1-1 二阶与三阶行列式

合集下载

线性代数Ⅰ—行列式

线性代数Ⅰ—行列式

对角行列式
ann
11
a11 (3) a21 an 1,1 an1
a12 a22 an 1, 2 0
a1,n 1 a2,n 1 0 0
பைடு நூலகம்
a1n 0 0 = (1) 0
n ( n 1) 2
a1n a2,n 1 an1
(4)
1 1 x1 x2 2 x12 x2 n x1n 1 x2 1
n-1阶行列式 可化为 ……
n-2阶行列式
最终可用二阶、三阶行列式表示任意阶行列式。 注意:对角线法不适合四阶及四阶以上行列式的计算。 实际上,n阶行列式 展开式也有以下特点:
(1) 有n!项的代数和 Dn (2) 每项都取自n个不同列不同行,为n个元素乘积 (3) 每项前的符号一半为“+”,一半为“-”
6
推论: 推论:n阶行列式某一行(列)元素与另一行(列)对应元素代 数余子式乘积之和为0
ai1 A j1 + ai 2 A j 2 + + ain A jn = 0
或 例:
a1i A1 j + a2i A2 j + + ani A jn = 0
1 1 1 2 2 2
1
i ≠ j i, j = 1,2, , n
(1)
a11 0 0 a12 a1n a22 a2 n 0 0 ann 0 0 = a11a22 ann = a11a22 ann
上三角行列式
(2)
a11 a21 an1
a22
下三角行列式
an 2 ann a11 0 0 0 0
特例:
0 0 = a11a22 ann a22
(C) 3个
18
a

线性代数Ⅰ—行列式

线性代数Ⅰ—行列式
9
例:
a b 0 0 d a d e b e c 0 =? f c f
1 1 1 2 1 1 2 1 0 3 2 2 1 1 1 0
1 2 3 2 3 4 =? 4 6 8
2 1
3 2
4 3
ka kb kc = ?
a1 + 2 a2 + 3 a3 + 4 = ?
例:计算
10
几个特别的行列式
(1)
22
(五) (B) 第一行公因数 2
1 2 D=2 3 4 1 x 3 4 1 3 x 4 1 r2 2r1 3 r3 3r1 2 4 r4 4r1 x 1 1 1 1 0 x2 1 1 =0 0 0 x3 1 0 0 0 x4
得 2( x 2)( x 3)( x 4) = 0 x1 = 2, x2 = 3, x3 = 4
1 5
16 9 49 25 64 27 343 125
15
例题和习题
0 0 0 λ1 (一) 行列式 0 0 λ2 0 的值为[ λn 0 0 0
]
n ( n 1) 2
(A) 0
1 4 (二) 设 A = 2 5
(B) λ1λ2 λn (C) (1)
2 3 0 1 3 2 1 1
λ1λ2 λn (D) λ1λ2 λn
]条,则 Dn = 0
(A) Dn 中0元素个数多于 n 个 (C) D中有一列元素是另外二列之和 (D) D中每个元素均为两数之和
a2 b2 (十五) D = 2 c d2 (a + 1) 2 (b + 1) 2 (c + 1) 2 (d + 1) 2 (a + 2) 2 (b + 2) 2 (c + 2) 2 (d + 2) 2 (a + 3) 2 (b + 3) 2 =[ 2 (c + 3) (d + 3) 2

阶行列式性质与展开定理

阶行列式性质与展开定理

a21 a22
b1a22 a12b2
b1 b2
a12 a22
D1
a11b2
b1a21
a11 a21
b1 b2
D2
Example 2
求解二元线性方程组
32xx11
Hale Waihona Puke 2x2 x212 1
Solution:
由于
3 D
2 3 (4) 7 0,
21
20D2因01/7/此2 112,
2
1x1
b1 b2(1)
由x1 二 a阶bx1111aa行2222 列DDaa111式22ba22的1 abb定1121 义aaa,121x2222得 :aa111a1b2Dx22 2ba11a2aaaD212D121112
a11 b1 aa1222aa1211a11aab12222 a12a21
a21 a22
Note : 当 n ≥ 4 时,对角线法则不再 a11 a12 a13 a14
适用 Dn 的计算 . 如 4 阶行列式:
a21 a22 a23 a24 a31 a32 a33 a34
按对角线法共有 8 项代数和; 但按定 a41 a42 a43 a44
义,共有 2020/7/2 4! = 24 项 .
a13
a21 a31
a22 a32
6
二、 n 阶行列式
M11
M12
M13
a11 a21 a31
a12 a22 a32
a13 a23 a33
a11
a22 a32
a23 a33
a12
a21 a31
a23 a33
a13
a21 a31
a22 a32

高等代数课件

高等代数课件
a21 a31 a22 a32 a23 = a11a22 a33 + a12 a23 a31 + a13 a21a32 a33 − a13a22 a31 − a12 a21a33 − a11a23 a32
★三阶行列式与三元一次方程组的解的关系: 三阶行列式与三元一次方程组的解的关系
a11 xb1 当三元一次方程组 a21 x1 + a22 x2 + a23 x3 = b2 的系数行列式 a x + a x + a x = b 31 1 32 2 33 3 3
0 c d 0 根据行列式的定义计算: 例1 根据行列式的定义计算 0 e f 0 g 0 0 h
1 + a1 2 + a1 3 + a1 计算行列式: 例2 计算行列式 1 + a2 2 + a2 3 + a2 1 + a3 2 + a3 3 + a3
0 1 1L1 1 0 1L1 计算n阶行列式 阶行列式: 例3 计算 阶行列式 1 1 0 L 1 LLLLL 1 1 1L0
1.2 排列
一. 基本概念
排列: 个数码 个数码1,2,…,n的一个排列是指由这 个数码 的一个排列是指由这n个数码 1. 排列 n个数码 的一个排列是指由这 组成的一个有序组. 个数码的不同排列共有 个数码的不同排列共有n!个 组成的一个有序组 n个数码的不同排列共有 个. 反序数: 在一个排列里, 2. 反序数 在一个排列里 如果一个较大的数排在一个较 小的数的前面, 则称这两数构成一个反序 反序. 小的数的前面 则称这两数构成一个反序 一个排列中所 有反序的个数称为这个排列的反序数 例如排列213的反 反序数. 有反序的个数称为这个排列的反序数 例如排列 的反 序数是1, 而排列231的反序数是 的反序数是2. 序数是 而排列 的反序数是 奇排列, 偶排列: 如果一排列的反序数是奇(偶 数 3. 奇排列, 偶排列 如果一排列的反序数是奇 偶)数, 则 称这个排列为奇 偶 排列 例如213是奇排列 231是偶排 排列. 是奇排列, 称这个排列为奇(偶)排列 例如 是奇排列 是偶排 列. 对换: 把一个排列中的数码i和 的位置互换 的位置互换, 4. 对换 把一个排列中的数码 和j的位置互换 而其它数 码的位置保持不变则得到一个新的排列. 码的位置保持不变则得到一个新的排列 对排列进行的这 对换, 符号(i, 表示 表示. 样一种变换称为一个对换 样一种变换称为一个对换 并用符号 j)表示

线性代数§1.1二阶、三阶行列式

线性代数§1.1二阶、三阶行列式

线性代数§1.1⼆阶、三阶⾏列式本章说明与要求⾏列式的理论是⼈们从解线性⽅程组的需要中建⽴和发展起来的,它在线性代数以及其他数学分⽀上都有着⼴泛的应⽤。

在本章⾥我们主要讨论下⾯⼏个问题:(1) ⾏列式的定义;(2) ⾏列式的基本性质及计算⽅法;(3) 利⽤⾏列式求解线性⽅程组(克莱姆法则)。

本章的重点:是⾏列式的计算,要求在理解n阶⾏列式的概念,掌握⾏列式性质的基础上,熟练正确地计算三阶、四阶及简单的n阶⾏列式。

计算⾏列式的基本思路是:按⾏(列)展开公式,通过降阶来计算.但在展开之前往往先利⽤⾏列式性质通过对⾏列式的恒等变形,使⾏列式中出现较多的零和公因式,从⽽简化计算。

常⽤的⾏列式计算⽅法和技巧:直接利⽤定义法,化三⾓形法,降阶法,递推法,数学归纳法,利⽤已知⾏列式法。

⾏列式在本章的应⽤:求解线性⽅程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应⽤的条件。

本章的重点:⾏列式性质;⾏列式的计算。

本章的难点:⾏列式性质;⾼阶⾏列式的计算;克莱姆法则。

==============================================§1.1 ⼆阶、三阶⾏列式⾏列式的概念起源于解线性⽅程组,它是从⼆元与三元线性⽅程组的解的公式引出来的。

因此我们⾸先讨论解⽅程组的问题。

设有⼆元线性⽅程组()()------1 ------2ax by c dx ey f +=+=?? ⽤消元法求解:()()12:e b - ()ae bd x ce bf -=-?,ce bf x ae bd-=-, ()()21:a d - ()ae bd y af dc -=-?,af dc y ae bd-=-。

即得⽅程组的解:ce bf x ae bd af dc y ae bd -?=??-?-?=?-?。

这就是⼀般⼆元线性⽅程组的解公式。

但这个公式很不好记忆,应⽤时⼗分不⽅便。

由此可想⽽知,多元线性⽅程组的解公式肯定更为复杂。

1-1 二阶与三阶行列式

1-1 二阶与三阶行列式

二、三阶行列式
a11x1+a12x2+a13x3=b1 3 1 方程组 a21x1+a22x2+a23x3=b2 的解为 x1 = D , x2 = D2 , x3 = D , D D D a x +a x +a x =b 31 1 32 2 33 3 3
其中 D=a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31, D1=b1a22a33+a12a23b3+a13b2a32−b1a23a32−a12b2a33−a13a22b3, D2=a11b2a33+b1a23a31+a13a21b3−a11a23b3−b1a21a33−a13b2a31, D3=a11a22b3+a12b2a31+b1a21a32−a11b2a32−a12a21b3−b1a22a31. a11 a12 a13 为了便于记忆和计算, 我们用符号 a21 a22 a23 表示代数和 a31 a32 a33 a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31.
Henan Agricultural University
一、二元线性方程组与二阶行列式
a11x1+a12x2=b1 , 用消元法解二元线性方程组 a21x1+a22x2=b2

b a22 −a12b2 a11b2 −b a21 1 1 . , x2 = x1 = a11a22 −a12a21 a11a22 −a12a21
3 1 令λ2−3λ=0, 则λ=0, λ=3. (1)当λ=0 或 λ=3时, D=0; (2)当λ≠0 且 λ≠3时, D≠0. 例3 1 2 4 0 −1 0 3 5 =1×0×6 +2×5×(−1) +3×4×0 6 −1×5×0−2×4×6−3×0×(−1) =−10−48 =−58.

《线性代数》1-3n阶行列式的定义

《线性代数》1-3n阶行列式的定义

05 矩阵与行列式关系探讨
矩阵概念回顾
矩阵定义
由数字组成的矩形阵列, 通常用大写字母表示,如 A、B、C等。
矩阵维度
矩阵的行数和列数,决定 了矩阵的规模。
矩阵元素
矩阵中的每个数字,用带 下标的字母表示,如 $a_{ij}$表示第i行第j列的 元素。
矩阵与行列式之间联系与区别
联系
行列式可以看作是一种特殊的矩阵,即方阵。对于n阶方阵,其行列式值可以通 过矩阵元素计算得出。
二阶行列式常用于解决二 元一次方程组等问题。
三阶行列式(3x3)计算步骤
选择第一行的元素,分别与 其对应的代数余子式相乘后
相加;
确定三阶行列式的形式,即 一个3x3的矩阵;
01
按照“+ - +”的符号规律依
次计算各项;
02
03
得到的结果即为三阶行列式 的值;
04
05
三阶行列式在计算向量混合 积、判断矩阵可逆性等方面
拉普拉斯定理
在n阶行列式中,任意取定k行(列),由这k行(列)的元素所构成的一切k阶 子式与它们的代数余子式的乘积的和等于行列式D的值
说明
拉普拉斯定理是按行展开定理的推广,它将n阶行列式的计算转化为k阶子式的 计算,降低了计算复杂度
拉普拉斯定理证明过程
构造法证明
通过构造一个特殊的矩阵,利用矩阵 的乘法和行列式的性质来证明拉普拉 斯定理
克拉默法则
克拉默法则是一种利用行列式 求解线性方程组的方法;
对于n元线性方程组,如果系数 行列式D不等于0,则方程组有唯
一解;
唯一解可以通过各未知数对应 的系数行列式的代数余子式与D 的比值求得;
克拉默法则在计算量较大时可 能不太适用,但其具有理论意 义和实用价值。

高等数学-现象代数1-1

高等数学-现象代数1-1
若记 系数行列式
D=
a11
a12
a21 a22
,
a11 x1 + a12 x2 = b1 , a21 x1 + a22 x2 = b2 .
D= a11 a12 ,
a21 a22
a11 x1 + a12 x2 = b1 , a21 x1 + a22 x2 = b2 .
D1 = b1 b2 a12 a22 ,
1 2 1 2 2 1 D1 = 1 1 3 = 5, D2 = 2 1 3 = 10, 0 1 1 1 0 1
2 2 D3 = 2 1 1 = 5, 0 1 1 1
故方程组的解为: 故方程组的解为 D1 D2 x1 = x2 = = 1, = 2, D D
D3 x3 = = 1. D
三,小结
由方程组的四个系数确定. 由方程组的四个系数确定
(3)
定义
由四个数排成二行二列(横排称行, 由四个数排成二行二列(横排称行,竖排
称列) 称列)的数表
a11 a12 a21 a22 ( 4)
表达式 a11a22 a12 a21称为数表( 4)所确定的二阶 称为数表( 行列式, 行列式,并记作

a11 a21

a11 b1 D2 = a21 b2 a31 b3
a13 a23 , a33 a11 a12 D = a21 a22 a31 a32 a13 a23 a33
a11 x1 + a12 x2 + a13 x3 = b1 , a21 x1 + a22 x2 + a23 x3 = b2 , a x + a x + a x = b ; 31 1 32 2 33 3 3

线性代数1-1 二、三阶行列式

线性代数1-1 二、三阶行列式
a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号.
注 对角线法则只适用于二阶与三阶行列式.

2. 三阶行列式的计算
a 11 a 12 a 22 a 32 a 13 a 23 a 33
(1)沙路法 D a 21
a 31
D a11a22a33 a12a23a31 a13a21a32
a11a23a32 a12a21a33 a13a22a31 .
(2)对角线法则
x 2 3,
有否统一的公式?
用消元法解二元线性方程组
a 11 x 1 a 12 x 2 b1 , a 21 x 1 a 22 x 2 b 2 .
1
2
1 a 22 : 2 a 12 :
a 11 a 22 x 1 a 12 a 22 x 2 b1 a 22 , a 12 a 21 x 1 a 12 a 22 x 2 b 2 a 12 ,
(6)
a 13 a 22 a 31 a 12 a 21 a 33 a 11 a 23 a 32
(6)式称为数表(5)所确定的三阶行列式.
a 11 D a 21 a 31
a 12 a 22 a 32
a 13 a 23 a 33
.列标 行标
a 11 a 21 a 31 a 12 a 22 a 32
1.定义 设有 9 个数排成 3 行 3 列的数表

线性代数第一章课件

线性代数第一章课件

(五)性质5:把行列式的某一列(行) 的各元素乘以同一数,然后加到另一列 (行)对应的元素上去,行列式不变.
(以数 k 乘第 j 列加到第 i 列上,记作:ci kc j 以数 k 乘第


j 行加到第 i 行上,记作: ri krj )
a11 a21 an1
a1i a2i ani
a11
aij
的第一个下标i称为行标,表明该元
素位于第i行,第二个下标j称为列标,表明 该元素位于第j列,位于第i行第j列的元素称
为行列式的 i, j 元


a11 到 a22 的实联线称为主对角

线, a12
a21
的虚联线称为副对
角线 。
3、二元线性方程组的解
a11 x1 a12 x2 b1 的解为 a21 x1 a22 x2 b2
第一章 行列式 § 1-1 n阶行列式的定义
一、二阶与三阶行列式 ㈠ 二阶行列式与二元线性方程组 1、二阶行列式计算式:
D
a11
a12
a21 a22
a11a22 a12 a21
2、相关名称 a11 a12 在二阶行列式 中,把数 a21 a22
aij i 1.2; j 1.2 称为行列式的元素,元素
注意不要与绝对值记号相混淆。
a a
2、n阶行列式展开式的特点 (1)行列式由n!项求和而成 (2)每项是取自不同行、不同列的n个 元素乘积,每项各元素行标按自然顺序 排列后就是行列式的一般形式,
1
j1 j2
jn
a1 j1 a2 j2
anjn
(3)若行列式每项各元素的行标按自然 数的顺序排列,列标构成n级排列 j1 j2 jn j1 j2 jn 则该项的符号为 1

1.1n阶行列式1.1.1二阶、三阶行列式n阶行列式的概念来源

1.1n阶行列式1.1.1二阶、三阶行列式n阶行列式的概念来源
p1 p2 p3 pn 取和。
此行列式可简记 (aij) 或 D 。aij n
记一阶行列式 a11 ;a11
例1.5 三角形行列式(或对角形行列式)等于 主对角线上n个元素的乘积。
a11 a12 a1n
0 D
a22
a2n
a11a22 ann ;
0 0 ann
例1.6 负三角形行列式
j1 j2 jn
(1) (i1i2 in )
; (1) a a a ( j1 j2 jn )
i1 j1
i2 j2
in jn
j1 j2 jn
D aij n (1) ( j1 j2 i jn )
(1) a a a (i1i2 in )
i1 j1
i2 j2
in jn
i1i2 in
定义: 称
a11 a12 a13 a21 a22 a23 a31 a32 a33
= a11a22a33 a12a23a31 a13a21a32 a13a22a31 a11a23a32 a12a21a33
为三阶行列式。
例如
304 112 210 0 0 411 41 2 3 21 0 . 10
例如:自然数1,2,3的排列共有六种:
123,132,213,231,312,321.
为了方便起见,今后把自然数 1,2,视为n n个不
同的元素的代表。用 表示这np个i 不同的元素中
的一个
,(且pi 1,2时,, n于) 是 i j 便是pi p j
的一个p1排p2列p3 。 pn
1,2, n
b1a22
a11a22 a11b2
a11a22
a12b2
a12a21 b1a21

1-1 二阶与三阶行列式

1-1  二阶与三阶行列式
aij ( i 1ቤተ መጻሕፍቲ ባይዱ2 ; j 1,2) 称为元素. 其中:
ai j
行标
即元素 aij 位于第 i 行第 j 列.
列标
二阶行列式的计算 —— 对角线法则
主对角线 副对角线
a11 a12 a11a22 a12a21 a21 a22
例1 计算行列式 D
5 10
29 8
.
解 D 5 8 29 ( 10) 330 例2 当 a 为何值时,行列式 解 因为
三阶行列式的计算 —— 对角线法则
a11 D a21 a31
a12 a22 a32
a13 a23 a33
实线上的三个元素的乘积冠正号, 虚线上的三个元素的乘积冠负号.
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32
a2 3 a 1 a
2
a 1
3
的值不为 0?
a 3a a(a 3),
2
要使行列式的值不为 0,必有 a 0 且 a 3.
二、三阶行列式
定义2 设有 9 个数排成 3 行 3 列的数表 a11 a12 a13 a21 a22 a23 , a31 a32 a33 记 a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a13a22a31 a12a21a33 a11a23a32 , 称为该数表所确定的三阶行列式.
注意 对角线法则仅适用于二阶与三阶行列式的计算,但 对于三阶以上的行列式则不适用.
1
2 4
例3 计算行列式 D 2 2 1 . 3 4 2

线性代数_第一章

线性代数_第一章
n( n 1) -I=5*4/2-6=4 2
印证以上结论。
方法2 n个数中比i大的数有n- i个(i=1,2,…,n),若在排 列x1x2…xn中对i构成的逆序为li个,则在xnxn-1…x1中 对i构成的逆序为(n- i)-li,于是两排列中对i构成的 逆序之和为 表示 li+[(n-i)-li]= n-i (i=1,2,…,n) …… 从而 ( x1 x2 xn ) ( xn xn1 x1 ) n( n 1) ( n 1) ( n 2) 2 1 2 n( n 1) I .为所求 即 ( x n x n 1 x 1 ) 2
第1章 行列式
行列式是线性代数的一个重要组 成部分.它是研究矩阵、线性方程组、 特征多项式的重要工具.本章介绍了 n阶行列式的定义、性质及计算方 法,最后给出了它的一个简单应 用——克莱姆法则.
主要内容
1.1 1.2 1.3 1.4
n阶行列式的定义 行列式的性质 行列式按行(列)展开 克莱姆法则—行列式应用
是所有取自不同行、不同列n个元素的乘积 a1 j1 a2 j2 anjn ( j1 j2 jn ) 并冠以符号 ( 1) 的项的和.
(i) a1 j1 a 2 j2 a nj n 是取自不同行、不同列的n个元素乘积 (ii)行标按自然顺序排列,列标排列的奇偶性 ( j1 j2 jn ) 决定每一项的符号; (iii) 表示对所有的 j1 j2 jn 构成的n!个排列求和.
上三角行列式的值等于其主对角线上各元素的乘积 .
例5 计算
=-4-6+32-24-8-4
=-14
3 x1 x 2 x 3 26 例3 解线性方程组 2 x1 4 x 2 x 3 9 x1 2 x 2 x 3 16

1_1_二阶三阶行列式

1_1_二阶三阶行列式
4/12 ▹ ◃ △ ▽
(1) × a21 − (2) × a11 得: y=
§1.1 二阶三阶行列式
二元线性方程组 { a11 x + a12 y = b1 a21 x + a22 y = b2 (1) (2)
用消元法解: (1) × a22 − (2) × a12 得: x= b1 a22 − a12 b2 a11 a22 − a12 a21 a11 b2 − b1 a21 a11 a22 − a12 a21
§1.1 二阶三阶行列式 6/12 ▹ ◃ △ ▽
三元线性方程组 a11 x + a12 y + a13 z = b1 a21 x + a22 y + a23 z = b2 a x + a y + a z = b 31 32 33 3 用消元法解: (2) × a13 − (1) × a23 得: (a21 a13 − a11 a23 )x + (a22 a13 − a12 a23 )y = b2 a13 − b1 a23 (3) × a13 − (1) × a33 得: (a31 a13 − a11 a33 )x + (a32 a13 − a12 a33 )y = b3 a13 − b1 a33
4/12 ▹ ◃ △ ▽
(1) × a21 − (2) × a11 得: y=
§1.1 二阶三阶行列式
定义二阶行列式: a11 a12 = a11 a21 − a12 a22 a21 a22 则方程的解可简单地表示为: b1 b2 x= a11 a21 a12 a22 , a12 a22 a11 a21 y= a11 a21 b1 b2 a12 a22
3/12 ▹ ◃ △ ▽

高等数学附录1二阶三阶行列式简介

高等数学附录1二阶三阶行列式简介

当主对角线元素相等且副对角线元素 也相等时,二阶行列式的值为零。
对于二阶行列式,主对角线元素之积 减去副对角线元素之积等于行列式的 值。
典型例题分析与解答
例题1
计算二阶行列式 |3 1|,|2 4| 的值。
解答
根据二阶行列式的定义,该行列式的值为 3*4 - 1*2 = 10 。
例题2
已知二阶行列式 |a 4|,|2 b| 的值为 -6,求a和b的值。
工程领域
在工程中,线性方程组常用于描述物理系统的状态或行为,如电路中的电流电压关系、力学中的力平衡等。 通过求解线性方程组,可以得到系统的稳定状态或行为规律。
计算机科学领域
在计算机科学中,线性方程组常用于图像处理、机器学习等领域。通过求解线性方程组,可以实现图像的变 换、数据的拟合等任务。
05 矩阵与行列式关系探讨
矩阵概念引入及基本运算回顾
矩阵定义与表示方法
由数字组成的矩形阵列,常用大写字母表示,如A、B等。
矩阵基本运算
包括加法、减法、数乘和乘法等,需满足相应运算规则。
矩阵转置
将矩阵的行和列互换得到的新矩阵,记为$A^T$。
矩阵秩、逆矩阵与行列式关系
矩阵秩
矩阵中非零子式的最高阶数,反映了矩阵的行或列向量组的线性 无关性。
关键知识点总结回顾
二阶行列式的定义
由2x2矩阵通过特定运算得到的数值,表示两个向量在二 维空间中的相对位置关系。
二阶、三阶行列式的计算方法
通过展开式或对角线法则进行计算。
ABCD
三阶行列式的定义
由3x3矩阵通过特定运算得到的数值,表示三个向量在三 维空间中的相对位置关系。
行列式的性质
包括行列式与矩阵转置的关系、行列式的乘法性质、行 列式的加法性质等。

1_1行列式算

1_1行列式算
所以它不是行列式中的一项.
《线性代数》 返回 下页 结束
行列式计算
例1.计算2 阶行列式D = 解:根据行列式定义
D=
a11 a21
a12 a22
a11 a21
a12 a22
(1) (12) a11a22 (1) ( 21) a12a21
(1)0 a11a22 (1)1 a12a21
b1b2b3 bn, 所以
D (1)τ(n n-1 21) b1b2b3 bn (1)
《线性代数》 返回
n ( n 1) 2
b1b2 bn
结束
下页
结论:
a11 a21 下三角形行列式的值: a31 … an1 a11 0 0 … 0 a11 0 0 … 0
a1 j1 a2 j2 ...an jn
其中和式中的排列 j1 j2 jn要取遍所有n级排列.
返回 下页 结束
a11 a21 … an1
说明:
a12 a22 … an2
… … … …
a1n a2n = … ann
(1)
( j1 j2 ... jn )
a1 j1 a2 j2 ...an jn
《线性代数》 返回 下页 结束
逆序及逆序数
定义1 在一个n级排列i1i2 in中,若一个较大的数排在一个较小 数的前面,则称这两个数构成一个逆序.一个排列中逆序的总数,称 为这个排列的逆序数,记为τ(i1i2 in).
奇排列与偶排列
逆序数是奇数的排列,称为奇排列. 逆序数是偶数或0的排列,称为偶排列. 如 3421是奇排列,因为τ(3421)5. 1234是偶排列,因为τ(1234)0.
(a11a22 a12a21) x1 b1a22 a12b2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 n阶行列式的定义及性质
1.1.0 二三阶行列式的引入
1. 二阶行列式
用消元法解二元线性方程组
a11 x1 a12 x2 b1 , 1 a21 x1 a22 x2 b2 . 2 1 a22 : a11a22 x1 a12a22 x2 b1a22 ,
2 a12 :
a12a21 x1 a12a22 x2 b2a12 ,
两式相减消去 x2,得
(a11a22 a12a21)x1 b1a22 a12b2 ;
类似地,消去 x1,得 (a11a22 a12a21)x2 a11b2 b1a21 ,
当 a11a22 a12a21 0 时, 方程组的解为
4 6 32 4 8 24 14.
1 1
例3 解
1 x 0. x2
求解方程 2 3 4 9
方程左端
D 3 x 2 4 x 18 9 x 2 x 2 12
x 2 5 x 6,
由 x 2 5 x 0 解得
x 2 或 x 3.
f 1 0, f 2 3, f 3 28.
思考题解答
解 设所求的二次多项式为
f x ax2 bx c,
由题意得
f 1 a b c 0, f 2 4a 2b c 3, f 3 9a 3b c 28,
1
1
2 1 0
1 3 10, 1
3 5, D2 2 1 1 1 5, 0
2 2
故方程组的解为: D1 D2 x1 1, x2 2, D D
D3 x3 1. D
3、小结
二阶和三阶行列式是由解二元和三元线性方 程组引入的.
二阶与三阶行列式的计算 对角线法则
利用三阶行列式求解三元线性方程组 如果三元线性方程组 a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3 的系数行列式
a11 a12 a13 D a21 a22 a23 a31 a32 a33
a11 a12 D , a21 a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
b1 D1 b2 a12 , a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
a11 a12 D , a21 a22
1
2 -4
例2 计算三阶行列式 D - 2 2 解 按对角线法则,有
1 -3 4 -2
D 1 2 ( 2 ) 2 1 ( 3 ) ( 4 ) ( 2 ) 4
1 1 4 2 ( 2 ) ( 2 ) ( 4 ) 2 ( 3 )
b1a22 a12b2 a11b2 b1a21 x1 , x2 . a11a22 a12a21 a11a22 a12a21
由方程组的四个系数确定.
(3)
引入记号
a11
a12
a21 a22
a11a22 a12 a21.
称为二阶行列式
二阶行列式的计算
主对角线 副对角线
a11 a12 a13 D a21 a22 a23 a31 a32 a33 a11 a12 b1 D3 a21 a22 b2 . a31 a32 b3
b1 D1 b2 b3
a12 a13 a22 a23 , a32 a33 a13 a23 , a33
a11 b1 D2 a21 b2 a21 a22 a23 a31 a32 a33 a11 a12 a13 D a21 a22 a23 a31 a32 a33
a11 b1 D2 a21 b2 a31 b3
a13 a23 , a33
a11 a12 b1 D3 a21 a22 b2 . a31 a32 b3
则三元线性方程组的解为:
D1 x1 , D D2 x2 , D D3 x3 . D
例4
解线性方程组 x1 2 x2 x3 2, 2 x1 x2 3 x3 1, x x x 0. 1 2 3

由于方程组的系数行列式
1 D 2 1
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
b1 D1 b2 a12 , a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
a11 b1 D2 . a21 b2
a11b2 b1a21 b1a22 a12b2 . x1 , x2 a11a22 a12 a21 a11a22 a12a21
则二元线性方程组的解为
b1
a12
a11
b1
D1 b2 a22 x1 , D a11 a12 a21 a22
注意
D2 a21 b2 x2 . D a11 a12 a21 a22
分母都为原方程组的系数行列式.
例1 求解二元线性方程组
3 x1 2 x2 12, 2 x1 x2 1.
• 2.线性代数的基本内容 • 我们知道一次方程叫做线性方程,讨论线性方程的代数就叫做线性 代数。在线性代数中最重要的内容就是行列式和矩阵。 行列式的概念是由十七世纪日本数学家关孝和提出来的,他在 1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列 式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙 述。 欧洲第一个提出行列式概念的是德国的数学家莱布尼茨。 德国数学家雅可比于1841年总结并提出了行列式的系统理论。 行列式是解线性方程组的工具。行列式可以把一个线性方程组的 解表示成公式,也就是说行列式代表着一个数。 通过对行列式的研究又发现了矩阵的理论。矩阵和行列式是两个 完全不同的概念。矩阵的应用是多方面的,不仅在数学领域里,而且 在力学、物理、科技等方面都十分广泛的应用。

(2)对角线法则
a11 a12 a21 a22 a31 a32
a13 a23 a33
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号. 说明1 对角线法则只适用于二阶与三阶行列式. 2. 三阶行列式包括3!项,每一项都是位于不同行, 不同列的三个元素的乘积,其中三项为正,三项为 负.
对角线法则
a11a22 a12a21 .
a11 a12
a12
a22
a11 x1 a12 x2 b1 , 对于二元线性方程组 a21 x1 a22 x2 b2 .
若记 系数行列式
a11 a12 D , a21 a22
a11 x1 a12 x2 b1 , a21 x1 a22 x2 b2 .
线性代数
线性代数简介
二元及三 元的一次 方程组 n元一次 方程组
线性代数
高等 代数
初等代数 一元一次方程
二次及可以转化 为二次的方程组
一元n次
方程组
高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大 学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。 1.高等代数发展简史 人们很早就已经知道了一元一次和一元二次方程的求解方法。 三次方程: 公元七世纪,我国唐朝数学家王孝通所编的《缉古算经》叙述了一 般的近似解法。 到了十三世纪,宋代数学家秦九韶再他所著的《数书九章》这部书 的“正负开方术”里,充分研究了数字高次方程的求正根法,得到了高 次方程的一般解法。
b1 b2 b3 a12 a22 a32 a13 a23 , a33
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
b1 b2 b 1 b1 b2 b 1

D
3 2 2 1 1
3 ( 4) 7 0,
D1
12 2 1
14, D2
3 12 2 1
21,
D1 14 D2 21 x1 2, x 2 3. D 7 D 7
2、三阶行列式
定义
设有9个数排成 3行3列的数表 a11 a12 a21 a22 a13 a23 a33 ( 5)
a11 a12 a11a22 a12a21 . a21 a22
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31, a31 a32 a33
思考题
求一个二次多项式 f x , 使
记 a11
a31 a32
a21 a31
a12 a13 a22 a23 a11a22a33 a12a23a31 a13a21a32 (6) a a a a a a a a a 11 23 32 12 21 33 13 22 31, a32 a33
(6)式称为数表(5)所确定的三阶行列式.
0,
a11 x1 a12 x2 a13 x3 b1 , a21 x1 a22 x2 a23 x3 b2 , a x a x a x b ; 31 1 32 2 33 3 3
b1 b2 b 1
记为
D1
a11 a12 a13 D a21 a22 a23 a31 a32 a33
相关文档
最新文档