低甲醇酿酒酿酒的诱变筛选与甘蔗酒的发酵
优良果酒酵母筛选与紫甘薯酒发酵工艺研究的开题报告

优良果酒酵母筛选与紫甘薯酒发酵工艺研究的开题报告题目:优良果酒酵母筛选与紫甘薯酒发酵工艺研究一、研究背景及意义果酒是一种传统的酿造酒类饮品,是利用水果发酵制成的酒精饮料,具有香味浓郁、口感清爽的特点,深受消费者喜爱。
近年来,随着人们对健康生活的追求和对天然食品的青睐,果酒市场日益火爆,其中以葡萄酒和蜜酒最为常见。
随着科学技术的不断进步和人们对酿酒技术的不断研究,许多新的果酒口味和种类得以开发,如苹果酒、梨酒、草莓酒、柚子酒等,这些果酒的发酵技术研究成为当今发酵研究领域中的热门话题之一。
在果酒的酿造过程中,酵母是至关重要的因素之一,良好的酵母菌株能够促进果酒的发酵过程,产生更多的酒精和芳香化合物,使得果酒更加香醇可口。
紫甘薯是一种优质、营养丰富的食材,在市场上备受欢迎,其进行果酒化的研究有着广泛的应用前景。
本研究旨在通过对果酒酵母的筛选和紫甘薯酒的发酵研究,探索优质果酒酵母的筛选方法和优化紫甘薯酒的发酵工艺,为果酒生产业提供科学依据和技术支持。
二、研究内容及方法1.果酒酵母筛选方法通过对多种酵母菌株的筛选实验,比较不同酵母对果酒发酵过程中各项指标的影响,找到对果酒发酵效果有显著提高的优质果酒酵母菌株。
2.紫甘薯酒的发酵工艺研究探索合适的紫甘薯酒发酵条件,研究发酵过程中各项指标的变化规律,优化紫甘薯酒的发酵工艺。
实验采用设计合理的实验方案,采用分析、实验和文献调研相结合的方法进行研究,具体内容包括:1.选择适合的果酒酵母菌株,进行液体发酵实验,比较不同酵母对果酒酿造过程中酒精含量、风味物质含量等指标的影响。
2.对紫甘薯进行理化性质的测试,找到合适的发酵材料。
3.优化紫甘薯的制备工艺,探索合适的蒸煮时间和温度,以及添加合适的辅料等。
4.在研究紫甘薯酒的发酵过程中,采用不同酵母菌株,分析比较其对紫甘薯酒的影响。
三、预期目标及意义1.成功筛选出优质果酒酵母菌株,为果酒行业提供高效、精准的酵母筛选方法,为创新果酒口味和品质提供技术支持。
降低甘蔗蒸馏酒中甲醇生产量的研究

降低甘蔗蒸馏酒中甲醇生产量的研究降低甘蔗蒸馏酒中甲醇生产量的研究甲醇是一种有害的有机污染物,可以从酒精中溶出,严重影响饮酒时的安全。
随着人们对健康的越来越多的关注,人们越来越关注甲醇的产生和控制。
甘蔗蒸馏酒作为一种传统酒,其中含有较高的甲醇含量,因此降低甘蔗蒸馏酒中甲醇生产量成为当前酿酒行业的一个重要研究课题。
首先,需要弄清楚甘蔗蒸馏酒中甲醇的来源和产生机制。
甘蔗在发酵过程中会产生甲醇,但这通常不足以解释所有的甲醇含量。
研究表明,除了发酵过程产生的甲醇外,还有其他机制也会导致甘蔗蒸馏酒中甲醇的产生。
其中一个机制是甘蔗的微生物污染,其中的细菌可以产生甲醇。
另一个机制是甘蔗的木质素醇的降解,甘蔗的木质素醇可以被细菌分解为甲醇和木醇醛。
其次,分析影响甘蔗蒸馏酒中甲醇生产量的因素,以优化蒸馏工艺,有效控制甲醇的产生。
其中,发酵温度是一个重要的影响因素,太高的温度会加速甲醇的生成,太低的温度会减缓甲醇的生产速度。
此外,发酵期也会影响甲醇的产生,发酵时间太长会导致甲醇含量增加。
此外,酵母菌的容量,培养基的pH和溶解氧等也会影响发酵过程中甲醇的产生。
另外,还可以通过添加一些物质,如抑制剂、调味剂和颜料等,来控制甘蔗蒸馏酒中甲醇的产生。
研究表明,在发酵过程中添加抑制剂可以有效抑制细菌产生甲醇的过程,从而降低蒸馏酒中甲醇的含量。
此外,在酿造过程中添加一定量的调味剂或颜料也可以改变发酵状态,从而抑制细菌的生长,减少甲醇的产生。
最后,可以通过催化反应来清除甘蔗蒸馏酒中的甲醇。
例如通过催化氧化或催化氢化反应等,可以实现对甘蔗蒸馏酒中甲醇的去除,从而抑制甲醇的含量。
综上所述,降低甘蔗蒸馏酒中甲醇生产量的研究,需要研究甲醇来源和产生机制,了解影响甘蔗蒸馏酒中甲醇生产量的因素,优化工艺条件,通过添加抑制剂、调味剂和颜料等控制甲醇的产生,以及利用催化反应清除甲醇。
结合上述研究,将有助于有效控制甘蔗蒸馏酒中甲醇的产生,为消费者提供更安全、更有营养的饮品。
一株产乙醇酿酒酵母的诱变选育及发酵工艺优化的开题报告

一株产乙醇酿酒酵母的诱变选育及发酵工艺优化的开题报告一、选题背景酒精发酵是一种常见的工业生产过程,产乙醇酿酒酵母是其中重要的微生物资源。
现有研究表明,对产乙醇酿酒酵母进行诱变选育可以提高发酵产酒精的能力、抗逆性和生长速度等方面的性能,进一步提高乙醇酿造的效率和品质。
因此,本课题以产乙醇酿酒酵母的诱变选育及发酵工艺优化为研究主题,旨在探究如何利用诱变技术提高产乙醇酿酒酵母的性质,减少发酵过程中的资源浪费,促进酒精行业的发展。
二、研究内容1. 产乙醇酿酒酵母的诱变选育选取一株高效的产乙醇酿酒酵母株,利用物理、化学和基因工程等不同手段进行诱变,通过筛选和鉴定,筛选出产酒精能力更强、抗逆性更好的诱变菌株。
2. 发酵工艺优化改进传统的酒精发酵过程和条件,考虑酵母的生理特性和适应性,寻找最适合诱变菌株的发酵条件和方法,提高发酵效率和产酒精量,同时优化酒精的品质和稳定性。
三、研究方法1. 诱变选育利用化学、物理或基因工程等不同方式对产乙醇酿酒酵母进行诱变,然后使用高通量筛选技术和生物学实验等手段鉴定产酒精能力更强、耐受性更好的诱变菌株。
2. 发酵工艺优化通过研究酿酒酵母的生理特性和代谢途径,改进传统的酒精发酵工艺和条件,包括温度、pH值、营养物质、发酵时间等多个方面,寻找最适合诱变菌株的发酵条件和方法,提高发酵效率和产酒精量,同时优化酒精的品质和稳定性。
四、研究意义本研究的结果将可以在乙醇酿造行业中应用,并提高乙醇饮料的品质和竞争力。
此外,通过对产乙醇酿酒酵母的诱变选育和发酵工艺优化的深入研究,丰富了生物技术和发酵工艺领域的理论与实践,为相关领域的未来发展提供有力的支撑。
水果蒸馏酒中甲醇产生机理及控制技术研究进展

水果蒸馏酒中甲醇产生机理及控制技术研究进展作者:张素敏隋韶奕王雪松李珂来源:《农业科技与装备》2021年第03期摘要:甲醇是果酒酿造过程中的有毒副产物,须严格控制其在酒中的残留量。
从原料性质、发酵工艺、蒸馏方法及陈酿方式等方面对水果蒸馏酒中甲醇产生的机理进行分析,从而提出降低水果蒸馏酒中甲醇含量的方法,以期为今后水果蒸馏酒的研究开发提供参考。
关键词:蒸馏酒;甲醇;机理;控制技术中图分类号:TS262.7 文献标识码:A 文章编号:1674-1161(2021)03-0048-02甲醇是一种无色具有刺激性气味的有毒液体,能破坏视觉神经细胞和脑神经细胞,可导致永久性失明,当摄入量达到340 mg/kg时就会出现中毒反应甚至死亡。
然而甲醇是果酒酿造过程中的副产物,因此我国水果酒中甲醇含量具有严格的国家标准,NY/T 1508—2017《绿色食品果酒》中规定甲醇含量≤0.4 g/L,GB 2757—2012《食品安全国家标准蒸馏酒及其配制酒》中规定甲醇含量应<2.00 g/L(以酒精度换算到100% vol计)。
研究表明,多种水果蒸馏酒中的甲醇含量均超标。
过高的甲醇含量严重制约了果酒特别是水果蒸馏酒的发展。
本课题对水果蒸馏酒中甲醇形成机理及控制技术研究情况进行归纳总结,以期为水果蒸馏酒的进一步研究提供理论依据。
1 甲醇产生机理1.1 酿造原料水果蒸馏酒中的甲醇主要是酿酒原料中的果胶在果胶酶作用下分解产生的,因此酿酒材料与酒中甲醇含量具有一定相关性。
刘文研究表明,中华寿桃酒中的甲醇含量与果实中果胶的分子量、分布指数及酯化度有关,果胶分解产生甲醇主要发生在RG-Ⅰ型结构的侧链位置。
俞惠明等人认为,不同葡萄品种的果胶种类、含量都有所差异,还与成熟度和生长环境有关,果实成熟度高则果胶含量也高,果胶含量越高则酒中甲醇含量也越高。
许多水果(如山楂、桃子、柿子等)中果胶含量相对丰富,其相应的果酒中甲醇含量也较高。
降低甘蔗蒸馏酒中甲醇生产量的研究

降低甘蔗蒸馏酒中甲醇生产量的研究近年来,全世界都在研究减少甘蔗蒸馏酒中甲醇的生产。
由于甲醇具有高度毒性,它在酒精饮料中的生产量不应过多,因此控制甲醇的生产绝对十分重要。
本文就介绍几种有效的降低甘蔗蒸馏酒中甲醇生产量的方法。
首先,要降低甘蔗蒸馏酒中的甲醇,首先要知道其来源。
甲醇产生的主要原因是糖被发酵成乙醇,然后乙醇被转化为甲醇。
因此,如果要降低甘蔗蒸馏酒中甲醇的产量,就要控制乙醇的产量,那么就需要通过改变发酵条件来控制乙醇的产量。
其次,由于甘蔗含有高度活性的果糖,可能会影响发酵的效率,导致甲醇的生产量增加。
因此,可以通过降低果糖含量,降低乙醇和甲醇产生的数量。
另外,也可以通过降低发酵温度、延长发酵时间来降低甘蔗蒸馏酒中甲醇的产量。
发酵温度越低,发酵时间越长,发酵到较低度数的时候,甲醇就会慢慢结晶出来,把它析出来,从而减少甲醇的生产量。
最后,甘蔗蒸馏酒中甲醇生成量也可以通过调节发酵酶的活性来控制。
虽然这需要一定的技术难度,但是它的作用十分明显,可以帮助更有效地控制甲醇的产量。
综上所述,降低甘蔗蒸馏酒中甲醇生产量有几种方法,包括改变发酵条件来降低乙醇生成量,降低果糖含量,降低发酵温度,延长发酵时间,调节发酵酶活性等等。
在未来,有关研究人员将要继续投入集中精力来研究这些措施,以期能更好地降低甘蔗蒸馏酒中甲醇的产量,为人们提供更安全的饮料。
目前,在降低甘蔗蒸馏酒中甲醇生产量的研究中,进展还不太理想,但随着不断发展的技术和科技,未来减少甲醇生产量的研究成果可望而期,期望有一天可以实现。
总之,降低甘蔗蒸馏酒中甲醇生产量的研究一直是全世界研究人员努力追求的目标之一,基于安全角度考虑,一定要从源头上降低甘蔗蒸馏酒中甲醇生产量。
为此,研究机构和科研人员应该投入更多的精力,研发出更多能有效降低甲醇生产量的方法。
本文通过介绍几种有效的降低甘蔗蒸馏酒中甲醇生产量的方法,以及有关研究的前景预期,旨在推进相关研究的发展,以保障饮用的安全性。
降低和田红枣白兰地中甲醇含量的发酵前处理工艺优化

果实大、味道甜等原因广受消费者喜爱,红枣加工生 器有限公司;DZKW 电热恒温水浴锅,北京永光明医
产链也在日益完善,但单一的种植产出让农民受益有 疗仪器有限公司;LAL2T 酒精计,广州速为电子科技
限,开发以红枣为原料的酒精饮品是枣农增收,资源 有限公司;HPX-9052MBE 恒温培养箱,上海博迅实
现代食品科技
Modern Food Science and Technology
降低和田红枣白兰地中 甲醇含量的发酵前处理工艺优化
2021, Vol.37, No.7
李桂林,彭昕,李泽涵,邵永明,杨凡,李函伦,杨兴元
(新疆农业大学食品科学与药学学院,新疆乌鲁木齐 830000)
摘要:本研究以新疆和田地区的干制红枣为原料酿制白兰地,探究了不同水平的发酵前处理条件对红枣白兰地中甲醇含量、酒
Key words: jujube; brandy; methanol; pretreatment 引文格式: 李桂林,彭昕,李泽涵,等.降低和田红枣白兰地中甲醇含量的发酵前处理工艺优化[J].现代食品科技,2021,37(7):74-82 LI Gui-lin, PENG Xin, LI Ze-han, et al. Optimization of pretreatment process before fermentation to reduce the methanol content in hetian dried red jujube brandy [J]. Modern Food Science and Technology, 2021, 37(7): 74-82
红枣,鼠李科枣属木枣树的果实,又称中华大枣、 干枣、美枣等[1]。红枣原产于我国,具有悠久的栽培 历史,在古代文献中,红枣被列为“五果之一”。红枣
甜酒生产流程图解说明

甜酒生产流程图解说明
甜酒的生产流程可以分为以下几个主要步骤:
1. 原料准备:首先需要准备酿造甜酒所需要的原料,主要包括水、糖和酵母。
这些原料需要经过严格的筛选和处理,确保它们的质量合格。
2. 酿造发酵:原料准备好后,将水加热至一定温度,并逐步将糖溶解在水中,形成糖液。
糖液随后被转移到发酵罐中,酵母也被加入。
发酵过程中,酵母会分解糖分,产生酒精和二氧化碳。
3. 发酵调控:在发酵过程中,需要对温度、湿度和氧气供应等条件进行严格的控制。
这是为了确保酵母能够充分发酵,并且产生出理想的口感和香气。
4. 澄清过滤:当发酵过程结束后,甜酒中会有一些悬浮物和杂质。
为了提高甜酒的纯度,需要对酒液进行澄清和过滤处理。
通常会使用酒石酸等物质来促使悬浮物沉淀,然后将澄清的酒液过滤出来。
5. 醇化调配:澄清过滤后的甜酒可能还不够甜或香,需要通过醇化和调配来达到理想的口感和香气。
醇化的方式通常是添加一定比例的甜味剂,如蔗糖或果汁。
而调配则是根据不同的需求,将不同的甜酒按一定比例混合。
6. 包装装瓶:最后一步是将甜酒进行包装装瓶。
这需要先进行
瓶内预处理,如灌装空气清理、蒸汽消毒等。
然后将甜酒用机器进行定量灌装,并进行封口。
整个生产流程中,操作人员需要严格控制各个环节的时间、温度和质量等要素,以确保甜酒的品质和口感符合预期。
同时,需要遵守相关的卫生和安全要求,确保产品符合食品安全标准。
甘蔗汁酿酒酵母的筛选及特性

甘蔗汁酿酒酵母的筛选及特性
邓毛程;王瑶;李静;李亿祥
【期刊名称】《中国酿造》
【年(卷),期】2013(032)009
【摘要】为了筛选适宜于甘蔗果酒的酿酒酵母,综合采用了富集培养、平板分离、产酒与产香实验、起酵实验及耐乙醇特性实验等方法,从自然发酵甘蔗渣中筛选获得1株优良的酿酒酵母G05.菌株G05具有起酵快、耐乙醇性较强、产酒率高、香气明显等特点,最适发酵温度28℃和发酵最适pH值为5.0,在含糖200g/L的甘蔗汁培养基中的乙醇产量、总酯产量分别为10.8%vol和1.2g/L.
【总页数】3页(P54-56)
【作者】邓毛程;王瑶;李静;李亿祥
【作者单位】广东轻工职业技术学院,广东广州510300;五华县溢群酒业有限公司,广东梅州514400;广东轻工职业技术学院,广东广州510300;广东轻工职业技术学院,广东广州510300;五华县溢群酒业有限公司,广东梅州514400
【正文语种】中文
【中图分类】Q815
【相关文献】
1.柠檬汁和甘蔗汁混合发酵酿酒酵母的筛选 [J], 郄志民;陈安均;蒲彪;刘书亮
2.5株低产乙醇的非酿酒酵母筛选及其酿造特性 [J], 张博钦;方梓庄;成池芳;张如意;段长青;燕国梁
3.桑葚酒用非酿酒酵母的筛选及特性研究 [J], 边名鸿;许强;周阳子;王灵香;李蓉;程鑫凯
4.一株耐酸性酿酒酵母的筛选鉴定及特性 [J], 向丽萍;范斌强;杨志龙;伍强;余有贵
5.优良耐酸酿酒酵母的筛选及发酵特性研究 [J], 耿海波
因版权原因,仅展示原文概要,查看原文内容请购买。
酒类资料-甘蔗汁酿酒工艺的研究 精品

附录二甘蔗酒感官评分标准………………………………………………………………………..25
1
果酒是一类低酒度、高营养、益脑健身、卫生的饮料酒。果酒除含酒精和糖分外,还富含其他酯类、多种氨基酸、维生素和矿物质,并且还含有一些其它酒类所没有的单宁、酒石酸、苹果酸等,此外还含有黄酮、类黄酮、白蘸芦酵等多种具有抗氧化作用的化学成分[1]。正由于果酒含有很多对人体有益的物质,因此它可以调整人体的新陈代谢、促进血液循环、控制体内胆固酵水平,具有利尿、激发肝功能和抗衰老等保健功效。果酒因其水果品种、生产工艺、原铺料等不同而品种繁多。目前主要的果酒品种有葡萄酒、梨酒、苹果酒。
1.2
我国古代医学家将甘蔗列入“补益药”。中医认为,甘蔗入肺、胃二经,具有清热、生津、下气、润燥、补肺、益胃的特殊效果。甘蔗可治疗因热病引起的伤津,心烦口渴,反胃呕吐,肺燥引发的咳嗽气喘。引外,甘蔗还可以通便解结,饮其汁还可缓解酒精中毒。《本草纲目》就记载了有关甘蔗的食疗良方,“甘蔗汁一升半,加入青粱米四合,两者一道熬成粥,日食两次,可以滋润心肺。”
1.1
酒的种类繁多,分类方法很多,常用的分类法有三种:
(1)、按制造方法分类可分为酿造酒、蒸馏酒、配制酒三大类。酿造酒也称发酵酒,属低度酒,酿造酒按发酵类型可分为单式发酵(sing1e fermentation)和复式发酵(plexfermentation)两种。单式发酵是以糖质为原料,由酵母菌直接发酵,以制造酒精饮料。复式发酵乃以淀粉质为原料,先经淀粉糖化过程变成糖质后,再进行酒精发酵。如黄酒、果酒等;蒸馏酒是以含糖或淀粉的原料,经糖化、发酵、蒸馏制得,大多为高度酒,如白酒、烧酒等;配制酒又名再制酒,是用酿造酒或蒸馏酒为酒基,再配加一些药材而制成,如药酒、滋补酒等。广西工ຫໍສະໝຸດ 院论文甘蔗汁酿酒工艺的研究
紫外诱变法选育高产酒精及酯类酿酒酵母

紫外诱变法选育高产酒精及酯类酿酒酵母方佩佩;王世清;李静;谭海刚;刘晓莉;付均鹏【摘要】采用紫外诱变法进行酿酒酵母的诱变,选育发酵速度较快、产酒精能力较强的酿酒酵母工业菌株。
以致死率和正突变率为主要指标,以突变株的酒精发酵性能为参考,结合单因素实验和正交实验,确定出紫外诱变法的较佳诱变条件为:辐照功率20 W,紫外灯辐照时间10 min,辐照距离9 cm。
以出发菌株 F1为对照,对7株酵母突变株进一步进行全面的生理性能测试,结果表明,菌株F4的CO2失重量最高、残糖含量低、乙醇和酯类物质的产生量高,是一株优良的正向突变株。
对该菌株进行形态观察,其细胞个体饱满呈卵圆型,群体菌落颜色呈乳白色;用于紫甘薯汁发酵,起酵速度快、发酵液酒精度可达11.08%(V /V),香气浓郁,具有良好的工业生产潜力。
%Saccharomyces cerevisiae induced by UV mutagenesis to breeding the strains of high fermenta-tion rate and alcohol production are investigated.Regarded fatality rate and percentage of plus mutants as main criterion,ethanol fermentation performance of mutant as reference,the proper condition of UV muta-genesis experimented by single factor and orthogonal experiment are as follows:UV radiation time for 10 min by ultraviolet lamp of 20w,distance from the lamp to sample at 9cm.And with the original strain F1 as control,physiological comprehensive performance tests of the seven mutant stains are conducted.The results are shown that an excellent positive mutated S.cerevisiae F4 is obtained,which has a high loss of carbon dioxide weight,low amount of residual sugar,superior production of ethanol and esters.The cell of this mutated strain F4 is full,its shape isoval,and its color is ivory -white or cream.It could be applied in the wine of purple sweet potato,of which the fermentation rate and alcohol production are high,the al-cohol degree of fermentation broth can reach at 11.08%,the aroma is strong.So the potential industrial production of this mutated strain is well.【期刊名称】《粮油食品科技》【年(卷),期】2016(000)001【总页数】5页(P86-90)【关键词】紫外诱变;酵母菌;育种;紫甘薯【作者】方佩佩;王世清;李静;谭海刚;刘晓莉;付均鹏【作者单位】青岛农业大学食品科学与工程学院,山东青岛 266100;青岛农业大学食品科学与工程学院,山东青岛 266100;青岛农业大学食品科学与工程学院,山东青岛 266100;青岛农业大学食品科学与工程学院,山东青岛 266100;青岛农业大学食品科学与工程学院,山东青岛 266100;青岛农业大学食品科学与工程学院,山东青岛 266100【正文语种】中文【中图分类】TS201.3酵母菌,一般泛指能发酵糖类的各种单细胞真菌[1]。
三株甘蔗糖蜜酒精发酵高产酵母菌株的筛选

三株甘蔗糖蜜酒精发酵高产酵母菌株的筛选陆琦;张穗生;吴仁智;陈东;黄日波【摘要】从甘蔗糖厂的废弃物中筛选到3株甘蔗糖蜜酒精发酵高产菌株MF1001、MF1002和MF1003,经rDNA ITS序列同源比对鉴定为酿酒酵母(Saccharomyces cerevisiae)的不同菌株.3个菌株均可以完全利用葡萄糖和蔗糖,部分利用棉子糖和半乳糖,均不能利用乳糖和木糖.MF1001发酵甘蔗糖蜜的残糖含量明显低于目前使用的生产菌株,略低于标准测定菌株CICC31149和CICC31279,MF1002和MF1003的残糖含量略低于目前使用的生产菌株.与生产菌株相比,3个菌株在甘蔗糖蜜的生长速率略低,但是维持高菌数的时间较长.按目前甘蔗糖蜜酒精生产的发酵工艺,3个菌株30℃发酵72h的醪液酒精含量分别为14.26%(V/V)、14.48%(V/V)和13.50%(V/V),比目前生产使用的菌株高19.5%~28.6%;37℃发酵40h的醪液酒精含量分别为12.03%(V/V)、12.06%(V/V)和12.14%(V/V),比目前生产使用的菌株高10.0%~11.7%.这3个菌株具有提高甘蔗糖蜜发酵醪液酒精含量的潜在工业价值.【期刊名称】《广西科学》【年(卷),期】2010(017)004【总页数】6页(P368-372,376)【关键词】酵母菌株;筛选;酒精;糖蜜【作者】陆琦;张穗生;吴仁智;陈东;黄日波【作者单位】广西科学院非粮生物质酶解国家重点实验室,国家非粮生物质能源工程技术研究中心,广西生物炼制重点实验室,广西南宁,530007;广西科学院非粮生物质酶解国家重点实验室,国家非粮生物质能源工程技术研究中心,广西生物炼制重点实验室,广西南宁,530007;广西科学院非粮生物质酶解国家重点实验室,国家非粮生物质能源工程技术研究中心,广西生物炼制重点实验室,广西南宁,530007;广西大学生命科学与技术学院,广西南宁,530003;广西科学院非粮生物质酶解国家重点实验室,国家非粮生物质能源工程技术研究中心,广西生物炼制重点实验室,广西南宁,530007;广西大学生命科学与技术学院,广西南宁,530003;广西科学院非粮生物质酶解国家重点实验室,国家非粮生物质能源工程技术研究中心,广西生物炼制重点实验室,广西南宁,530007【正文语种】中文【中图分类】Q591;TQ926糖蜜是蔗糖生产的副产物,在我国广西、云南和广东等主要蔗糖产区已经成为酒精发酵生产的主要原料。
多重耐性酿酒酵母的选育及其蔗汁酒精发酵的研究

多重耐性酿酒酵母的选育及其蔗汁酒精发酵的研究
徐日益
【期刊名称】《甘蔗糖业》
【年(卷),期】2024(53)1
【摘要】本研究以酿酒酵母AS2.1189为亲株,利用亚硝酸诱变酵母并建立含561株诱变株的菌种库,通过耐性平板点种初筛法,经5次传代培养后筛选得到遗传性能稳定的耐性诱变株,其中Y75、Y226、Y324这3株是耐热、耐渗透压和耐酒精性能都有提高的诱变株。
3株诱变株在亲株极限耐受条件下的生长速率和最终细胞浓度都要大于亲株。
研究诱变株Y75在胁迫条件下利用蔗汁发酵酒精,结果表明Y75最高菌体浓度高出亲株约2.5个OD600单位;Y75发酵液pH低于亲株约0.4个单位;Y75耗糖速率明显大于亲株,但最终残糖基本相同;发酵20h后Y75的产酒度高于亲株约1%(体积分数,下同),Y75和亲株的最终产酒度为14.82%和14.22%。
【总页数】7页(P67-73)
【作者】徐日益
【作者单位】广东省科学院生物与医学工程研究所;广东省绿色制糖工程技术研究中心
【正文语种】中文
【中图分类】TS262.2
【相关文献】
1.葡萄汁有孢汉逊酵母和酿酒酵母的混合酒精发酵动力学
2.氮源对酿酒酵母
GJ2008不同糖浓度甘蔗汁酒精分批发酵的影响3.固定化酵母发酵蔗汁产酒精载体选择及发酵工艺研究4.淀粉直接发酵酒精的菌株选育──内孢霉酵母与酿酒酵母属间原生质体融合5.无机盐对新型固定化酵母蔗汁酒精发酵的影响
因版权原因,仅展示原文概要,查看原文内容请购买。
甘蔗汁酿酒工艺的研究

甘蔗汁酿酒工艺的研究甘蔗汁酿酒是一种传统饮品,具有独特的口感和营养价值。
近年来,越来越多的人开始关注甘蔗汁酿酒的制作工艺,探索如何制作更加美味和优质的甘蔗汁酿酒。
本文将介绍甘蔗汁酿酒的制作工艺及其相关研究成果。
一、甘蔗汁酿酒的制作工艺1. 原料选取:使用新鲜、成熟的甘蔗,去除坏掉或受损的部分,切成小段备用。
2. 压榨甘蔗汁:将甘蔗小段放入压榨机中,压榨出甘蔗汁。
甘蔗汁中含有丰富的维生素C和糖分等成分,是制作酒精的重要原料。
3. 调味加料:将甘蔗汁倒入容器中,加入黄酒曲、陈年老酒等调味料,搅拌均匀。
这些调味料可以增加甘蔗酒的香味和口感。
4. 发酵处理:将调制好的甘蔗汁倒入发酵罐中,加入酵母等发酵剂,放置在温度控制在25-30℃的环境中,发酵约一周左右。
在发酵过程中,酵母会将甘蔗汁中的糖分转化为酒精。
5. 良性发酵:发酵过程结束后,将酒液倒入桶中,保持温度在15-20℃,进行良性发酵,使酒质更加醇厚。
6. 陈放贮存:将发酵好的甘蔗酒倒入酒瓶中,放置在通风和阴凉的地方,进行陈放贮存。
通常情况下,甘蔗酒需要经过3-6个月的陈放,才能达到最佳的口感和香气。
二、甘蔗汁酿酒的研究成果1. 发酵剂配比的研究发酵剂是影响甘蔗汁酿酒质量的重要因素。
研究发现,鲜酒曲和陈年老酒的配比,可以显著地影响甘蔗酒的口感和香气。
合适的配比可以使甘蔗酒口感更加浓郁、香气更加浓郁。
目前,研究者已经开展了一系列发酵剂配比的研究,为甘蔗汁酿酒的制作提供了可靠的理论基础。
2. 发酵条件优化的研究发酵条件是影响甘蔗汁酿酒质量的另一个关键因素。
研究者发现,适宜的温度和湿度可以改善甘蔗酒的口感和香气。
同时,研究者还探索了不同种类酵母菌的适应性和发酵效果,不断优化发酵条件,提高甘蔗汁酿酒的制作效率和质量。
3. 酿造工艺改进的研究传统的甘蔗汁酿酒工艺存在一些缺点,如发酵周期长,甘蔗酒口感不稳定等等。
研究者通过对酿造工艺的改进,有效地缩短了发酵周期,提高了甘蔗酒的稳定性和口感。
不同干酵母对甘蔗汁酿酒特性的影响

不同干酵母对甘蔗汁酿酒特性的影响郑凤锦;陈赶林;蒙艳红;林波;孙健【期刊名称】《食品工业科技》【年(卷),期】2018(039)024【摘要】为研究不同酵母对甘蔗果酒的发酵影响,以新鲜的甘蔗压榨汁为原料,常温下选用葡萄酒高活性干酵母、耐高温高活性干酵母和发利干酵母三种商业活性干酵母进行液态发酵酿制甘蔗果酒.研究探讨了三种酵母菌的生长曲线、凝聚性、发酵度、发酵力、酸化力和产酒精能力等酿酒发酵特性.结果表明,三种酵母菌作用甘蔗汁的发酵过程中,酵母菌生长曲线趋势基本一致,三种酵母菌的凝聚值F< 20%,均为非凝聚性酵母.三种酵母菌的发酵力基本相当的,最终产酒精的能力差距不大,其中葡萄酒高活性干酵母最终产酒精为12.2% vol,耐高温高活性干酵母和发利干酵母均为12.0% vol.从三种商用酵母菌对甘蔗汁酿酒的各发酵特性来看,葡萄酒高活性干酵母略优于耐高温高活性干酵母和发利干酵母.研究结果为甘蔗汁发酵酿制风味甘蔗果酒提供了技术参考.【总页数】5页(P24-28)【作者】郑凤锦;陈赶林;蒙艳红;林波;孙健【作者单位】广西农业科学院农产品加工研究所,广西南宁530007;广西农业科学院,中国农业科学院甘蔗研究中心,广西南宁530007;广西农业科学院农产品加工研究所,广西南宁530007;广西农业科学院农产品加工研究所,广西南宁530007;广西农业科学院农产品加工研究所,广西南宁530007【正文语种】中文【中图分类】TS261【相关文献】1.氮源对酿酒酵母GJ2008不同糖浓度甘蔗汁酒精分批发酵的影响 [J], 柯善恢;伍时华;张健;赵东玲;黄翠姬2.不同葡萄酒活性干酵母酿酒特性的比较 [J], 赵森林;刘树文;杨楠;张辉;都振江;张成碧3.不同酿酒酵母共发酵对干红葡萄酒理化特性和香气组分的影响 [J], 朱娟娟; 马海军; 李敏; 刘雅琴; 倪志婧; 王薇; 陈凤英; 李亚罡4.采收期不同留果量对酿酒特性和果树生长发育的影响 [J], 陈泽浩;刘美玉;张琪;崔广鑫;安贵阳5.不同酿酒酵母对草莓酒发酵特性影响的研究 [J], 张阳阳;汪雅馨;王荣荣;朱静;赵子旭因版权原因,仅展示原文概要,查看原文内容请购买。
甘蔗果酒酿造酵母筛选及其发酵特性研究

甘蔗果酒酿造酵母筛选及其发酵特性研究李秀萍;郑平;吴幼茹;邹毅;李楠【期刊名称】《中国酿造》【年(卷),期】2014(033)006【摘要】菌种的性能是决定果酒品质的关键因素之一.利用甘蔗汁为培养基,对4种酵母菌株分别进行摇瓶发酵,通过酒精和残糖测定,筛选到一株适合甘蔗蔗汁发酵生产甘蔗果酒的酵母菌株32481.发酵特性实验表明,根据生长曲线确定酵母种子液接种龄为19h;菌株32481最高耐受乙醇含量为18%vol、耐受糖浓度为36°Bx,最佳发酵初始糖度为26 °Bx;最适发酵条件为温度28℃、pH4.5.在此发酵条件下所得甘蔗果酒的酒精度为13.4 %vol,糖利用率为60.38%,出酒率为40.66%,发酵效率为79.58%.【总页数】4页(P63-66)【作者】李秀萍;郑平;吴幼茹;邹毅;李楠【作者单位】广西大学生命科学与技术学院,广西南宁530004;广西大学生命科学与技术学院,广西南宁530004;广西大学生命科学与技术学院,广西南宁530004;广西大学糖业工程技术研究中心,广西南宁530004;广西大学生命科学与技术学院,广西南宁530004【正文语种】中文【中图分类】TS261.1【相关文献】1.杨梅果酒酿造酵母的筛选、鉴定及耐受性研究 [J], 杜晶;余培斌;苏琪;丁占生;范柳萍2.酿造蓝莓果酒的酵母菌筛选和发酵特性研究 [J], 方亮;吴文龙;李维林3.传统酿造糯米酒中酵母菌的筛选及发酵特性研究 [J], 姜加良4.高酸度水果果酒酿造产酯酵母的鉴定及发酵特性研究 [J], 李棒; 邓梦菲; 陈延儒; 万茵; 刘成梅; 付桂明5.一株南果梨果酒酿造酵母筛选研究 [J], 韩艳秋;叶春苗;李莉峰因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Research ArticleReceived:9July2014Revised:3September2014Accepted article published:10September2014Published online in Wiley Online Library: ()DOI10.1002/jsfa.6908Mutation breeding of Saccharomyces cerevisiae with lower methanol content and the effectsof pectinase,cellulase and glycine in sugar cane spiritsMing-Hua Liang,a,b Ying-Jie Liang,a Xiao-Na Wu,a Shi-Shui Zhou a*and Jian-Guo Jiang b*AbstractBACKGROUND:To decrease the methanol content of the sugar cane sprits,mutagenesis of ultraviolet(UV)coupled with diethyl sulfate(DES)was used to generate a mutant of Saccharomyces cerevisiae with lower methanol content.Meanwhile,the effects of the additions of pectinase,cellulase and glycine on the production of methanol in sugar cane spirits were evaluated. RESULTS:After mutagenesis of UV coupled with DES,a mutant S.cerevisiae DU9with low production of methanol (97.3±1.7mg/L)was selected,with a12.3%decrease of that of S.cerevisiae D4only with DES treatment,and with a27.8% reduction of that of the strain without any treatment.Pectinase and cellulase significantly increased the methanol levels of the sugar cane spirits.The results showed that there was linear relationship between glycine(concentration within0∼0.9g/L)and methanol in sugar cane sprits and the linear equation was y=104.7×−4.79with the conversion rate of glycine conversion to methanol as24.56%.CONCLUSION:Mutagenesis of UV coupled with DES is an efficient way to generate a mutant of S.cerevisiae with lower methanol content.Also,it is necessary to control the additions of pectinase,cellulase and glycine in the fermentation medium,and other unknown ways to generate methanol metabolic pathway in yeasts may need further study.©2014Society of Chemical IndustryKeywords:Saccharomyces cerevisiae;diethyl sulfate(DES);ultraviolet(UV);methanol;glycine;sugar cane spirits; INTRODUCTIONSugar cane spirits are defined as beverages with an alcohol contentof38–54%(v/v)at20∘C.Sugar cane spirit production involves theextraction of sugar cane juice,fermentation and distillation.Alongwith sugars such as sucrose,glucose and fructose,sugar canejuice also consists of minerals such as potassium and magnesium,amino acids(proline,aspartic acid,asparagine,serine,histidineand glycine are the most representative amino acids),1vitaminB 3,organic acids and small amounts of cellulose,hemicelluloseand pectin,2and may have immense health benefits for people suffering from a variety of conditions.Although sugar cane juice has high sugar content,it is good for diabetic patients because of to its low glycemic index.Methanol has been reported to be associated with harmful health effects such as headache,fatigue,nausea,visual impair-ment or complete blindness,3and its presence in alcoholic beverages is strictly controlled.Here we used butyl acetate as internal standard with the method of headspace gas chromatog-raphy(HS-GC)to determine the identity and concentration of methanol in sugar cane spirits.As the sugar cane spirits sample matrices are complex,the GC method cannot be applied directly. These sample matrix problems can be largely eliminated by the proposed HS sampling technique,coupled with analysis by GC.In addition,sample clean-up and pre-concentration are not necessary,and tedious and error-producing steps can be elimi-nated.Thus methanol in sugar cane spirits can be analyzed easily and quickly by HS-GC.4In sugar cane spirits,methanol is formed mainly from sugar cane bagasse particles,a type offiber that contains pectin and cellulose,which remains in the juice after filtration.5Moreover,the use of commercial macerating enzymes like pectinase and cellulase in winemaking is a common and well-known practice.These preparations degrade the structural ∗Correspondence to:Shi-Shui Zhou,School of Biological Science and Engineering,South China University of Technology,Guangzhou510006, China.E-mail:hgzhouss@;or Jian-Guo Jiang,College of Food Science and Engineering,South China University of Technology,Guangzhou 510640,China.E-mail:jgjiang@a School of Biological Science and Engineering,South China University of Tech-nology,Guangzhou510006,Chinab College of Food Science and Engineering,South China University of Technology,Guangzhou510640,ChinaJ Sci Food Agric(2014)©2014Society of Chemical Industry Ming-Hua Liang et al. polysaccharides of the cell walls,facilitating the release of pheno-lic compounds.Enzymatic treatment can also cause a significantincrease in the methanol concentration of wine.Several investiga-tors have reported the influence of pectinase enzyme treatmenton the methanol concentrations of wines.3,6,7As for glycine,thiscan be from sugar cane juice or yeast extract,which is one elementof the medium for Saccharomyces cerevisiae.Glycinefirst generatesmethylamine by glycine decarboxylase,then reacts with nitrousacid to produce methanol.The reactions are as follows:H 2N—CH2—COOH→CH3NH2+CO2;CH3NH2+HNO2→CH3OH+N2+H2OThe relationship between glycine content in the fermentation medium and the production of methanol in sugar cane spirits was first researched in this study.Mutation breeding is a common method to obtain high muta-tion efficiency.8–10Chemical mutagenesis is a useful tool to study the physiological processes in microorganisms.Diethyl sulfate (DES)is a powerful alkylating agent.Breaking of the DNA double helix,as result of the hydrolysis of alkylated phosphate groups, may cause chromosome breaks and lethality.11Additionally,ultra-violet(UV)light has strong genotoxic effects to produce DNA damage and induce mutations.In this study,a mutant of Saccha-romyces cerevisiae,which was obtained by DES and UV mutation, was used for fermentation of sugar cane spirits to decrease the methanol content.A sugar cane spirit was obtained by the dis-tillation of fermented sugar cane juice with wort as a source of supplementary substrate.Meanwhile,the effects of adding pecti-nase,cellulase and glycine on the production of methanol were evaluated.MATERIALS AND METHODSMaterialsSaccharomyces cerevisiae was kept in the labs of South China University of Technology.Methanol and ethanol are high-performance liquid chromatography(HPLC)grade.Butyl acetate is analytical grade.Dansyl chloride(DNS-Cl)and glycine were from Sigma(St Louis,MO,USA).The medium for S.cerevisiae cultivation was yeast extract peptone dextrose(YPD):2%glucose,1%yeast extract,2%peptone.Apparatus and operations of HS-GCHS-GC measurements were carried out with an automatic headspace sampler(DANI HS86.50,Italy)and a GC system(Agilent GC7890A,USA)equipped with aflame ionization detector(H2 30mL min−1;air350mL min−1),and a DB-FFAP capillary column (30m×0.53mm×1.00μm),operating with nitrogen carrier gas (flow rate=1.0mL min−1).Oven temperature was controlled with a temperature elevation program during analysis,which was initially set at35∘C for4min,elevated to180∘C at a rate of 20∘C min−1and maintained for5min.The temperatures at the detector and vaporizer were set at250∘C and150∘C,respectively, and50:1split ratio in split mode was used.HS operating condi-tions were as follows:25min of strong shaking for the sample equilibration at80∘C;sample loop temperature=85∘C;transfer line temperature=90∘C;vial pressurization time=12s;sample loopfill time=30s;and transfer time=6s.Analysis of methanol content in sugar cane spirits by HS-GC The methanol concentration of each wine sample was calculated by internal standard method with respect to the internal standard from response factor,so that HS-GC is qualitative(by the use of retention time)and quantitative(by the use of signal strength). The procedure to obtain a calibration curve was as follows:20% (v/v)ethanol solution was added to10mL,containing internal standard butyl acetate(300mg L−1)and different methanol con-centrations(0,100,200,400and800mg L−1),respectively.The response from the methanol peak was compared to the internal standard peak.Here RF is defined as the ratio of the peak area of the methanol to the peak area of internal standard.The results with RF on the y-axis and methanol concentration on the y-axis were then plotted,and these data werefitted to obtain a calibra-tion curve.The sample preparation and measurement procedures were as follows:10mL sugar cane spirit sample with300mg L−1 butyl acetate were added to20mL HS vials,which were then closed.The sample underwent an equilibration period to achieve vapor–liquid phase equilibrium.100μL of the HS vapor was put into the HS sampler for measurement.Mutation procedure of S.cerevisiae by DES and UVTo obtain strains with lower methanol content,the cell suspension of S.cerevisiae was treated with DES and UV irradiation.The treat-ment condition that produced a lethality of about80%was set as the mutation concentration.12For DES treatment,the suspension was treated with DES in six concentrations(0.05%,0.1%,0.2%, 0.3%,0.4%and0.5%)in phosphate buffer(pH7.2)for60min,and 25%sodium thiosulfate was used to terminate the procedure. Treated cells were suitably diluted by sterile water,and then the suspension was spread on to YPD agar plates and incubated at 28∘C for48h.For UV irradiation,the suspension was placed in sterile Petri dishes,stirred with a magnetic stirrer,and irradiated with UV light(250–280nm)15W at a distance of30cm for100, 120,140,160,240and480s.After irradiation,the plates were immediately kept away from light.The suspension was diluted appropriately and spread on to YPD agar plates,and incubated at 28∘C in darkness for48h.Lethality was computed as follows:Lethality(%)=(Number of strains before mutation−Number of strains after mutation)∕(Number of strains before mutation)×100Determination of glycine content in yeast extractA reversed-phase high-performance liquid chromatography (RP-HPLC)method with pre-column derivatization was developed for the determination of glycine in the yeast extract.13Dansyl chlo-ride(DNS-Cl)is a chromophoric reagent employed for the labeling of glycine.Glycine labeled with DNS-Cl is highly stable and shows maximum absorption at254nm with a detection time of8.9min. Glycine standard working solutions(1.5, 3.0, 4.5, 6.0,7.5and 9.0mg L−1)were used to obtain the working curve of glycine.An Agilent1100liquid chromatograph with a dual-solvent delivery system,auto sampler,column thermostat and multi-wavelength UV detector was used for the measurement.A reverse-phase C18column(Waters Sun Fire;Dp,5μm)was used for separation and the elution was performed with50mmol L−1 sodium acetate solution(pH7.2)and acetonitrile(75:25,v/v).The/jsfa©2014Society of Chemical Industry J Sci Food Agric(2014)Mutation breeding of Saccharomyces cerevisiae with lower methanol content flow rate was1.0mL min−1,the column temperature was30∘C and the detection wavelength was at254nm.Effect of pectinase on the production of methanol Pectinase(0.1,0.2,0.4,0.8and1.6mL;70U mL−1)was added to a250mLflask with mixed fermentation medium with sugar cane juice and wort(9:1,v/v),respectively,and incubated at50∘C for1h.After placing in an ice bath to terminate the reaction, the medium was pitched with S.cerevisiae(OD=1.5–1.8)and fermented at23∘C.Effect of cellulase on the production of methanolCellulase(0.2,0.4,0.8,1.6and3.2mL;30U mL−1)was added to a 250mLflask with mixed fermentation medium1with sugar cane juice and wort(9:1,v/v)and medium2withfiltered sugar cane juice and wort(9:1,v/v)(sugar cane juice wasfiltered three tofive times),respectively,and then incubated at65∘C for1h.After plac-ing in an ice bath to terminate the reaction,the medium was inoc-ulated with S.cerevisiae(OD=1.5–1.8)and fermented at23∘C. Relationship between glycine and methanol produced by S. cerevisiaeThe glycine content of the yeast extract was determined by RP-HPLC.Fermentation medium without yeast extract and fermen-tation medium with12.5g L−1of yeast extract were prepared.Then 0,0.3,0.6and0.9g L−1glycine were added to the fermentation media above,respectively.The medium was then inoculated with S.cerevisiae(4×107cfu mL−1)and fermented at23∘C for7days. Analytical procedures for sugar cane spiritsTotal soluble solids of sugar cane spirit samples were determined with the help of an ERMA hand refractometer having a range of 0–32Brix at20∘C.The alcoholic content in sugar cane spirits was estimated by portable alcohol meter.Statistical analysisValues were expressed as mean±SD of three parallel measure-ments.The significance of differences between groups was assessed by one-way analysis of variance(ANOVA).P<0.05indi-cated the presence of a statistically significant difference and P<0.01was considered highly significant.RESULTSDetermination of methanol content in sugar cane spiritsby HS-GCWith HS-GC,butyl acetate as internal standard and20%(v/v) ethanol solution as the solvent,we established an equation: Y=0.0003X+0.0042,R2=0.9993,in which Y represents RF and X represents the content of methanol.Here we give the HS-GC chromatogram of one sample of sugar cane spirits(Fig.1).For ethanol,the retention time was about4.7min;for methanol,the retention time was about3.8min;for internal standard butyl acetate,the retention time was about7.1min.Validation for the determination of methanol contentby HSGCThe repeatability of the HS-GC method was demonstrated by using the standard sample(methanol concentration=200mg L−1).A relative standard deviation(RSD)of measured methanol content is less than5.0%forfive times testing,indicating that the tech-nique of HS-GC to detect the methanol content has excellent repeatability and high precision and accuracy.Screening for S.cerevisiae with low methanol content by DES and UVEffects of mutagen dosage on lethality of S.cerevisiae are shown in Fig.2.Figure2(A)shows that the lethality increased with increas-ing DES concentration.The treatment condition that produced a lethality of about80%was set as the mutation concentration.12Figure1.HS gas chromatogram of one sample of sugar cane spirits.A,ethanol;B,methanol;C,butyl acetate.J Sci Food Agric(2014)©2014Society of Chemical Industry /jsfa Ming-Hua Liang et al.A B 0204060801000.10.20.30.40.50.6L e t h a l i t y (%)Concentration of DES (%)020*********80160240320400480560L e t h a l i t y (%)Irradiation time (s)Figure 2.Lethality curve during mutagenesis.(A)Lethality curve of S.cere-visiae under DES mutagenesis by treatment of different DES concentra-tions.0.4%DES (lethality 84.81%)was set as the mutation conditions for S.cerevisiae .Results are mean ±SD.(B)Lethality curve of S.cerevisiae under UV mutagenesis by treatment of different irradiation times.A UV irradia-tion time of 240s (lethality 85.92%)was set as the mutation conditions for S.cerevisiae .Results are mean ±SD.Thus 0.4%DES concentration was set as mutation conditions for S.cerevisiae .Figure 2(B)shows that the lethality increased with increasing UV irradiation time.The lethality reached 85.92%and 86.85%with a UV irradiation time of 240s and 480s,respectively.Therefore,a UV irradiation time of 240s was set as mutation con-ditions for S.cerevisiae .In conclusion,0.4%DES (lethality 84.81%)and a UV irradiation time of 240s (lethality 85.92%)were set as the mutation conditions for S.cerevisiae .After treatment by 0.4%DES for 60min,10mutants (D1–D10)were collected to use for fermentation of sugar cane spirits.The methanol contents of sugar cane spirits were detected and are shown in Fig.3(A).Methanol content from fermentation of mutant D4was the lowest (111.0±2.4mg L −1),which was a decrease of 17.7%compared with the strain without any treatment (134.8±2.8mg L −1).Mutant D4was then treated by UV for 240s,and 10mutants (DU1–DU10)were used to ferment sugar cane spirits.The variation of methanol content in the sugar cane spirits is shown in Fig.3(B).It was found that DU9could produce the low-est methanol (97.3±1.7mg L −1),with a 12.3%decrease of that of the strain D4only with DES treatment,and with a 27.8%reduction of that of the strain without any treatment.Effect of adding pectinase on the production of methanol The effect of pectinase addition on methanol level is shown in Fig.4(A);methanol content varied between 240and 300mg L −1.A B ****************50100150200250ControlD1D2D3D4D5D6D7D8D9D10Strains for testM e t h a n o l c o n t e n t (m g L –1)***********4080120160200D4DU1DU2DU3DU4DU5DU6DU7DU8DU9DU10M e t h a n o l c o n t e n t (m g L –1)Strains for testFigure 3.Screening for S.cerevisiae mutant with low methanol content by DES and UV.(A)Methanol content of sugar cane spirits by S.cere-visiae mutants with DES mutation.D4could produce the lowest methanol (111.0±2.4mg L −1).Results are mean ±SD.*P <0.05;**P <0.01,statisti-cally significant in comparison with control.(B)Methanol content of sugar cane spirits by S.cerevisiae mutants with DES and UV mutation.DU9could produce the lowest methanol (97.3±1.7mg L −1).Results are mean ±SD.*P <0.05;**P <0.01,statistically significant in comparison with the control (D4).Without pectinase treatment,the methanol content was 186.4mg L −1.It was shown that pectinase significantly increased the methanol levels of sugar cane spirits and methanol content increased with the dose of pectinase.When 0.8mL pectinase (70U mL −1)–corresponding to 56U pectinase –was added,pectic substances in sugar cane juice had been adequately broken down,and the content of methanol almost reached the maximum,with no subsequent significant change.Effect of cellulase on the production of methanolThe effect of cellulose addition on methanol level is shown in Fig.4(B);methanol content varied from 250to 410mg L −1.Without cellulase treatment,the methanol content was 206.3mg L −1.From these data it is seen that the use of cellulase significantly increased the methanol content of sugar cane spirits.When 0.8mL cellulase (30U mL)–corresponding to 24U cellulase –was added,cellu-lose in sugar cane juice had been adequately broken down,and the content of methanol almost reached the maximum,with no subsequent significant change.As cellulose does not dissolve in water at room temperature,filtered sugar cane juice is lacking in cellulose.Thus,from Table 1,it can be concluded that methanol content produced from cellulose reached 11.2mg L −1.Determination of glycine content in yeast extractWith RP-HPLC,we established an equation:y =1368.1x +22.269,R 2=0.9993,in which y represents the peak area of glycine and/jsfa ©2014Society of Chemical IndustryJ Sci Food Agric (2014)Mutation breeding of Saccharomyces cerevisiae with lower methanol content AB220240260280300020406080100120Dose of pectinase (U)M e t h a n o l c o n t e n t (m g L –1)260290320350380410020406080100Dose of cellulase (U)M e t h a n o l c o n t e n t (m g L –1)Figure 4.Effects of adding pectinase and cellulose in sugar cane spirits.(A)Effect of the addition of pectinase on the production of methanol.When 56U pectinase was added,the content of methanol was almost maximal with no subsequent significant change.Results are mean ±SD.(B)Effect of the addition of cellulase on the production of methanol.When 24U cellulase was added,the content of methanol was almost maximal with no subsequent significant change.Results are mean ±SD.Table 1.Methanol content produced by cellulose in sugar cane spiritsParameter Medium 1Sugar cane juice and wort Medium 2Filtered sugar cane juice and wort Methanol content produced from cellulose (mg L −1)Alcohol content (%V/V,20∘C)28.433.5–Methanol content (mg L −1)227.1215.911.2x represents glycine concentration.After calculation,the glycine content in 1g L −1yeast extract solution reached 6.85mg L −1.From the reactions above,glycine in 1g L −1yeast extract solution could produce 2.92mg L −1methanol in theory.Figure 5(for Fig.5B,only the factor of glycine concentra-tion was considered)shows that methanol content in sugar cane spirits increased with the increase of glycine content,and there was linear relationship between glycine (concentration within 0–0.9g L −1)and methanol in fermentation liquor and the linear equation was y =104.7x −4.79.According to the cal-culation method of the theoretical methanol content,there was a linear relationship between glycine (concentration within 0–0.9g L −1)and theoretical methanol content and the linear equation was y =426.28x −0.001.Thus the rate of glycine con-version to methanol was 104.7/426.28=24.56%.From Fig.5(A),while 18Brix sugar was used as fermentation medium,onlyABy = 63.733x + 24.22R 2 = 0.9811y = 104.9x + 52.57R 2 = 0.976902040608010012014016018000.10.20.30.40.50.60.70.80.9118 Brix sugar18 Brix sugar+12.5 g L –1 yeast extractGlycine concentration (g L –1)M e t h a n o l c o n c e n t r a t i o n (m g L –1)y = 63.733x -3.18R 2 = 0.9811y = 104.7x -4.79R 2 = 0.9751y = 426.28x -0.001R 2 = 1-5005010015020025030035040000.10.20.30.40.50.60.70.80.9118 Brix sugar18 Brix sugar+12.5g L –1 yeast extract Glycine to produce methanol in theoryGlycine concentration (g L –1)M e t h a n o l c o n c e n t r a t i o n (m g L –1)Figure 5.The influence of different glycine concentrations and fermenta-tion conditions on methanol yield.(A)The factors of glycine concentration,fermentation conditions,fermentation process and yeast metabolic path-way were considered.(B)Only the factor of glycine concentration was con-sidered.Other factors influencing the methanol yield were deducted.faint bubbles were generated in the fermentation process,which meant that it was difficult to ferment normally for yeast with only sugar as fermentation medium,and 27.4mg L −1methanol was produced without adding glycine.While 18Brix sugar and 12.5g L −1yeast extract was adopted as fermentation medium,S.cerevisiae was able to ferment normally and more methanol content (57.3mg L −1)was produced without adding extra glycine.DISCUSSIONThe main polysaccharides responsible for turbidity,viscosity and filter stoppages in sugar cane juice are pectins,glucans (the major component of cellulose)and,to a lesser extent,hemicellu-lose (mainly xylans).14In winemaking,commercial pectinase and cellulase preparations are used to improve juice yields by degrad-ing structural polysaccharides that interfere with juice extraction,the release of color and flavor compounds,with the clarification and filtration of wine,and reducing viscosity and turbidity.15–17However,the enzymatic treatment employed in the juice can cause a significant increase in the methanol concentrations of wines.Several investigators reported the influence of pectinase enzyme treatment on the methanol concentrations of wines.3,7,18In this study,it was also found that pectinase and celluloseJ Sci Food Agric (2014)©2014Society of Chemical Industry /jsfa Ming-Hua Liang et al.significantly increased the methanol levels of sugar cane spir-its(Fig.4).It has been reported that the high methanol content is ascribed to the use of pectinase,which is commonly used in mango wine production and is responsible for the splitting of pectic substances to galacturonic acid and methanol.19However, the higher methanol concentration in the present wines could be reduced significantly by further optimizing the treatment condi-tions of pectinase and cellulase.On the other hand,it was pointed out that many other fac-tors,such as oenological practices and the yeast strain used,can influence methanol production.15Yeast species are used in many industrial fermentation processes,including alcoholic beverage production.The quality of wine produced greatly depends on the yeast strain.20It was reported that methanol concentration var-ied between9.51%with S.cerevisiae var.ellipsoideus and14.93% with S.carlsbergensis.21In this study,a mutant of S.cerevisiae with lower methanol content was obtained by DES and UV mutation. The concentration of mutagen and the time of mutation are cru-cial to mutation efficiency.If the concentration is higher and the time is longer,the harm would be greater and the chance of screening would be lost.However,if the concentration is lower and the time is shorter,variability would be less and the chance of screening would be reduced.A concentration of mutagen with about80%lethality was suitable for selecting positive mutation strains.12In this study,for DES treatment,0.4%DES(lethality 84.81%)for60min was adopted for mutation breeding of low methanol-producing S.cerevisiae(Fig.2A).For UV irradiation,an irradiation time of240s(lethality85.92%)15W at a distance of 30cm was set as the mutation condition for S.cerevisiae(Fig.2B). It was reported that mutagenesis of UV coupled with DES was car-ried out because the combined mutation was more efficient.8,22,23 It was reported that Klebsiella oxytoca mutants were isolated from the wild type strain ME-303after mutagenesis with UV coupled with diethyl sulfate,and it was found that ME-UD-3produced 7.8%more2,3-butanediol than ME-303.8Here,a mutant S.cere-visiae DU9with low production of methanol(97.3mg L−1)was selected by mutation of DES and UV radiation(Fig.3B),with a 12.3%decrease of that of S.cerevisiae D4only with DES treat-ment,and with a27.8%reduction of that of the strain without any treatment.Amino acids are essential growth factors for proper implemen-tation and growth of yeasts during the course of alcoholic fer-mentation.Some biogenic amines are formed in variable amounts in wines by decarboxylation of their precursor amino acids due to the action of yeasts during alcoholic fermentation.24Esters, higher alcohols and volatile fatty acids are important contributors to the fermentation bouquet of wine.These compounds princi-pally arise as primary metabolites of yeast sugar and amino acid metabolism.Amino acids are precursors of volatile compounds (ethanol,ethyl acetate,acetic acid,higher alcohols and some of their acetates,methionol,isobutyric acid,ethyl butyrate,and hex-anoic and octanoic acids)and,consequently,wine composition is affected by the content of amino acids in the must.Further-more,the addition of amino acids can improve fermentation, as the amino acids can be incorporated directly into yeast pro-tein synthesis.25Methionol is correlated with methionine,histi-dine and glutamine.Acetic acid is correlated with proline,and the other aroma compounds(isoamyl alcohol,hexanoic and octanoic acids,ethyl butyrate,isobutyl acetate and isoamyl acetate)are mainly correlated with serine,threonine and glutamic acid.26It has been described that Monod-like equations are more adequate to describe the relationship between the amino acid content and the production of volatile compounds in simple microbiological systems.27In this study,the relationship between glycine content in the fermentation medium and the production of methanol wasfirst researched.Glycinefirst generates methylamine by glycine decar-boxylase,then reacts with nitrous acid to produce methanol.It was found that better growth,better reducing sugar consump-tion and higher fermentative efficiency occurred in the medium supplemented with12.5g L−1yeast extract compared with that without yeast extract.The inference is that it was difficult for S.cerevisiae to grow in the medium without yeast extract(or glycine),which meant that S.cerevisiae required yeast extract(or glycine)for normal growth.It was reported that the addition of a mixture of20amino acids greatly improved the fermentation effi-ciency of this yeast,increasing the consumption of reducing sugars and production of ethanol.28It was also shown that better growth, reducing sugar consumption and ethanol tolerance for Kloeckera africana cultures supplemented with yeast extract compared with those supplemented with ammonium sulfate.29When glycine was not added to the medium,methanol produced in the medium supplemented with12.5g L−1yeast extract was29.9mg L−1more than that produced in the medium without yeast extract(Fig.5A). With the same species and process conditions,methanol content in the two different media showed a difference of29.9mg L−1 after fermentation.This indicated that the content of methanol generation was directly related to the propagation and fermen-tation of yeasts,but the methanol production metabolic pathway was unclear.Methanol content in sugar cane spirits was increased with increased addition of glycine content,and there was a linear relationship between glycine(concentration within0–0.9g L−1) and methanol in the fermentation liquor,and the linear equation was y=104.7x−4.79with the conversion rate of glycine con-version to methanol as24.56%(Fig.5B).Thus it is necessary to control the addition of glycine in the fermentation medium and new ways to generate the methanol metabolic pathway in yeasts may need further study.It is important to note that methanol is an undesirable product in juice processing and winemaking and is a common problem in industrial beverage production. REFERENCES1Aquino FWB,Boso LM,Cardoso DR and Franco DW,Amino acids profile of sugar cane spirit(cachaça),rum,and whisky.Food Chem 108:784–793(2008).2Capobiango M,Oliveira ES and Cardeal ZL,Evaluation of methods used for the analysis of volatile organic compounds of sugarcane (cachaça)and fruit spirits.Food Anal Methods6:978–988(2012).3Zhang H,Woodams EE and Hang YD,Influence of pectinase treatment on fruit spirits from apple mash,juice and pomace.Process Biochem 46:1909–1913(2011).4Chai X,Dhasmana B and Zhu J,Determination of volatile organic compound contents in kraft mill streams using headspace gas chromatography.J Pulp Pap Sci24:50–54(1998).5Bortoletto AM and Alcarde AR,Congeners in sugar cane spirits aged in casks of different woods.Food Chem139:695–701(2013).6Revilla I and Gonzalez-SanJose ML,Methanol release during fermen-tation of red grapes treated with pectolytic enzymes.Food Chem 63:307–312(1998).7Byarugaba-Bazirake GW,The effect of enzymatic processing on banana juice and wine.Stellenbosch University(2008).8Ji XJ,Huang H,Li S,Du J and Lian M,Enhanced2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca.Biotechnol Lett30:731–734(2007).9Zhang X,Zhang R,Yang T,Zhang J,Xu M,Li H et al.,Mutation breeding of acetoin high producing Bacillus subtilis blocked in2,3-butanediol dehydrogenase.World J Microb Biot29:1783–1789(2013)./jsfa©2014Society of Chemical Industry J Sci Food Agric(2014)。