三边法、两边及其夹角法

合集下载

八年级数学上册 第2章 三角形2.6 用尺规作三角形第2课时 已知两边及其夹角、两角及其夹边作三角形

八年级数学上册 第2章 三角形2.6 用尺规作三角形第2课时 已知两边及其夹角、两角及其夹边作三角形

第2课时已知两边及其夹角、两角及其夹边作三角形【知识与技能】1.会利用尺规作三角形:已知两角及夹边作三角形,已知两边及夹角作三角形.2.会写出三角形的已知、求作和作法.3.能对新作三角形给出合理的解释.【过程与方法】在用尺规作三角形与已知三角形的过程中,体会、思考作图的合理性及依据.【情感态度】通过师生共同观察、探索、交流、操作,品尝成功的喜悦,形成良好的思维品质,养成科学严谨的学习态度.【教学重点】作图时要做到规X使用尺规,规X使用作图语言,规X地按照步骤作出图形.【教学难点】作图语言的准确应用,作图的规X与准确.一、情景导入,初步认知1.已知:a求作:AB,使AB=a2.已知:∠α求作:∠AOB,使∠AOB=∠α【教学说明】通过作一条线段等于已知线段、作一个角等于已知角的复习,为本节课作三角形打好基础.二、思考探究,获取新知1、如图,已知∠AOB,求作一个角,使它等于∠AOB.如图:作法:①作射线O′A′;②以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;③以O′为圆心,以OC的长为半径画弧,交O′A′于点C′,以OD的长为半径画弧;④以C为圆心,以CD的长为半径画弧,交前弧于D′;⑤过点D′作射线O′B′,则∠A′O′B′为所求作的角.∠α△ABC,使∠B=∠α,BC=a,BA=c.如图:作法:①作∠MBN=∠α;②在射线BM,BN上分别截取BC=a,BA=c;③连接AC,则△ABC为所求的三角形.3.如图,已知∠α,∠β和线段a,求作△ABC,使∠ABC=∠α,∠ACB=∠β,BC=a, 如图:作法:①作线段BC=a;②在BC的同侧,作∠DBC=∠α,∠ECB=∠β,BD与CE相交于点A,则△ABC为所求作的三角形.【教学说明】在完成三个作图后,同学们要比较各自所作的三角形,利用重合等直观的方法观察所作的三角形是否全等.在此基础上,利用已经获得的三角形全等的条件来说明大家所作的三角形一定是全等的,即说明作法的合理性.三、运用新知,深化理解d .(填序号)2.已知:线段c,∠1.求作:△ABC,使∠C=90°,∠A=∠1,AB=c.作法:(1)作∠EAF=∠1.(2)在射线AE上截取AB=c.(3)过点B作BC⊥AF交AF于点C,则△ABC就是所求作的三角形.3.已知两条直角边,求作直角三角形(要求写出已知、求作、作法).解:已知:线段a、b,求作:△ABC,使∠C=90°,AC=b,BC=a.作法:提示,先作∠C=90°.4.如图,已知线段a、b,求作:Rt△ABC,使∠ACB=90°,BC=a,AC=b(不写作法,保留作图痕迹).解:【分析】先作一个直角∠ACB=90°,再作BC=a,AC=b,连接AB就可以.作图如下:5.请你作出一个以线段a为底边,以∠α为底角的等腰三角形(要求:用尺规作图,并写出已知,求作,保留作图痕迹,不写作法和结论).【分析】可先画线段BC=a,进而在BC的同侧作∠MBC=∠α,∠NCB=∠α,MB,交于点A,△ABC就是所求的三角形.已知:线段a,∠α.求作:△ABC,使BC=a,AB=AC,∠ABC=∠α.△ABC就是所求作的三角形.【教学说明】对本节的知识进行巩固练习.考察学生的应变能力,培养学生的转换思想.四、师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“”中第3、4、5 题.通过练习情况来看,学生对于涉及到作角的作图题掌握的不够好,不知道该在什么地方作角,因此,对此类题型应多加练习.。

27.2相似三角形的判定(三边法、两边及其夹角法)

27.2相似三角形的判定(三边法、两边及其夹角法)
根据下列条件,判断△ABC与△A'B'C'是否 相似,并说明理由:
(1)AB=4,BC=6,AC=8.
A'B'=12,B'C'=18,A'C'=24
(2)∠A=120°,AB=7cm,AC=14cm, ∠A'=120°,A'B'=3cm,A'C'=6cm
2. 图中的两个三角形是否相似?为什么?
(2)
古勒巴格镇中学 再吐南木.买买提
导入新课
相似三角形已经学过哪些判定方法?
1. 学习目标:
掌握判定两个三角形相似的方法: (1)如果两个三角形的三边成比例,那么这两个三角形相似。 (2)如果两个三角形的两边成比例并且夹角相等,那么这 两个三角形相似。
2.自主学习指导(11分钟)
请同学们在一张方格纸上任意画一个三角形,再画一个三角形,使它 的各边长都是原来三角形各边长的2倍,度量这两个三角形的对应角, 它们相等吗?这两个三角形相似吗?与邻座交流一下,看看是否有同 样的结论.
5.达标检测 (5分钟)
练习
1.根据下列条件,判断△ABC与△A'B'C'是否相似,并说明理由: (1)∠A=40°,AB=8,AC=15 ∠A' =40°,A'B' =16,A'C' =30 (2)AB=10cm,BC=8cm,AC=16cm A'B' =16cm,B'C' =12.8cm,A'C' =25.6cm
这节课我们学
到了什么?
全等判定:
(对应)边角都相等 (6组量)
课堂小结
判定方法

探究“已知一个三角形两边及其夹角,求第三边”的问题

探究“已知一个三角形两边及其夹角,求第三边”的问题

探究“已知一个三角形两边及其夹角求第三边”的问题【知识点】余弦定理。

【对应版本章节】本节课是人民教育出版社出版的高中数学A版数学必修5第一章“解三角形”第一节第二课时余弦定理的内容。

【教学目标】1.理解利用向量猜想证明余弦定理2.掌握并熟记余弦定理3.使学生意识到向量将几何问题转化为代数问题的强大功能,从而培养学生数学素养。

【教学过程】一.创设情境,设问激疑问题:某军区官兵接到抗震救灾任务,要前往70km外的灾区执行任务,由于道路塌方,无法按原计划路线直接到达,故先沿原方向成30°角的方向行进了50km,再改变方向,沿直线前进抵达灾区,那么实际行进路线比原计划路线70km远了多少呢?在中,已知的长,∠A=30°,求BC=?∆ABC AB、BC(设计意图:创设实际情境,通过救灾官兵实际行进路程问题抽象出“已知一个三角形两边及其夹角求第三边”的问题,使学生体会余弦定理的学习是解决实际问题的需要,培养学生数学抽象的核心素养。

设问激疑,通过回忆“边、角、边”为判定三角形全等的条件,将解三角形的问题与三角形全等联系起来,使学生体会数学知识间的内在联系。

进而引出课题。

)二.活动探究,提出猜想将长度分别为a,b的两根木棒垂直摆放,木棒另外两个端点的连线记为c。

①合拢两根木棒,∠C、c边会如何变化呢?②张开两根木棒,∠C、c边会如何变化呢?探究:某值究竟等于什么?(设计意图:利用geogebra动态绘图软件绘制直观图像,并借助勾股定理展开探究,通过合情推理,猜想余弦定理的基本形式。

在探究过程中激发学生的好奇心与求知欲,培养学生逻辑推理素养。

)三.证明猜想,得出结论(设计意图:通过回顾思考,利用向量作为工具将几何关系转化为代数关系,利用向量法证明猜想,并给出余弦定理。

在这个过程中,使学生意识到向量将几何问题转化为代数问题的强大功能,同时也体现了知识间的整体性。

培养学生数学运算素养。

)四.回顾总结,提升认识(设计意图:最后与教师一起总结知识,形成概念,回味学习过程。

2020初中数学中考一轮复习基础达标训练:相似三角形1(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形1(附答案)

2020初中数学中考一轮复习基础达标训练:相似三角形1(附答案)1.如图,五边形ABCDE 和五边形11111A B C D E 是位似图形,点A 和点1A 是一对对应点,P 是位似中心,且123PA PA =,则五边形ABCDE 和五边形11111A B C D E 的相似比等于( )A .23B .32C .35D .532.下列三角形中,与下图中的三角形相似的是( )A .B .C .D .3.点C 是线段AB 的黄金分割点,且AB=6cm ,则BC 的长为( )cmA .353-B .935-C .656-或935-D .935-或353-4.如图,点O 是△ABC 内任一点,点D ,E ,F 分别为OA ,OB ,OC 的中点,则图中相似三角形有( )A .1对B .2对C .3对D .4对5.如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得4BC =米,2CA =米,则树的高度为( )A .6米B .4.5米C .4米D .3米6.如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,CD =4,BC =5,则AC 等于( )A .3B .4C .163D .2037.已知:如图,在▱ABCD 中,AE :EB=1:3,则FE :FC=( )A .1:2B .2:3C .3:4D .3:28.已知a ,d ,b ,c 依次成比例线段,其中3a cm =,4b cm =,6c cm =,则d 的值为( )A .8cmB .192 cm C .4cm D .92cm 9.如图,∠1=∠2=∠3,则下列结论不正确的是( )A .△DEC ∽△ABCB .△ADE ∽△BEAC .△ACE ∽△BEAD .△ACE ∽△BCA10.如图,BE ,CF 为△ABC 的两条高,若AB=6,BC=5,EF=3,则AE 的长为( )A .185B .4C .215D .24511.如图,ADE ACB V V ∽,则:DE BC =________.12.如图,在ABC ∆中,//,3cm,5cm,DE BC AD AB ADE ==∆与ABC ∆是否相似_________,相似比是__________.13.以原点O 为位似中心,将ABC V 缩小,使变换后得到的111A B C V 与ABC V 对应边的比为1:2.请在网格内画出111A B C V ,并写出点1A 的坐标________.14.已知在等腰△ABC 中,AB =AC =5,BC =4,点D 从A 出发以每秒5个单位的速度向点B 运动,同时点E 从点B 出发以每秒4个单位的速度向点C 运动,在DE 的右侧作∠DEF =∠B ,交直线AC 于点F ,设运动的时间为t 秒,则当△ADF 是一个以AD 为腰的等腰三角形时,t 的值为_____.15.如图,△ABC 是等边三角形,AB=3,E 在AC 上且AE=AC ,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转900,得到线段EF ,当点D 运动时,则线段AF 的最小值是_______16.如图,在四边形ABCD 中,,15A CBD AB ∠=∠=cm ,20AD =cm ,18BD =cm ,24BC =cm ,则CD 的长为__________cm .17.若a:b=1:3,b:c=2:5,则a:c=_____.18.(2017四川省绵阳市)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA =5,AB =6,AB =1:3,则MD +12MA DN⋅的最小值为______.19.A 城市的新区建设规划图上,新城区的南北长为120cm ,而该新城区的实际南北长为6km ,则新区建设规划图所采用的比例尺是__________.20.如图,ABC △与AEF V 中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论:①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是_____(填写所有正确结论的序号).21.如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画圆,P 是⊙O 上一动点且在第一象限内,过点P 作⊙O 的切线,与x 、y 轴分别交于点A 、B .(1)求证:△OBP 与△OPA 相似;(2)当点P 为AB 中点时,求出P 点坐标;(3)在⊙O 上是否存在一点Q ,使得以Q ,O ,A 、P 为顶点的四边形是平行四边形.若存在,试求出Q 点坐标;若不存在,请说明理由.22.如图,在△ABC 中,∠C=90°,∠BAC 的平分线AD 交BC 于D ,过点D 作DE ⊥AD 交AB 于点E ,以AE 为直径作⊙O(1)求证:点D 在⊙O 上;(2)求证:BC 是⊙O 的切线;(3)若AC=6,BC=8,求BE 的长度.23.已知O 是坐标原点,A 、B 的坐标分别为(3,1)、(2,−1).(1)画出V OAB 绕点O 顺时针旋转90°后得到的11△OA B ;(2)在y 轴的左侧以O 为位似中心作V OAB 的位似22OA B △(要求:新图与原图的相似比为2:1).24.如图,在68⨯的网格图中,每个小正方形边长均为1,原点O 和ABC V 的顶点均为格点.()1以O 为位似中心,在网格图中作A'B'C'V ,使A'B'C'V 与ABC V 位似,且位似比为1:2;(保留作图痕迹,不要求写作法和证明)()2若点C 和坐标为()2,4,则点A'的坐标为(______ ,______ ),点C'的坐标为(______ ,______ ),A'B'C'S V :ABC S =V ______ .25.如图,在△ABC 中,AB=AC ,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC 于点H ,连接DE 交线段OA 于点F .(1)求证:DH 是圆O 的切线;(2)若32FD EF =,求证:A 为EH 的中点. (3)若EA=EF=1,求圆O 的半径.26.如图,在矩形ABCD 中,点E 为边AB 上一点,且AE=13AB ,EF ⊥EC ,连接BF . (1)求证:△AEF ∽△BCE ;(2)若AB=33,BC=3,求线段FB 的长.27.已知在ABC V 中,D 是边AC 上的一点,CBD ∠的角平分线交AC 于点E ,且AE AB =,求证:2AE AD AC =⋅.28.已知△ABC 中,D 为AB 边上任意一点,DF ∥AC 交BC 于F ,AE ∥BC ,∠CDE=∠ABC =∠ACB =α,(1)如图1所示,当α=60°时,求证:△DCE 是等边三角形;(2)如图2所示,当α=45°时,求证:CD DE =2; (3)如图3所示,当α为任意锐角时,请直接写出线段CE 与DE 的数量关系:CE DE =_____.参考答案1.B【解析】【分析】直接利用位似图形的性质得出五边形ABCDE和五边形A1B1C1D1E1的相似比为:1PAPA,进而求出即可.【详解】∵五边形ABCDE和五边形A1B1C1D1E1是位似图形,点A和点A1是一对对应点,P是位似中心,且2PA=3PA1,∴五边形ABCDE和五边形A1B1C1D1E1的相似比为:13=2PAPA.故选B.【点睛】此题主要考查了位似图形的性质,利用位似比=相似比得出是解题关键.2.B【解析】【分析】根据图示知该三角形是腰长为3的等腰三角形,所以由相似三角形的判定定理进行判定即可.【详解】如图:A.根据图示知,该等腰三角形的顶角与已知等腰三角形的顶角不相等,所以它们不是相似三角形.故本选项错误;B.由图示知,该等腰三角形与已知等腰三角形可以由“两边及其夹角法”证得相似.故本选项正确;C.由图示知,该三角形为等边三角形,则它的内角均为60°,与已知三角形的对应角不相等,所以它们不是相似三角形.故本选项错误;D.由图示知,该等腰三角形的顶角与已知等腰三角形的顶角不相等,所以它们不是相似三角形.故本选项错误.故选B.【点睛】本题考查了相似三角形的判定.(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.3.D【解析】【分析】根据黄金分割点的定义,知BC可能是较长线段,也有可能是较短线段,则BC或BC,将AB=6cm代入计算即可.【详解】∵点C是线段AB的黄金分割点,且AB=6cm,∴BC=3或BC=9-故选D.【点睛】本题考查的是黄金分割的概念,把一条线段分成两部分,其中较长的线段为全线段与较短线.4.D【解析】【分析】根据点D,E,F分别为OA,OB,OC的中点,可得DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,可得DE//AB,DF//AC,EF//BC,进而可判定△DOE∽△AOD,△DOF∽△AOC,△EOF∽△BOC,根据中位线性质可得12DE AB =,11,22DF AC EF BC ==, 继而可得12DE DF EF AB AC BC ===,可判定△DEF ∽△ABC. 【详解】因为点D,E,F 分别为OA,OB,OC 的中点,所以DE 是△AOB 的中位线,DF 是△AOC 的中位线,EF 是△BOC 的中位线,所以DE//AB,DF//AC,EF//BC,所以△DOE ∽△AOD, △DOF ∽△AOC, △EOF ∽△BOC,因为DE 是△AOB 的中位线,DF 是△AOC 的中位线,EF 是△BOC 的中位线, 所以12DE AB =,11,22DF AC EF BC ==, 所以12DE DF EF AB AC BC ===, 所以△DEF ∽△ABC,因此有四对相似三角形,故选D.【点睛】本题主要考查相似三角形的判定,解决本题的关键是要熟练掌握相似三角形的判定方法. 5.B【解析】【分析】根据题意画出图形,根据相似三角形的性质即可解答.【详解】如图:∵BC=4, AC=2,∴AB=2+4=6,∵CD ∥BE ,∴△ACD ∽△ABE ,∴AC :AB=CD :BE ,∴2:6=1.5:BE ,∴BE=4.5m ,∴树的高度为4.5m ,故选B.【点睛】本题考查了相似三角形的应用举例,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出树的高度,体现了转化的思想.6.D【解析】分析:由勾股定理求得BD,证得△BDC∽△CDA,根据相似三角形的性质即可求得结果.详解:∠ACB=90°,CD⊥AB于D,CD=4,BC=5,由勾股定理得:2222=54BC CD--=3,∵∠ACB=90°,CD⊥AB于D,∴∠B=90°-∠BCD=∠ACD,∠BDC=∠ADC,∴△BDC∽△CDA,∴BC BD AC CD=,即534 AC=,解得:AC=20 3故选D.点睛:本题主要考查了勾股定理,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7.C【解析】【分析】由平行四边形的性质可知AB=CD,再根据AE:EB=1:3可得BE:CD=3:4,再根据相似三角形的对应边成比例即可求得FE:EC的值.【详解】∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴△BEF ∽△DCF ,∴EF :FC=BE :CD ,∵AE :EB=1:3,AE+BE=AB ,∴BE :AB=3:4,∴EF :FC=3:4,故选C.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.8.D【解析】【分析】能够根据比例的基本性质熟练进行比例式和等积式的互相转换.根据题意得: ::a d b c =代入数值即可求得.【详解】根据题意得:a :d =b :c ,∵a =3cm ,b =4cm ,c =6cm ,∴3:d =4:6, ∴9cm 2d =; 故选:D.【点睛】本题主要考查了成比例线段,解题的关键是理解成比例线段的概念.9.C【解析】试题解析:A.∵∠2=∠3,∠C=∠C ,∴△DEC ∽△ABC ,故A 正确;B ∵∠2=∠3,∴DE ∥AB ,∴∠DEA=∠EAB ,∵∠1=∠3,∴△ADE ∽△BEA ;故B 正确;C.∵∠1=∠2,∠BEA≠∠C ,∴△ACE 与△BEA 不相似;故C 错误;D.∵∠1=∠3,∠C=∠C ,∴△ACE ∽△BCA ;故D 正确.故选C .10.A【解析】【分析】根据两组角对应相等,得到△AEB ∽△AFC ,根据相似三角形的性质得到,AE AB AF AC =进而证明△AEF ∽△ABC ,根据相似三角形的性质得到,EF AE BC AB =代入即可求解. 【详解】∵BE ,CF 为△ABC 的两条高,∴∠AEB=∠AFC=90°,∵∠A=∠A ,∴△AEB ∽△AFC , ∴,AE AB AF AC= ∵∠A=∠A ,∴△AEF ∽△ABC , ∴,EF AE BC AB= ∵AB=6,BC=5,EF=3, ∴3,56AE = ∴18.5AE = 故选A .【点睛】考查相似三角形的判定与性质,掌握相似三角形的几种判定方法是解题的关键.11.1:3【解析】【分析】根据相似三角形的性质进行计算即可.【详解】∵△ADE ∽△ACB , ∴DE BC =AD AC =233+=13.故答案为1:3.【点睛】本题考查了相似三角形的性质,解题的关键是熟练的掌握相似三角形的性质. 12.相似3:5【解析】【分析】DE BC可得同位角相等,即∠ADE=∠B,∠AED=∠C,两角对应相等得由//△ADE∽△ABC,再由对应边的比例得相似比.【详解】DE BC,∵//∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,则:相似比=AD:AB=3:5【点睛】本题结合平行,考查了两角对应相等则两三角形相似的判定方法以及相似比.1,413.()【解析】【分析】利用位似图形的性质得出对应点位置进而得出答案.【详解】如图所示:A1(1,4).故答案为(1,4).【点睛】此题主要考查了位似图形画法,得出对应点位置是解题关键.14.521【解析】【分析】当△ADF 是一个以AD 为腰的等腰三角形时,如图2,只能AD =AF ,由题意DF =4t ,BE =4t ,DF ∥BE ,推出四边形BEFD 是平行四边形,由△ABC ∽△BED ,可得=BD BE BC AB,延长构建方程即可解决问题;【详解】如图1,过A 作AG ⊥BC 于G ,∵AB =AC =5,∴BG =CG =2,由勾股定理得:AG =22(5)2 =1,由图形可知:∠BAC 是钝角,∴当△ADF 是一个以AD 为腰的等腰三角形时,如图2,只能AD =AF ,由题意DF =4t ,BE =4t ,DF ∥BE ,∴四边形BEFD 是平行四边形,∴∴DEF =∠BDE =∠B ,∴△ABC ∽△BED ,∴=BD BE BC AB,∴55=5t,∴t=5 21,故答案为5 21.【点睛】本题考查的是勾股定理,等腰三角形的判定和性质、平行四边形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会用数形结合的思想思考问题,属于中考填空题中的压轴题.15.【解析】【分析】作DM⊥AC于M,FN⊥AC于N,如图,设DM=x,则CM=x,可计算出EM=-x+1,再利用旋转的性质得到ED=EF,∠DEF=90°,证明△EDM≌△FEN得到DM=FN=x,EM=NF=-x+1,接着利用勾股定理得到AF2=(-x+1)2+(2+x)2,配方得到AF2= (x-)2+,然后利用非负数的性质得到AF的最小值.【详解】解:作DM⊥AC于M,FN⊥AC于N,如图,设DM=x,在Rt△CDM中,CM=DM=x,而EM+x=1,∴EM=-x+1,∵线段ED绕点E逆时针旋转90°,得到线段EF,∴ED=EF,∠DEF=90°,可得△EDM≌△FEN,∴DM=FN=x,EM=NF=-x+1,在Rt△AFN中,AF2=(-x+1)2+(2+x)2=(x-)2+,当x=时,AF2有最小值,∴AF的最小值为.故答案为.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.16.1085(AB AD BDBD BC DC==)【解析】【分析】由AB:AD=BD:BC且其夹角对应相等,即A CBD∠=∠,可证明△BAD∽△DBC,再利用比例关系求解CD.【详解】∵AB:AD=BD:BC=34,又∵A CBD∠=∠,∴△BAD∽△DBC,∴201824AD BDBC DC DC===,解得CD=1085.【点睛】本题通过证明三角形相似,再利用相似的比例关系求解边.17.2∶15【解析】分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:15;,所以a、c两数的比为2:15.详解:a :b=1:3=(1×2):(3×2)=2:6; b :c=2:5=(2×3):(5×3)=6:15;,所以a :c=2:15;故答案为:2:15.点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.18..【解析】解:∵AB =6,AB =1:3,∴AD =6×13=2,BD =6﹣2=4.∵△ABC 和△FDE 是形状、大小完全相同的两个等腰三角形,∴∠A =∠B =∠FDE .由三角形的外角性质得,∠AMD +∠A =∠EDF +∠BDN ,∴∠AMD =∠BDN ,∴△AMD ∽△BDN ,∴MA MD BD DN =,∴MA •DN =BD •MD =4MD ,∴MD +12MA DN ⋅=MD +3MD =22+-2+∴=,即MD 时,MD +12MA DN ⋅有最小值为19.1:5000【解析】【分析】根据比例尺是图上距离与实际距离的比值即可求解.【详解】∵图上距离为120cm ,实际距离为6km=600000cm ,∴新区建设规划图所采用的比例尺=120:600000=1:5000.故答案为1:5000.【点睛】本题考查了比例尺的定义,熟知比例尺是图上距离与实际距离的比值是解题的关键. 20.①③④【解析】解:在△ABC与△AEF中,∵AB=AE,BC=EF,∠B=∠E,∴△AEF≌△ABC,∴AF=AC,∴∠AFC=∠C,故①正确.由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB,故③正确;∵∠EAF=∠BAC,∴∠EAD=∠CAF,由△ADE∽△FDB可得∠EAD=∠BFD,∴∠BFD=∠CAF,故④正确.综上可知:①③④正确.点睛:本题考查了相似三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.21.(1)见解析;(2)P);(3)存在;Q).【解析】【分析】(1)在Rt△OAB中,由切线的性质知:OP⊥AB,易证得△OAP∽△BPO.(2)当P为AB中点时,由于OP⊥AB,那么OP平分∠AOB,即P点的横、纵坐标相等,已知OP的长,易求得点P的坐标.(3)此题应分两种情况:①OP为对角线,此时OQ∥AP,由于∠OP A=90°,那么∠POQ=90°,即△POQ是等腰直角三角形,已知OA⊥OB,那么OB⊥PQ,此时OB为∠POQ的对角线,即P、Q关于y轴对称由此得解;②OP为边,此时OP∥AQ,由于∠OP A=90°,那么平行四边形OP AQ为矩形,即∠POQ是等腰直角三角形,解法同①.【详解】解:(1)证明:∵AB是过点P的切线,∴AB⊥OP,∴∠OPB=∠OPA=90°;∴在Rt△OPB中,∠1+∠3=90°,又∵∠BOA=90°∴∠1+∠2=90°,∴∠2=∠3;在△OPB中△APO中,∴△OPB∽△APO.(2)∵OP⊥AB,且PA=PB,∴OA=OB,∴△AOB是等腰三角形,∴OP是∠AOB的平分线,∴点P到x、y轴的距离相等;又∵点P在第一象限,∴设点P(x,x)(x>0),∵圆的半径为2,∴,解得x=(舍去),∴P).(3)存在;①如图设OAPQ为平行四边形,∴PQ∥OA,OQ∥PA;∵AB⊥OP,∴OQ⊥OP,PQ⊥OB,∴∠POQ=90°,∵OP=OQ,∴△POQ是等腰直角三角形,∴OB是∠POQ的平分线且是边PQ上的中垂线,∴∠BOQ=∠BOP=45°,∴∠AOP=45°,设P(x,x)、Q(﹣x,x)(x>0),∵OP=2,解得∴Q);②如图示OPAQ为平行四边形,同理可得Q).【点睛】此题主要考查的是切线的性质以及平行四边形的判定,相似三角形的性质与判定、等腰直角三角形的性质、角平分线的定义等知识,难度较大.22.(1)见解析;(2)见解析;(3)BE=.【解析】【分析】(1)连接OD,由DO为直角三角形斜边上的中线,得到OD=OA=OE,可得出点D在圆O上;(2)由AD为角平分线,得到一对角相等,再由OD=OA,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OD与AC平行,根据两直线平行同位角相等即可得到∠ODB为直角,即BC与OD垂直,即可确定出BC为圆O 的切线;(3)过E作EH垂直于BC,由OD与AC平行,得到△ACB与△ODB相似,设OD=OA=OE=x,表示出OB,由相似得比例列出关于x的方程,求出方程的解得到x的值,确定出OD与BE 的长.【详解】(1)连接OD,∵△ADE是直角三角形,OA=OE,∴OD=OA=OE,∴点D在⊙O上;(2)∵AD是∠BAC的角平分线,∴∠CAD=∠DAB,∵OD=OA,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴AC∥OD,∴∠C=∠ODB=90°,∴BC是⊙O的切线;(3)在Rt△ACB中,AC=6,BC=8,∴根据勾股定理得:AB=10,设OD=OA=OE=x,则OB=10﹣x,∵AC ∥OD ,△ACB ∽△ODB ,∴,∴OD=, 解得:x=,∴OD=,BE=10﹣2x=10﹣=.【点睛】此题考查了切线的判定,相似三角形的判定与性质,勾股定理,平行线的判定与性质,熟练掌握切线的判定方法是解本题的关键.23.见解析【解析】【分析】(1)将点A 、点B 绕点O 顺时针旋转90°得到点A 1、B 1,连接A 1、B 1、O 三点即可;(2)根据位似的性质得出A 2、B 2的位置,连接A 2、B 2、O 三点即可;【详解】如图所示:【点睛】本题主要考查图形的旋转以及图形的位似的作图方法.24.(1)详见解析;(2)()()2'1,0A -, ()'1,2C ,'''A B C S V :1ABC S =V :4. 【解析】【分析】(1)利用位似图形的性质得出A′,B′,C′的位置,进而得出答案;(2)由(1)中所画图形可得.【详解】解:()1如图所示:'''A B C V 即为所求;()()2'1,0A -, ()'1,2C ,'''A B C S V :1ABC S =V :4.【点睛】此题主要考查了相位似变换,利用位似比得出对应点的位置是解题关键.25.(1)证明见解析(2)证明见解析(3)51+ 【解析】【分析】(1)由角的关系易证OD //AC ,已知DH AC ⊥,即证.DH OD ⊥(2)由OD //AC ,可证ODF AEF V V ∽,根据“相似三角形的对应边成比例”易得32FD OD EF AE ==, 设32OD x AE x =,= 证明E B C ∠=∠=∠,EDC △是等腰三角形,表示出.EH 即可证明.(3)通过等量关系表示出边的长度,由BFD EFA V V ∽,可得对应边的比例关系的方程,求解即可.【详解】解:(1)连接OD ,如图1,∵在⊙O 中,OB OD =,∴OBD ODB ,∠=∠∵AB AC =,∴B C ∠=∠,∴ODB ACB ∠=∠,∴OD //AC ,∵DH AC ⊥,∴90,AHD ∠=︒∴180?90,ODH AHD ∠=︒-∠=︒ ∴DH OD ⊥,∴DH 是圆O 的切线;(2)∵ ODF E OFD AFE ∠=∠∠=∠,,∴ODF AEF V V ∽,∴32FD OD EF AE ==, 设32OD x AE x =,=连接AD ,∵AB 是直径,∴∠ADB =90°,即AD BD ⊥,∵AB AC =,∴D 是BC 的中点,∴OD 是△ABC 的中位线,∴OD ∥AC , 26AC OD x ==,∴8,EC EA AC x =+=∵在⊙O 中,E B ∠=∠,∴E B C ∠=∠=∠,∴EDC △是等腰三角形,∵DH AC ⊥, ∴142EH EC x == ∵A 在EH 上且2AE x =,∴A 为EH 的中点.(3)如图2,设⊙O 的半径为r ,即OD OB r ==,∵EF EA =,∴EFA EAF ∠=∠,∵OD ∥EC ,∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠,∴DF OD r ==,∴1DE DF EF r =+=+,∴1?BD CD DE r ===+, 在⊙O 中,∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠,∴BF BD =,BDF V 是等腰三角形,∴1BF BD r ==+,∴()2211?AF AB BF OB BF r r r ==-=-+=-﹣,∵,BFD EFA B E ∠=∠∠=∠, ∴BFD EFA V V ∽,,EF BF FA DF= 11,1r r r+∴=-解得:12r r == (不合题意,舍去),综上所述,⊙O . 【点睛】本题主要考查与圆有关的位置关系、圆中的计算问题以及相似三角形的判定与性质.属于综合题,难度较大,对学生综合能力要求较高.26.(1)证明见解析(2)31【解析】 分析:(1)、根据矩形的性质以及EF ⊥EC 得出∠AFE=∠BEC ,从而得出三角形相似;(2)、根据题意得出AE 和BE 的长度,然后根据三角形相似得出AF 的长度,然后根据Rt △ABF 的勾股定理得出答案.详解:(1)∵四边形ABCD 是矩形, ∴∠A=∠CBE=90°, ∴∠AEF+∠AFE=90°, 又∵EF ⊥EC , ∴∠AEF+∠BEC=90°, ∴∠AFE=∠BEC , ∴△AEF ∽△BCE ; (2)∵AB=3、AE=AB , ∴AE=、BE=2, ∵△AEF ∽△BCE , ∴=,即=, 解得:AF=2, 则BF===. 点睛:本题主要考查的是矩形的性质以及三角形相似的判定与性质,属于中等难度的题型.根据双垂直得出∠AFE=∠BEC 是解题的关键.27.证明见解析.【解析】【分析】根据角平分线的性质和外角等于不相邻两内角和即可求得∠ABD =∠C ,可证明△ABD ∽△ABC ,即可解题.【详解】∵BE 平分CBD ∠,∴DBE CBE ∠∠=,∵AE AB =,∴ABE AEB ∠∠=,∵ABE ABD DBE ∠∠∠=+,AEB C CBE ∠∠∠=+,∴ABD C ∠∠=,∵ABD C ∠∠=,A A ∠∠=,∴ABD ABC V V ∽,∴AB:AD AC:AB =,即:AB AB AD AC ⋅=⋅,∵AE AB =,∴AE AE AD AC⋅=⋅.【点睛】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.28.1【解析】试题分析:(1)证明△CFD≌△DAE即可解决问题.(2)如图2中,作FG⊥AC于G.只要证明△CFD∽△DAE,推出DCDE=CFAD,再证明CF=2AD即可.(3)证明EC=ED即可解决问题.试题解析:(1)证明:如图1中,∵∠ABC=∠ACB=60°,∴△ABC是等边三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等边三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等边三角形.(2)证明:如图2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴DCDE=CFAD.∵四边形ADFG是矩形,FC2FG,∴FG=AD,CF2AD,∴CDDE2(3)解:如图3中,设AC与DE交于点O.∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴COEO=ODOA,∴COOD=EOOA.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴CEDE=1.点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.。

三边法、两边及其夹角法

三边法、两边及其夹角法

三边法、两边及其夹角法
【教学目标】
1.掌握判定两个三角形相似的两种方法:(1)如果两个三角形的三组对应边的比相等,那么这两个三角形相似.(2)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.
2.培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法与全等三角形判定方法的区别与联系,体验事物间特殊与一般的关系.
3.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力.
【教学重点与难点】
重点:两个三角形相似的判定方法及其应用
难点:探究两个三角形相似判定方法的过程。

全等三角形证明方法

全等三角形证明方法

全等三角形证明一、三角形全等的判定:1、三组对应边分别相等的两个三角形全等(SSS)。

2、有两边及其夹角对应相等的两个三角形全等(SAS)。

3、有两角及其夹边对应相等的两个三角形全等(ASA)。

4、有两角及一角的对边对应相等的两个三角形全等(AAS)。

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

二、全等三角形的性质:①全等三角形的对应边相等;全等三角形的对应角相等。

②全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

④全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

三、找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明中包含两个要素:边和角。

缺个角的条件:1、公共角2、对顶角3、两全等三角形的对应角相等4、等腰三角形5、同角或等角的补角(余角)6、等角加(减)等角7、平行线8、等于同一角的两个角相等缺条边的条件:1、公共边2、中点3、等量和4、等量差5、角平分线性质6、等腰三角形7、等面积法8、线段垂直平分线上的点到线段两端距离相等9、两全等三角形的对应边相等10、等于同一线段的两线段相等四、构造辅助线的常用方法:1、关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。

角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。

关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA 上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

相似三角形及其判定(知识点串讲)(解析版)

相似三角形及其判定(知识点串讲)(解析版)

专题11 相似三角形及其判定知识网络重难突破知识点相似三角形的判定一、相似三角形的判定方法①定义:各角对应相等,各边对应成比例.②平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.③有两个角对应相等.④两边对应成比例,且夹角相等.⑤三边对应成比例.二、相似三角形基本图形1、8字型有一组隐含的等角(对顶角),此时需从已知条件或图中隐含条件通过证明得另一对角相等(AB、CD不平行,∠A=∠C)(AB∥CD)2.A字型有一个公共角(图①、图②)或角有公共部分(图③,∠DAF+∠BAD=∠DAF+∠EAF),此时需要找另一对角相等或相等角的两边对应成比例3.双垂直型有一个公共角及一个直角 (图①为母子型的特殊形式AC2=AD·AB仍成立,另CD2=AD·BD)4.三垂直型结论推导,如图①,∠D+∠DBA=∠E+∠EBC=∠DBA+∠EBC=90°,∴∠EBC=∠D,∠E=∠DBA,且一组直角相等,用任意两组等角即可证得三角形相似【典例1】(2019秋•保山期末)如图,在△ABC中,点P在边AB上,则在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【点拨】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解析】解:当∠ACP=∠B,∵∠A=∠A,所以△APC∽△ACB;当∠APC=∠ACB,∵∠A=∠A,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A所以△APC∽△ACB;当AB•CP=AP•CB,即PC:BC=AP:AB,而∠P AC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.【典例2】如图,BD、CE是△ABC的两条高,AM是∠BAC的平分线,交BC于M,交DE于N,求证:(1)△ABD∽△ACE;(2)=.【点拨】(1)先根据有两组角对应相等的两个三角形相似,判定△ABD∽△ACE;(2)先相似三角形的性质,得出=,再根据∠DAE=∠BAC,判定△ADE∽△ABC,进而得到=,再根据∠CAM=∠EAN,判定△ACM∽△AEN,得到=,最后等量代换即可得到=.【解析】证明:(1)∵BD、CE是△ABC的两条高,∴∠ADB=∠AEC=90°,∵∠DAE=∠BAC,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴=,即=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,且∠ACB=∠AED,∵AM是∠BAC的平分线,∴∠CAM=∠EAN,∴△ACM∽△AEN,∴=,∴=.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:有两组角对应相等的两个三角形相似,两组对应边的比相等且夹角对应相等的两个三角形相似.【典例3】(2019秋•七里河区期末)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.【点拨】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(2)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【解析】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,=∵AB=AC=10,BC=16∴BG=8,∴AG=6.∵AD=BE=t,∴BD=10﹣t,∴=解得DF=(10﹣t)∵S△BDE=BE•DF=7.5∴(10﹣t)•t=15解得t=5.答:t为5秒时,△BDE的面积为7.5cm2.(2)存在.理由如下:①当BE=DE时,△BDE∽△BCA,∴=即=,解得t=,②当BD=DE时,△BDE∽△BAC,=即=,解得t=.答:存在时间t为或秒时,使得△BDE与△ABC相似.【点睛】本题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.【变式训练】1.(2020•浙江自主招生)如图,在4×4的正方形网格中,画2个相似三角形,在下列各图中,正确的画法有()A.1个B.2个C.3个D.4个【点拨】根据相似三角形的判定定理逐一判断即可得.【解析】解:第1个网格中两个三角形对应边的比例满足==,所以这两个三角形相似;第2个网格中两个三角形对应边的比例==,所以这两个三角形相似;第3个网格中两个三角形对应边的比例满足===,所以这两个三角形相似;第4个网格中两个三角形对应边的比例==,所以这两个三角形相似;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握三角形相似的判定并根据网格结构判断出三角形的三边的比例是解题的关键2.(2019秋•奉化区期末)如图,P为线段AB上一点,AD与BC交与点E,∠CPD=∠A=∠B,BC交PD与点F,AD交PC于点G,则下列结论中错误的是()A.△CGE∽△CBP B.△APD∽△PGD C.△APG∽△BFP D.△PCF∽△BCP【点拨】由相似三角形的判定依次判断可求解.【解析】解:∵∠CPD=∠A=∠B,且∠APD=∠B+∠PFB=∠APC+∠CPD,∴∠APC=∠BFP,且∠A=∠B,∴△APG∽△BFP,故选项C不合题意,∵∠A=∠CPD,∠D=∠D,∴△APD∽△PGD,故选项B不合题意,∵∠B=∠CPD,∠C=∠C,∴△PCF∽△BCP,故选项D不合题意,由条件无法证明△CGE∽△CBP,故选项A符合题意,故选:A.【点睛】本题考查了相似三角形的判定,牢固掌握相似三角形的判定是本题的关键.3.(2019秋•萧山区期末)如图,∠ACB=∠BDC=90°.要使△ABC∽△BCD,给出下列需要添加的条件:①AB∥CD;②BC2=AC•CD;③,其中正确的是()A.①②B.①③C.②③D.①②③【点拨】利用相似三角形的判定依次判断即可求解.【解析】解:①若AB∥CD,∴∠ABC=∠BCD,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故①符合题意;②若BC2=AC•CD,∴,且∠ACB=∠BDC=90°,无法判定△ABC∽△BCD,故②不符合题意;③若,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故③符合题意;故选:B.【点睛】本题考查了相似三角形的判定,灵活掌握相似三角形的判定方法是本题的关键.4.(2019秋•新华区校级月考)如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形,图中与△HBC相似的三角形为()A.△HBD B.△HCD C.△HAC D.△HAD【点拨】设正方形ABGH的边长为1,先运用勾股定理分别求出HB、HC的长,将其三边按照从大到小的顺序求出比值,再分别求出四个选项中每一个三角形三边的比值,根据三组对应边的比相等的两个三角形相似求解即可.【解析】解:设正方形ABGH的边长为1,运用勾股定理得HB=,HC=,则HC:HB:BC=::1.A、∵HB=,BD=2,HD=,∴HD:BD:HB=:2:=::1,∴HC:HB:BC=HD:BD:HB,∴△HBC∽△DBH,故本选项正确;B、∵HC=,CD=1,HD=,∴HD:HC:CD=::1,∴HC:HB:BC≠HD:HC:CD,∴△HBC与△HCD不相似,故本选项错误;C、∵HA=1,AC=2,HC=,HC:AC:HA=:2:1,∴HC:HB:BC≠HC:AC:HA,∴△HBC与△HAC不相似,故本选项错误;D、∵HA=1,AD=3,HD=,HD:AD:HA=:3:1,∴HC:HB:BC≠HD:AD:HA,∴△HBC与△HAD不相似,故本选项错误.故选:A.【点睛】本题考查了相似三角形的判定,判定两个三角形相似的一般方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.本题还可以利用方法(3)进行判定.5.(2018秋•秀洲区期末)如图,点D在△ABC的边AC上,若要使△ABD与△ACB相似,可添加的一个条件是∠ABD=∠C(答案不唯一)(只需写出一个).【点拨】两组对应角相等,两三角形相似.在本题中,两三角形共用一个角,因此再添一组对应角即可【解析】解:要使△ABC与△ABD相似,还需具备的一个条件是∠ABD=∠C或∠ADB=∠ABC等.故答案为:∠ABD=∠C(答案不唯一).【点睛】此题考查了相似三角形的判定.注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.6.(2019秋•崇川区校级月考)如图,∠A=∠B=90°,AB=7,BC=3,AD=2,在边AB上取点P,使得△P AD与△PBC相似,则满足条件的AP长为 2.8或1或6.【点拨】根据相似三角形的性质分两种情况列式计算:①若△APD∽△BPC②若△APD∽△BCP.【解析】解:∵∠A=∠B=90°①若△APD∽△BPC则=∴=解得AP=2.8.②若△APD∽△BCP则=∴=解得AP=1或6.∴则满足条件的AP长为2.8或1或6.故答案为:2.8或1或6.【点睛】本题考查了相似三角形的判定与性质,明确相关判定与性质及分类讨论,是解题的关键.7.(2019秋•临安区期末)如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BCF.【点拨】(1)根据相似三角形的判定定理证明;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【解析】(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BCF.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019春•广陵区校级月考)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)当M点运动到什么位置时Rt△ABM∽Rt△AMN,并请说明理由.【点拨】(1)理由等角的余角相等证明∠MBA=∠NMC,然后根据直角三角形相似的判定方法可判断Rt△ABM∽Rt△MCN;(2)利用勾股定理可得到AM=2,由于Rt△ABM∽Rt△MCN,利用相似比可计算出MN=,接着证明=,从而可判断Rt△ABM∽Rt△AMN.【解析】(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠AMB+∠NMC=90°,而∠AMB+∠MAB=90°,∴∠MBA=∠NMC,∴Rt△ABM∽Rt△MCN;(2)解:当M点运动到BC为中点位置时,Rt△ABM∽Rt△AMN.理由如下:,∵四边形ABCD为正方形,∴AB=BC=4,BM=MC=2,∴AM=2,∵Rt△ABM∽Rt△MCN,∴==2,∴MN=AM=,∵==,==,∴=,而∠ABM=∠AMN=90°,∴Rt△ABM∽Rt△AMN.【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.两组对应边的比相等且夹角对应相等的两个三角形相似.也考查了正方形的性质.巩固训练1.(2019•崇明区一模)如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是()A.∠B=∠D B.∠C=∠AED C.=D.=【点拨】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解析】解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.【点睛】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.2.(2020•上虞区校级一模)已知△ABC是正三角形,点D是边AC上一动点(不与A、C重合),以BD为边作正△BDE,边DE与边AB交于点F,则图中一定相似的三角形有()对.A.6 B.5 C.4 D.3【点拨】根据相似三角形的判定定理,两个等边三角形的3个角分别相等,可推出△ABC∽△EDB,根据对应角相等推出△BDC∽△BFE∽△DF A.△BDF∽△BAD.【解析】解:图中的相似三角形是△ABC∽△EDB,△BDC∽△BFE,△BFE∽△DF A,△BDC∽△DF A,△BDF∽△BAD.理由:∵△ABC和△BDE是正三角形,∴∠A=∠C=∠ABC=60°,∠E=∠BDE=∠EBD=60°,∴△ABC∽△EDB,可得∠EBF=∠DBC,∠E=∠C,∴△BDC∽△BFE,∴∠BDC=∠BFE=∠AFD,∴△BDC∽△DF A,∴△BFE∽△DF A,∵∠DBF=∠ABD,∠BDF=∠BAD,∴△BDF∽△BAD.故选:B.【点睛】本题主要考查相似三角形的判定定理及有关性质的运用,关键在于根据图中两个等边三角形,找出相关的相等关系,然后结合已知条件,得出结论.3.(2019秋•市中区期末)如图,Rt△ABC中,∠C=90°,∠B=60°,BC=4,D为BC的中点,E为AB 上的动点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE与△ABC相似时,t的值为4或7或9.【点拨】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,当∠EDB=90°或∠DEB=90°,得出△BDE和△ABC相似,可求得BE的长,则可求得t的值.【解析】解:在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,∴AB=2BC=8,∵D为BC中点,∴BD=2,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=t,BE=BC﹣AE=8﹣t,当∠EDB=90°时,则有AC∥ED,∴△BDE∽△BCA,∵D为BC中点,∴E为AB中点,此时AE=4,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故答案为:4或7或9.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.4.(2019秋•海淀区期末)如图,⊙O是△ABC的外接圆,D是的中点,连结AD,BD,其中BD与AC 交于点E.写出图中所有与△ADE相似的三角形:△CBE,△BDA.【点拨】根据两角对应相等的两个三角形相似即可判断.【解析】解:∵=,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•成都模拟)如图,BC是⊙O的弦,A是劣弧BC上一点,AD⊥BC于D,若AB+AC=10,⊙O的半径为6,AD=2,则BD的长为2或4.【点拨】作直径AE,连接CE,证明△ABD∽△AEC,得,设AB=x,则AC=10﹣x,列方程可得AB的长,最后利用勾股定理可解答.【解析】解:作直径AE,连接CE,∴∠ACE=90°,∵AD⊥BC,∴∠ADB=90°,∴∠ADB=∠ACE,∵∠B=∠E,∴△ABD∽△AEC,∴,设AB=x,则AC=10﹣x,∵⊙O的半径为6,AD=2,∴,解得:x1=4,x2=6,当AB=4时,BD===2,当AB=6时,BD===4,∴BD的长是2或4;故答案为:2或4.【点睛】本题考查了圆周角定理,相似三角形的性质和判定,正确作辅助线,构建相似三角形是本题的关键.6.(2020•雨花区校级一模)如图,AB为⊙O的直径,点C、D在⊙O上,AC=3,BC=4,且AC=AD,弦CD交直径AB于点E.(1)求证:△ACE∽△ABC;(2)求弦CD的长.【点拨】(1)由垂径定理可知∠AEC=90°,然后根据相似三角形的判定即可求出答案.(2)根据相似三角形的性质可知AC2=AE•AB,从而可求出AE=,再由勾股定理以及垂径定理即可求出CD的长度.【解析】解:(1)∵AC=AD,AB是⊙O的直径,∴CD⊥AB,∴∠AEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BAC=∠BAC+∠B=90°,∴∠ACE=∠B,∴△ACE∽△ABC.(2)由(1)可知:,∴AC2=AE•AB,∵AC=3,BC=4,∴由勾股定理可知:AB=5,∴AE=,∴由勾股定理可知:CE=,∴由垂径定理可知:CD=2CE=.【点睛】本题考查相似三角形,解题的关键是熟练运用勾股定理,相似三角形的性质与判定,圆周角定理,本题属于中等题型.7.(2018秋•姜堰区校级月考)如图,点B、D、E在一条直线上,BE与AC相交于点F,==.(1)求证:∠BAD=∠CAE;(2)若∠BAD=21°,求∠EBC的度数:(3)若连接EC,求证:△ABD∽△ACE.【点拨】(1)根据相似三角形的性质定理得到∠BAC=∠DAE,结合图形,证明即可;(2)根据相似三角形的性质即可得到结论;(3)根据相似三角形的判定和性质即可得到结论.【解析】(1)证明:∵==.∴△ABC~△ADE;∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE;(2)解:∵△ABC~△ADE,∴∠ABC=∠ADE,∵∠ABC=∠ABE+∠EBC,∠ADE=∠ABE+∠BAD,∴∠EBC=∠BAD=21°;(3)证明:连接CE,∵△ABC~△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE,∵=.∴△ABD∽△ACE.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019秋•江阴市期中)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)试探究t为何值时,△BPQ的面积是cm2;(3)直接写出t为何值时,△BPQ是等腰三角形;(4)连接AQ,CP,若AQ⊥CP,直接写出t的值.【点拨】(1)由勾股定理可求AB的长,分两种情况讨论,由相似三角形的性质可求解;(2)过点P作PE⊥BC于E,由平行线分线段成比例可得PE=3t,由三角形的面积公式列出方程可求解;(3)分三种情况讨论,由等腰三角形的性质可求解;(4)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解析】解:(1)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10cm,∵△BPQ与△ABC相似,且∠B=∠B,∴或,当时,∴,∴t=1,当,∴,∴t=;(2)如图1,过点P作PE⊥BC于E,∴PE∥AC,∴,∴PE==3t,∴S△BPQ=×(8﹣4t)×3t=,∴t1=或t2=;(3)①当PB=PQ时,如图1,过P作PE⊥BQ,则BE=BQ=4﹣2t,PB=5t,由(2)可知PE=3t,∴BE===4t,∴4t=4﹣2t,∴t=②当PB=BQ时,即5t=8﹣4t,解得:t=,③当BQ=PQ时,如图2,过Q作QG⊥AB于G,则BG=PB=t,BQ=8﹣4t,∵△BGQ∽△ACB,∴,∴解得:t=.综上所述:当t=或或时,△BPQ是等腰三角形;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图3所示:则PB=5t,∵AC⊥BC∴△PMB∽△ACB,∴=∴BM=4t,PM=3t,且BQ=8﹣4t,BC=8,∴MC=8﹣4t,CQ=4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴,∴∴t=【点睛】此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键.。

全等三角形证明方法总结

全等三角形证明方法总结

敷学培fit 方法*»1-2価明三廊形全箸(舍倦段相著、角相等)的几种方法一、三角形全等的判定:① 三组对应边分别相等的两个三角形全等(SSSJo 【最简单,考得也最少,考试过程中没有注意点】② 有两边及其夹角对应相等的两个三角形全等(SAS)。

【最常考,而且考试就考“角是不是两边夹角”】 r 当题目中得出“2对边及1对角相等”时,一定要检査“角是不是两边夹角“。

i ③ E鬲爲反養美另另航蒔京满不三浦花荃,新忑「① 有两角及一角的对边对应相等的两个三角形全等(AAS)o⑤直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)o F ............................ } j 直角三角形全等的特殊证法。

但当该方法不行时,前面的4种方法也能用来证明直角三角形全等。

: !如何找斜边:斜边是直角所对的边,只要找90。

的角所对的边就能找到斜边: ................................................................................................. J 二、全等三角形的性质: ① 全等三角形的对应边相等;全等三角形的对应角相等。

② 全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

①全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

几种常见全等三箱形的基本图形: 【平移】i 题目中只要得出“1对边及2对角相等",那就能证明三角\ ;形全等,唯一要做的就是区分好是ASA 还是AAS三、找全等三痢形的方法:①可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中:②可以从己知条件出发,看己知条件可以确定哪两个三角形相等;③从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;①若上述方法均不行,可考虑添加辅助线,构造全等三角形。

初中数学-三角形公式大全

初中数学-三角形公式大全

abCBc A。

ABC”三角形“读作,ABC 的三角形记作△C 、B 、A 来表示,顶点是”△“记法:三角形用符号1.5角:相邻两条边所组成的角,叫作三角形的内角,简称三角形的角。

1.4顶点:相邻两边的公共端点叫作三角形的顶点。

1.3。

BC 、AB 、AC 或c 、b 、a 形的边可以用一个小写字母或两个大写字母表示,如:边:组成三角形的线段叫作三角形的边.组成三角形的三条线段叫做三角形的三条边,三角1.2三角形:由不在同一条直线上的三条线段顺次首尾相接所组成的图形。

1.1相关概念3分类2定义1。

”内心“)三角形的三条角平分的交点是三角形的2( )三角形的角平分线、中线和高都有三条;1( 【注意】)高:从三角形的一个顶点向它的对边作垂线,顶点与垂足之间的线段叫做三角形的高。

3( )中线:连接一个顶点与对边中点的线段叫做三角形的中线;2( 叫做三角形的角平分线;)角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段1( 三条重要的线3.1)顶点是直角的等腰三角形叫做等腰直角三角形。

3( )等边三角形是特殊的等腰三角形;2( )任何一个三角形最多有三个锐角,最少有两个锐角,最多有一个钝角,最多有一个直角;1( 【注意】按边分:不等边三角形、等腰三角形、等边三角形。

2.2按角分:锐角三角形、直角三角形、钝角三角形。

2.1三角形AD BC 2=12BD=DC= BC12BDCBDC212C BAA∠180°+2=∠1+∠BOC∠C=∠B+∠A+∠OCBAD∠C+∠B=∠A+∠ODCBA14313221A ABDCA)BC=2BD=2DC (或所以的中线,ABC 是△AD 因为是BAC ∠∠1=所以∠(已知),的角平分线ABC 是△AD 因为是)ADC=ADB=90°(或∠D 于点所以的高(已知)ABC 是△AD 因为是几何语言定义名称图形三角形的中线三角形的角平分线交点叫作三角形的重心,形的三条中线相交于一点叫作三角形的中线.三角点和它的对边中点的线段在三角形中,连接一个顶线段叫作三角形的角平分线这个角的顶点与交点之间的,分线与这个角的对边相交在三角形中,一个内角的平形的高。

三边法、两边及其夹角法

三边法、两边及其夹角法

×
(8)相似的两个三角形一定大小不等。

×
2. AD⊥BC于点D, CE⊥AB于点 E ,且交AD于F,你能 从中找出几对相似三角形?
A
E F
B
C
D
3. 过△ABC(∠C>∠B)的边AB上一点D 作一条直线与另一边AC 相交,截得的小三角形与△ABC相似,这样的直线有几条?
A D●

C
这样的直线有两条:
一定相似
探究
作△ABC和△A'B'C',使得∠A=∠A',∠B=∠B',这 时它们的第三个角满足∠C=∠C'吗?分别度量这两个三角 形的边长,计算 AB 、BC 、CA ,你有什么现?
A' B' B'C' C' A'
A' A
B
C
B'
满足:∠C = ∠C'
AB BC CA A'B' B'C ' C ' A'
B1
C1
证明:
设 AB AB

AC AC

k.
则AB

kAB,
AC

kAC.
由勾股定理,得
BC AB2 AC 2 , BC AB2 AC2 .
BC AB2 AC 2
BC
BC
BC

AB

AC .
BC AB AC
k 2 AB2 k 2 AC2 kBC k.
PA PC PD PB
即 PA·PB=PC·PD
提示: 把比例线段转
化为乘积形式。

三角形的判定方法有哪几种

三角形的判定方法有哪几种

三角形的判定方法有哪几种三角形是初中数学中的重要概念,而要判定一个图形是否是三角形,需要根据一定的准则和方法进行判断。

在数学中,三角形的判定方法主要包括三角形的边长关系、角的关系和面积的关系等几种方法。

下面将逐一介绍这些方法,希望能帮助大家更好地理解三角形的判定方法。

一、边长关系的判定方法。

1. 三边长判定法。

三角形的三边长分别为a、b、c,如果满足任意两边之和大于第三边,即a +b > c,a +c > b,b + c > a,则这三条边所围成的图形就是一个三角形。

这是最基本的三角形判定方法,也是最常用的一种。

2. 两边夹角边判定法。

如果一个三角形的两边及夹角分别为a、b、θ,那么满足a² + b² 2abcosθ > 0,则这三条边所围成的图形就是一个三角形。

3. 正弦定理。

对于一个三角形的三边长分别为a、b、c,对应的三个内角分别为A、B、C,那么有sinA/a = sinB/b = sinC/c,如果这个等式成立,那么这三条边所围成的图形就是一个三角形。

二、角的关系的判定方法。

1. 两角边夹角判定法。

如果一个三角形的两角及夹边分别为A、B、c,那么满足c² = a² + b²2abcosC,则这三条边所围成的图形就是一个三角形。

2. 角边角判定法。

如果一个三角形的两角及夹边分别为A、B、c,那么如果另一角C已知,且满足C = 180° A B,则这三条边所围成的图形就是一个三角形。

三、面积的关系的判定方法。

1. 海伦公式。

对于一个三角形的三边长分别为a、b、c,半周长为p,那么三角形的面积S = √[p(p-a)(p-b)(p-c)],如果这个面积大于0,则这三条边所围成的图形就是一个三角形。

2. 面积判定法。

如果一个三角形的底边长为a,高为h,那么三角形的面积S = 1/2 a h,如果这个面积大于0,则这三条边所围成的图形就是一个三角形。

初中数学 两边及夹角 求第三边 不用余弦定理

初中数学 两边及夹角 求第三边 不用余弦定理

初中数学两边及夹角求第三边不用余弦定理在初中数学中,对于一个三角形,如果知道两边及其夹角,则可以利用正弦定理或余弦定理求出第三边的长度。

在这里,需要给出1500字以上的解答,但是不使用余弦定理的情况下如何求出第三边的长度呢?一、题目理解题目要求不用余弦定理,根据已知的两边及其夹角求解出第三边的长度。

那么我们可以考虑利用正弦定理来解答这个问题。

二、正弦定理的应用正弦定理表达式为:a/sinA = b/sinB = c/sinC其中a、b、c为三角形的三边长度,A、B、C为对应的内角度数。

根据正弦定理,我们可以得到以下三个等式:a/sinA = b/sinBa/sinA = c/sinCb/sinB = c/sinC那么如果知道两边及其夹角,就可以通过这些等式求解出第三边的长度。

三、举例解析假设我们要求解出一个三角形的第三边的长度,已知两边分别为5cm和8cm,夹角为60。

那么我们可以通过正弦定理进行计算。

将题目中的已知数据代入正弦定理的等式中,可以得到以下两个等式:5/sin60 = 8/sinB5/sin60 = c/sinC其中B和C为未知的角度。

首先,我们可以通过sin60的值求得sinB的值:sin60 = √3/2将sin60的值代入第一个等式中,我们可以解得:5/(√3/2) = 8/sinB5∗2/√3 = 8/sinB10√3/3 = 8/sinB然后,我们可以利用sinB的值求得角度B的大小:sinB = (8/10)(3/√3)sinB = 4/√3B = arcsin(4/√3)B = 75.522(取近似值)接着,我们可以利用sinC的值求得角度C的大小:sinC = (5/8)(√3/2)sinC = 5√3/16C = arcsin(5√3/16)C = 47.478(取近似值)最后,我们可以利用sinC的值求出第三边c的长度:c/sinC = 5/sin60c/(5√3/16) = 5/(√3/2)c = (5)(5√3/16)∗(2/√3)c = 25/8 cm因此,根据已知的两边及其夹角,可以求得第三边的长度为25/8 cm。

全等三角形的判定

全等三角形的判定

∠A=∠A',那么△ABC≌△A'B'C'?
A
A'
B
C
B'
C'
叠合法:把△ABC放到△A'B'C'上,使∠A的顶点与∠A'
的顶点重合;△ABC≌△A'B'C'
判定
全等三角形判定方法一:
在两个三角形中,如果有两条边及它们的夹角对应相等,
那么这两个三角形全等。(简记为S.A.S)
A
在ABC与ABC中
AB AB A=∠A AC AC
全等三角形的 判定
课前回顾
三角形的六个元素中,给定哪三个元素就可以确定三 角形的形状和大小? 1. 三条边; 2. 两边及其夹角; 3. 两角及其夹边; 4. 两角及其对边. 如果两个三角形满足上述三个元素对应相等,
那么他们就是全等三角形。
新课探索
为什么“两边及其夹角对应相等”的两个三角形全等? 如图,在△ABC和△A'B'C'中,已知AB=A'B',AC=A'C',
新课探索
为什么“两角及其夹边对应相等”的两个三角形全等?
如图,在△ABC和△A'B'C'中,已知∠A=∠A' , ∠B=∠B ‘ ,AB=A ' B ' ,那么△ABC≌△A'B'C'?
A
A'
B
C
B'
C'
叠合法:把△ABC放到△A'B'C'上,使AB与A'B'重合;
△ABC≌△A'B'C'

2023-2024学年陕西省榆林六中九年级(上)第一次月考数学试卷+答案解析

2023-2024学年陕西省榆林六中九年级(上)第一次月考数学试卷+答案解析

一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知a ,b ,c ,d 是成比例线段,其中,,,则线段d 的长为2023-2024学年陕西省榆林六中九年级(上)第一次月考数学试卷( )A. 1 cmB. 4 cmC. 2 cmD. 9 cm2.在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球实验,发现摸到白色乒乓球的频率稳定在左右,由此可知盒子中黄色乒乓球的个数可能是( )A. 2个 B. 4个C. 18个D. 16个3.如图,直线,直线AC 和DF 被,,所截,如果,,,那么DE 的长是( )A. B. C. 3D.4.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,,,则BD 的长度为( )A. 24B. 16C. 12D. 85.下列方程中,有两个相等实数根的是( )A. B.C.D.6.如图,中,,,则图中相似的三角形共有( )A. 1对B. 2对C. 3对D. 4对7.某商场品牌手机经过5,6月份连续两次降价每部售价由5000元降到3600元.且第一次降价的百分率是第二次的2倍,设第二次降价的百分率为x ,根据题意可列方程( )A. B.C. D.8.如图,点A在线段BD上,在BD的同侧作等腰直角三角形ABC和等腰直角三角形和是直角,连接BE,CD交于点P,CD与AE边交于点M,对于下列结论:①∽;②;③;④,其中正确的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。

9.如果是方程的根,则常数______.10.一个多边形的边长分别为2,4,5,6,另一个与它相似的多边形的最长边长为24,则该多边形的最短边长为______.11.在一次数学活动课上,甲、乙两位同学制作了如图所示的两个转盘每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字做游戏.转动两个转盘,停止后,记录指针所指区域内的数字当指针恰好指在分界线上时,不记,重转,则记录的两个数字都是正数的概率为______.12.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?设衬衫的单价降了x元,则可列方程为______.13.如图,在矩形ABCD中,,,E是AD上一点,,P是BC上一动点,连接AP,取AP的中点F,连接EF,当线段EF取得最小值时,线段PD的长度是______.三、解答题:本题共13小题,共81分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的判定(四)
一、预习交流、学情检测
知识回顾
(1)我们已学习过哪些判定三角形相似的方法?
(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD
与△ABC相似吗?说说你的理由.
预习检测
1、三角形相似的判定方法3
如果一个三角形的与另一个三角形两个角对应,那么这两个三角形相似.
如预习(2)题图,△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?说说你的理由
2、如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应的比,那么这两个直角三角形。

二、合作研讨探究解疑
1、仿相似三角形判定定理1的证明过程证明三角形相似的判定方法3
2、证明相似三角形判定定理4:一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应的比,那么这两个直角三角形。

方法总结:
3、[例题解析]
例1(教材P48例2).弦AB 和CD 相交于⊙o 内一点P,求证:PA ·PB=PC ·PD (分析:要证PA•PB=PC•PD,需要证PB
PC PD PA ,则需要证明这四条线段所在的两个三
角形相似.由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似.)
例2已知:如图,矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于F ,若AB=4,AD=5,AE=6,求DF 的长.
(分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.)
A B C D P O。

相关文档
最新文档