2019届江西省抚州市南城县第一中学高三11月月考数学(理)试题

合集下载

2019届高三数学11月月考试题 理(新版)人教版

2019届高三数学11月月考试题 理(新版)人教版

2019届高三数学11月月考试题 理考试时间:120分钟 试卷总分:150分本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求,每小题选出答案后,请把答案填写在答题卡相应位置上...............。

1.若复数z 满足(3-4i )z =|4+3i |,则z 的虚部为( ) A .-4 B .-45 C .4D .452.设集合2{|20}M x x x =-≥,{|N x y ==,则M N 等于( )A .(1,0]-B .[1,0]-C .[0,1)D .[0,1] 3.已知平面向量,a b 满足()5a a b +=,且2,1a b ==,则向量a 与b 夹角的正弦值为( )A .12 B . .12-4.已知命题p :R x ∈∀,0312>+x ,命题q :“20<<x ”是“1log 2<x ”的充分不必要条件,则下列命题为真命题 的是( )A .p ⌝B .q p ∧C .)(q p ⌝∧D .()p q ⌝∨5.执行如图所示的程序框图,若输入n 的值为5,则输出S 的值为( ) A .11B .12C .9D .106.已知数列{}n a 中,()111,21,n n na a a n NS *+==+∈为其前n 项和,5S的值为( )A .57B .61C .62D .637.函数y=A sin(ωx+φ)的周期为2π,其图象的一部分如图所示,则此函数的解析式可以写成( )2)A .)x (f =sin(2—2x )B .)x (f =sin(2x 一C .)x (f =sin(x 一1)D .)x (f =sin(1一x)8.某几何体的三视图如图所示,其中俯视图为扇形, 则该几何体的体积为( ) A .23π B .3πC .29πD .169π 9.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从2-连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为( ) A .34 B .74 C .1 D .3210.在四面体S ABC -中,,2AB BC AB BC SA SC ⊥====,二面角S AC B --的余弦值是3-,则该四面体外接球的表面积是( )A. B .6π C .24π D11.已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程()()f x a a R =∈实根 个数不可能为( )A .2个B .3个C .4个D .5 个12.已知R a ∈,若()()e xaf x x x=+在区间(0,1)上有且只有一个极值点,则a 的取值 范围为( ) A .0a >B .1a ≤C .1a >D .0a ≤第II 卷(非选择题,必做部分,共80分)二、填空题 :本大题共4小题,每小题5分,共20分,请把答案填在答题卡的横线上.............。

南城县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

南城县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

南城县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.已知向量,且,则sin2θ+cos 2θ的值为( )A .1B .2C.D .32. 下列说法中正确的是( ) A .三点确定一个平面 B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内3. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .1504. 观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28B .76C .123D .199 5. 已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞) B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)6. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力. 7. 等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( )A .6B .5C .3D .48. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)9. 用秦九韶算法求多项式f (x )=x 6﹣5x 5+6x 4+x 2+0.3x+2,当x=﹣2时,v 1的值为( ) A .1B .7C .﹣7D .﹣510.函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-11.如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.412.设函数y=sin2x+cos2x 的最小正周期为T ,最大值为A ,则( )A .T=π,B .T=π,A=2C .T=2π,D .T=2π,A=2二、填空题13.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题. 14.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .15.已知(1+x+x 2)(x)n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .16.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ . 17.给出下列四个命题:①函数f (x )=1﹣2sin 2的最小正周期为2π; ②“x 2﹣4x ﹣5=0”的一个必要不充分条件是“x=5”;③命题p :∃x ∈R ,tanx=1;命题q :∀x ∈R ,x 2﹣x+1>0,则命题“p ∧(¬q )”是假命题; ④函数f (x )=x 3﹣3x 2+1在点(1,f (1))处的切线方程为3x+y ﹣2=0.其中正确命题的序号是 .18.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 . 三、解答题19.如图所示,在边长为的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.20.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.求证:PC⊥BC;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.21.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x 2 4 5 6 8y 30 40 60 50 70(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额.22.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(1)当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)当0a =时,是否存在实数b ,当(]0,e x ∈(e 是自然常数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;23.数列{a n }满足a 1=,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2a n }的前n 项和;(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.24.设函数,若对于任意x ∈[﹣1,2]都有f (x )<m 成立,求实数m 的取值范围.南城县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.∴sin2θ+cos2θ===1,故选A.【点评】本题主要考查两个向量数量积公式的应用,两个向量垂直的性质;同角三角函数的基本关系的应用,属于中档题.2.【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确.故选:D.3.【答案】B【解析】解:该几何体是四棱锥,其底面面积S=5×6=30,高h=5,则其体积V=S×h=30×5=50.故选B.4.【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.5.【答案】D【解析】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.6.【答案】D7.【答案】D【解析】解:∵等比数列{a n}中a4=2,a5=5,∴a4•a5=2×5=10,∴数列{lga n}的前8项和S=lga1+lga2+…+lga8=lg(a1•a2…a8)=lg(a4•a5)4=4lg(a4•a5)=4lg10=4故选:D.【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.8.【答案】D【解析】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆∴故0<k<1故选D.【点评】本题主要考查了椭圆的定义,属基础题.9.【答案】C【解析】解:∵f(x)=x6﹣5x5+6x4+x2+0.3x+2=(((((x﹣5)x+6)x+0)x+2)x+0.3)x+2,∴v0=a6=1,v1=v0x+a5=1×(﹣2)﹣5=﹣7,故选C.10.【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 11.【答案】A【解析】解:如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,∵P (﹣3≤ξ≤﹣1)=∴∴P (ξ≥1)=.【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.12.【答案】B【解析】解:由三角函数的公式化简可得:=2()=2(sin2xcos +cos2xsin)=2sin (2x+),∴T==π,A=2故选:B二、填空题13.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以r d ===,故圆的方程为222x y +=.14.【答案】20 【解析】考点:棱台的表面积的求解.15.【答案】5.【解析】二项式定理.【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利用(x)n(n∈N+)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.16.【答案】1ln 2 【解析】 试题分析:()()111ln 2ln 2f x k f x ''=∴== 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 17.【答案】 ①③④ .【解析】解:①∵,∴T=2π,故①正确;②当x=5时,有x 2﹣4x ﹣5=0,但当x 2﹣4x ﹣5=0时,不能推出x 一定等于5,故“x=5”是“x 2﹣4x ﹣5=0”成立的充分不必要条件,故②错误;③易知命题p 为真,因为>0,故命题q 为真,所以p ∧(¬q )为假命题,故③正确;④∵f ′(x )=3x 2﹣6x ,∴f ′(1)=﹣3,∴在点(1,f (1))的切线方程为y ﹣(﹣1)=﹣3(x ﹣1),即3x+y ﹣2=0,故④正确.综上,正确的命题为①③④. 故答案为①③④.18.【答案】 .【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.三、解答题19.【答案】【解析】解:设圆锥的母线长为l ,底面半径为r ,高为h ,由已知条件,解得,,,∴S=πrl+πr2=10π,∴20.【答案】【解析】解:(I)证明:∵PD⊥平面ABCD,∴PD⊥BC,又∵ABCD是正方形,∴BC⊥CD,∵PDICE=D,∴BC⊥平面PCD,又∵PC⊂面PBC,∴PC⊥BC.(II)解:∵BC⊥平面PCD,∴GC是三棱锥G﹣DEC的高.∵E是PC的中点,∴.∴.(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA∥平面MEG.下面证明之:∵E为PC的中点,O是AC的中点,∴EO∥平面PA,又∵EO⊂平面MEG,PA⊄平面MEG,∴PA∥平面MEG,在正方形ABCD中,∵O是AC中点,∴△OCG≌△OAM,∴,∴所求AM的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.21.【答案】【解析】解:(1)(2)设回归方程为=bx+a则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5故回归方程为=6.5x+17.5(3)当x=7时, =6.5×7+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元).【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.22.【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力.(2)当0a =时,()ln f x bx x =-.假设存在实数b ,使()(]()ln 0,e g x bx x x =-∈有最小值3,11()bx f x b x x-'=-=.………7分 ①当0b ≤时,()f x 在(]0,e 上单调递减,()min 4()e 13,f x f be b e==-==(舍去).………8分②当10e b <<时,()f x 在10,b ⎛⎫ ⎪⎝⎭上单调递减,在1,e b ⎛⎤⎥⎝⎦上单调递增, ∴2min 1()1ln 3,e f x g b b b ⎛⎫==+== ⎪⎝⎭,满足条件.……………………………10分③当1e b ≥时,()f x 在(]0,e 上单调递减,()min 4()e e 13,ef xg b b ==-==(舍去),………11分综上,存在实数2e b =,使得当(]0,e x ∈时,函数()f x 最小值是3.……………………………12分23.【答案】【解析】(Ⅰ)证明:∵对任意正整数n ,a n ∈(﹣,),且tana n+1•cosa n =1(n ∈N *).故tan 2a n+1==1+tan 2a n ,∴数列{tan 2a n }是等差数列,首项tan 2a 1=,以1为公差.∴=.∴数列{tan 2a n }的前n 项和=+=.(Ⅱ)解:∵cosa n >0,∴tana n+1>0,.∴tana n =,,∴sina 1•sina 2•…•sina m =(tana 1cosa 1)•(tana 2•cosa 2)•…•(tana m •cosa m ) =(tana 2•cosa 1)•(tana 3cosa 2)•…•(tana m •cosa m ﹣1)•(tana 1•cosa m )=(tana 1•cosa m )==,由,得m=40.【点评】本题考查了等差数列的通项公式及其前n 项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.24.【答案】【解析】解:∵,∴f ′(x )=3x 2﹣x ﹣2=(3x+2)(x ﹣1),∴当x ∈[﹣1,﹣),(1,2]时,f ′(x )>0;当x ∈(﹣,1)时,f ′(x )<0;∴f (x )在[﹣1,﹣),(1,2]上单调递增,在(﹣,1)上单调递减;且f (﹣)=﹣﹣×+2×+5=5+,f (2)=8﹣×4﹣2×2+5=7;故f max(x)=f(2)=7;故对于任意x∈[﹣1,2]都有f(x)<m成立可化为7<m;故实数m的取值范围为(7,+∞).【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题.。

2019届高三年级11月份月考理科数学试题及答案

2019届高三年级11月份月考理科数学试题及答案

2019届高三年级11月份月考理科数学试题数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(填空题和解答题两部分).考生作答时,将答案答在答题卡上,在本试卷上答题无效.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.复数z =21i+的共轭复数是 A .1+i B .1-i C .-1+i D .-1-i 2.设集合{}21<<=x x A ,{}a x x B <=,若A B A =I ,则a 的取值范围是 A .{}2≤a a B .{}1≤a a C .{}1≥a a D .{}2≥a a 3.实数3=a 是直线332=++a y ax 和直线7)1(3-=-+a y a x 平行的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件 4.设向量),1(m =,)2,1(-=m ,且≠,若⊥-)(,则实数m =A .2B .1C .13D .125.已知焦点在x 轴上的椭圆方程为222141x y a a +=+,随着a 的增大该椭圆的形状 A .越接近于圆 B .越扁C .先接近于圆后越扁D .先越扁后接近于圆 6.设a =2(12)x dx ⎰-,则二项式261()2a x x+的常数项是 A .240 B .-240 C .-60 D .607.执行如图(1)所示的程序框图,则输出的结果为A .189B .381C .93D .45 8.某几何体的三视图如图(2)所示,则该几何体的体积为 A .133+3π B .5+2π C .5+3π D . 133+2π 9.已知圆222:(1)(0)C x y r r -+=>.设条件:03p r <<,条件:q 圆C 上至多有2个点到直线30x +=的距离为1,则p 是q 的A. 既不充分也不必要条件B. 充分不必要条件C.必要不充分条件D. 充要条件10.若函数21)(2-+=x a x x f 在[0,+∞)上单调递增,则实数a 的取值范围是 A .[-2,0] B .[-4,0] C .[-1,0] D .[-12,0] 11.如图(3)所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,M 、N 分别在AD 1、BC 上移动,始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数)(x f y =的图像大致是12.若函数x e a ax e x f x)2(2)(2-+-=有三个不同的零点,则实数a 的取值范围是 A .(e ,+∞) B .(0,e ) C .[1,e ) D .(0,+∞)第Ⅱ卷二、填空题:本大题共4小题.每小题5分,共20分.13.ABC ∆的内角C B A ,,的对边分别为c b a ,,且ac =22b a -,A =6π,则B =_______. 14.某校高二年级有5个文科班,每班派2名学生参加年级学生会选举,从中选出4名学生进入学生会,则这4名学生中有且只有两名学生来自同一个班级的概率为______.15.设y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤--≥-143323y x y x y x ,若22x y a +9≥恒成立,则实数a 的最大值为 ____.16.已知双曲线)0,0(12222>>=-b a b y a x 的右焦点为)0,2(F ,设B A ,为双曲线上关于原点对称的两点,AF 的中点为M ,BF 的中点为N ,若原点O 在以线段MN 为直径的圆上,直线AB 的斜率为773,则双曲线的离心率为_____________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.如图,在ABC ∆中,2π=∠ABC ,3π=∠ACB ,1=BC .P 是ABC ∆内一点,且2π=∠BPC .(1)若6π=∠ABP ,求线段AP 的长度;(2)若32π=∠APB ,求ABP ∆的面积.18.(本小题满分12分)已知{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且56,3,25311=+==b a b a ,2635=+b a . (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)若12232+≤+-n b x x n 对任意*N n ∈恒成立,求实数x 的取值范围.19.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60ABC ∠=,PA PB ⊥,2PC =.(1)求证:平面PAB ⊥平面ABCD ;(2)若PA PB =,求二面角A PC D --的余弦值.20.(本小题满分12分)某学校为了丰富学生的业余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取题目,背诵正确加10分,背诵错误减10分,背诵结果只有“正确”和“错误”两种。

江西省抚州市南城县第一中学2019届高三11月月考数学(

江西省抚州市南城县第一中学2019届高三11月月考数学(

南城一中2019届高三年级上学期11月份月考文科数学试题一、选择题(本题共12道小题,每小题5分,共60分)1.设x R∈,i是虚数单位,则“3x=-”是“复数2(23)(1)z x x x i=+-+-为纯虚数”的()A.充分不必要条B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知:|1|2p x+>,:q x a>,且⌝p是⌝q的充分不必要条件,则a的取值范围是()A. a≤1B. a≤-3C. a≥-1D. a≥13.双曲线22221(0,0)x ya ba b-=>>的一条渐近线与直线210x y+-=垂直,则双曲线的离心率为()AB14.设S n是等差数列{}n a的前n项和,若3531=++aaa,则S5=()A.9B.11C.5D.75.函数()()2sin3f x xϕ=+的图象向右平移动12π个单位,得到的图象关于y轴对称,则ϕ的最小值为()A.12πB.4πC.3πD.512π6.下列说法错误..的是()A.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”B.“x>1”是“| x |>1”的充分不必要条件C.若qp∧为假命题,则p、q均为假命题D.若命题p:“x R∃∈,使得x2+x+1<0”,则⌝p:“x R∀∈,均有x2+x+1≥0”7.某几何体的三视图如图所示,则该几何体的体积为 ( )A .43B .46+C D .56π8.已知函数()324x f x x =+,则()f x 的大致图象为( )A .B .C .D .9.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了 378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了 6天后到达目的地.”则此人第4天走了( )A .60里B .48里C .36里D .24里10.设12,e e 为单位向量,其中向量122a e e =+,向量2b e =,且向量a 在b 上的投影为2,则1e 与2e 的夹角为( )A.6π B. 4π C. 3π D. 2π11.已知△ABC 的内角A ,B ,C 对的边分别为a ,b ,c ,且sin 2sin A B C =,则cos C 的最小值等于( )A B .C D 12.设)(),(x g x f 分别是定义在R 上的奇函数和偶函数,f ′(x ), g ′(x )为其导函数,当0x <时,()()()()0f x g x f x g x ''⋅+⋅>且(3)0g -=,则不等式()()0f x g x ⋅<的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0, 3)C .(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3) 二、填空题(本题共4道小题,每小题5分,共20分)13.已知x ,y 满足020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为14.已知集合}032|{2≤--=x x x P ,} ,|1||{R m m x x S ∈≤-=,且S 不为空集,若P S P ⊆⋃)(,则实数m 的取值范围为15.在OAB ∆中,若点C 满足2AC CB =,OC OA OB λμ=+,则1λμ1+=16.设直三棱柱111ABC A B C -的所有顶点都在一个球面上,且球的表面积是60π,1AB AC AA ==,120BAC ∠=︒,则此直三棱柱的高是三、解答题(本题共6道小题,共70分)17.(本题10分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos b A B =. (1)求角B 的大小;(2)若3,sin 2sin b C A ==,求△ABC 的周长.18.(本题12分)已知{a n }是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (1)求{a n }的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S19.(本题12分)如图,在四棱锥P ABCD -中, ABC ∆为正三角形, ,AB AD ⊥,AC CD ⊥PA AC =,PA ⊥平面ABCD .(1)若E 为棱PC 的中点,求证: PD ⊥平面ABE ; (2)若3AB =,求点B 到平面PCD 的距离.20.(本题12分)已知函数22(log )2f x x x =+ (1)求函数()f x 的解析式;(2)若方程()24x f x a =⋅-在区间(0,2)内有两个不相等的实根,求实数a 的取值范围.21.(本题12分)设A 是圆422=+y x 上的任意一点, l 是过点A 与x 轴垂直的直线,D 是直线 l 与x 轴的交点,点M 在直线 l 上,且满足DM =A 在圆上运动时,记点M 的轨迹为曲线C . ⑴求曲线C 的标准方程;⑵设曲线C 的左右焦点分别为1F 、2F ,经过2F 的直线m 与曲线C 交于P 、Q 两点, 若21212||||||Q F P F PQ +=,求直线m 的方程.22.(本题12分)已知函数2()ln ()f x ax x a R =-+∈, (1)讨论()f x 的单调性;(2)若(1,),()x f x a ∃∈+∞>-,求a 的取值范围.南城一中2019届高三年级上学期11月份月考文科数学试题答案1——6 . CDBCBC 7——12 B ADCAD13. 4 14.]2,0[∈m 15.9217.解(1)∵sin cos b A B =由正弦定理得sin sin cos B A A B = ∵在ABC ∆中, sin 0,0A B π≠<<∴tanB =即=3B π; ……………………5分(2)∵sin 2sin C A =,由正弦定理得2c a =又222=2cos ,3,3b ac ac B b B π+-==∴229=422cos3a a a a π+-⋅解得a =负根舍去),2c a ∴==∴ABC ∆的周长=3a b c ++=+………………………10分18.解:(1)方程2560x x -+=的两个根为2,3,由题意得因为22a =,43a =. 设数列{}n a 的公差为d ,则422a a d -=,故12d =,从而132a =. 所以{}n a 的通项公式为112n a n =+.………………………5分(2)设2n na ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,由(1)知1222n n n a n ++=,……6分 则23134122222n n n n n S +++=++++ ① 34121341222222n n n n n S ++++=++++②①-②得341212131112311212422224422n n n n n n n S ++-+++⎛⎫=++++-=+-- ⎪⎝⎭. 所以1422n n n S ++=-.………………………12分19.(1)因为PA ⊥平面ABCD ,CD ⊂平面ABCD , 所以PA CD ⊥.∵AC CD ⊥,PA AC A ⋂=,所以CD ⊥平面PAC .而AE ⊂平面PAC , ∴CD AE ⊥. PA AC =,E 是PC 的中点, ∴AE PC ⊥.又PC CD C ⋂=, 所以AE ⊥平面PCD . 而PD ⊂平面PCD ,∴AE PD ⊥.∵PA ⊥底面ABCD ,∴平面PAD ⊥平面ABCD ,又AB AD ⊥,面面垂直的性质定理可得BA ⊥平面PAD ,AB PD ⊥. 又∵AB AE A ⋂=,∴PD ⊥平面ABE ………………………6分 (2)因为PA ⊥平面ABCD ,所以PA AC ⊥,所以PC =由1的证明知, PA ⊥平面PAC , 所以CD PC ⊥.因为AB AD ⊥,ABC ∆为正三角形,所以30CAD ∠=︒,因为AC CD ⊥,所以tan30CD AC =︒=设点B 到平面PCD 的距离为D ,则11322B PCDV d -=⨯⨯=. 在BCD ∆中, 150BCD ∠=︒,所以11133222BCD S ∆=⨯︒=⨯=所以133P BCD V -==因为B PCDP BCD V V --=,所以2=解得4d =即点B 到平面PCD 的距离为4.………………………12分20. 解:(1)设t=log 2x ,t ∈R ,则x=2t, f (t )=22t+2•2t=4t+2t+1. ∴f (x )=4x+2x+1.……5分(2)∵方程f (x )=a•2x﹣4在区间(0,2)内有两个不相等的实根,∴4x+(2﹣a )2x+4=0在(0,2)有两个不等实根.令2x=m ,h (m )=m 2+(2﹣a )m+4,则m ∈(1,4). ∴h (m )=0在(1,4)上有两个不等的实根,∴,解得6<a <7.………………………12分21.解:⑴设) , (y x M 是曲线C 上任意一点,则)0 , (x D ………………………1分,对应圆上的点为) , (0y x A ,由=) , 0(23) , 0(0y y = (2)分y y 3320=……3分,依题意,4202=+y x ,4)332(22=+y x 曲线C 的标准方程为13422=+y x ………………………4分⑵由⑴得1=c ,)0 , 1(1-F ,)0 , 1(2F①若m 为直线1=x ,代入13422=+y x 得23±=y ,即)23 , 1(P ,)23, 1(-Q …………5分直接计算知9||2=PQ ,225||||2121=+Q F P F ,21212||||||Q F P F PQ +≠,1=x 不符合题意…6分②若直线m 的斜率为k ,直线m 的方程为)1(-=x k y由⎪⎩⎪⎨⎧-==+)1(13422x k y y x 得0)124(8)43(2222=-+-+k x k x k ………………………7分 设) , (11y x P ,) , (22y x Q ,则2221438k k x x +=+,222143124kk x x +-=⋅………………………8分由21212||||||Q F P F PQ +=得,011=⋅F F ……11分即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x0)1())(1()1(2212212=+++-++k x x k x x k ………………………9分代入得0438)1()143124)(1(222222=+⋅-+++-+kk k k k k ,即0972=-k ………………………10分解得773±=k ,直线m 的方程为)1(773-±=x y ………………………12分22.解:(1)依题意:()f x 的定义域为(0,)+∞,2112()2ax f x ax x x-'=-+=,……1分当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上单调递增,当0a >时,令()0f x '=,得x =分 令()0f x '>,得x ∈;令()0f x '<,得)x ∈+∞, ()f x ∴在上单调递增,在)+∞上单调递减。

2019届江西省抚州市南城县第一中学高三11月月考物理试题 (1)

2019届江西省抚州市南城县第一中学高三11月月考物理试题 (1)

南城一中2019届高三年级上学期11月份月考物理试题一、选择题(本题共10小题,每小题4分,共计40分。

1-6题只有一个正确选项,7-10小题有多个选项符合题意。

全部选对的得4分,选对但不全的得2分,错选或不答得0分。

)1.将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,v-t图像如图所示。

以下判断不正确的是 ( )A.前3s内与最后2s内货物的平均速度大小相等,方向相反B.前2s内货物处于超重状态C.前7s内合力做功为零D.第3s末至第5s末的过程中,货物的机械能不守恒2.如图所示,两个小球a、b质量均为m,用细线相连并悬挂于O点,现用一轻质弹簧给小球a施加一个力F,使整个装置处于静止状态,且Oa与竖直方向夹角为θ=450,已知弹簧劲度系数为k,则弹簧形变量不可能是( )A. mg/k B.4mg/k C. mg/k D. mg/k3.一小球从静止开始做匀加速直线运动,在第15s内的位移比第13s内的位移多0.4m,则下列说法正确的是( )A.小球前15s内的平均速度为2.9m/s B.小球加速度为0.1m/s2C.小球第14s的初速度为2.8m/s D.第15s内的平均速度为2.9m/s4. 如图,质量为M的小车静止于光滑的水平面上,小车上AB部分是半径R的四分之一光滑圆弧,BC部分是粗糙的水平面。

今把质量为m的小物体从A点由静止释放,m与BC部分间的动摩擦因数为μ,最终小物体与小车相对静止于B、C之间的D点,则B、D间距离x随各量变化的情况是( )A. 其他量不变,R越大x越大B. 其他量不变,μ越大x越大C. 其他量不变,m越大x越大D. 其他量不变,M越大x越大5. 如图所示,一内壁光滑的圆锥面,轴线OO’是竖直的,顶点O在下方,锥角为2α,若有两个相同的小珠(均视为质点)在圆锥的内壁上沿不同的圆轨道运动,则有( )A. 它们的动能相同B. 它们运动的周期相同C. 它们的向心力不相同D. 它们的动能与势能之比相同,设O点为势能零点.6.在足够长的斜面顶端将小球水平抛出,一段时间后落到斜面上,小球在整个平抛过程中的运动时间、末速度、位移均与初速度有一定的关系,下列说法正确的是( )A.小球的运动时间与初速度的平方成正比B.小球的末速度大小与初速度大小成正比C.小球的末速度和水平方向夹角的正切值与初速度大小成正比D.小球的位移大小与初速度大小成正比7. 如图所示,小车板面上的物体质量为m=8㎏,它被一根水平方向上拉伸了的弹簧拉住而静止在小车上,这时弹簧的弹力为6N.现沿水平向右的方向对小车施以作用力,使小车由静止开始运动起来,运动中加速度由零逐渐增大到1m/s2,随即以1m/s2的加速度做匀加速直线运动.以下说法正确的是( )A.物体与小车始终保持相对静止,弹簧对物体的作用力始终没有发生变化B.物体受到的摩擦力一直减小C.当小车加速度(向右)为0.75m/s2时,物体不受摩擦力作用D.小车以1m/s2的加速度向右做匀加速直线运动时,物体受到的摩擦力为8N8.某近地卫星a的轨道与赤道共面共心,绕行方向与地球自转方向相同。

2019-2020年高三11月月考 理科数学 含答案

2019-2020年高三11月月考 理科数学 含答案

2019-2020年高三11月月考 理科数学 含答案xx 年11月一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,.则( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.已知等比数列的公比,且成等差数列,则的前8项和为( ) A. 127B. 255C. 511D. 10233. 在中,,,是边上的高,则的值等于( )A .0B .C .4D .4.对于任意两个正整数,定义某种运算“※”如下:当都为正偶数或正奇数时,※=;当中一个为正偶数,另一个为正奇数时,※=.则在此定义下,集合※中的元素个数是( ) A .10个 B .15个 C .16个 D .18个5.n ∈N *,“数列{a n }是等差数列”是“点P n ⎝⎛⎭⎪⎫n ,S n n 在一条直线上”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.函数的零点个数为( )A. 1B.2C. 3D.47. 已知图1是函数的图象,则图2中的图象对应的函数可能是 ( ) A .B .C .D .8.若函数,则下列结论正确的是( )①,在上是增函数②,在上是减函数③,是偶函数④,是奇函数以上说法正确的有几个()A.0个B. 1个 C. 2个 D. 3个9、曲线与直线及所围成的封闭图形的面积为()A. B. C. D.10、若函数在区间内为减函数,在区间为增函数,则实数a的取值范围是()A. B. C. D. .11.在△ABC所在平面上有三点P、Q、R,满足→→→→→→→→RABCQBRBQA,,则△PQR的面积与△ABC的面积之比为QC+CARC=+++=()A.1:2 B.1:3 C.1:4 D.1:5二、填空题:本大题共4小题,每小题4分,共16分.将答案填写在题中横线上.13.已知sinθ+cosθ= (0<θ<π,则cos2θ的值为_______.14.在中,已知、、成等比数列,且,则______.15.在等比数列中,若,则.16. 关于函数,下列命题:①、存在,且时,成立;②、在区间上是单调递增;③、函数的图像关于点成中心对称图像;④、将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤。

南城县二中2018-2019学年高三上学期11月月考数学试卷含答案

南城县二中2018-2019学年高三上学期11月月考数学试卷含答案

南城县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x的图象是()A .①B .②C .③D .④2. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能3. “互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( )A .10 B .20C .30D .404. 已知函数f (x )=31+|x|﹣,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是()A .B .C .(﹣,)D .5. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( )A .15,10,25B .20,15,15C .10,10,30D .10,20,206. 抛物线y=x 2的焦点坐标为( )A .(0,)B .(,0)C .(0,4)D .(0,2)7. 如果a >b ,那么下列不等式中正确的是( )A .B .|a|>|b|C .a 2>b 2D .a 3>b 38. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( )A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( )A .B .C .D .10.线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对11.如图所示的程序框图,若输入的x 值为0,则输出的y 值为( )A .B .0C .1D .或012.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是()m n +A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.二、填空题13.在中,角的对边分别为,若,的面积,ABC ∆A B C 、、a b c 、、1cos 2c B a b ⋅=+ABC ∆S =则边的最小值为_______.c 【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.14.已知、、分别是三内角的对应的三边,若,则a b c ABC ∆A B C 、、C a A c cos sin -=的取值范围是___________.3cos()4A B π-+【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.15.△ABC 中,,BC=3,,则∠C=  .16.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .17.在直角三角形ABC 中,∠ACB=90°,AC=BC=2,点P 是斜边AB 上的一个三等分点,则= .18.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .三、解答题19.设函数,.()xf x e =()lng x x =(Ⅰ)证明:;()2e g x x≥-(Ⅱ)若对所有的,都有,求实数的取值范围.0x ≥()()f x f x ax --≥a20.对于定义域为D 的函数y=f (x ),如果存在区间[m ,n]⊆D ,同时满足:①f (x )在[m ,n]内是单调函数;②当定义域是[m ,n]时,f (x )的值域也是[m ,n].则称[m ,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f (x )=x 2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a ∈R ,a ≠0)有“和谐区间”[m ,n],当a 变化时,求出n ﹣m 的最大值. 21.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12(1)求a,b的值.(2)当x∈[1,2]时,求f(x)的最大值.(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.22.设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈,都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.23.如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.(Ⅰ)求证:AE=EB;(Ⅱ)若EF•FC=,求正方形ABCD的面积.24.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段图象如图所示.(1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数. 南城县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D【解析】解:幂函数y=x 为增函数,且增加的速度比价缓慢,只有④符合.故选:D .【点评】本题考查了幂函数的图象与性质,属于基础题. 2. 【答案】A【解析】解:设A (x 1,x 12),B (x 2,x 22),将直线与抛物线方程联立得,消去y 得:x 2﹣mx ﹣1=0,根据韦达定理得:x 1x 2=﹣1,由=(x 1,x 12),=(x 2,x 22),得到=x 1x 2+(x 1x 2)2=﹣1+1=0,则⊥,∴△AOB 为直角三角形.故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直. 3. 【答案】B 【解析】试题分析:设从青年人抽取的人数为,故选B .800,,2050600600800x x x ∴=∴=++考点:分层抽样.4. 【答案】A【解析】解:函数f (x )=31+|x|﹣为偶函数,当x ≥0时,f (x )=31+x ﹣∵此时y=31+x 为增函数,y=为减函数,∴当x ≥0时,f (x )为增函数,则当x ≤0时,f (x )为减函数,∵f(x)>f(2x﹣1),∴|x|>|2x﹣1|,∴x2>(2x﹣1)2,解得:x∈,故选:A.【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.5.【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.6.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.7.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.8.【答案】C【解析】解:由f(x)=x2﹣6x+7=(x﹣3)2﹣2,x∈(2,5].∴当x=3时,f(x)min=﹣2.当x=5时,.∴函数f(x)=x2﹣6x+7,x∈(2,5]的值域是[﹣2,2].故选:C.9. 【答案】D【解析】解:y=tan (ωx+),向右平移个单位可得:y=tan[ω(x ﹣)+]=tan (ωx+)∴﹣ω+k π=∴ω=k+(k ∈Z ),又∵ω>0∴ωmin =.故选D . 10.【答案】A【解析】解:∵线段AB 在平面α内,∴直线AB 上所有的点都在平面α内,∴直线AB 与平面α的位置关系:直线在平面α内,用符号表示为:AB ⊂α故选A .【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上. 11.【答案】B【解析】解:根据题意,模拟程序框图的运行过程,如下;输入x=0,x >1?,否;x <1?,是;y=x=0,输出y=0,结束.故选:B .【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论. 12.【答案】C【解析】由题意,得甲组中,解得.乙组中,78888486929095887m +++++++=3m =888992<<所以,所以,故选C .9n =12m n +=二、填空题13.【答案】114.【答案】【解析】15.【答案】 【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.16.【答案】 .【解析】解:∵△AOB是直角三角形(O是坐标原点),∴圆心到直线ax+by=1的距离d=,即d==,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d==≥,∴点P(a,b)与点(1,0)之间距离的最小值为.故答案为:.【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.17.【答案】 4 .【解析】解:由题意可建立如图所示的坐标系可得A(2,0)B(0,2),P(,)或P(,),故可得=(,)或(,),=(2,0),=(0,2),所以+=(2,0)+(0,2)=(2,2),故==(,)•(2,2)=4或=(,)•(2,2)=4,故答案为:4【点评】本题考查平面向量的数量积的运算,建立坐标系是解决问题的关键,属基础题.18.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣18三、解答题19.【答案】【解析】(Ⅰ)令,e e ()()2ln 2F x g x x x x =-+=-+221e e ()x F x x x x-'∴=-=由 ∴在递减,在递增,()0e F x x '>⇒>()F x (0,e][e,)+∞∴ ∴ 即成立. …… 5分min e ()(e)ln e 20e F x F ==-+=()0F x ≥e ()2g x x≥-(Ⅱ) 记, ∴ 在恒成立,()()()x x h x f x f x ax e e ax -=---=--()0h x ≥[0,)+∞ , ∵ ,()e x x h x e a -'=+-()()e 00x x h x e x -''=-≥≥Q ∴ 在递增, 又, …… 7分()h x '[0,)+∞(0)2h a '=-∴ ① 当 时,成立, 即在递增,2a ≤()0h x '≥()h x [0,)+∞ 则,即 成立; …… 9分()(0)0h x h ≥=()()f x f x ax --≥ ② 当时,∵在递增,且,2a >()h x '[0,)+∞min ()20h x a '=-< ∴ 必存在使得.则时,,(0,)t ∈+∞()0h t '=(0,)x t ∈()0h t '< 即 时,与在恒成立矛盾,故舍去.(0,)x t ∈()(0)0h t h <=()0h x ≥[0,)+∞2a > 综上,实数的取值范围是. …… 12分a 2a ≤20.【答案】【解析】解:(1)∵y=x 2在区间[0,1]上单调递增.又f (0)=0,f (1)=1,∴值域为[0,1],∴区间[0,1]是y=f (x )=x 2的一个“和谐区间”.(2)设[m ,n]是已知函数定义域的子集.∵x ≠0,[m ,n]⊆(﹣∞,0)或[m ,n]⊆(0,+∞),故函数在[m ,n]上单调递增.若[m ,n]是已知函数的“和谐区间”,则故m 、n 是方程的同号的相异实数根.∵x 2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m ,n]是已知函数定义域的子集.∵x ≠0,[m ,n]⊆(﹣∞,0)或[m ,n]⊆(0,+∞),故函数在[m ,n]上单调递增.若[m ,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值21.【答案】【解析】解:(1)∵f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12,∴a﹣b=2,a2﹣b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x﹣2x),当x∈[1,2]时,4x﹣2x∈[2,12],故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.则4x﹣2x=m有两个解,令t=2x,则t>0,则t2﹣t=m有两个正解;则,解得:m∈(﹣,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.22.【答案】【解析】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈,|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈时,g(t)≤0.当m∈时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是23.【答案】【解析】证明:(Ⅰ)∵以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,∴EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EF•EC,故AE=EB.(Ⅱ)设正方形的边长为a,连结BF,∵BC为圆O的直径,∴BF⊥EC,在Rt△BCE中,由射影定理得EF•FC=BF2=,∴BF==,解得a=2,∴正方形ABCD的面积为4.【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.24.【答案】【解析】解:(1)由函数的图象可得A=3,T==4π﹣,解得ω=.再根据五点法作图可得×+φ=0,求得φ=﹣,∴f(x)=3sin(x﹣).(2)令2kπ﹣≤x﹣≤2kπ+,k∈z,求得5kπ﹣π≤x≤5kπ+,故函数的增区间为[5kπ﹣π,5kπ+],k∈z .函数的最大值为3,此时,x﹣=2kπ+,即x=5kπ+,k∈z,即f(x)的最大值为3,及取到最大值时x的集合为{x|x=5kπ+,k∈z}.(3)设把f(x)=3sin(x﹣)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数[即y=3sin(x+)].则由(x+m)﹣=x+,求得m=π,把函数f(x)=3sin(x﹣)的图象向左平移π个单位,可得y=3sin(x+)=3cos x 的图象.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.。

南城县一中2018-2019学年高三上学期11月月考数学试卷含答案

南城县一中2018-2019学年高三上学期11月月考数学试卷含答案

南城县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为()A .6B .9C .12D .182. 若,且则的最小值等于( ),x y ∈R 1,,230.x y x x y ≥⎧⎪≥⎨⎪-+≥⎩y z x = A .3B .2C .1D .123. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是()A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)4. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .15. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .5B .4C .4D .26. “”是“一元二次方程x 2+x+m=0有实数解”的()A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件7. 满足条件{0,1}∪A={0,1}的所有集合A 的个数是( )A .1个B .2个C .3个D .4个8. 已知点是双曲线C :左支上一点,,是双曲线的左、右两个焦点,且P 22221(0,0)x y a b a b-=>>1F 2F ,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率12PF PF ⊥2PF M N N 2PF 是( )A.B.2D.52【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.9. 设为虚数单位,则( )A .B .C .D .10.实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是()A .(1,1)B .(0,3)C .(,2)D .(,0)11.已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(1,+∞)B .(0,1)C .(﹣1,0)D .(﹣∞,﹣1)12.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的()A.①④B.①⑤C.②⑤D.③⑤二、填空题13.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为.14.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是.已知样本中平均气温不大于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为 .15.如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率是 .16.函数f(x)=x3﹣3x+1在闭区间[﹣3,0]上的最大值、最小值分别是 .17.运行如图所示的程序框图后,输出的结果是 18.定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=0,则不等式f(log8x)>0的解集是 .三、解答题19.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.20.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如表:月份x12345销售量y(百件)44566(Ⅰ)该同学为了求出y关于x的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望.21.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(Ⅰ)求出f(5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.22.已知函数,,.()xf x e x a =-+21()x g x x a e=++a R ∈(1)求函数的单调区间;()f x (2)若存在,使得成立,求的取值范围;[]0,2x ∈()()f x g x <(3)设,是函数的两个不同零点,求证:.1x 2x ()f x 121x x e +<23.已知顶点在坐标原点,焦点在x 轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.24.已知函数f (x )=sinx ﹣2sin 2(1)求f (x )的最小正周期;(2)求f (x )在区间[0,]上的最小值.南城县一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B ACDADA.CD题号1112答案D D二、填空题13.1214. 9 .15. .16. 3,﹣17 .17. 0 18. (0,)∪(64,+∞) .三、解答题19. 20. 21.22.(1)的单调递增区间为,单调递减区间为;(2)或;(3)证明见()f x (0,)+∞(,0)-∞1a >0a <解析.23. 24.。

南城县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

南城县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

南城县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣12. 已知函数f (x )=2x ﹣2,则函数y=|f (x )|的图象可能是( )A. B.C.D.3. 圆C 1:(x+2)2+(y ﹣2)2=1与圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离 B .相交 C .内切 D .外切4.设向量,满足:||=3,||=4,=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .65. 已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ6. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinx C .f (x )=D .f (x )=x 2|x|7. 如图是一个多面体的三视图,则其全面积为( )A. B. C. D.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8.从单词“equation”选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有()A.120个B.480个C.720个D.840个9.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是()A.B.C.D.10.已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)=()A.B.C.D.11.已知复数11iz a=+,232iz=+,a∈R,i是虚数单位,若12z z是实数,则a=()A.23-B.13-C.13D.2312.用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是()A.π B.2πC.4πD.π二、填空题13.如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60°方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为km.14.已知两个单位向量,a b满足:12a b∙=-,向量2a b-与的夹角为,则cosθ=.15.过抛物线y2=4x的焦点作一条直线交抛物线于A,B两点,若线段AB的中点M的横坐标为2,则|AB|等于.16.已知a=(cosx﹣sinx)dx,则二项式(x2﹣)6展开式中的常数项是.17.若直线x﹣y=1与直线(m+3)x+my﹣8=0平行,则m=.18.下列关于圆锥曲线的命题:其中真命题的序号.(写出所有真命题的序号).①设A,B为两个定点,若|PA|﹣|PB|=2,则动点P的轨迹为双曲线;②设A,B为两个定点,若动点P满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8;③方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率;④双曲线﹣=1与椭圆有相同的焦点.三、解答题19.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量2K ,判断心肺疾病与性别是否有关?(参考公式:))()()(()(2d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)20.已知函数f (x )=|x ﹣5|+|x ﹣3|. (Ⅰ)求函数f (x )的最小值m ;(Ⅱ)若正实数a ,b 足+=,求证:+≥m .21.已知△ABC 的顶点A (3,2),∠C 的平分线CD 所在直线方程为y ﹣1=0,AC 边上的高BH 所在直线方程为4x+2y ﹣9=0.(1)求顶点C 的坐标; (2)求△ABC 的面积.22.(本小题满分16分)在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套. (1) 求()h x 的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)23.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各 10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同. (1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.24.在平面直角坐标系XOY中,圆C:(x﹣a)2+y2=a2,圆心为C,圆C与直线l1:y=﹣x的一个交点的横坐标为2.(1)求圆C的标准方程;(2)直线l2与l1垂直,且与圆C交于不同两点A、B,若S△ABC=2,求直线l2的方程.南城县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题13.14.7-. 15. 6 .16. 240 .17. .18. ②③ .三、解答题19. 20. 21.22.(1) ()()210473h x x x =+-- (37x <<)(2) 13 4.33x =≈ 试题解析:(1) 因为()f x 与3x -成反比,()g x 与7x -的平方成正比,所以可设:()13k f x x =-,()()227g x k x =-,12.00k k ≠≠,,则()()()()21273k h x f x g x k x x =+=+--则 ………………………………………2分 因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套 所以,()()521, 3.569h h ==,即12124212492694k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:12104k k =⎧⎨=⎩, ……………6分所以,()()210473h x x x =+-- (37x <<) ………………………………………8分 (2) 由(1)可知,套题每日的销售量()()210473h x x x =+--,答:当销售价格为4.3元/套时,网校每日销售套题所获得的利润最大.…………16分 考点:利用导数求函数最值 23.(1) 7a =;(2) 310P =. 24.。

南城县二中2018-2019学年高三上学期11月月考数学试卷含答案

南城县二中2018-2019学年高三上学期11月月考数学试卷含答案

南城县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x 的图象是( )A .①B .②C .③D .④2. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能3. “互联网 ”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 4. 已知函数f (x )=31+|x|﹣,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( )A .B .C .(﹣,)D .5. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15C .10,10,30D .10,20,206. 抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)7. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 38. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( )A .B .C .D .10.线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对11.如图所示的程序框图,若输入的x 值为0,则输出的y 值为( )A .B .0C .1D .或012.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.二、填空题13.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积12S =, 则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.14.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则33sin cos()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想. 15.△ABC 中,,BC=3,,则∠C=.16.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .17.在直角三角形ABC 中,∠ACB=90°,AC=BC=2,点P 是斜边AB 上的一个三等分点,则= .18.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .三、解答题19.设函数()xf x e =,()lng x x =.(Ⅰ)证明:()2eg x x≥-;(Ⅱ)若对所有的0x ≥,都有()()f x f x ax --≥,求实数a 的取值范围.20.对于定义域为D 的函数y=f (x ),如果存在区间[m ,n]⊆D ,同时满足: ①f (x )在[m ,n]内是单调函数;②当定义域是[m ,n]时,f (x )的值域也是[m ,n]. 则称[m ,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f (x )=x 2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a ∈R ,a ≠0)有“和谐区间”[m ,n],当a 变化时,求出n ﹣m 的最大值.21.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12(1)求a,b的值.(2)当x∈[1,2]时,求f(x)的最大值.(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.22.设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈,都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.23.如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.(Ⅰ)求证:AE=EB;(Ⅱ)若EF•FC=,求正方形ABCD的面积.24.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一段图象如图所示.(1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数.南城县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D【解析】解:幂函数y=x 为增函数,且增加的速度比价缓慢,只有④符合. 故选:D .【点评】本题考查了幂函数的图象与性质,属于基础题.2. 【答案】A【解析】解:设A (x 1,x 12),B (x 2,x 22),将直线与抛物线方程联立得, 消去y 得:x 2﹣mx ﹣1=0,根据韦达定理得:x 1x 2=﹣1,由=(x 1,x 12),=(x 2,x 22),得到=x 1x 2+(x 1x 2)2=﹣1+1=0,则⊥,∴△AOB 为直角三角形. 故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.3. 【答案】B 【解析】试题分析:设从青年人抽取的人数为800,,2050600600800x x x ∴=∴=++,故选B . 考点:分层抽样. 4. 【答案】A【解析】解:函数f (x )=31+|x|﹣为偶函数,当x ≥0时,f (x )=31+x﹣∵此时y=31+x为增函数,y=为减函数,∴当x ≥0时,f (x )为增函数, 则当x ≤0时,f (x )为减函数,∵f(x)>f(2x﹣1),∴|x|>|2x﹣1|,∴x2>(2x﹣1)2,解得:x∈,故选:A.【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.5.【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.6.【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,∴焦点坐标为(0,2).故选:D.【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.7.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.8.【答案】C【解析】解:由f(x)=x2﹣6x+7=(x﹣3)2﹣2,x∈(2,5].∴当x=3时,f(x)min=﹣2.当x=5时,.∴函数f(x)=x2﹣6x+7,x∈(2,5]的值域是[﹣2,2].故选:C.9. 【答案】D【解析】解:y=tan (ωx+),向右平移个单位可得:y=tan[ω(x ﹣)+]=tan (ωx+)∴﹣ω+k π=∴ω=k+(k ∈Z ), 又∵ω>0∴ωmin =. 故选D .10.【答案】A【解析】解:∵线段AB 在平面α内, ∴直线AB 上所有的点都在平面α内, ∴直线AB 与平面α的位置关系: 直线在平面α内,用符号表示为:AB ⊂α故选A .【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.11.【答案】B【解析】解:根据题意,模拟程序框图的运行过程,如下; 输入x=0, x >1?,否; x <1?,是; y=x=0,输出y=0,结束. 故选:B .【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论.12.【答案】C【解析】由题意,得甲组中78888486929095887m +++++++=,解得3m =.乙组中888992<<,所以9n =,所以12m n +=,故选C .二、填空题13.【答案】114.【答案】62 (1,)2【解析】15.【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.16.【答案】.【解析】解:∵△AOB是直角三角形(O是坐标原点),∴圆心到直线ax+by=1的距离d=,即d==,整理得a2+2b2=2,则点P(a,b)与点Q(1,0)之间距离d==≥,∴点P(a,b)与点(1,0)之间距离的最小值为.故答案为:.【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.17.【答案】4.【解析】解:由题意可建立如图所示的坐标系可得A(2,0)B(0,2),P(,)或P(,),故可得=(,)或(,),=(2,0),=(0,2),所以+=(2,0)+(0,2)=(2,2),故==(,)•(2,2)=4或=(,)•(2,2)=4,故答案为:4【点评】本题考查平面向量的数量积的运算,建立坐标系是解决问题的关键,属基础题.18.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x﹣1)2++y2=1故圆的圆心为(1,0),半径为1直线与圆相切∴圆心到直线的距离为半径即=1,求得m=8或﹣18故答案为:8或﹣18三、解答题19.【答案】【解析】(Ⅰ)令e e ()()2ln 2F x g x x x x =-+=-+,221e e ()x F x x x x-'∴=-=由()0e F x x '>⇒> ∴()F x 在(0,e]递减,在[e,)+∞递增,∴ min e ()(e)ln e 20e F x F ==-+= ∴()0F x ≥ 即e()2g x x≥-成立. …… 5分(Ⅱ) 记()()()x xh x f x f x ax e e ax -=---=--, ∴ ()0h x ≥在[0,)+∞恒成立,()e x xh x e a -'=+-, ∵ ()()e 00x x h x e x -''=-≥≥,∴ ()h x '在[0,)+∞递增, 又(0)2h a '=-, …… 7分 ∴ ① 当 2a ≤时,()0h x '≥成立, 即()h x 在[0,)+∞递增, 则()(0)0h x h ≥=,即 ()()f x f x ax --≥成立; …… 9分 ② 当2a >时,∵()h x '在[0,)+∞递增,且min ()20h x a '=-<, ∴ 必存在(0,)t ∈+∞使得()0h t '=.则(0,)x t ∈时,()0h t '<,即 (0,)x t ∈时,()(0)0h t h <=与()0h x ≥在[0,)+∞恒成立矛盾,故2a >舍去. 综上,实数a 的取值范围是2a ≤. …… 12分 20.【答案】【解析】解:(1)∵y=x 2在区间[0,1]上单调递增.又f (0)=0,f (1)=1, ∴值域为[0,1],∴区间[0,1]是y=f (x )=x 2的一个“和谐区间”.(2)设[m ,n]是已知函数定义域的子集.∵x ≠0,[m ,n]⊆(﹣∞,0)或[m ,n]⊆(0,+∞),故函数在[m ,n]上单调递增.若[m ,n]是已知函数的“和谐区间”,则故m 、n 是方程的同号的相异实数根.∵x 2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m ,n]是已知函数定义域的子集.∵x ≠0,[m ,n]⊆(﹣∞,0)或[m ,n]⊆(0,+∞),故函数在[m ,n]上单调递增.若[m ,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值21.【答案】【解析】解:(1)∵f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12,∴a﹣b=2,a2﹣b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x﹣2x),当x∈[1,2]时,4x﹣2x∈[2,12],故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.则4x﹣2x=m有两个解,令t=2x,则t>0,则t2﹣t=m有两个正解;则,解得:m∈(﹣,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.22.【答案】【解析】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈,|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈时,g(t)≤0.当m∈时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是23.【答案】【解析】证明:(Ⅰ)∵以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,∴EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EF•EC,故AE=EB.(Ⅱ)设正方形的边长为a,连结BF,∵BC为圆O的直径,∴BF⊥EC,在Rt△BCE中,由射影定理得EF•FC=BF2=,∴BF==,解得a=2,∴正方形ABCD的面积为4.【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.24.【答案】【解析】解:(1)由函数的图象可得A=3,T==4π﹣,解得ω=.再根据五点法作图可得×+φ=0,求得φ=﹣,∴f(x)=3sin(x﹣).(2)令2k π﹣≤x ﹣≤2k π+,k ∈z ,求得 5k π﹣π≤x ≤5k π+,故函数的增区间为[5k π﹣π,5k π+],k ∈z .函数的最大值为3,此时, x ﹣=2k π+,即 x=5k π+,k ∈z ,即f (x )的最大值为3,及取到最大值时x 的集合为{x|x=5k π+,k ∈z}.(3)设把f (x )=3sin (x ﹣)的图象向左至少平移m 个单位,才能使得到的图象对应的函数为偶函数[即y=3sin (x+)].则由(x+m )﹣=x+,求得m=π,把函数f (x )=3sin (x ﹣)的图象向左平移π个单位,可得y=3sin (x+)=3cos x 的图象.【点评】本题主要考查由函数y=Asin (ωx+φ)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin (ωx+φ)的图象变换规律,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届江西省抚州市南城县第一中学高三11月月考
数学(理)试题
一、选择题:(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 一项是符合题目要求的。

请将正确的答案填涂在答题卡上。


1.设集合{}2
450A x x x =∈--<N ,集合[]{}
4,2,4B y y x x ==-∈,则A B I 等于( )
A .{}1,2
B .{}3,4
C .
∅ D .{}0,1,2
2.复数()32i i z =-的共轭复数z =( ) A .23i +
B .23i -+
C .23i -
D .23i --
3.设0.1log 0.2a =, 1.1log 0.2b =,0.21.2c =,0.21.1d =则( ) A .a b d c >>> B .c a d b >>>
C .d c a b >>>
D .c d a b >>>
4.等比数列{}n a 的前n 项和为n S ,且14a ,22a ,3a 成等差数列,若11a =,则4s =( ) A .7
B .8
C .15
D .16
5.已知平面向量a ,b 的夹角为π
3,且||1a =,1||2
b =,则|2|a b -= ( )
A .1
B C .2 D .3
2
6.若()0,α∈π,且sin 2cos 2α
α-=,则tan
2
α
等于( )
A .3
B .2
C .
12
D .13
7.若函数sin ()2)x x
x
f x x e e -=++
+在区间[﹣k ,k](k >0)上的值域为[m ,n],则m+n 的值是( )
A. 6
B. 4
C. 2
D. 0
8.函数()sin()0,||2f x x πωϕωϕ⎛
⎫=+>< ⎪⎝
⎭的部分图象如图所示,若将()f x 的图象上各点的横坐标伸长到原
来的π倍后,再把得到的图象向左平移(0)m m >个单位,得到一个偶函数的图象,则m 的值可能是( )
A .8π-
B .78
π
C .38
π D .
8
π
9.如图,()()3,3,3,3,,AC BC E F ==-是AB 上的三等分点,则cos ECF ∠的值为( )
A .35 B
12 D .45
10.函数()cos()(0)3f x x π
ωω=+
>在[]0,π内的值域为11,2⎡⎤
-⎢⎥⎣⎦
,则ω的取值范围为( ) A .⎥⎦⎤
⎢⎣⎡34,32 B .⎥⎦

⎢⎣⎡34,0 C .⎥⎦

⎢⎣⎡3
2,0 D .[]1,0
11.已知椭圆C : 22
2
21(0)x y a b a b +=>>,点M ,N ,F 分别为椭圆C 的左顶点、上顶点、左焦点,若
90MFN NMF ∠=∠+︒,则椭圆C 的离心率是( )
A
B
C
D
12. 已知数列{}n a 满足:121,12
a a ==,()11,2n n n a a a n n +-=+∈≥*N ,则
213435
20182020
1111a a a a a a a a ++++
的整数部分为( ) A .0
B .1
C .2
D .3
二、填空题(本大题共4小题,每小题5分,共20分) 13.若函数()2
e 1
x
f x a =-
-是奇函数,则常数a 等于_________. 14.已知等差数列{}n a 满足13579+10a a a a a +++=,228236a a -=,则11a 的值为 .
15.费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形三个内角均小于120︒时,费马点与三个顶点连线正好三等分费马点所在的周角,
即该点所对的三角形三边的张角相等均为120︒.根据以上性质,函数
()
f x =
____ _.
16.已知函数f(x)=ln (2x )x ,关于x 的不等式f 2
(x)-af(x)>0只有2个整数解,则实数a 的取值范围
是__ __.
三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,已知1
cos 2
b a C
c =+
. (1)求角A ;
(2)若3AB AC ⋅=,求a 的最小值.
18. (本小题满分12分) 已知函数()()21cos cos 06662f x x x x ωωωωπππ⎛
⎫⎛⎫⎛⎫=----> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭,满足
()1f α=-,()0f β=,且αβ-的最小值为
4
π. (1)求函数()f x 的解析式;
(2)求函数()f x 在02π⎡⎤
⎢⎥⎣⎦
,上的单调区间和最大值、最小值.
19. (本小题满分12分)已知数列{a n }的前n 项和为S n ,a 1=1,a n +1=(λ+1)S n +1(n∈N *
,λ≠-2),且3a 1,4a 2,a 3+13成等差数列. (1)求λ及数列{a n }的通项公式;
(2)若数列{b n }满足a n b n =log 4a n +1,数列{b n }的前n 项和为T n ,证明:T n <169
.
20.(本小题满分12分)在如图所示的几何体中,四边形ABCD 是菱形,ADNM 是矩形, 平面ADNM ⊥平面ABCD ,60DAB ∠=︒,2AD =,1AM =,E 是AB 中点. (1)求证:AN ∥平面MEC ;
(2)在线段AM 上是否存在点P ,使二面角P EC D --的大小为π
6
?若存在,求出AP 的长h ;若不存
在,请说明理由.
21.(本小题满分12分)在平面直角坐标系xOy 中,椭圆C :()22
2210x y a b a b
+=>>的短轴长为
(1)求椭圆C 的方程;
(2)已知A 为椭圆C 的上顶点,点M 为x 轴正半轴上一点,过点A 作AM 的垂线AN 与椭圆C 交于另一点N ,若60AMN ∠=︒,求点M 的坐标.
22.(本小题满分12分)
设函数()(1)ln(1)f x ax x x =-+-,其中a 为实数。

(1)当1
2
a ≤-
时,求()f x 在区间[0,1]上的最小值; (2) 求证: 1
201822019()2018
e > . (其中ln 1e =)
2019届高三11月考试理科数学参考答案
一. 选择题:
二、填空题
13.-1 14.11 15.2 16.⎣⎢⎡⎭
⎪⎫
ln 63,ln 2 三、解答题:
17.解:【试题解析】解:(1)由c C a b 2
1
cos +
=可得1sin sin cos sin 2B A C C =+,所以。

相关文档
最新文档