被右侧的墙原速弹回,又与m1相碰,碰后两球都静止.则两球第一次碰后m1球的速度大小为_________.2.总质量为M的列车以速度v 在平直轨道上匀速行驶,行驶中各车厢受阻力均为车重的K 倍,某时刻列车后面质量为m 的车厢脱钩而机车牵引力未变,当脱钩的车厢刚停下时,前面列车的速度是________ 3.如图所示,木块A的质量m A=1kg,足够长的木板B的质量m B=4kg,质量为m C=4kg的木块C置于木板B上,水平面光滑,B、C之间有摩擦。
现使A以v0=12m/s的初速度向右运动,与B碰撞后以4m/s的速度弹回,则A与B碰撞后瞬间,B的速度为__m/s ,C运动过程中的最大速度为__m/s ,整个过程中因为B、C之间的摩擦而产生的总内能为___J。
4.如下图质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离x=_____,y=_____。
5.载着人的气球静止悬浮在空中,人的质量和气球(包括设备)的质量分别为60kg和300kg.气球离地面的高度为20m,为使人能安全着地,气球上悬挂的软梯长度需要m.6.一静止在湖面上的小船质量为100kg,船上一个质量为60kg的人,以6m/s的水平速度向后跳离此小船,则人离开小船瞬间,小船的速度大小为________m/s。
若船长为10m,则当此人由船头走到船尾时,船移动的距离为________m。
(不计水的阻力和风力影响)7.静止的镭核发生α衰变,生成Rn核,该核反应方程为________,已知释放出的α粒子的动能为E0,假定衰变时能量全部以动能形式释放出去,该衰变过程总的质量亏损为________.8.如图所示,某小组在探究反冲运动时,将质量为m1的一个小液化瓶固定在质量为m2的小玩具船上,利用液化瓶向外喷射气体作为船的动力.现在整个装置静止放在平静的水面上,已知打开液化瓶后向外喷射气体的对地速度为v 1,如果在某段时间内向后喷射的气体的质量为Δm ,忽略水的阻力,求喷射出质量为Δm 的液体后小船的速度为________.9.平静的水面上,有一条质量M=100kg 长度为3m 的小船浮于水面,船上一个质量m=50kg 的人匀速从船头走到船尾,不计水的阻力,人相对水面走了_____m ,船相对水位移为_____m .10.质量为m 的人站在光滑水平面上质量为M 的小车一端,车长为L.当人从一端走到另一端时,则小车在水平上移动的位移大小是_________________ 。
高考物理一轮复习 第6章 动量守恒定律及其应用 第1讲 动量 动量定理课时作业(含解析)新人教版-新
第1讲动量动量定理时间:45分钟总分为:100分一、选择题(此题共10小题,每一小题7分,共70分。
其中1~7题为单项选择,8~10题为多项选择)1.下面关于物体动量和冲量的说法错误的答案是()A.物体所受合外力的冲量越大,它的动量也越大B.物体所受合外力的冲量不为零,它的动量一定要改变C.物体动量增量的方向,就是它所受冲量的方向D.物体所受合外力越大,它的动量变化就越快答案 A解析Ft越大,Δp越大,但动量不一定越大,它还与初态的动量有关,故A错误;Ft =Δp,Ft不为零,Δp一定不为零,B正确;冲量不仅与Δp大小相等,而且方向一样,C 正确;物体所受合外力越大,速度变化越快,即动量变化越快,D正确。
此题选说法错误的,应当选A。
2.将质量为0.5 kg的小球以20 m/s的初速度竖直向上抛出,不计空气阻力,g取10 m/s2,以下判断正确的答案是()A.小球从抛出至最高点受到的冲量大小为10 N·sB.小球从抛出至落回出发点动量的增量大小为0C.小球从抛出至落回出发点受到的冲量大小为0D.小球从抛出至落回出发点受到的冲量大小为10 N·s答案 A解析小球在最高点速度为零,取向下为正方向,小球从抛出至最高点受到的冲量:I =0-(-mv0)=10 N·s,A正确;因不计空气阻力,所以小球落回出发点的速度大小仍等于20 m/s,但其方向变为竖直向下,由动量定理知,小球从抛出至落回出发点受到的冲量为:I′=Δp=mv0-(-mv0)=20 N·s,如此冲量大小为20 N·s,B、C、D错误。
3.(2019·四川自贡高三一诊)校运会跳远比赛时在沙坑里填沙,这样做的目的是可以减小()A.人的触地时间B.人的动量变化率C.人的动量变化量D.人受到的冲量答案 B解析 跳远比赛时,运动员从与沙坑接触到静止,动量的变化量Δp 一定,由动量定理可知,人受到的合力的冲量I =Δp 是一定的,在沙坑中填沙延长了人与沙坑的接触时间,即t 变大,由动量定理:Δp =Ft ,可得Δpt=F ,Δp 一定,t 越大,动量变化率越小,人受到的合外力越小,人越安全,B 正确。
动量守恒之弹簧物块连接模型 高三物理一轮复习专题
(1)当弹簧的弹性势能最大时,物块A的速度为多大?
(2)系统中弹性势能的最大值是多少?
答案(1)3 m/s(2)12 J
解析(1)弹簧压缩至最短时,弹性势能最大,
由动量守恒定律得:(mA+mB)v=(mA+mB+mC)vA
解得vA=3 m/s
(2)B、C碰撞过程系统动量守恒
mBv=(mB+mC)vC
5(2021湖南卷8,5分).如图(a),质量分别为mA、mB的A、B两物体用轻弹簧连接构成一个系统,外力 作用在A上,系统静止在光滑水平面上(B靠墙面),此时弹簧形变量为 。撤去外力并开始计时,A、B两物体运动的 图像如图(b)所示, 表示0到 时间内 的 图线与坐标轴所围面积大小, 、 分别表示 到 时间内A、B的 图线与坐标轴所围面积大小。A在 时刻的速度为 。下列说法正确的是( )
故vC=2 m/s
碰后弹簧压缩到最短时弹性势能最大,
故Ep= mAv2+ (mB+mC)v - (mA+mB+mC)v =12 J
三.举一反三,巩固练习
1.(2021全国乙卷14,6分)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )
C.小车C先向左运动后向右运动
D.小车C一直向右运动直到静止
答案D
解析A、B两物体和弹簧、小车C组成的系统所受合外力为零,所以系统的动量守恒.在弹簧释放的过程中,因mA∶mB=1∶2,由摩擦力公式Ff=μFN=μmg知,A、B两物体所受的摩擦力大小不等,所以A、B两物体组成的系统合外力不为零,A、B两物体组成的系统动量不守恒,A物体对小车向左的滑动摩擦力小于B对小车向右的滑动摩擦力,在A、B两物体相对小车停止运动之前,小车所受的合外力向右,会向右运动,因滑动摩擦力做负功,则系统的机械能不守恒,最终整个系统将静止,故A、B、C错误,D正确.
高三物理实验复习—验证动量守恒定律习题
实验:验证动量守恒定律习题选编1、如图所示,用碰撞实验器可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系:先安装好实验装置,在水平面上铺一张白纸,白纸上铺放复写纸,在白纸上记录下重垂线所指的位置O。
接下来的实验步骤如下:步骤1:不放小球2,让小球1从斜槽上A点由静止滚下,并落在水平面上。
重复多次,用尽可能小的圆,把小球的所有落点圈在里面,其圆心就是小球落点的平均位置P点;步骤2:把小球2放在斜槽末端B点,让小球1从A点由静止滚下,使它们碰撞。
重复多次,并使用与步骤1同样的方法分别标出碰撞后两小球落点的平均位置M、N点;步骤3:用刻度尺分别测量三个落地点的平均位置M、P、N到O点的距离,即OM、OP、ON的长度。
(1)对于上述实验操作,下列说法正确的是______。
A.应使小球每次从斜槽上相同的位置自由滚下B.斜槽轨道必须光滑C.小球1的质量应大于小球2的质量(2)上述实验除需测量OM、OP、ON的长度外,还需要测量的物理量有______。
A.B点距地面的高度hB.小球1和小球2的质量、C.小球1和小球2的半径r(3)当所测物理量满足表达式_______用实验所测物理量的字母表示时,即说明两球碰撞遵守动量守恒定律。
如果还满足表达式_____用实验所测量物理量的字母表示时,即说明两球碰撞时无机械能损失。
【答案】AC B m1∙OP=m1∙OM+m2∙ON m1∙OP2=m1∙OM2+m2∙ON22、如图所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系。
(1)实验中,直接测定小球碰撞前后的速度是不容易的。
但是,可以通过仅测量__________(填选项前的符号),间接地解决这个问题。
A.小球开始释放高度hB.小球抛出点距地面的高度HC.小球做平抛运动的射程(2)图中O点是小球抛出点在地面上的垂直投影,实验时先让入射球m1多次从倾斜轨道上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP,然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复。
动量守恒之滑块木板模型高三物理一轮复习专题
一.必备知识精讲模型图示模型特点(1)假设滑块未从木板上滑下,当两者速度相等时木块或木板的速度最大,两者的相对位移取得极值(完全非弹性碰撞拓展模型)(2)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能(3)根据能量守恒,系统损失的动能ΔE k=Mm+ME k0,可以看出,滑块的质量越小,木板的质量越大,动能损失越多(4)该类问题既可以从动量、能量角度求解,相当于非弹性碰撞拓展模型,也可以从力和运动的角度借助图示求解二.典型例题精讲:题型一:图像题例1:. 如下图,足够长的木板Q放在光滑水平面上,在其左端有一可视为质点的物块P,P、Q间接触面粗糙。
现给P向右的速率v P,给Q向左的速率v Q,取向右为速度的正方向,不计空气阻力,那么运动过程中P、Q的速度随时间变化的图像可能正确的选项是()答案ABC解析开始时,木板和物块均在摩擦力作用下做匀减速运动,两者最终到达共同速度,以向右为正方向,P、Q组成的系统动量守恒,根据动量守恒定律得m P v P-m Q v Q=(m P+m Q)v;假设m P v P=m Q v Q,那么v=0,图像如图A所示;假设m P v P>m Q v Q,那么v>0,图像如图B所示;假设m P v P<m Q v Q,那么v<0,图像如图C所示。
故A、B、C正确,D错误。
题型二:计算题例2:如下图,在光滑水平面上有B 、C 两个木板,B 的上外表光滑,C 的上外表粗糙,B 上有一个可视为质点的物块A ,A 、B 、C 的质量分别为3m 、2m 、m .A 、B 以相同的初速度v 向右运动,C 以速度v 向左运动.B 、C 的上外表等高,二者发生完全非弹性碰撞但并不粘连,碰撞时间很短.A 滑上C 后恰好能到达C 的中间位置,C 的长度为L ,不计空气阻力.求:(1)木板C 的最终速度大小;(2)木板C 与物块A 之间的摩擦力F f 大小;(3)物块A 滑上木板C 之后,在木板C 上做减速运动的时间t .答案 (1)56v (2)m v 23L (3)3L 2v解析 (1)设水平向右为正方向,B 、C 碰撞过程中动量守恒:2m v -m v =(2m +m )v 1解得v 1=v 3A 滑到C 上,A 、C 动量守恒:3m v +m v 1=(3m +m )v 2解得v 2=56v ; (2)根据能量关系可知,在A 、C 相互作用过程中,木板C 与物块A 之间因摩擦产生的热量为Q =12(3m )v 2+12m v 12-12(3m +m )v 22 Q =F f · L 2联立解得F f =m v 23L; (3)在A 、C 相互作用过程中,以C 为研究对象,由动量定理得F f t =m v 2-m v 1解得t =3L 2v. 三.举一反三,稳固练习1.如下图,甲图表示光滑平台上,物体A 以初速度v 0滑到上外表粗糙的水平小车B 上,车与水平面间的动摩擦因数不计,乙图为物体A 与小车B 的v -t 图象,由此可知 ( )A .小车上外表长度B .物体A 与小车B 的质量之比C .物体A 与小车B 上外表间的动摩擦因数D .小车B 获得的动能答案:BC[解析] 由图象可知,A 、B 最终以共同速度v 1匀速运动,不能确定小车上外表长度,故A 错误;由动量守恒定律得m A v 0=(m A +m B )v 1,故可以确定物体A 与小车B 的质量之比,故B正确;由图象可知A 相对小车B 的位移Δx =12v 0t 1,根据动能定理得-μm A g Δx =12(m A +m B )v 21-12m A v 20,根据B 项中求得的质量关系,可以解出动摩擦因数,故C 正确;由于小车B 的质量无法求出,故不能确定小车B 获得的动能,故D 错误。
2021人教版高中物理高三年级上动量守恒定律专题
物理高三年级(上)2021人教版高中物理高三年级上动量守恒定律专题一、单选题1.雨滴从静止开始下落,下落过程中受到的阻力与速度成正比,比例常数为k ,经过时间t 速度达到最大,雨滴的质量为m ,选向上为正方向,则该过程阻力的冲量为( )A .mgtB .2m g mgt k -C .mgt 2m g k -D .2m g k 2.如图所示,学生练习用头颠球。
某一次足球静止自由下落80cm ,被重新顶起,离开头部后竖直上升的最大高度仍为80cm 。
已知足球与头部的作用时间为0.1s ,足球的质量为0.4kg ,重力加速度g 取10m/s 2,不计空气阻力下列说法正确的是( )A .头部对足球的平均作用力为足球重力的10倍B .足球下落到与头部刚接触时动量大小为3.2kg·m/sC .足球与头部作用过程中动量变化量大小为3.2kg·m/sD .足球从最高点下落至重新回到最高点的过程中重力的冲量大小为3.2N·s 3.如图所示,表面光滑的物块ABC 静止在光滑的水平面上,图中MN 垂直于物块的AB 面。
一小球沿PO 方向投射到AB 面上的O 点,之后沿OQ 方向反弹。
试判断物块运动方向为( )A .PO 方向B .MN 方向C .OQ 的反方向D .BC 方向 4.光滑水平面上放置一表面光滑的半球体,小球从半球体的最高点由静止开始下滑,在小球滑落至水平面的过程中( )A .小球的机械能守恒B .小球一直沿半球体表面下滑C .小球和半球体组成的系统水平方向动量守恒D .小球在水平方向的速度一直增大5.如图所示,劲度系数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体P 接触,但未与物体P 连接,弹簧水平且无形变.现对物体P 施加一个水平向右的瞬间冲量,大小为I 0,测得物体P 向右运动的最大距离为x 0,之后物体P 被弹簧弹回最终停在距离初始位置左侧2x 0处.已知弹簧始终在弹簧弹性限度内,物体P 与水平面间的动摩擦因数为μ,重力加速度为g ,下列说法中正确的是 ( )A .物体P 与弹簧作用的过程中,系统的最大弹性势能20032P I E mgx mμ=- B .弹簧被压缩成最短之后的过程,P 先做加速度减小的加速运动,再做加速度减小的减速运动,最后做匀减速运动C .最初对物体P 施加的瞬时冲量0022I m gx μ=D .物体P 整个运动过程,摩擦力的冲量与弹簧弹力的冲量大小相等、方向相反6.蹦极是一项刺激的户外休闲活动,足以使蹦极者在空中体验几秒钟的“自由落体”,蹦极者站在高塔顶端,将一端固定的弹性长绳绑在踝关节处。
高三物理第二轮专题练习之动量含答案及解析
1.一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。
若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ,则A、过程I中钢珠的动量的改变量等于重力的冲量B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小C、I、Ⅱ两个过程中合外力的总冲量等于零D、过程Ⅱ中钢珠的动量的改变量等于零2.如图5-7所示将一光滑的半圆槽置于光滑水平面上,槽的左侧有一固定在水平面上的物块。
今让一小球自左侧槽口A的正上方从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是A.小球在半圆槽内运动的全过程中,只有重力对它做功B.小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒C.小球自半圆槽的最低点B向C点运动的过程中,小球与半圆槽在水平方向动量守恒D.小球离开C点以后,将做竖直上抛运动。
3.在质量为M的小车中挂着一个单摆,摆球的质量为m0,小车(和单摆)以恒定的速度u沿光滑的水平面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞时间极短,在此碰撞过程中,下列哪些说法是可能发生的A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足:(M+m0)u=Mv1+mv2+m o v3 B.摆球的速度不变,小车和木块的速度变为v1和v2,满足:Mu=Mv1+mv2C.摆球的速度不变,小车和木块的速度都变为v,满足:Mu=(M+m)vD.小车和摆球的速度都变为v1,木块的速度为v2,满足:(M+m0)u=(M+m0)v1+mv24.向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b两块.若质量较大的a块的速度方向仍沿原来的方向则A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a,b一定同时到达地面D.炸裂的过程中,a、b中受到的爆炸力的冲量大小一定相等5.从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。
1.3.1动量守恒定律(解析版)
1.3.1动量守恒定律同步练习一、单选题1.(2021·福建·厦门市湖滨中学高二开学考试)如图所示,木块B静止于光滑水平地面上,一颗子弹A沿水平方向瞬间射入木块并留在木块内,现将子弹和木块视为系统,则该系统从子弹开始射入到二者相对静止的过程中()A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒【答案】C【详解】子弹射入木块过程中,系统受外力的合力为零,故系统动量守恒。
由于子弹和木块间的一对滑动摩擦力做功不为零即摩擦生热,根据能量守恒定律,系统机械能不守恒。
故ABD错误;C正确。
故选C。
2.(2021·江苏·苏州市相城区陆慕高级中学高二月考)关于动量守恒定律,以下说法错误的是()A.系统不受外力时,动量一定守恒B.动量守恒定律也适用于高速运动的物体和微观粒子的情况C.一个系统的动量守恒,则机械能也守恒D.两物体组成的系统,受合外力为零,则两物体动量的改变量大小一定相等【答案】C【详解】A.系统不受外力时,系统动量保持不变,系统动量守恒,故A正确;B.动量守恒定律既适用于低速宏观物体,也适用于高速微观物体,故B正确;C.系统所受合外力为零系统动量守恒,只有重力或只有弹力做功系统机械能守恒,系统动量守恒机械能不一定守恒,故C错误;D.两物体组成的系统,受合外力为零,系统动量守恒,两物体动量的改变量大小相等,方向相反,故D正确。
本题选错误的,故选C。
3.(2021·全国·高三专题练习)如图所示,小车与木箱紧挨着静放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推木箱,关于上述过程,下列说法中正确的是()A.木箱的动量增量与男孩、小车的总动量增量相同B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.男孩和木箱组成的系统动量守恒【答案】C【详解】男孩、小车与木箱三者组成的系统,受合外力为零,则动量守恒;但是小车与木箱组成的系统动量不守恒;男孩和木箱组成的系统动量也不守恒;木箱的动量增量与男孩、小车的总动量增量等大反向,故ABD错误,C正确。
高三物理测试题(天体运动、能量、动量问题)
高三物理测试题(天体运动、能量、动量问题)一、单选题:(每题3分,计24分)1. 1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( )A .v 1>v 2,v 1= GM rB .v 1>v 2,v 1> GM rC .v 1<v 2,v 1= GMr D .v 1<v 2,v 1> GMr2.如图甲所示,滑轮质量、摩擦均不计,质量为2 kg 的物体在拉力F 作用下由静止开始向上做匀加速运动,其速度随时间的变化关系如图乙所示,由此可知( )A .物体加速度大小为2 m/s 2B .F 的大小为21 NC .4 s 末F 的功率为42 WD .4 s 内F 的平均功率为42 W3.质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMmr ,其中G 为引力常量,M 为地球质量.该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其做匀速圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm ⎝ ⎛⎭⎪⎫1R 2-1R 1 B .GMm ⎝ ⎛⎭⎪⎫1R 1-1R 2 C .GMm 2⎝ ⎛⎭⎪⎫1R 2-1R 1 D .GMm 2⎝ ⎛⎭⎪⎫1R 1-1R 24.有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向右,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向右,则另一块的速度是()A.3v0-v B.2v0-3vC.3v0-2v D.2v0+v5.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展.若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为4.8×106 N,则它在1 s时间内喷射的气体质量约为()A.1.6×102 kg B.1.6×103 kgC.1.6×105 kg D.1.6×106 kg6、乱扔垃圾、车窗抛物、高空抛物是影响很恶劣的陋习,有关部门要加强监管,每个公民也要做好个人防护.方大爷买了一套一楼带小院的房子,为了自己在小院种花种菜安全,他不仅安装了监控摄像头,还在小院里搭建了与一楼楼房高度相同的木质框架,上面镶嵌抗冲击强度为f=50 N/mm2的钢化玻璃.已知该楼房总高度为八层,层高均为3.33 m,如果从该楼房最高层住户的落地阳台(阳台与同楼层地板等高)上落下一个质量m=0.5 kg的易拉罐,不计空气阻力,易拉罐落在钢化玻璃上的接触面积S=20 cm2,约经时间t=5 ms速度减为零,取g=10 m/s2,则下列说法正确的是()A.易拉罐落在钢化玻璃上瞬间的速度大小约为23 m/sB.易拉罐对钢化玻璃的冲击力约为2 000 NC.易拉罐对钢化玻璃的冲击力约为2 300 ND.钢化玻璃会被砸坏7、某汽车研发机构在汽车的车轮上安装了小型发电机,将减速时的部分动能转化并储存在蓄电池中,以达到节能的目的.某次测试中,汽车以额定功率行驶一段距离后关闭发动机,测出了汽车动能E k与位移x的关系图象如图所示,其中①是关闭储能装置时的关系图线,②是开启储能装置时的关系图线.已知汽车的质量为1 000 kg,设汽车运动过程中所受地面阻力恒定,空气阻力不计.根据图象所给的信息可求出()A.汽车行驶过程中所受地面的阻力为1 000 NB.汽车的额定功率为60 kWC.汽车加速运动的时间为22.5 sD.汽车开启储能装置后向蓄电池提供的电能为5×105 J8、如图所示为某建筑工地所用的水平放置的运输带,在电动机的带动下运输带始终以恒定的速度v0=1 m/s顺时针传动.建筑工人将质量为m=2 kg的建筑材料静止地放到运输带的最左端,同时建筑工人以v0=1 m/s的速度向右匀速运动.已知建筑材料与运输带之间的动摩擦因数为μ=0.1,运输带的长度为L=2 m,重力加速度大小为g=10 m/s2.下列说法正确的是()A.建筑工人比建筑材料早到右端1 sB.建筑材料在运输带上一直做匀加速直线运动C.因运输建筑材料电动机多消耗的能量为1 JD.运输带对建筑材料做的功为1 J二、多项选择题:(每题4分,部分2分,计16分)9. (多选)宇航员在某星球表面以初速度2.0 m/s 水平抛出一物体,并记录下物体的运动轨迹,如图所示,O为抛出点,若该星球半径为4 000 km,引力常量G=6.67×10-11 N·m2·kg-2,则下列说法正确的是()A.该星球表面的重力加速度为4.0 m/s2B.该星球的质量为2.4×1023 kgC.该星球的第一宇宙速度为4.0 km/sD.若发射一颗该星球的同步卫星,则同步卫星的绕行速度一定大于4.0 km/s10.如图所示,一固定光滑斜面与水平面间的夹角为θ,轻质弹簧的一端固定在斜面底端的挡板上,另一端与斜面上质量为m的物块连接.开始时用手拉住物块使弹簧伸长x1,放手后物块由静止开始下滑,到达最低点时弹簧压缩了x2,重力加速度为g.则在物块下滑到最低点的过程中()A.物块的加速度先减小后增大B.物块重力做功的功率先减小后增大C.弹簧的弹性势能变化了mg(x1+x2)sin θD.物块重力势能与弹簧弹性势能之和保持不变11.(多选)如图所示,水平光滑轨道宽度和轻弹簧自然长度均为d,m2的左边有一固定挡板.m1由图示位置静止释放,当m1与m2相距最近时m1的速度为v1,则在以后的运动过程中()A.m1的最小速度是0B.m1的最小速度是m1-m2 m1+m2v1C.m2的最大速度是v1D.m2的最大速度是2m1m1+m2v112.(多选)如图所示,用高压水枪喷出的强力水柱冲击右侧的煤层.设水柱直径为D,水流速度为v,方向水平,水柱垂直煤层表面,水柱冲击煤层后水的速度为零.高压水枪的质量为M,手持高压水枪操作,进入水枪的水流速度可忽略不计,已知水的密度为ρ.下列说法正确的是()A.高压水枪单位时间喷出的水的质量为ρvπD2B.高压水枪的功率为18ρπD2v3C.水柱对煤层的平均冲力为14ρπD2v2D.手对高压水枪的作用力水平向右三、实验题:(6分+8分=14分)13.(6分)小明同学利用如图所示的装置来验证机械能守恒定律.A为装有挡光片的钩码,总质量为M,挡光片的挡光宽度为b,轻绳一端与A相连,另一端跨过光滑轻质定滑轮与质量为m(m<M)的重物B相连.他的做法是:先用力拉住B,保持A、B静止,测出A的挡光片上端到光电门的距离h,然后由静止释放B,A下落过程中经过光电门,光电门可测出挡光片的挡光时间t,算出挡光片经过光电门的平均速度,将其视为A下落h(h≫b)时的瞬时速度,重力加速度为g.(1)在A从静止开始下落h的过程中,验证以A、B、地球所组成的系统机械能守恒定律的表达式为________(用题目所给物理量的符号表示).(2)由于光电门所测的平均速度与物体A下落h时的瞬时速度间存在一个差值Δv,因而系统减少的重力势能________(填“大于”或“小于”)系统增加的动能.(3)为减小上述Δv对结果的影响,小明同学想到了以下一些做法,其中可行的是________.A.保持A下落的初始位置不变,测出多组t,算出多个平均速度然后取平均值B.减小挡光片上端到光电门的距离hC.增大挡光片的挡光宽度bD.适当减小挡光片的挡光宽度b(4)若采用本装置测量当地的重力加速度g,则测量值________(填“大于”“等于”或“小于”)真实值.14.(8分)如图,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.(1)实验中,直接测定小球碰撞前后的速度是不容易的.但是,可以通过仅测量________(填选项前的符号),间接地解决这个问题.A.小球开始释放高度hB.小球抛出点距地面的高度HC.小球做平抛运动的射程(2)(多选)图中O点是小球抛出点在地面上的垂直投影,实验时先让入射球m1多次从倾斜轨道上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP,然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复.接下来要完成的必要步骤是________.(填选项前的符号)A.用天平测量两个小球的质量m1、m2B.测量小球m1开始释放高度hC.测量抛出点距地面的高度HD.分别找到m1、m2相碰后平均落地点的位置M、NE.测量平抛射程OM、ON(3)若两球相碰前后的动量守恒,其表达式可表示为_______________[用(2)中测量的量表示];若碰撞是弹性碰撞,那么还应满足的表达式为_______________[用(2)中测量的量表示].四、计算题:(4个题,计46分)15.(10分)打桩机是利用冲击力将桩贯入地层的桩工机械.某同学对打桩机的工作原理产生了兴趣.他构建了一个打桩机的简易模型,如图甲所示.他设想,用恒定大小的拉力F拉动绳端B,使物体从A点(与钉子接触处)由静止开始运动,上升一段高度后撤去F,物体运动到最高点后自由下落并撞击钉子,将钉子打入一定深度.按此模型分析,若物体质量m=1 kg,上升了1 m 高度时撤去拉力,撤去拉力前物体的动能E k与上升高度h的关系图象如图乙所示.(g取10 m/s2,不计空气阻力)(1)求物体上升到0.4 m高度处F的瞬时功率;(2)若物体撞击钉子后瞬间弹起,且使其不再落下,钉子获得20 J的动能向下运动.钉子总长为10 cm.撞击前插入部分可以忽略,不计钉子重力.已知钉子在插入过程中所受阻力F f与深度x的关系图象如图丙所示,求钉子能够插入的最大深度.16.(12分)如图所示,固定点O上系一长L=0.6 m的细绳,细绳的下端系一质量m=1.0 kg的小球(可视为质点),原来处于静止状态,球与平台的B点接触但对平台无压力,平台高h=0.80 m,一质量M=2.0 kg的物块开始静止在平台上的P点,现对物块M施予一水平向右的初速度v0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A 时,绳上的拉力恰好等于小球的重力,而物块M落在水平地面上的C点,其水平位移x=1.2 m,不计空气阻力,g=10 m/s2.(1)求物块M碰撞后的速度大小;(2)若平台表面与物块M间的动摩擦因数μ=0.5,物块M与小球的初始距离为x1=1.3 m,求物块M在P处的初速度大小.17、(12分)如图所示,CDE为光滑的轨道,其中ED是水平的,CD是竖直平面内的半圆,与ED相切于D点,且半径R=0.5 m,质量m=0.1 kg的滑块A静止在水平轨道上,另一质量M=0.5 kg的滑块B前端装有一轻质弹簧(A、B均可视为质点)以速度v0向左运动并与滑块A发生弹性正碰,若相碰后滑块A能过半圆最高点C,取重力加速度g=10 m/s2,则:(1)B滑块至少要以多大速度向前运动;(2)如果滑块A恰好能过C点,滑块B与滑块A相碰后轻质弹簧的最大弹性势能为多少?18、(12分)如图所示,一质量m1=0.45 kg的平顶小车静止在光滑的水平轨道上.质量m2=0.5 kg的小物块(可视为质点)静止在车顶的右端.一质量为m0=0.05 kg的子弹、以水平速度v0=100 m/s射中小车左端并留在车中,最终小物块相对地面以2 m/s的速度滑离小车.已知子弹与车的作用时间极短,物块与车顶面的动摩擦因数μ=0.8,认为最大静摩擦力等于滑动摩擦力.取g=10 m/s2,求:(1)子弹相对小车静止时小车速度的大小;(2)小车的长度L.高三物理测试题(天体运动、能量、动量问题)参考答案1、解析:选B .卫星绕地球运动,由开普勒第二定律知,近地点的速度大于远地点的速度,即v 1>v 2.若卫星以近地点时的半径做圆周运动,则有GmM r 2=m v 2近r ,得运行速度v 近= GM r ,由于卫星在近地点做离心运动,则v 1>v 近,即v 1> GM r ,选项B 正确.2、解析:选C .由题图乙可知,v t 图象的斜率表示物体加速度的大小,即a =0.5 m/s 2,由2F -mg =ma 可得:F =10.5 N ,A 、B 均错误;4 s 末F 的作用点的速度大小为v F =2v 物=4 m/s ,故4 s 末F 的功率为P =F v F =42 W ,C 正确;4 s 内物体上升的高度h =4 m ,力F 的作用点的位移l =2h =8 m ,拉力F 所做的功W =Fl =84 J ,故平均功率P -=W t =21 W ,D 错误.3、解析:选C .卫星绕地球做匀速圆周运动满足G Mm r 2=m v 2r ,动能E k =12m v 2=GMm 2r ,机械能E =E k +E p ,则E =GMm 2r -GMm r =-GMm 2r .卫星由半径为R 1的轨道降到半径为R 2的轨道过程中损失的机械能ΔE =E 1-E 2=GMm 2⎝ ⎛⎭⎪⎫1R 2-1R 1,即为下降过程中因摩擦而产生的热量,所以选项C 正确.4、解析:选C .在最高点水平方向动量守恒,由动量守恒定律可知,3m v 0=2m v +m v ′,可得另一块的速度为v ′=3v 0-2v ,对比各选项可知,答案选C .5、解析:选B .设1 s 内喷出气体的质量为m ,喷出的气体与该发动机的相互作用力为F ,由动量定理Ft =m v 知,m =Ft v =4.8×106×13×103 kg =1.6×103 kg ,选项B 正确.6.B 最高层是八楼,八楼的阳台是七层楼高,到钢化玻璃的高度为h =6×3.33 m ≈20 m ,根据v 2=2gh ,解得v =20 m/s ,A 项错误;设易拉罐对钢化玻璃的冲击力为F N ,根据动量定理得(F N -mg )t =0-(-m v ),代入数据解得F N =2 005 N ,B 项正确,C 项错误;易拉罐落在钢化玻璃上的接触面积为20 cm 2,抗冲击力为F =fS =1×105 N ,远大于易拉罐对钢化玻璃的冲击力,D 项错误.7、解析:D .由图线①求所受阻力,由ΔE km =F f Δx, 得F f =8×105400N =2 000 N ,A 错误; 由E km =12m v 2m可得,v m =40 m/s ,所以P =F f v m =80 kW ,B 正确;加速阶段,Pt -F f x =ΔE k ,得t =16.25 s ,C 错误;根据能量守恒定律,并由图线②可得,ΔE =E km -F f x ′=8×105 J -2×103×150 J =5×105 J ,D 正确.8、解析:选D .建筑工人匀速运动到右端,所需时间t 1=L v 0=2 s ,假设建筑材料先加速再匀速运动,加速时的加速度大小为a =μg =1 m/s 2,加速的时间为t 2=v 0a =1 s ,加速运动的位移为x 1=v 02t 2=0.5 m<L ,假设成立,因此建筑材料先加速运动再匀速运动,匀速运动的时间为t 3=L -x 1v 0=1.5 s ,因此建筑工人比建筑材料早到达右端的时间为Δt =t 3+t 2-t 1=0.5 s ,A 正确,B 错误;建筑材料与运输带在加速阶段摩擦生热,该过程中运输带的位移为x 2=v 0t 2=1 m ,则因摩擦而生成的热量为Q =μmg (x 2-x 1)=1 J ,由动能定理可知,运输带对建筑材料做的功为W =12m v 20=1 J ,则因运输建筑材料电动机多消耗的能量为2 J ,C 错误,D 正确.9、解析:选AC .根据平抛运动的规律:h =12gt 2,x =v 0t ,解得g =4.0 m/s 2,A正确;在星球表面,重力近似等于万有引力,得M =gR 2G ≈9.6×1023 kg ,B 错误;由m v 2R =mg 得第一宇宙速度为v =gR =4.0 km/s ,C 正确;第一宇宙速度为最大的环绕速度,D 错误.10.AC 物块在下滑过程中,开始时由重力沿斜面的分力与弹簧拉力提供合外力,随着物块向下运动,弹簧弹力逐渐减小,加速度逐渐减小,当弹簧的弹力变为方向沿斜面向上且与重力沿斜面的分力大小相同时,速度最大,加速度为零,然后弹力增大,加速度也增大,所以物块的加速度先减小后增大,速度先增大后减小,由功率公式可得重力做功的功率P =mg v sin θ,物块重力做功的功率先增大后减小,选项A 正确,B 错误;物块由静止下滑,物块与弹簧组成的系统机械能守恒,初、末状态物块动能均为零,重力势能减小mg (x 1+x 2)sin θ,根据机械能守恒定律,弹簧的弹性势能变化了mg (x 1+x 2)sin θ,选项C 正确;在物块下滑到最低点的过程中,物块的重力势能和动能、弹簧弹性势能之和保持不变,由于物块的动能先增大后减小,所以物块重力势能与弹簧弹性势能之和先减小后增大,选项D 错误.11、解析:选BD .由题意结合题图可知,当m 1与m 2相距最近时,m 2的速度为0,此后,m 1在前,做减速运动,m 2在后,做加速运动,当再次相距最近时,m 1减速结束,m 2加速结束,因此此时m 1速度最小,m 2速度最大,在此过程中系统动量守恒和机械能守恒,m 1v 1=m 1v 1′+m 2v 2,12m 1v 21=12m 1v 1′2+12m 2v 22,可解得v 1′=m 1-m 2m 1+m 2v 1,v 2=2m 1m 1+m 2v 1,B 、D 选项正确. 12、解析:选BC .设Δt 时间内,从水枪喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ,ΔV =S v Δt =14πD 2v Δt ,单位时间喷出水的质量为Δm Δt =14ρv πD 2,选项A 错误.Δt 时间内水枪喷出的水的动能E k =12Δm v 2=18ρπD 2v 3Δt ,由动能定理知高压水枪在此期间对水做功为W =E k =18ρπD 2v 3Δt ,高压水枪的功率P =W Δt =18ρπD 2v 3,选项B 正确.考虑一个极短时间Δt ′,在此时间内喷到煤层上水的质量为m ,设煤层对水柱的作用力为F ,由动量定理,F Δt ′=m v ,Δt ′时间内冲到煤层水的质量m =14ρπD 2v Δt ′,解得F =14ρπD 2v 2,由牛顿第三定律可知,水柱对煤层的平均冲力为F ′=F =14ρπD 2v 2,选项C 正确.当高压水枪向右喷出高压水流时,水流对高压水枪的作用力向左,由于高压水枪有重力,根据平衡条件,手对高压水枪的作用力方向斜向右上方,选项D 错误.13、解析:(1)对A 、B 、地球所组成的系统,根据机械能守恒定律得(M -m )gh =12(M +m )⎝ ⎛⎭⎪⎫b t 2. (2)物体A 经过光电门时实际做匀加速直线运动,光电门所测的平均速度为t 时间的中间时刻的瞬时速度,故物体A 下落h 时的瞬时速度大于光电门所测的平均速度,因而系统减少的重力势能大于系统增加的动能.(3)由v =b t 知,挡光片的挡光宽度越小,光电门所测的平均速度越接近物体A 下落h 时的瞬时速度,故适当减小挡光片的挡光宽度b 可减小Δv 对结果的影响,选项D 正确,A 、B 、C 错误.(4)由v 2=2gh 知,采用本装置测量当地的重力加速度的测量值小于真实值.答案:(1)(M -m )gh =12(M +m )⎝ ⎛⎭⎪⎫b t 2 (2)大于 (3)D (4)小于14、解析:(1)小球碰前和碰后的速度都可用平抛运动来测定,即v =x t .即m 1OP t=m 1OM t +m 2ON t ;而由H =12gt 2知,每次下落竖直高度相等,平抛时间相等.则可得m 1·OP =m 1·OM +m 2·ON .故只需测射程,因而选C .(2)由表达式知:在OP 已知时,需测量m 1、m 2、OM 和ON ,故必要步骤A 、D 、E.(3)若为弹性碰撞,则同时满足动能守恒.12m 1⎝ ⎛⎭⎪⎫OP t 2=12m 1⎝⎛⎭⎪⎫OM t 2+12m 2⎝ ⎛⎭⎪⎫ON t 2 m 1·OP 2=m 1·OM 2+m 2·ON 2.答案:(1)C (2)ADE (3)m 1·OP =m 1·OM +m 2·ONm 1·OP 2=m 1·OM 2+m 2·ON 215、解析:(1)撤去F 前,根据动能定理,有(F -mg )h =E k -0由题图乙得,斜率为k =F -mg =20 N ,得F =30 N又由题图乙得,h =0.4 m 时,E k =8 J则v =4 m/s ,P =F v =120 W.(2)碰撞后,对钉子,有-F -f x ′=0-E k ′已知E k ′=20 J ,F -f =k ′x ′2又由题图丙得k ′=105 N/m ,解得:x ′=0.02 m.答案:(1)120 W (2)0.02 m16、解析:(1)碰后物块M做平抛运动,设其平抛运动的初速度为v3,平抛运动时间为th=12gt2①x=v3t②得:v3=x g2h=3.0 m/s③(2)物块M与小球在B点处碰撞,设碰撞前物块M的速度为v1,碰撞后小球的速度为v2,由动量守恒定律:M v1=m v2+M v3④碰后小球从B 点处运动到最高点A 过程中机械能守恒,设小球在A 点的速度为v A ,则12m v 22=12m v 2A+2mgL ⑤ 小球在最高点时有:2mg =m v 2A L ⑥由⑤⑥解得:v 2=6.0 m/s ⑦由③④⑦得:v 1=m v 2+M v 3M=6.0 m/s ⑧ 物块M 从P 点运动到B 点过程中,由动能定理:-μMgx 1=12M v 21-12M v 20⑨ 解得:v 0=v 21+2μgx 1=7.0 m/s ⑩答案:(1)3.0 m/s (2)7.0 m/s17、解析:(1)设滑块A 过C 点时速度为v C ,B 与A 碰撞后,B 与A 的速度分别为v 1、v 2,B 碰撞前的速度为v 0,过圆轨道最高点的临界条件是重力提供向心力,由牛顿第二定律得:mg =m v 2C R从D 到C 由动能定理得:-mg 2R =12m v 2C -12m v 22 B 与A 发生弹性碰撞,碰撞过程动量守恒、机械能守恒,以向左为正方向,由动量守恒定律得:M v0=M v1+m v2,由机械能守恒定律得:12M v 20=12M v21+12m v22,由以上代入数据解得:v0=3 m/s.(2)由于B与A碰撞后,当两者速度相同时有最大弹性势能E p,设共同速度为v,A、B碰撞过程系统动量守恒、机械能守恒,以向左为正方向,由动量守恒定律得:M v0=(M+m)v,由机械能守恒定律得:12M v 20=E p+12(m+M)v2以上联立并代入数据解得:E p=0.375 J.答案:(1)3 m/s(2)0.375 J18、解析:(1)子弹进入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律得m0v0=(m0+m1)v1解得v 1=10 m/s.(2)三物体组成的系统动量守恒,由动量守恒定律得 (m 0+m 1)v 1=(m 0+m 1)v 2+m 2v 3解得v 2=8 m/s由能量守恒可得12(m 0+m 1)v 21=μm 2gL +12(m 0+m 1)v 22+12m 2v 23 解得L =2 m.答案:(1)10 m/s (2)2 m。
高三物理动量定理试题
高三物理动量定理试题=7m/s的速度着地,他着地时弯曲双腿,用了1s停1.一个质量m=64kg的人从墙上跳下,以v下来,求地面对他的作用力是多大?(g=10m/s2)【答案】【解析】选向上为正方向,根据动量定理可得,即故。
【考点】考查了动量定理的应用2.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务。
某时刻乙以大小为v0=2m/s的速度远离空间站向乙“飘”去,甲、乙和空间站在同一直线上且可当成质点。
甲和他的装备总质量共为M1=90kg,乙和他的装备总质量共为M2=135kg,为了避免直接相撞,乙从自己的装备中取出一质量为m=45kg的物体A推向甲,甲迅速接住后即不再松开,此后甲乙两宇航员在空间站外做相对距离不变通向运动,一线以后安全“飘”入太空舱。
(设甲乙距离太空站足够远,本题中的速度均指相对空间站的速度)①求乙要以多大的速度(相对空间站)将物体A推出②设甲与物体A作用时间为,求甲与A的相互作用力F的大小【答案】①②【解析】①甲、乙两宇航员在空间站外做相对距离不变的同向运动,说明甲乙的速度相等,以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙的速度方向为正方向,由动量守恒定律得:,以乙和A组成的系统为研究对象,以乙的速度方向为正方向,由动量守恒定律得:,解得:;②以甲为研究对象,以乙的初速度方向为正方向,由动量定理得:,解得:;【考点】考查了动量守恒定律,动量定理3.如图所示,在光滑的水平面上宽度为L的区域内,有一竖直向下的匀强磁场.现有一个边长为向右滑动,穿过磁场后速度减为v,a (a<L)的正方形闭合线圈以垂直于磁场边界的初速度v那么当线圈完全处于磁场中时,其速度大小()A.大于B.等于C.小于D.以上均有可能【答案】B【解析】对线框进入或穿出磁场的过程,由动量定理可知,即,解得线框的速度变化量为;同时由可知,进入和穿出磁场过程中,因磁通量的变化量相等,故电荷量相等,由上可以看出,进入和穿出磁场过程中的速度变化量是相等的,即,解得,所以只有选项B正确;【考点】法拉第电磁感应定律4.(7分)如图所示,固定在竖直平面内半径为R的四分之一光滑圆弧轨道与水平光滑轨道平滑连接,A、B、C三个滑块质量均为m,B、C带有同种电荷且相距足够远,静止在水平轨道上的图示位置。
新高考物理第1讲动量动量定理作业
第1讲动量动量定理时间:40分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~8题为单选,9~10题为多选)1.(2020·山东省九校高三上学期12月月考)物理学科核心素养第一要素是“物理观念”,下列“物理观念”中正确的是()A.做曲线运动的物体,动量的变化率一定改变B.合力对物体做功为零,则合力的冲量也一定为零C.做匀变速运动的物体,任意时间内的动量变化量的方向是相同的D.做圆周运动的物体,经过一个周期,合力的冲量一定为零答案 C解析根据动量定理知,动量的变化率等于力,则做匀变速曲线运动的物体,动量的变化率恒定,A错误;合力对物体做功为零,则合力可能不为零,例如合力可能作用了一段时间,物体速度大小相等,但方向不同,故合力的冲量不一定为零,B错误;做匀变速运动的物体所受的合力恒定,动量变化量的方向与合力同向,保持不变,C正确;做变速圆周运动的物体,经过一个周期,动量的变化量不为零,由动量定理知合力的冲量不为零,D错误。
2.(2020·北京市丰台区高三下二模)将一物体以某一初速度沿竖直方向向上抛表示物体的动量变化率,取竖直向下为正方向,忽略出。
p表示物体的动量,ΔpΔt空气阻力。
则下图中正确的是()答案 C解析取竖直向下为正方向,动量p=m v=m(-v0+gt)=-m v0+mgt,m v0、mg是定值,故动量和时间的关系图像应为与纵轴的截距为负、斜率为正的直线,故A、B错误;动量的变化量Δp=mgΔt,解得ΔpΔt=mg,mg是定值,故C正确,D错误。
3. (2020·黑龙江省实验中学高三下学期开学考试)某物体的v-t图像如图所示,下列说法正确的是()A.0~t1和t2~t3时间内,合力做功和冲量都相同B.t1~t2和t3~t4时间内,合力做功和冲量都相同C.0~t2和t2~t4时间内,合力做功和冲量都相同D.0~t1和t3~t4时间内,合力做功和冲量都相同答案 C解析0~t1时间内物体动能的变化量为12m v 2,动量的变化量为m v0;t2~t3时间内物体动能的变化量为12m v 2,动量的变化量为-m v0,根据动能定理可知这两段时间内合力做的功相等;根据动量定理得知:合力的冲量不同,故A错误。
高三物理测试卷动量.doc
2005-2006学年度高三物理测试卷:动量本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分考试用时120分钟。
第Ⅰ卷(选择题共40分)一、每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
1.如图7-16所示,质量分别为m、M的两物体叠放在水平面上,物体m与物体M间的动摩擦因素为μ 1 , 物体M与水平面间的动磨擦因素为μ 2 ,两物体朝相反方向运动,物体m在物体M上滑动的过程中,正确的说法是()A.若μ1≠0 μ2=0 ,m与M组成的系统动量守恒.B.若μ1≠0 μ2≠0 ,m与M组成的系统动量不守恒.C.若μ1=0 μ2≠0 ,m与M组成的系统动量守恒.D.若μ1=0 μ2=0 ,m与M组成的系统动量不守恒.2.质量相同的甲、乙两小球,自同一高度以相同的速率抛出,甲作平抛运动,乙作竖直上抛运动,则在从抛出到落地的过程中()A.两球动量的变化相同.B.两球所受重力的冲量相同.C.两球动量的变化不同,乙球动量的变化较大.D.两球动量的变化率相同.3.一个小孩在蹦床上做游戏,他从高处落到蹦床上又被弹起原高度,小孩从高处开始下落到弹回的整个过程中,他的运动速度随时间变化的图象如图所示,图中oa 段和cd 段为直线,则根据此图象可知,小孩和蹦床相接触的时间为( )A .t 2~t 4B .t 1~t 4C .t 1~t 5D .t 2~t 54.在质量为M 的小车中挂有一单摆,摆球的质量为m 0,小车和单摆一起以恒定的速度v 沿 光滑水平面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪个说法是可能发生的( )A .小车、木块、摆球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M +m)v=Mv 1+mv 2+m 0v 3B .摆球的速度不变,小车和木块的速度分别变为v 1和v 2,满足Mv=Mv 1+mv 2C .摆球的速度不变,小车和木块的速度都变为v ,满足Mv=(M +m)vD .小车和摆球的速度都变为v 1,木块的速度变为v 2,满足(M +m 0)v=(M +m 0)v 1+mv 25.如图为A 、B 两物体相互作用前后的v-t 图线,则由图线可以判断A .A 、B 的质量之比为3:2 B .A 、B 作用前后动量守恒C .A 、B 作用前后动量不守恒D .A 、B 作用前后,总动能不变A B 的动量是7 kg ·m/s ,当A 球追上B 球发生碰撞,则碰撞后A 、B 两球的动量可能值是( ) A .P A =6 kg ·m/s ,P B =6 kg ·m/s B .P A =3 kg ·m/s ,P B =9 kg ·m/s C .P A =-2kg ·m/s , P B =14 kg ·m/sD .P A = -5kg ·m/s , P B =15 kg ·m/s7.物体A 、B 用轻绳相连挂在轻弹簧下静止不动,如图所示,A 的质量为m ,B 的质量为M , 当连接A 、B 的轻绳断开后,物体A 上升经某一位置时速度大小为v ,这时B 的速度大小为u ,在这段时间里,弹簧的弹力对物体A 的冲量为( )A .mvB .mv -MuC .mv+MuD .mv+mu8.如图所示,一个质量为m 的物体,在水平外力F 的作用下, 沿水平地面匀速滑行,速度的大小为v 0。
动量 机械能高三物理第一轮复习专题测试四 新课标 人教版
t 3 t 4 t 5动量 机械能高三物理第一轮复习专题测试四本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共150分考试用时120分钟第Ⅰ卷(选择题共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一 个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分.1.如图所示,两个质量不相等...的小车中间夹一被压缩的轻弹簧,现用两手分别按住小车, 使它们静止在光滑水平面上。
在下列几种释放小车的方式中,说法正确的是 ( ) A .若同时放开两车,则此后的各状态下,两小车的加速度大小一定相等B .若同时放开两车,则此后的各状态下,两小车的动量大小一定相等C .若先放开左车,然后放开右车,则此后的过程中;两小车和弹簧组成的系统总动量向左D .若先放开左车,然后放开右车,则此后的过程中,两小车和弹簧组成的系统总动量向右 2.一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度,小孩从高处开始 下落到弹回的整个过程中,他的运动速度v 随时间t 变化的图线如图所示,图中只有Oa段和cd 段为直线.则根据该图线可知,蹦床的弹性势能增大的过程所对应的时间间隔为( )A .仅在t 1到t 2的时间内B .仅在t 2到t 3的时间内C .仅在t 1到t 3的时间内D .在t 1到t 5的时间内3.一个质量为1kg 的弹性小球,在光滑水平面上以5m/s 的速度垂直撞到墙上,碰撞后小球 沿相反方向运动,反弹后的速度大小与碰撞前相同。
则碰撞前后小球动量变化量的大小 △p 和碰撞过程中墙对小球做功的大小W 为( )A .△p =0B .△p =10kgm/sC .W=25JD .W=18J4.如图所示,相同质量的物块由静止从底边长相同、倾角不同的斜面最高处下滑到底面, 下面说法正确的是( )A .若物块与斜面之间的动摩擦因数相同,物块损失的机械能相同B .若物块与斜面之间的动摩擦因数相同,物块到达底面时的动能也相同C .若物块到达底面时的动能相同,物块与倾角大的斜面间的动摩擦因数大D .若物块到达底面时的动能相同,物块与倾角小的斜面间的动摩擦因数大5.起重机的钢索将重物由地面吊到空中某个高度,其速度图像如图所示,则钢索拉力的功 率随时间变化的图像可能是图b 中的哪一幅( )6.如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为A B m m 2=,规定向右为正方向,A 、B 两球的动量均为s m kg /6⋅,运动中两球发生碰撞,碰撞后A 球的动量增量为-4kg ·m/s ,则( )A .左方是A 球,碰撞后A 、B 两球速度大小之比为2:5B .左方是A 球,碰撞后A 、B 两球速度大小之比为1:10C .右方是A 球,碰撞后A 、B 两球速度大小之比为2:5D .右方是A 球,碰撞后A 、B 两球速度大小之比为1:107.在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m .现B 球静止,A 球向B 球 运动,发生正碰.已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则 碰前A 球的速度等于( )A .mE pB .mE p 2C .2mE pD .2mE p 28.如图所示,一根水平管道 a 两端与大气相通,在管道上竖直插有一根上端开口的“L”型弯管b ,当 a 管内的液体以速度 v 匀速流动时,b 管内液面的高度为 h ,假设液体与管道之间不存在摩擦力,则 v 和 h 的关系是 ( ) A .v = gh 2 B .v =gh C .v =gh 21D .v =gh 29.(a )图表示光滑平台上,物体A 以初速度v 0滑到上表面粗糙的水平小车上,车与水平面 间的动摩擦因数不计,(b )图为物体A 与小车B 的v -t 图像,由此可知 ( )A .小车上表面长度B .物体A 与小车B 的质量之比C .A 与小车B 上表面的动摩擦因数D .小车B 获得的动能10.如图所示,单摆摆球的质量为m ,做简谐运动的周期为T ,摆球从最大位移A 处由静止 开始释放,摆球运动到最低点B 时的速度为v ,则 ( )A .摆球从A 运动到B 的过程中重力做的功为221mv B .摆球从A 运动到B 的过程中重力的平均功率为Tmv 2C .摆球运动到B 时重力的瞬时功率是mgvD .摆球从A 运动到B 的过程中合力的冲量为mv第Ⅱ卷(非选择题 共110分)二、本题共2小题,共20分.把答案填在题中的横线上或按题目要求作答.11.(8分)把两个大小相同、质量不等的金属球用细线连接,中间夹一被压缩了的轻弹簧, 置于摩擦可以不计的水平桌面上,如图所示.现烧断细线,观察两球的运动情况,进行 必要的测量,验证物体间相互作用时动量守恒. (1)还必须添加的器材是 (2)需直接测量的数据是(3)用所得数据验证动量守恒定律的关系式是12.(12分)某兴趣小组为测一遥控电动小车的额定功率,进行了中下实验: ①用天平测出电动小车的质量为0.4kg ;②将电动小车、纸带和打点计时器按如图甲所示安装; ③接通打点计时器(其打点时间间隔为0.02s );④使电动小车以额定功率加速运动,达到最大速度一段时间后关闭小车电源,待小车静 止时再关闭打点计时器(设小车在整个过程中所受的阻力恒定)。
冲量-动量动量定理练习题(带答案)
2016年高三1级部物理第一轮复习-冲量动量动量定理1.将质量为0.5 kg的小球以20 m/s的初速度竖直向上抛出,不计空气阻力,g取10 m/s2.以下判断正确的是( )A.小球从抛出至最高点受到的冲量大小为10 N·sB.小球从抛出至落回出发点动量的增量大小为0C.小球从抛出至落回出发点受到的冲量大小为0D.小球从抛出至落回出发点受到的冲量大小为20 N·s解析:小球在最高点速度为零,取向下为正方向,小球从抛出至最高点受到的冲量I=0-(-m v0)=10 N·s,A正确;因不计空气阻力,所以小球落回出发点的速度大小仍等于20 m/s,但其方向变为竖直向下,由动量定理知,小球从抛出至落回出发点受到的冲量为:I=Δp=m v-(-m v0)=20 N·s,D正确,B、C均错误.答案:AD2.如图所示,倾斜的传送带保持静止,一木块从顶端以一定的初速度匀加速下滑到底端.如果让传送带沿图中虚线箭头所示的方向匀速运动,同样的木块从顶端以同样的初速度下滑到底端的过程中,与传送带保持静止时相比( )A.木块在滑到底端的过程中,摩擦力的冲量变大B.木块在滑到底端的过程中,摩擦力的冲量不变C.木块在滑到底端的过程中,木块克服摩擦力所做的功变大D.木块在滑到底端的过程中,系统产生的内能数值将变大解析:传送带是静止还是沿题图所示方向匀速运动,对木块来说,所受滑动摩擦力大小不变,方向沿斜面向上;木块做匀加速直线运动的加速度、时间、位移不变,所以选项A错,选项B 正确.木块克服摩擦力做的功也不变,选项C错.传送带转动时,木块与传送带间的相对位移变大,因摩擦而产生的内能将变大,选项D正确.答案:BD3.如图所示,竖直环A半径为r,固定在木板B上,木板B放在水平地面上,B的左右两侧各有一挡板固定在地上,B不能左右运动,在环的最低点静置一小球C,A、B、C的质量均为m.给小球一水平向右的瞬时冲量I,小球会在环内侧做圆周运动,为保证小球能通过环的最高点,且不会使环在竖直方向上跳起,瞬时冲量必须满足( )A.最小值m4gr B.最小值m5gr C.最大值m6grD.最大值m7gr解析:在最低点,瞬时冲量I=m v0,在最高点,mg=m v2/r,从最低点到最高点,m v20/2=mg×2r+m v2/2,解出瞬时冲量的最小值为m5gr,故选项B对;若在最高点,2mg=m v2/r,其余不变,则解出瞬时冲量的最大值为m6gr.答案:BC4.水平面上有两个质量相等的物体a和b,它们分别在水平推力F1和F2作用下开始运动,分别运动一段时间后撤去推力,两个物体都将运动一段时间后停下.物体的v—t图线如图所示,图中线段AB∥CD.则以下说法正确的是( )①水平推力的大小F1>F2②水平推力的大小F1<F2③a所受摩擦力的冲量大于b所受摩擦力的冲量④a所受摩擦力的冲量小于b所受摩擦力的冲量A.①③ B.①④ C.②③ D.②④答案:B5.如图所示,在水平地面上有A、B两个物体,质量分别为m A=3.0 kg、m B=2.0 kg,在它们之间用一轻绳连接,它们与地面间的动摩擦因数均为μ=0.1.现用两个方向相反的水平恒力F1、F2同时作用在A、B两物体上,已知F1=20 N,F2=10 N,g取10m/s2.当运动达到稳定后,下列说法正确的是( )A.A、B组成的系统运动过程中所受摩擦力大小为5 N,方向水平向左B.5 s内物体B对轻绳的冲量为70 N·s,方向水平向左C.地面受到A、B组成的系统的摩擦力大小为10 N,方向水平向左D.5 s内A、B组成的系统的动量变化量为25 kg·m/s解析:A、B组成的系统运动过程中所受的摩擦力为F f=μ(m A+m B)g=5.0 N,根据牛顿第三定律知地面受到A、B组成的系统的摩擦力的大小为5 N,方向水平向右,所以A对C错.设运动达到稳定时系统的加速度为a,根据牛顿第二定律有F1-F2-F f=(m A+m B)a,解得a=1.0 m/s2,方向与F1同向(或水平向右).以B为研究对象,运动过程中B所受摩擦力为Ff B=μm B g =2.0 N.设运动达到稳定时,B所受轻绳的作用力为F T,根据牛顿第二定律有F T-Ff B-F2=m B a,解得F T=14.0 N.根据牛顿第三定律知,物体B对轻绳的作用力大小为14 N,方向水平向左,冲量为70 N·s,B正确.A、B组成的系统受到的合外力的大小为5 N,所以5 s内,合外力的冲量大小为25 N·s,由动量定理知D正确.答案:ABD6.如图所示,PQS是固定于竖直平面内的光滑的1 4圆周轨道,圆心O在S的正上方,在O和P两点各有一质量为m的小物块a和b,从同一时刻开始,a自由下落,b沿圆弧下滑.以下说法正确的是( )A.a比b先到达S,它们在S点的动量不相等B.a与b同时到达S,它们在S点的动量不相等C.a比b先到达S,它们在S点的动量相等D.b比a先到达S,它们在S点的动量相等解析:a、b两球到达S点时速度方向不同,故它们的动量不等,C、D错误.由机械能守恒定律知,a、b经过同一高度时速率相同,但b在竖直方向的分速度v b始终小于同高度时a球的速度v a,应有平均速度v b<v a,由t=Rv知,t a<t b,所以a先到达S点,A正确,B错误.答案:A7. 质量为m 的小球在水平面内做半径为r 的匀速圆周运动,它的角速度为ω,周期为T ,在T 2时间内,小球受到的冲量的大小为( )A .2mωrB .πmωrC .mω2r T 2D .mω2T 2 解析:做匀速圆周运动的物体,其所受向心力的大小为F =mω2r ,但向心力是个变力,方向不断改变,不能由F ·t 来求冲量,只能根据动量定理I =m v 2-m v 1=mωr -(-mωr )=2mωr . 答案:A8. 一质量为m 的物体做平抛运动,在两个不同时刻的速度大小分别为v 1、v 2,时间间隔为Δt ,不计空气阻力,重力加速度为g ,则关于Δt 时间内发生的变化,以下说法正确的是( )A .速度变化大小为g Δt ,方向竖直向下B .动量变化大小为Δp =m (v 2-v 1),方向竖直向下C .动量变化大小为Δp =mg Δt ,方向竖直向下D .动能变化为ΔE k =12m (v 2-v 21) 解析:根据加速度定义g =Δv Δt可知A 对,分别由动量定理、动能定理可知CD 对;注意动量变化是矢量,由于v 1、v 2仅代表速度的大小,故选项B 错.答案:ACD9. 如果物体在任何相等的时间内受到的冲量都相同,那么这个物体的运动( )A .可能是匀变速运动B .可能是匀速圆周运动C .可能是匀变速曲线运动D .可能是匀变速直线运动解析:冲量是力与时间的乘积,在任何相等的时间内冲量都相同,也就是物体受到的力恒定不变,所以物体做匀变速运动,其轨迹可以是直线的也可以是曲线的.答案:ACD10. 两质量相同的物体a 和b 分别静止在光滑的水平桌面上,因分别受到水平恒力作用,同时开始运动.若b 所受的力为a 的k 倍,经过t 时间后分别用I a 、W a 和I b 、W b 表示在这段时间内a 和b 各自所受恒力的冲量和做功的大小,则有( )A .W b =kW a ,I b =kI aB .W b =k 2W a ,I b =kI aC .W b =kW a ,I b =k 2I aD .W b =k 2W a ,I b =k 2I a解析:由I =Ft ,F b =kF a ,得I b =kI a ,故C 、D 错.对两物体分别由动量定理得:I a =m v a ,I b =m v b ,分别由动能定理得W a =12m v 2a ,W b =12m v 2b ,联立解得W b =k 2W a . 答案:B11.物体受到合力F 的作用,由静止开始运动,力F 随时间变化的图象如图所示,下列说法中正确的是( )A .该物体将始终向一个方向运动B .3 s 末该物体回到原出发点C .0~3 s 内,力F 的冲量等于零,功也等于零D .2~4 s 内,力F 的冲量不等于零,功却等于零解析:图线和横坐标所围的面积等于冲量,0~1秒内的冲量为负,说明速度沿负方向,而1~2秒内冲量为正,且大于0~1秒内的冲量,即速度的方向发生变化,所以A 错误,0~3秒内,力F 的冲量为零,即物体0秒时的速度和3秒时的速度一样,故0~3秒内力F 的冲量等于零,功也等于零,C 、D 正确.分析运动过程可以得到3秒末物体回到原出发点,B 正确.答案:BCD12.蹦极跳是勇敢者的体育运动.该运动员离开跳台时的速度为零,从自由下落到弹性绳刚好被拉直为第一阶段,从弹性绳刚好被拉直到运动员下降至最低点为第二阶段.下列说法中正确的是()A.第一阶段重力的冲量和第二阶段弹力的冲量大小相等B.第一阶段重力势能的减少量等于第二阶段克服弹力做的功C.第一阶段重力做的功小于第二阶段克服弹力做的功D.第二阶段动能的减少量等于弹性势能的增加量解析:对全程有:IG1+IG2=I弹,所以IG1<I弹,A错.全程动能不变E p1+E p2=E弹所以E p1<E弹,B错,C对.第二阶段ΔE k=W弹-WG2所以W弹>ΔE k即弹性势能的增加量大于动能的减少量,D错.答案:C13.如图所示,ad、bd、cd是竖直面内三根固定的光滑细杆,a、b、c、d位于同一圆周上,a点为圆周的最高点,d点为圆周的最低点.每根杆上都套着一个质量相同的小滑环(图中未画出),三个滑环分别从a、b、c处释放(初速为零),关于它们下滑的过程,下列说法中正确的是( )A.重力对它们的冲量相同 B.弹力对它们的冲量相同C.合外力对它们的冲量相同D.它们的动能增量相同解析:由运动学知识可知三个滑环的运动时间相等,故A正确,由于三种情形下弹力的方向不同,故B 错,根据机械能守恒定律知D 错,而合外力冲量大小为m v ,由于v 大小不等,故C 错.答案:A14.2009年中国女子冰壶队首次获得了世界锦标赛冠军,这引起了人们对冰壶运动的关注.冰壶在水平冰面上的一次滑行可简化为如下过程:如图所示,运动员将静止于O 点的冰壶(视为质点)沿直线OO ′推到A 点放手,此后冰壶沿AO ′滑行,最后停于C 点.已知冰面和冰壶间的动摩擦因数为μ,冰壶质量为m ,AC =L ,CO ′=r ,重力加速度为g .(1)求冰壶在A 点的速率;(2)求冰壶从O 点到A 点的运动过程中受到的冲量大小;(3)若将BO ′段冰面与冰壶间的动摩擦因数减小为0.8μ,原只能滑到C 点的冰壶能停于O ′点,求A 点与B 点之间的距离.解析:(1)由-μmgL =0-12m v 2A ,得v A =2μgL .(2)由I =m v A ,将v A 代入得I =m 2μgL .(3)设A 点与B 点之间的距离为s ,由-μmgs -0.8μmg (L +r -s )=0-12m v 2A ,将v A 代入得s =L -4r . 答案:(1)2μgL (2)m 2μgL (3)L -4r15.2008年8月24日晚,北京奥运会闭幕式上,199名少年穿着特制的足具——一副由白色的金属制成的高约一米、装有弹簧的支架走上了闭幕式的表演舞台,如左图所示.199名少年整齐划一的前空翻、后空翻、横飞,引起现场观众阵阵尖叫.若表演者穿着这种弹跳器上下跳跃.右图所示为在一次跳跃中弹跳器从接触地面到离开地面的过程中,地面对弹跳器弹力F与时间t的变化关系图象.表演者连同弹跳器的总质量为80 kg.求:(1)t1=0.5 s时刻,表演者的速度;(2)表演者离地后能上升的高度.(不计空气阻力,g取10 m/s2)解析:(1)由图象可知,t1=0.5 s时刻弹跳器的压缩量最大,故此时表演者的速度为0.(2)表演者从t1=0.5 s弹起上升到t2=1.0 s离地的过程中受到重力G和弹力F作用,它们的冲量改变了表演者的动量.设表演者t2=1.0 s离地时的速度为vI G+I F=m v取竖直向上的方向为正I G=-mg(t2-t1)=-400 Ns由F—t图知:I F=1 100 Ns解得:v=8.75 m/s设上升的高度为h由v2=2gh解得h=3.83 m.答案:(1)0 (2)3.83 m16.据航空新闻网报道,美国“布什”号航空母舰的一架质量为1.5×104kg的“超级大黄蜂”舰载飞机于2009年5月19日下午完成了首次降落到航母甲板上的训练——着舰训练.在“布什”号上安装了飞机着舰阻拦装置——阻拦索,从甲板尾端70m处开始,向舰首方向每隔一定距离横放一根粗钢索,钢索的两端通过滑轮与甲板缓冲器相连,总共架设三道阻拦索.飞行员根据飞机快要着舰时的高度,确定把飞机的尾钩挂在哪一根阻拦索上,这意味着飞机有三次降落的机会.如图所示,某次降落中在阻挡索的阻拦下,这架“大黄蜂”在2s 内速度从180km/h 降到0.“大黄蜂”与甲板之间的摩擦力和空气阻力均不计.求:(1)阻拦索对“大黄蜂”的平均作用力大小;(2)阻拦索对“大黄蜂”的冲量.解析:(1)“大黄蜂”在t =2 s 内速度从v 0=180 km/h =50 m/s 降到0,加速度为a =0-v0t=-25 m/s 2根据牛顿第二定律,阻拦索对“大黄蜂”的平均作用力F f =ma ,代入数据求得F f =-3.75×105 N.(2)阻拦索对“大黄蜂”的冲量I =F f t =-7.5×105 N·s即阻拦索对“大黄蜂”的冲量大小为7.5×105 N·s ,方向与运动方向相反.答案:(1)3.75×105 N (2)7.5×105 N·s 方向与运动方向相反17.撑杆跳高是一项技术性很强的体育运动,完整的过程可以简化成如图6-1-6所示的三个阶段:持杆助跑、撑杆起跳上升、越杆下落.在第二十九届北京奥运会比赛中,身高1.74m 的俄罗斯女运动员伊辛巴耶娃以5.05m 的成绩打破世界纪录.设伊辛巴耶娃从静止开始以加速度a =1.0 m/s 2匀加速助跑,速度达到v =8.0 m/s 时撑杆起跳,使重心升高h 1=4.20m 后越过横杆,过杆时的速度不计,过杆后做自由落体运动,重心下降h 2=4.05m 时身体接触软垫,从接触软垫到速度减为零的时间t=0.90 s .已知伊辛巴耶娃的质量m =65kg ,重力加速度g 取10m/s 2,不计撑杆的质量和空气的阻力.求:(1)伊辛巴耶娃起跳前的助跑距离;(2)伊辛巴耶娃在撑杆起跳上升阶段至少要做的功;(3)在伊辛巴耶娃接触软垫到速度减为零的过程中,软垫对运动员平均作用力的大小.解析:(1)设助跑距离为s ,由运动学公式v 2=2as解得s =v22a=32 m. (2)设运动员在撑杆起跳上升阶段至少要做的功为W ,由功能关系有W +12m v 2=mgh 1 解得:W =650 J.(3)运动员过杆后做自由落体运动,设接触软垫时的速度为v ′,由运动学公式有v ′2=2gh 2设软垫对运动员的平均作用力为F ,由动量定理得(mg -F )t =0-m v ′ 解得F =1 300 N.答案:(1)32 m (2)650 J (3)1 300 N。
动量守恒定律的判定专题
动量定律条件的判定专题一、单选题1.(2020·宁夏·永宁县回民高级中学高二阶段练习)关于系统动量守恒的条件,下列说法中正确的是()A.只要系统内存在摩擦力,系统的动量就不可能守恒B.只要系统中有一个物体具有加速度,系统的动量就不守恒C.只要系统所受的合外力为零,系统的动量就守恒D.系统中所有物体的加速度都为零时,系统的总动量不一定守恒2.(2021·辽宁·阜新市第二高级中学高二期中)关于动量守恒的条件,正确是()A.只要系统内存在摩擦力,动量不可能守恒B.只要系统内某个物体做加速运动,动量就不守恒C.只要系统所受合外力恒定,动量守恒D.只要系统所受外力的合力为零,动量守恒3.(2022·新疆维吾尔自治区喀什第二中学高二开学考试)如图所示,在光滑水平地面上有A、B两个木块,A、B之间用一轻弹簧连接。
A靠在墙壁上,用力F向左推B使两木块之间的弹簧压缩并处于静止状态。
若突然撤去力F,则下列说法中正确的是()A.木块A离开墙壁前,A、B和弹簧组成的系统动量守恒,机械能也守恒B.木块A离开墙壁前,A、B和弹簧组成的系统动量不守恒,机械能也不守恒C.木块A离开墙壁后,A、B和弹簧组成的系统动量守恒,机械能也守恒D.木块A离开墙壁后,A、B和弹簧组成的系统动量守恒,但机械能不守恒4.(2018·贵州·毕节市实验高级中学高二期中)如图所示,相同的两木块M、N,中间固定一轻弹簧,放在粗糙的水平面上,用力将两木块靠近使弹簧压缩,当松手后两木块被弹开的过程中,不计空气阻力,则对两木块和弹簧组成的系统有()A.动量守恒,机械能守恒B.动量守恒,机械能不守恒C.动量不守恒,机械能守恒D.动量、机械能都不守恒5.(2021·全国·高考真题)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理动量专题练习1
1. 如图所示,质量为3m 、长度为L 的木块置于光滑的水平面上,质量为m 的子弹以初速度v 0水平向右射入木块,穿出木块时速度为05
2v ,设木块对子弹的阻力始终保持不变.
(1)求子弹穿透木块后,木块速度的大小;(2)求子弹穿透木块的过程中,木块滑行的距离s ;
(3)若改将木块固定在水平传送带上,使木块始终以某一恒定速度(小于v 0)水平向右运动,子弹仍以初速度v 0水平向右射入木块.如果子弹恰能穿透木块,求此过程所经历的时间.
2.如图所示,一质量为M 、长为l 0的长方形木板B 放在光滑水平地面上,在其右端放一质量为m 的小物块A ,m <M ,现以地面为参照系给A 、B 以大小相等、方向相反的初速度,使A 开始向左运动、B 开始向右运动,最后A 刚好没有滑离B 板,以地为参照系。
(1)若已知A 和B 的初速度大小v 0,则它们最后的速度的大小和方向;(2)若初速度大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离.
3. 如图所示,在光滑水平面上放有质量为2m 的木板,木板左端放一质量为m 的可视为质点的木块。
两者间的动摩擦因数为μ,现让两者以v 0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。
求碰后:(1)木块相对地面向右运动的最大距离L (2)木块相对木板运动的距离S
4. 如图所示,一平板小车静止在光滑的水平面上,质量均为m 的物体A 、B 分别以2v 和v 的初速度、沿同一直线同时从小车两端相向水平滑上小车.设两物体与小车间的动摩擦因数均为μ,小车质量也为m ,最终物体A 、B 都停在小车上(若A 、B 相碰,碰后一定粘在一起).求:
(1)最终小车的速度大小是多少,方向怎样?(2)要想使物体A 、B 不相碰,平板车的长度至少为多长?(3)从物体A 、B 开始滑上平板小车,到两者均相对小车静止,小车位移大小的取值范围是多少?
5. 在光滑水平面上静置有质量均为m 的木板AB 和滑块CD ,木板AB 上表面粗糙.动摩擦因数为μ,滑块CD 上表面是光滑的1/4圆弧,其始端D 点切线水平且在木板AB 上表面内,它们紧靠在一起,如图所示.一可视为质点的物块P ,质量也为m ,从木板AB 的右端以初速度v 0滑上木板AB,过B 点时速度为v 0/2,又滑上滑块CD ,最终恰好能滑到滑块CD 圆弧的最高点C 处,求:(1)物块滑到B 处时木板的速度vae ;(2)木板的长度L;(3)滑块CD 圆弧的半径R.
6.如图所示,质量为M 的小车B 静止在光滑水平面上,车的左端固定着一根轻弹簧,另一端位于小车上的O 点位置,O 点以左部分光滑,O 点以右部分粗糙,O 点到小车右端长度为L 。
一质量为m 的小物块A (可视为质点),以速度v 0从小车右端向左滑动,与弹簧相碰,最后刚好未从小车右端滑出。
求:(1)物块与小车的动摩擦因数μ。
(2)碰撞时弹簧的最大弹性势能。
A B
动量专题1参考答案 1. (1) ,35200mv v m
mv +=,则5
0v v =. (2) ,321],)52([21)(22020mv fs v v m L s f ⨯=-=+ 解之得L
mv f L s 259,620==。
(3))(21)(),(2200u v m L ut f u v m ft -=
+-= 解之得0
325v L t =。
2. (1)Mv 0-mv 0=(M +m )v ,速度v =
m M v m M +-0)(①,方向水平向右. (2)恰好没有滑离,则Q =fl 0=
20)(21v m M +-2)(21v m M +②,A 向左运动到达最远处时速度为0,
对由动能定理得:-fs =0-2021mv ③,由①②③得s =M
l m M 4)(0+. 4. (1)对整体由动量守恒定律得 023+-⋅='mv v m v m ,则3v v =
',方向向右. (2)由功能关系得mgL v m mv v m μ=⋅-+222)3(32121)4(21,则g
v L μ372= (3)①物体A 、B 未相碰撞,B 停止时,A 继续运动,此时小 车开始运动.对小车应用动能定理得2)3(221v m mgs ⋅=μ,则g
v s μ92
= ②物体B 速度为零时正好与A 相撞,碰后小车开始加速,最终达到共同速度3
v v =共.对小车应用动能定理得2)3(212v m s mg ⋅='⋅μ,则g
v s μ362
=' 所以小车位移大小的取值范围是≤≤s g v μ362g
v μ92
5. 解:(1)由点A 到点B 时,取向左为正.由动量守恒得
AB B v m mv mv ⋅+=20,又20v v B =,则4
0v v AB = (2)由点A 到点B 时,根据能量守恒得 mgL v m v m mv μ=-⨯-202020)4(21)16(21221,则g
v L μ16520= (3)由点D 到点C,滑块CD 与物块P 的动量守恒,机械能守恒,得 共m v v m v m 24
200=⋅+⋅ 2202022
1)16(21)4(21共mv v m v m ngR ⨯-+= 解之得g
v R v v 6483200==,共 6. (1)
gL M m Mv )(420+=μ (2)20max )(4v M m mM E +=。