2020年辽宁省大连市中考数学试卷及答案解析
2020年辽宁省大连市中考数学试卷含答案解析
5
这个公司平均每人所创年利润是______万元. 13. 我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八
百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的
第 2 页,共 22 页
面积为 864 平方步,宽比长少 12 步,问宽和长各多少步?设矩形的宽为 x 步,根 据题意,可列方程为______. 14. 如图,菱形 ABCD 中,∠ACD=40°,则 ∠ABC=______°.
(1)当点 D 与点 A 重合时,求 t 的值; (2)求 S 关于 t 的函数解析式,并直接写出自变量 t 的取值范围.
D. (2,0)
A. 50°
B. 70°
C. 110°
D. 120°
二、填空题(本大题共 6 小题,共 18.0 分)
11. 不等式 5x+1>3x-1 的解集是______.
12. 某公司有 10 名员工,他们所在部门及相应每人所创年利润如下表所示.
部门
人数
每人所创年利润/万 元
A
1
10
B
2
8
C
7
第 5 页,共 22 页
22. 某化肥厂第一次运输 360 吨化肥,装载了 6 节火车车厢和 15 辆汽车;第二次运输 440 吨化肥,装载了 8 节火车车厢和 10 辆汽车.每节火车车厢与每辆汽车平均各 装多少吨化肥?
23. 甲、乙两个探测气球分别从海拔 5m 和 15m 处同时出发,匀速上升 60min.如图是 甲、乙两个探测气球所在位置的海拔 y(单位:m)与气球上升时间 x(单位:min) 的函数图象. (1)求这两个气球在上升过程中 y 关于 x 的函数解析式; (2)当这两个气球的海拔高度相差 15m 时,求上升的时间.
2020年辽宁省大连市中考数学试卷(附答案解析)
2020年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)下列四个数中,比-1小的数是()A. -2B. -1C. 0D. 122.(3分)如图是由5个相同的小正方体组成的立体图形,它的主视图是()3.(3分)2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A. 360xlO2B. 36x10,C. 3.6xlO4D. 0.36xlO54.(3 分)如图,AA3C 中,ZA = 60°, N8 = 40。
,DEI IBC,则 NAEQ 的度数是()5.(3分)平面直角坐标系中,点P(3,l)关于工•轴对称的点的坐标是()A. (3,1)B. (3,-1)C.(-3,1)D. (一3,一1)6.(3分)下列计算正确的是()A. a2B. a1•ci =(/'C. (u2)5 =D. (—2/)' =-6a”7.(3分)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是(8.(3分)如图,小明在一条东西走向公路的。
处,测得图书馆A在他的北偏东60。
方向,且与他相距200m,则图书馆A到公路的距离"为()9.(3分)抛物线y = a储+以+。
(“<0)与x轴的一个交点坐标为(T.0),对称轴是直线x = l, 其部分图象如图所示,则此抛物线与入轴的另一个交点坐标是()10.(3分)如图,A43c中,ZAC5 = 90。
,ZABC = 40°.将A43C绕点3逆时针旋转得到△ A!BC ,使点。
的对应点。
恰好落在边AB上,则NC4A的度数是()二、填空题(本题共6小题,每小题3分,共18分)11.(3分)不等式5x+l>3x-1的解集是.12.(3分)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示. wl A I|每人所创年利润/万元A 1 10B 2 8C7 513.(3分)我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田枳八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为 864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为14.(3 分)如图,菱形 ABC。
2020年辽宁省大连市中考数学试卷(含答案解析)
2020年辽宁省大连市中考数学试卷副标题得分1.下列四个数中,比−1小的数是()C. 0D. 1A. −2B. −122.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A. B.C. D.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A. 360×102B. 36×103C. 3.6×104D. 0.36×1054.如图,△ABC中,∠A=60°,∠B=40°,DE//BC,则∠AED的度数是()A. 50°B. 60°C. 70°D. 80°5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A. (3,1)B. (3,−1)C. (−3,1)D. (−3,−1)6.下列计算正确的是()A. a2+a3=a5B. a2⋅a3=a6C. (a2)3=a6D. (−2a2)3=−6a67.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A. 14B. 13C. 37D. 478.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A. 100mB. 100√2mC. 100√3mD. 200√33m 9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(−1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A. (72,0) B. (3,0) C. (52,0) D. (2,0)10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A. 50°B. 70°C. 110°D. 120°11.不等式5x+1>3x−1的解集是______.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A110B28C75这个公司平均每人所创年利润是______万元.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为______.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=______°.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=kx(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为______.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为______.17.计算(√2+1)(√2−1)+√−83+√9.18.计算x2+4x+4x+2÷x2+2xx−2−1.19.如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.20.某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率1本42本0.33本4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为______人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为______%;(2)被调查学生的总人数为______人,其中读书量为2本的学生数为______人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.21.某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=5,BC=1,12求PD的长.23.甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.24.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA→AC以2cm/s的速度向终点C运动,过点D作DE//BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.25.如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是______;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求AC的值.AB26.在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为______;(2)函数F1为y=3,当PQ=6时,t的值为______;x(3)函数F1为y=ax2+bx+c(a≠0),①当t=√b时,求△OPQ的面积;b②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.答案和解析1.【答案】A【解析】解:根据有理数比较大小的方法,可得>−1,1>−1,−2<−1,0>−1,−12∴四个数中,比−1小的数是−2.故选:A.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.【答案】B【解析】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B.从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.【答案】C【解析】解:36000=3.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:∵∠C=180°−∠A−∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE//BC,∴∠AED=∠C=80°,故选:D.利用三角形内角和定理求出∠C,再根据平行线的性质求出∠AED即可.本题考查三角形内角和定理,平行线的性质,解题的关键是熟练掌握三角形内角和定理,平行线的性质解决问题,属于中考常考题型.5.【答案】B【解析】解:点P(3,1)关于x轴对称的点的坐标是(3,−1)故选:B.关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.【答案】C【解析】解:A.a2与a3不是同类项,所以不能合并,故本选项不合题意;B.a2⋅a3=a5,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.(−2a2)3=−8a6,故本选项不合题意.故选:C.分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.7.【答案】D【解析】解:根据题意可得:袋子中有有3个白球,4个红球,共7个,.从袋子中随机摸出一个球,它是红球的概率47故选:D.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中.事件A出现m种结果,那么事件A的概率P(A)=mn8.【答案】A【解析】解:由题意得,∠AOB=90°−60°=30°,OA=100(m),∴AB=12故选:A.根据题意求出∠AOB,根据直角三角形的性质解答即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.9.【答案】B【解析】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2−1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.根据抛物线的对称性和(−1,0)为x轴上的点,即可求出另一个点的交点坐标.本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.10.【答案】D【解析】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°−∠ABC=90°−40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=1(180°−40°)=70°,2∴∠CAA′=∠CAB+∠BAA′=50°+70°=120°.故选:D.根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA′=∠CAB+∠BAA′,进而可得∠CAA′的度数.本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.11.【答案】x>−1【解析】解:5x+1>3x−1,移项得,5x−3x>−1−1,合并得,2x>−2,即x>−1,故答案为x>−1.先对不等式进行移项,合并同类项,再系数化1即可求得不等式的解集.本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.【答案】6.1(10+2×8+7×5)=6.1(万).【解析】解:这个公司平均每人所创年利润是:110故答案为:6.1.直接利用表格中数据,求出10人的总收入进而求出平均收入.此题主要考查了加权平均数,正确利用表格获取正确信息是解题关键.13.【答案】x(x+12)=864【解析】解:∵矩形的宽为x,且宽比长少12,∴矩形的长为(x+12).依题意,得:x(x+12)=864.故答案为:x(x+12)=864.由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12),再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】100【解析】解:∵四边形ABCD是菱形,∴AB//CD,∠BCD=2∠ACD=80°,∴∠ABC+∠BCD=180°,∴∠ABC=180°−80°=100°;故答案为:100.由菱形的性质得出AB//CD,∠BCD=2∠ACD=80°,则∠ABC+∠BCD=180°,即可得出答案.本题考查了菱形的性质、平行线的性质;熟练掌握菱形的性质是解题的关键.15.【答案】8【解析】解:连接BD,与AC交于点O,∵四边形ABCD是正方形,AC⊥x轴,∴BD所在对角线平行于x轴,∵B(0,2),∴OC=2=BO=AO=DO,∴点A的坐标为(2,4),∴k=2×4=8,故答案为:8.连接BD,与AC交于点O,利用正方形的性质得到OA=OB=OC=OD=2,从而得到点A坐标,代入反比例函数表达式即可.本题考查了正方形的性质,反比例函数表达式的求法,解题的关键是利用正方形的性质求出点A的坐标.16.【答案】y=80x+8【解析】解:在矩形中,AD//BC,∴△DEF∽△BCF,∴DEBC =DFBF,∵BD=√BC2+CD2=10,BF=y,DE=x,∴DF=10−y,∴x8=10−yy,化简得:y=80x+8,∴y关于x的函数解析式为:y=80x+8,故答案为:y=80x+8.根据题干条件可证得△DEF∽△BCF,从而得到DEBC =DFBF,由线段比例关系即可求出函数解析式.本题主要考查的是相似三角形的判定与性质定理,难度不大,熟练掌握性质和判定定理是解得本题的关键,注意掌握数形结合思想与函数思想的应用.17.【答案】解:原式=2−1−2+3=2.【解析】原式利用平方差公式,立方根、算术平方根性质计算即可求出值.此题考查了平方差公式,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.18.【答案】解:原式=(x+2)2x+2⋅x−2x(x+2)−1=x−2x−1=x−2−xx=−2x.【解析】直接利用分式的混合运算法则分别化简得出答案.此题主要考查了分式的混合运算,正确化简分式是解题关键.19.【答案】证明:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,{AB=AC ∠B=∠C BD=CE∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE =∠AED(等边对等角).【解析】根据等腰三角形等边对等角的性质可以得到∠B =∠C ,然后证明△ABD 和△ACE 全等,根据全等三角形对应边相等有AD =AE ,再根据等边对等角的性质即可证明. 本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.20.【答案】4 20 50 15【解析】解:(1)由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%, 故答案为:4;20; (2)10÷20%=50, 50×0.3=15,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人, 故答案为:50;15;(3)(50−4−10−15)÷50×550=231, 该校八年级学生读书量为3本的学生有231人. (1)直接根据图表信息可得;(2)用4本及以上对应的频数除以所占百分比可得总人数,再乘以读书量为2本的频率即可;(3)求出读书量为3本的人数,除以样本人数50,再乘以全校总人数550可得结果. 本题考查了频数统计表和扇形统计图,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,依题意,得:{6x +15y =3608x +10y =440,解得:{x =50y =4.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【解析】设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,根据“第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.【答案】(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,又∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,又∵AD⏜=CD⏜,∴OD⊥AC,AE=EC,∴∠DEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP为矩形,∴DP=EC,∵tan∠CAB=512,BC=1,∴CBAC =1AC=512,∴AC=125,∴EC =12AC =65, ∴DP =65.【解析】(1)由等腰三角形的性质得出∠DAC =∠ACD ,由圆内接四边形的性质得出∠ABC +∠ADC =180°,则可得出答案;(2)由切线的性质得出∠ODP =90°,由垂径定理得出∠DEC =90°,由圆周角定理∠ACB =90°,可得出四边形DECP 为矩形,则DP =EC ,求出EC 的长,则可得出答案. 本题考查了切线的性质,圆周角定理的应用,圆内接四边形的性质,垂径定理,解直角三角形等知识,熟练切线的性质是解题的关键.23.【答案】解:(1)设甲气球的函数解析式为:y =kx +b ,乙气球的函数解析式为:y =mx +n ,分别将(0,5),(20,25)和(0,15),(20,25)代入, {5=b 25=20k +b ,{15=n 25=20m +n , 解得:{k =1b =5,{m =12n =15,∴甲气球的函数解析式为:y =x +5,乙气球的函数解析式为:y =12x +15;(2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m , 且此时甲气球海拔更高, ∴x +5−(12x +15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【解析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,可得方程x +5−(12x +15)=15,解之即可.本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象.24.【答案】解:(1)∵△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,∴AB =√AC 2+BC 2=√62+82=10(cm), 当点D 与点A 重合时,BD =AB =10cm ,∴t =102=5(s);(2)当0<t <5时,(D 在AB 上), ∵DE//BC , ∴△ADE∽△ABC , ∴DEBC =ADAB =AEAC , ∴DE 8=10−2t 10=6−CE 6,解得:DE =40−8t 5,CE =65t ,∵DE//BC ,∠ACB =90°, ∴∠CED =90°, ∴S =12DE ⋅CE =12×40−8t 5×65t =−2425t 2+245;如图2,当5<t <8时,(D 在AC 上), 则AD =2t −10, ∴CD =16−2t , ∵DE//BC , ∴△ADE∽△ACB , ∴DE CB =AE AB=AD AC,∴DE 8=2t−106, ∴DE =8t−403,∴S =12DE ⋅CD =12×8t−403×(16−2t)=−83t 2+1043t −3203,综上所述,S 关于t 的函数解析式为S ={−2425t 2+245t(0<t <5)−83t 2+1043t −3203(5<t <8).【解析】(1)根据各过各的了即可得到结论;(2)根据相似三角形的判定和性质以及三角形的面积公式即可得到结论.本题考查了函数关系式,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.25.【答案】∠CGA【解析】解:(1)∵CA=CG,∴∠CAG=∠CGA,故答案为:∠CGA;(2)AD=12BD,理由是:如图,在CG上取点M,使GM=AF,连接AM,EM,∵∠CAG=∠CGA,AG=GA,∴△AGM≌△GAF(SAS),∴AM=GF,∠AFG=∠AMG,∵GF=DE,∠AFG=∠CDE,∴AM=DE,∠AMG=∠CDE,∴AM//DE,∴四边形AMED为平行四边形,∴AD=EM,AD//EM,∵BE=CE,即点E为BC中点,∴ME为△BCD的中位线,∴AD=ME=12BD;(3)延长BA至点N,使AD=AN,连接CN,∵∠BAC=∠NAC=90°,∴AC垂直平分DN,∴CD=CN,∴∠ACD=∠ACN,设∠ACD=α=∠ACN,则∠ABC=2α,则∠ANC=90−α,∴∠BCN=180−2α−(90−α)=90−α,∴BN=BC,即△BCN为等腰三角形,设AD=1,则AN=1,BD=2,∴BC=BN=4,AB=3,∴AC=√BC2−AB2=√7,∴ACAB =√73.(1)根据等腰三角形等边对等角回答即可;(2)在CG 上取点M ,使GM =AF ,连接AM ,EM ,证明△AGM≌△GAF ,得到AM =GF ,∠AFG =∠AMG ,从而证明四边形AMED 为平行四边形,得到AD =EM ,AD//EM ,最后利用中位线定理得到结论;(3)延长BA 至点N ,使AD =AN ,连接CN ,证明△BCN 为等腰三角形,设AD =1,可得AB 和BC 的长,利用勾股定理求出AC ,即可得到ACAB 的值.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行四边形的判定和性质,中位线定理,解题的关键是根据题意构造平行四边形,转化已知条件.26.【答案】4 1【解析】解:(1)∵F 1:y =x +1, F 1和F 2关于y 轴对称, ∴F 2:y =−x +1,分别令x =2,则2+1=3,−2+1=−1, ∴P(2,3),Q(2,−1), ∴PQ =3−(−1)=4, 故答案为:4; (2)∵F 1:y =3x , 可得:F 2:y =−3x ,∵x =t ,可得:P(t,3t ),Q(t,−3t),∴PQ =3t −−3t=6t =6,解得:t =1,经检验:t =1是原方程的解, 故答案为:1;(3)①∵F1:y=ax2+bx+c,∴F2:y=ax2−bx+c,∵t=√bb,分别代入F1,F2,可得:P(√bb ,ab+√b+c),Q(√bb,ab−√b+c),∴PQ=|ab +√b+c−(ab−√b+c)|=2√b,∴S△OPQ=12×2√b×√bb=1;②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),而函数F1和F2的图象关于y轴对称,∴函数F1的图象经过A(5,0)和(−1,0),∴设F1:y=a(x+1)(x−5)=ax2−4ax−5a,则F2:y=ax2+4ax−5a,∴F1的图象的对称轴是直线x=2,且c=−5a,∴a=−c5,∵c>0,则a<0,c+1>1,而F2的图象在x>0时,y随x的增大而减小,当0<c<1时,F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,∴当x=c+1时,y=ax2−4ax−5a的最大值为a(c+1)2−4a(c+1)−5a,y=ax2+4ax−5a的最小值为a(c+1)2+4a(c+1)−5a,则ℎ=a(c+1)2−4a(c+1)−5a−[a(c+1)2+4a(c+1)−5a]=−8ac−8a,又∵a=−c5,∴ℎ=85c2+85c;当1≤c≤2时,F1的最大值为4a×(−5a)−(−4a)24a=−9a,F2的图象y随x的增大而减小,∴F2的最小值为:a(c+1)2+4a(c+1)−5a,则ℎ=−9a−[a(c+1)2+4a(c+1)−5a]=−a(c+1)2−4a(c+1)−4a=−ac2−6ac−9a,又∵a=−c5,∴ℎ=15c3+65c2+95c,第19页,共22页第20页,共22页 当c >2时,F 1的图象y 随x 的增大而减小,F 2的图象y 随x 的增大而减小,∴当x =c 时,y =ax 2−4ax −5a 的最大值为ac 2−4ac −5a ,当x =c +1时,y =ax 2+4ax −5a 的最小值为a(c +1)2−4a(c +1)−5a , 则ℎ=ac 2−4ac −5a −[a(c +1)2−4a(c +1)−5a]=3a −2ac ,又∵a =−c 5,∴ℎ=25c 2−35c ; 综上:h 关于x 的解析式为:{ 85c 2+85c(0<c <1)15c 3+65c 2+95c(1≤c ≤2)25c 2−35c(c >2). (1)根据F 1和F 2关于y 轴对称得出F 2的解析式,求出P 、Q 两点坐标,即可得到PQ ;(2)根据F 1和F 2关于y 轴对称得出F 2的解析式,求出P 、Q 两点坐标,根据PQ =6得出方程,解出t 值即可;(3)①根据F 1和F 2关于y 轴对称得出F 2的解析式,将x =√b b代入解析式,求出P 、Q 两点坐标,从而得出△OPQ 的面积;②根据题意得出两个函数的解析式,再分当0<c <1时,当1≤c ≤2时,当c >2时,三种情况,分析两个函数的增减性,得出最值,相减即可.本题是二次函数综合题,考查了一次函数,反比例函数,以及二次函数的图象与性质,二次函数的最值,解题的关键是要理解题意,尤其(3)问中要读懂题干,结合图象进行分析求解.。
2020年大连市初中毕业升学统一考试初中数学
2020年大连市初中毕业升学统一考试初中数学数 学〔课改地区〕本试卷总分值150分。
考试时刻120分钟。
一、选择题:〔此题共8小题,每题3分,共24分〕讲明:下面各题都给出代号为A 、B 、C 、D 的四个答案,请把唯独正确的答案代号填到题后的括号内。
1.在平面直角坐标系中,以下各点在第二象限的是〔 〕 A 、〔2,1〕 B 、〔2,-1〕 C 、〔-2,1〕 D 、〔-2,-1〕 2.以下各式运算正确的选项是〔 〕A 、325x x x += B 、32x x x -= C 、326x x x ⋅= D 、32x x x ÷= 3.在Rt △ABC 中,∠C =90°,AB =5,AC =3,那么sinB 的值是〔 〕 A 、35 B 、45 C 、34 D 、434.两圆的半径分不为1和4,圆心距为3,那么两圆的位置关系是〔 〕 A 、外离 B 、外切 C 、相交 D 、内切5.张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,那么这棵树的高为〔 〕A 、3.2米B 、4.8米C 、5.2米D 、5.6米6.要调查某校初三学生周日的睡眠时刻,选取调查对象最合适的是〔 〕 A 、 选取一个班级的学生 B 、选取50名男生 C 、选取50名女生 D 、随机选取50名初三学生 7.如图1,A 、C 、B 是⊙O 上三点,假设∠AOC =40°,那么 ∠ABC 的度数是〔 〕A 、10°B 、20°C 、40°D 、80°8.图2是甲、乙、丙三人玩跷跷板的示意图〔支点在中点处〕, 那么甲的体重的取值范畴在数轴上表示正确的选项是〔 〕B图1A BC D二、填空题〔此题共6小题,每题3分,共18分〕 讲明:将以下各题结果填到题后的横线上。
9.假如水位上升1.2米,记作+1.2米,那么水位下降0.8米记作_______米。
2020年辽宁省中考数学试卷及答案解析
2020年辽宁省中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−13的绝对值是()A. 13B. −13C. 3D. −32.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.下列运算正确的是()A. a2⋅a3=a6B. a8÷a4=a2C. 5a−3a=2aD. (−ab2)2=−a2b44.一组数据1,4,3,1,7,5的众数是()A. 1B. 2C. 2.5D. 3.55.一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A. 16B. 13C. 12D. 236.不等式组{3+x>12x−3≤1的整数解的个数是()A. 2B. 3C. 4D. 57. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−508. 一个零件的形状如图所示,AB//DE ,AD//BC ,∠CBD =60°,∠BDE =40°,则∠A 的度数是( )A. 70°B. 80°C. 90°D. 100°9. 如图,矩形ABCD 的顶点D 在反比例函数y =kx (x >0)的图象上,点E(1,0)和点F(0,1)在AB 边上,AE =EF ,连接DF ,DF//x 轴,则k 的值为( )A. 2√2B. 3C. 4D. 4√210. 如图,二次函数y =ax 2+bx +c(a ≠0)的图象的对称轴是直线x =1,则以下四个结论中:①abc >0,②2a +b =0,③4a +b 2<4ac ,④3a +c <0.正确的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)11.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为______.12.分解因式:ab2−9a=______.13.甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s甲2=6.67,s乙2=2.50,则这6次比赛成绩比较稳定的是______.(填“甲”或“乙”)14.关于x的一元二次方程x2−2x−k=0有两个不相等的实数根,则k的取值范围是______.15.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径MN的长为半径作弧,交AB于点M,交AC于点N.分别以M,N为圆心,以大于12作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连接DF,则△CDF的周长为______.16.如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EFA的度数是______.17. 一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为______cm . 18. 如图,∠MON =45°,正方形ABB 1C ,正方形A 1B 1B 2C 1,正方形A 2B 2B 3C 2,正方形A 3B 3B 4C 3,…,的顶点A ,A 1,A 2,A 3,…,在射线OM 上,顶点B ,B 1,B 2,B 3,B 4,…,在射线ON 上,连接AB 2交A 1B 1于点D ,连接A 1B 3交A 2B 2于点D 1,连接A 2B 4交A 3B 3于点D 2,…,连接B 1D 1交AB 2于点E ,连接B 2D 2交A 1B 3于点E 1,…,按照这个规律进行下去,设△ACD 与△B 1DE 的面积之和为S 1,△A 1C 1D 1与△B 2D 1E 1的面积之和为S 2,△A 2C 2D 2与△B 3D 2E 2的面积之和为S 3,…,若AB =2,则S n 等于______.(用含有正整数n 的式子表示)三、解答题(本大题共8小题,共96.0分)19. 先化简,再求值:(x −1−x 2x+1)÷xx 2+2x+1,其中x =3.20. 某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有______人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?22.如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M 在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,√3≈1.73)23.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?24.如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.25.在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若BC=4,CD=2√6,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.x+c(a≠0)与x轴相交于点A(−1,0)和点B,与y轴相交26.如图,抛物线y=ax2+94于点C(0,3),作直线BC.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;),点M在抛物线上,点N在直线BC上.当(3)在(2)的条件下,点F的坐标为(0,72以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.答案和解析1.【答案】A【解析】解:|−13|=13.故选:A.依据绝对值的性质求解即可.本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.2.【答案】B【解析】解:从上面看,底层左边是一个小正方形,上层是两个小正方形.故选:B.根据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.3.【答案】C【解析】解:(A)原式=a5,故A错误.(B)原式=a4,故B错误.(D)原式=a4b2,故D错误.故选:C.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.【答案】A【解析】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1.故选:A.众数是指一组数据中出现次数最多的数据;据此即可求得正确答案.主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.5.【答案】D【解析】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23. 故选:D .根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.【答案】C【解析】解:解不等式3+x >1,得:x >−2, 解不等式2x −3≤1,得:x ≤2, 则不等式组的解集为−2<x ≤2,所以不等式组的整数解有−1、0、1、2这4个, 故选:C .分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.【答案】B【解析】解:∵AB//DE ,AD//BC , ∴∠ABD =∠BDE ,∠ADB =∠CBD ,∵∠CBD=60°,∠BDE=40°,∴∠ADB=60°,∠ABD=40°,∴∠A=180°−∠ADB−∠ABD=80°,故选:B.根据平行线的性质,可以得到∠ADB=60°和∠ABD的度数,再根据三角形内角和,即可得到∠A的度数.本题考查平行线的性质、三角形内角和,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】C【解析】解:如图,过点D作DH⊥x轴于点H,设AD交x轴于点G,∵DF//x轴,∴得矩形OFDH,∴DF=OH,DH=OF,∵E(1,0)和点F(0,1),∴OE=OF=1,∠OEF=45,∴AE=EF=√2,∵四边形ABCD是矩形,∴∠A=90°,∵∠AEG=∠OEF=45°,∴AG=AE=√2,∴EG=2,∵DH=OF=1,∠DHG=90°,∠DGH=∠AGE=45°,∴GH=DH=1,∴DF=OH=OE+EG+GH=1+2+1=4,∴D(4,1),(x>0)的图象上,∵矩形ABCD的顶点D在反比例函数y=kx∵k=4.则k的值为4.故选:C.过点D作DH⊥x轴于点H,设AD交x轴于点G,得矩形OFDH,根据点E(1,0)和点F(0,1)在AB边上,AE=EF,可以求出EG和DH的长,进而可得OH的长,所以得点D的坐标,即可得k的值.本题考查了反比例函数图象上点的坐标特征、矩形的性质,解决本题的关键是掌握反比例函数图象和性质.10.【答案】B【解析】解:①根据抛物线开口向下可知:a<0,因为对称轴在y轴右侧,所以b>0,因为抛物线与y轴正半轴相交,所以c>0,所以abc<0,所以①错误;②因为抛物线对称轴是直线x=1,=1,即−b2a所以b=−2a,所以b+2a=0,所以②正确;③因为抛物线与x轴有2个交点,所以Δ>0,即b2−4ac>0,所以b2−4ac+4a>4a,所以4a+b2>4ac+4a,所以③错误;④当x=−1时,y<0,即a−b+c<0,因为b=−2a,所以3a+c<0,所以④正确.所以正确的个数是②④2个.故选:B.①根据抛物线开口向下可得a<0,对称轴在y轴右侧,得b>0,抛物线与y轴正半轴相交,得c>0,进而即可判断;=1,可得b=−2a,进而可以判断;②根据抛物线对称轴是直线x=1,即−b2a③根据抛物线与x轴有2个交点,可得Δ>0,即b2−4ac>0,进而可以判断;④当x=−1时,y<0,即a−b+c<0,根据b=−2a,可得3a+c<0,即可判断.本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象和性质.11.【答案】4.5×108【解析】解:将数据450000000用科学记数法表示为4.5×108.故答案为:4.5×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.【答案】a(b+3)(b−3)【解析】解:原式=a(b2−9)=a(b+3)(b−3),故答案为:a(b+3)(b−3).根据提公因式,平方差公式,可得答案.本题考查了因式分解,一提,二套,三检查,分解要彻底.13.【答案】乙【解析】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2=>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义.14.【答案】k >−1【解析】解:∵关于x 的一元二次方程x 2−2x −k =0有两个不相等的实数根, ∴△=(−2)2+4k >0, 解得k >−1. 故答案为:k >−1.根据判别式的意义得到△=(−2)2+4k >0,然后解不等式即可.此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2−4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.【答案】12【解析】解:∵AB =5,AC =8,AF =AB , ∴FC =AC −AF =8−5=3, 由作图方法可得:AD 平分∠BAC , ∴∠BAD =∠CAD , 在△ABD 和△AFD 中 {AB =AF∠BAD =∠FAD AD =AD, ∴△ABD≌△AFD(SAS), ∴BD =DF ,∴△DFC 的周长为:DF +FC +DC =BD +DC +FC =BC +FC =9+3=12. 故答案为:12.直接利用基本作图方法结合全等三角形的判定与性质进而得出BD =DF ,即可得出答案. 此题主要考查了基本作图以及全等三角形的判定与性质,正确理解基本作图方法是解题关键.16.【答案】66°【解析】解:∵正五边形ABCDE,∴∠EAB=(5−2)×180°5=108°,∵△ABF是等边三角形,∴∠FAB=60°,∴∠EAF=108°−60°=48°,∵AE=AF,∴∠AE=∠AFE=12×(180°−48°)=66°,故答案为:66°.根据正五边形和电视背景下的性质得到∠EAF=108°−60°=48°,根据等腰三角形的性质即可得到结论.本题考查了正多边形与圆,正五边形和等边三角形的性质,等腰三角形的性质,正确的识别图形是解题的关键.17.【答案】(3√3+3)或(3√3−3)【解析】解:①根据题意画出如图1:∵菱形纸片ABCD的边长为6cm,∴AB=BC=CD=AD=6,∵高AE等于边长的一半,∴AE=3,∵sin∠B=AEAB =12,∴∠B=30°,将菱形纸片沿直线MN折叠,使点A与点B重合,∴BH=AH=3,∴BG=BHcos30∘=2√3,∴CG=BC−BG=6−2√3,∵AB//CD,∴∠GCF=∠B=30°,∴CF=CG⋅cos30°=(6−2√3)×√32=3√3−3,∴DF=DC+CF=6+3√3−3=(3√3+3)cm;②如图2,BE=AE=3,同理可得DF=3√3−3.综上所述:则DF的长为(3√3+3)或(3√3−3)cm.故答案为:(3√3+3)或(3√3−3).根据题意分两种情况:①如图1:根据菱形纸片ABCD的边长为6cm,高AE等于边长的一半,可得菱形的一个内角为30°,根据折叠可得BH=AH=3,再根据特殊角三角函数即可求出CF的长,进而可得DF的长;如图2,将如图1中的点A和点B交换一下位置,同理即可求出DF的长就是如图1中的CF的长.本题考查了翻折变换、菱形的性质,解决本题的关键是分两种情况分类讨论,进行计算.18.【答案】149×4n−1【解析】解:设△ADC的面积为S,由题意,AC//B1B2,AC=AB=2,B1B2=4,∴△ACD∽△B2B1D,∴S△ADCS△B1B2D =(ACB1B2)2=14,∴S△B1B2D=4S,∵CDDB1=ACB1B2=12,CB1=2,∴DB1=43,同法D 1B 2=83, ∵DB 1//D 1B 2, ∴DEEB 2=DB 1D1B 2=12,∴S △DB 1E =4S3, ∴S 1=S +4S 3=7S 3,∵△A 1C 1D 1∽△ACD , ∴S △A 1C 1D 1S △ACD=(A 1C 1AC)2=14, ∴S △A 1C 1D 1=4S , 同法可得,S △D 1B 1E 1=16S 3, ∴S 2=4S +16S 3=28S 3=7S 3×4,…S n =7S 3×4n−1,∵S =12×2×23=23, ∴S n =149×4n−1.故答案为:149×4n−1.设△ADC 的面积为S ,利用相似三角形的性质求出S 1,S 2,…S n 与S 的关系即可解决问题.本题考查正方形的性质,三角形的面积,相似三角形的判定和性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.19.【答案】解:(x −1−x 2x+1)÷xx 2+2x+1=[(x −1)(x +1)x +1−x 2x +1]⋅(x +1)2x =x 2−1−x 2x +1⋅(x +1)2x=−x+1x,当x =3时,原式=−3+13=−43.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【答案】60【解析】解:(1)本次被调查的学生有:9÷15%=60(人);故答案为:60;(2)航模的人数有:60−9−15−12=24(人),补全条形统计图如图:“航模”所对应的圆心角的度数是:360°×2460=144°;(3)设两名男生分别为男1,男2,两名女生分别为女1,女2,列表如下:男1男2女1女2男1(男2,男1)(女1,男1)(女2,男1)男2(男1,男2)(女1,男2)(女2,男2)女1(男1,女1)(男2,女1)(女2,女1)女2(男1,女2)(男2,女2)(女1,女2)由表格可以看出,所有可能出现的结果有12种,并且它们出现的可能性相等,其中恰好是1名男生和1名女生的情况有8种.则所选的2人恰好是1名男生和1名女生的概率是812=23.(1)根据摄影的人数和所占的百分比求出抽取的总人数;(2)用总人数减去其他兴趣小组的人数求出航模的人数,从而补全统计图;用360°乘以“航模”所占的百分比即可得出扇形统计图中“航模”所对应的圆心角的度数;(3)根据题意画出图表得出所有等可能的情况数和所选的2人恰好是1名男生和1名女生的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设B种书架的单价为x元,根据题意,得600x+20=480x.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15−m)≤1400.解得m≤10.答:最多可购买10个A种书架.【解析】(1)设B种书架的单价为x元,则A种书架的单价为(x+20)元,根据数量=总价÷单价结合用600元购买A种书架的个数与用480元购买B种书架的个数相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设准备购买m个A种书架,则购买B种书架(15−m)个,根据题意列出不等式并解答.本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.22.【答案】解:(1)∵AB垂直于桥面,∴∠AMC=∠BMC=90°,在Rt△AMC中,CM=60,∠ACM=30°,tan∠ACM=AMCM,∴AM=CM⋅tan∠ACM=60×√33=20√3(米),答:大桥主架在桥面以上的高度AM为20√3米;(2)在Rt△BMC中,CM=60,∠BCM=14°,tan∠BCM=BMCM,∴MB=CM⋅tan∠BCM≈60×0.25=15,∴AB=AM+MB=15+20√3≈50(米)答:大桥主架在水面以上的高度AB约为50米.【解析】(1)根据正切的定义求出AM ;(2)根据正切的定义求出BM ,结合图形计算即可.本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.【答案】解:(1)设y 与x 之间的函数关系式是y =kx +b(k ≠0),{12k +b =50014k +b =400,得{k =−50b =1100, 即y 与x 之间的函数关系式为y =−50x +1100; (2)由题意可得,w =(x −10)y =(x −10)(−50x +1100)=−50(x −16)2+1800,∵a =−50<0∴w 有最大值∴当x <16时,w 随x 的增大而增大, ∵12≤x ≤15,x 为整数, ∴当x =15时,w 有最大值,∴w =−50(15−16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.【解析】(1)根据题意和表格中的数据,可以求得y 与x 之间的函数关系式; (2)根据题意,可以得到w 与x 的函数关系式,然后根据二次函数的性质,可以解答本题.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.【答案】(1)证明:连接OD ,∵OC =OD , ∴∠OCD =∠ODC , ∵AC 是直径, ∴∠ADC =90°, ∵∠EDA =∠ACD ,∴∠ADO +∠ODC =∠EDA +∠ADO , ∴∠EDO =∠EDA +∠ADO =90°, ∴OD ⊥DE , ∵OD 是半径,∴直线DE 是⊙O 的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵sin∠ACB=AB,AC∴AB=sin45°⋅AC=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵sin∠ADF=AF,AD∴AF=sin45°⋅AD=3√2,∴DF=AF=3√2,∵在Rt△ABF中,∴BF2=AB2−AF2=(5√2)2−(3√2)2=32,∴BF=4√2,∴BD=BF+DF=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°−∠DBC∠CBH=90°−∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD=CH,BD=BH,∵AD=6,CD=8,∴DH=CD+CH=14,在Rt△BDH中,∵BD2=DH2−BH2=98,∴BD=7√2.【解析】(1)连接OD.想办法证明OD⊥DE即可.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,想办法求出BF,DF 即可.解法二:过点B作BH⊥BD交DC延长线于点H.证明△BDH是等腰直角三角形,求出DH即可.本题考查切线的判定和性质,圆周角定理,圆内接四边形的性质,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【答案】解:(1)DO⊥EO,DO=EO;理由:当点B旋转到CD边上时,点E必在边AC上,∴∠AEB=∠CEB=90°,在Rt△ABE中,点O是AB的中点,AB,∴OE=OA=12∴∠BOE=2∠BAE,在Rt△ABD中,点O是AB的中点,AB,∴OD=OA=12∴∠DOE=2∠BAD,∴OD=OE,∵等腰△ADC,且∠ADC=90°,∴∠DAC=45°,∴∠DOE=∠BOE+DOE=2∠BAE+2∠BAD=2(∠BAE+∠DAE)=2∠DAC=90°,∴OD⊥OE;(2)仍然成立,理由:如图1,延长ED到点M,使得OM=OE,连接AM,DM,DE,∵O是AB的中点,∴OA=OB,∵∠AOM=∠BOE,∴△AOM≌△BOE(SAS),∴∠MAO=∠EBO,MA=EB,∵△ACD和△CBE是等腰三角形,∠ADC=∠CEB=90°,∴∠CAD=∠ACD=∠EBC=∠BCE=45°,∵∠OBE=180°−∠EBC=135°,∴∠MAO=135°,∴∠MAD=∠MAO−∠DAC=90°,∵∠DCE=∠DCA+∠BCE=90°,∴∠MAD=∠DCE,∵MA=EB,EB=EC,∴MA=EC,∵AD=DC,∴△MAD≌△ECD,∴MD=ED,∠ADM=∠CDE,∵∠CDE+∠ADE=90°,∴∠ADM+∠ADE=90°,∴∠MDE=90°,∵MO=EO,MD=DE,ME,OD⊥ME,∴OD=12∵OE=1ME,2∴OD=OE,OD⊥OE;(3)①当点B在AC左侧时,如图3,延长ED到点M,使得OM=OE,连接AM,DM,DE,同(2)的方法得,△OBE≌△OAM(SAS),∴∠OBE=∠OAM,OM=OE,BE=AM,∵BE=CE,∴AM=CE,在四边形ABECD中,∠ADC+∠DCE+∠BEC+∠OBE+∠BAD=540°,∵∠ADC=∠BEC=90°,∴∠DCE=540°−90°−90°−∠OBE−∠BAD=360°−∠OBE=360°−∠OAM−∠BAD,∵∠DAM+∠OAM+∠BAD=360°,∴∠DAM=360°−∠OAM−∠BAD,∴∠DAM=∠DCE,∵AD=CD,∴△DAM≌△DCE(SAS),∴DM=DE,∠ADM=∠CDE,∴∠EDM=∠ADM+∠ADE=∠CDE+∠ADE=∠ADC=90°,∵OM=OE,∴OD=OE=1ME,∠DOE=90°,2BC=2√2,在Rt△BCE中,CE=√22过点E作EH⊥DC交DC的延长线于H,在Rt△CHE中,∠ECH=180°−∠ACD−∠ACB−∠BCE=180°−45°−60°−45°= 30°,CE=√2,∴EH=12根据勾股定理得,CH=√3EH=√6,∴DH=CD+CH=3√6,在Rt△DHE中,根据勾股定理得,DE=√EH2+DH2=2√14,DE=2√7,∴OD=√22②当点B在AC右侧时,如图4,同①的方法得,OD=OE,∠DOE=90°,连接DE,过点E作EH⊥CD于H,在Rt△EHC中,∠ECH=30°,CE=√2,∴EH=12根据勾股定理得,CH=√6,∴DH=CD−CH=√6,在Rt△DHE中,根据勾股定理得,DE=2√2,∴OD=√22DE=2,即:线段OD的长为2或2√7.【解析】(1)利用直角三角形斜边的中线等于斜边的一半,得出OE=OA=12AB,进而得出∠BOE=2∠BAE,同理得出OD=OA=12AB,∠DOE=2∠BAD,即可得出结论;(2)先判断出△AOM≌△BOE(SAS),得出∠MAO=∠EBO,MA=EB,再判断出∠MAD=∠DCE,进而判断出△MAD≌△ECD,即可得出结论;(3)分点B在AC左侧和右侧两种情况,类似(2)的方法判断出OD=OE,即可得出结论.此题是几何变换综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,五边形的内角和,判断出∠DAM=∠DCE是解本题的关键.26.【答案】解:(1)∵抛物线y=ax2+94x+c经过点A(−1,0),C(0,3),∴{a−94+c=0c=3,解得:{a=−34c=3,∴抛物线的解析式为:y=−34x2+94x+3;(2)如图1,过点C作CE//x轴交抛物线于点E,则∠ECB=∠ABC,过点D作DH⊥CE于点H,则∠DHC=90°,∵∠DCB=∠DCH+∠ECB=2∠ABC,∴∠DCH=∠ABC,∵∠DHC=∠COB=90°,∴△DCH∽△CBO,∴DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),∵C(0,3),∴DH =−34t 2+94t , ∵点B 是y =−34x 2+94x +3与x 轴的交点,∴−34x 2+94x +3=0,解得x 1=4,x 2=−1,∴B 的坐标为(4,0),∴OB =4,∴−34t 2+94t3=t 4, 解得t 1=0(舍去),t 2=2,∴点D 的纵坐标为:−34t 2+94t +3=92,则点D 坐标为(2,92);(3)设直线BC 的解析式为:y =kx +b ,则{4k +b =0b =3,解得:{k =−34b =3, ∴直线BC 的解析式为:y =−34x +3,设N(m,−34m +3),分两种情况:①如图2,以DF 为边,N 在x 轴的上方时,四边形DFNM 是平行四边形,∵D(2,92),F(0,72),∴M(m +2,−34m +4),代入抛物线的解析式得:−34(m +2)2+94(m +2)+3=−34m +4,解得:m =±√63,∴N(√63,3−√64)或(−√63,3+√64);②如图3,以DF为边,N在x轴的下方时,四边形DFMN是平行四边形,同理得:M(m−2,−34m+2),代入抛物线的解析式得:−34(m−2)2+94(m−2)+3=−34m+2,解得:m=4±√663,∴N(4+√663,−√664)或(4−√663,√664);综上,点N的坐标分别为:(√63,3−√64)或(−√63,3+√64)或(4+√663,−√664)或(4−√663,√664).【解析】(1)把点A(−1,0),C(0,3)代入抛物线的解析式中,列方程组解出即可;(2)如图1,作辅助线,构建相似三角形,证明△DCH∽△CBO,则DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),列关于t的方程解出可得结论;(3)利用待定系数法求直线BC的解析式为:y=−34x+3,设N(m,−34m+3),当以D,F,M,N为顶点的四边形是平行四边形时,存在两种情况:如图2和图3,分别画图,根据平移的性质可表示M的坐标,代入抛物线的解析式列方程可解答.本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、平行四边形的性质以及解一元二次方程,解题的关键是:(1)根据点A、C的坐标,利用待定系数法求出二次函数解析式;(2)利用相似三角形可解决问题;(3)分N在x轴的上方和下方两种情况,表示M和N两点的坐标,确定关于m的一元二次方程.。
人教版2020年辽宁省大连市中考数学试卷
故答案为 .
【点评】本题主要考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.
15.(3分)(2020•大连)如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为102n mile.(结果取整数,参考数据: ≈1.7, ≈1.4)
A.圆锥B.长方体C.圆柱D.球
【分析】根据主视图与左视图,主视图与俯视图的关系,可得答案.
【解答】解:由主视图与左视图都是高平齐的矩形,主视图与俯视图都是长对正的矩形,得
几何体是矩形,
故选:B.
【点评】本题考查了由三视图判断几何体,利用主视图与左视图,主视图与俯视图的关系是解题关键.
3.(3分)(2020•大连)计算 ﹣ 的结果是( )
A.(4,2)B.(5,2)C.(6,2)D.(5,3)
8.(3分)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为( )
A.2aB.2 aC.3aD.
二、填空题(每小题3分,共24分)
9.(3分)计算:﹣12÷3=.
10.(3分)下表是某校女子排球队队员的年龄分布:
年龄/岁
13
14
15
16
人数
1
4
5
2
则该校女子排球队队员年龄的众数是岁.
11.(3分)五边形的内角和为.
12.(3分)如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为cm.
13.(3分)关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为.
2020年辽宁省大连市中考数学试卷及答案解析
第 1 页 共 24 页
2020年辽宁省大连市中考数学试卷
一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)
1.(3分)下列四个数中,比﹣1小的数是( )
A .﹣2
B .−12
C .0
D .1
2.(3分)如图是由5个相同的小正方体组成的立体图形,它的主视图是( )
A .
B .
C .
D .
3.(3分)2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一
颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为( )
A .360×102
B .36×103
C .3.6×104
D .0.36×105
4.(3分)如图,△ABC 中,∠A =60°,∠B =40°,DE ∥BC ,则∠AED 的度数是( )
A .50°
B .60°
C .70°
D .80°
5.(3分)平面直角坐标系中,点P (3,1)关于x 轴对称的点的坐标是( )
A .(3,1)
B .(3,﹣1)
C .(﹣3,1)
D .(﹣3,﹣1)
6.(3分)下列计算正确的是( )
A .a 2+a 3=a 5
B .a 2•a 3=a 6。
2020年辽宁省大连中考数学试卷-答案
2020年辽宁省大连市初中学业水平考试数学答案解析 一、1.【答案】A【解析】解:根据有理数比较大小的方法,可得21--<,01->,112--,11->, ∴四个数中,比1-小的数是2-.故选:A . 【考点】有理数大小比较2.【答案】B【解析】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B . 【考点】简单组合体的三视图3.【答案】C【解析】解:436000 3.610=⨯,故选:C .【考点】科学记数法—表示较大的数4.【答案】D【解析】解:1806040C A B A B ∠=︒-∠-∠∠=︒∠=︒∵,,,80C ∠=︒∴,DE BC ∵,80AED C ∠=∠=︒∴,故选:D . 【考点】平行线的性质,三角形内角和定理5.【答案】B【解析】解:点()3,1P 关于x 轴对称的点的坐标是()3,1-故选:B .【考点】关于x 轴、y 轴对称的点的坐标6.【答案】C【解析】解:A .2a 与3a 不是同类项,所以不能合并,故本选项不合题意;B .235a a a ⋅=,故本选项不合题意;C .()326a a =,故本选项符合题意; D .()32628a a -=-,故本选项不合题意. 故选:C .【考点】合并同类项,同底数幂的乘法,幂的乘方与积的乘方7.【答案】D【解析】解:根据题意可得:袋子中有3个白球,4个红球,共7个,从袋子中随机摸出一个球,它是红球的概率47. 故选:D .【考点】概率公式8.【答案】A【解析】解:由题意得,906030AOB ∠=︒-︒=︒, ()1100 m 2AB OA ==∴, 故选:A .【考点】解直角三角形的应用—方向角问题9.【答案】B【解析】解:设抛物线与x 轴交点横坐标分别为1x 、2x ,且12x x <,根据两个交点关于对称轴直线1x =对称可知:122x x +=,即212x -=,得23x =,∴抛物线与x 轴的另一个交点为()3,0,故选:B .【考点】二次函数的性质,抛物线与x 轴的交点10.【答案】D【解析】解:9040ACB ABC ∠=︒∠=︒∵,,90904050CAB ABC ∠=︒-∠=︒-︒=︒∴,∵将ABC △绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,40A BA ABC A B AB ''∠=∠==∴,,()118040702BAA BA A ''∠=∠=︒-︒=︒∴, 5070120CAA CAB BAA ''∠=∠+∠=︒+︒=︒∴.故选:D . 【考点】旋转的性质二、11.【答案】1x ->【解析】解:5131x x +->,移项得,5311x x --->,合并得,22x ->,即1x ->,故答案为1x ->.【考点】解一元一次不等式12.【答案】6.1【解析】解:这个公司平均每人所创年利润是:()1102875 6.110+⨯+⨯=(万). 故答案为:6.1.【考点】加权平均数13.【答案】()12864x x +=【解析】解:∵矩形的宽为x ,且宽比长少12, ∴矩形的长为()12x +.依题意,得:()12864x x +=.故答案为:()12864x x +=.【考点】数学常识,由实际问题抽象出一元二次方程14.【答案】100【解析】解:∵四边形ABCD 是菱形,280AB CD BCD ACD ∠=∠=︒ ∴,,180ABC BCD ∠+∠=︒∴,18080100ABC ∠=︒-︒=︒∴;故答案为:100.【考点】菱形的性质15.【答案】8【解析】解:连接BD ,与AC 交于点O ,∵四边形ABCD 是正方形,AC x ⊥轴,BD ∴所在对角线平行于x 轴,()0,2B ∵,2OC BO AO DO ====∴,∴点A 的坐标为()2,4,248k =⨯=∴,故答案为:8.【解析】解:在矩形ABCD 中,AD BC ,DEF BCF ∴△∽△,DE DF BC BF=∴,10BD BF y DE x ====∵,,,10DF y =-∴,108x y y -=∴,化简得:808y x =+, y ∴关于x 的函数解析式为:808y x =+, 故答案为:808y x =+. 【考点】矩形的性质,相似三角形的判定与性质三、17.【答案】解:原式21232=--+=.【考点】实数的运算,平方差公式18.【答案】解:原式()()2222221122x x x x x x x x x x x+----=⋅-=-==-++. 【考点】分式的混合运算19.【答案】证明:AB AC =∵,B C ∠=∠∴(等边对等角), 在ABD △和ACE △中,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩()ABD ACE SAS ∴△≌△,AD AE =∴(全等三角形对应边相等), ADE AED ∠=∠∴(等边对等角). 【考点】全等三角形的判定与性质20.【答案】(1)420(2)5015(3)()504101550550231---÷⨯=,该校八年级学生读书量为3本的学生有231人.【解析】(1)解:由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%,故答案为:4;20;(2)1020%50÷=,500.315⨯=,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人,故答案为:50;15.(3)具体解题过程参照答案【考点】用样本估计总体,频数(率)分布表,扇形统计图四、21.【答案】解:设每节火车车厢平均装x 吨化肥,每辆汽车平均装y 吨化肥,依题意,得:615360810440x y x y +=⎧⎨+=⎩, 解得:504x y =⎧⎨=⎩. 答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥. 【考点】二元一次方程组的应用22.【答案】(1)证明:AD CD =∵,DAC ACD ∠=∠∴,2180ADC ACD ∠+∠=︒∴,又∵四边形ABCD 内接于O ,180ABC ADC ∠+∠=︒∴,2ABC ACD ∠=∠∴;(2)解:连接OD 交AC 于点E ,PD ∵是O 的切线,OD DP ⊥∴,90ODP ∠=︒∴,又 AD CD =∵,OD AC AE EC ⊥=∴,,90DEC ∠=︒∴,AB ∵是O 的直径,90ACB ∠=︒∴,90ECP ∠=︒∴,23.【答案】解:(1)设甲气球的函数解析式为:y kx b =+,乙气球的函数解析式为:y mx n =+, 分别将()0,5,()20,25和()0,15,()20,25代入,52520b k b =⎧⎨=+⎩,152520n m n =⎧⎨=+⎩, 解得:15k b =⎧⎨=⎩,1215m n ⎧=⎪⎨⎪=⎩, ∴甲气球的函数解析式为:5y x =+,乙气球的函数解析式为:1152y x =+; (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15 m ,且此时甲气球海拔更高, 1515152x x ⎛⎫+-+= ⎪⎝⎭∴, 解得:50x =,∴当这两个气球的海拔高度相差15 m 时,上升的时间为50 min .【考点】一次函数的应用五、24.【答案】解:(1)ABC ∵△中,90 6 cm 8 cm ACB AC BC ∠=︒==,,,()10 cm AB ===∴,当点D 与点A 重合时,10 cm BD AB ==,()10 5 s 2t ==∴; (2)当05t <<时,(D 在AB 上),DE BC ∵,ADE ABC ∴△∽△,DE AD AE BC AB AC==∴, 10268106DE t CE --==∴, 解得:408655t DE CE t -==,, 90DE BC ACB ∠=︒ ∵,,90CED ∠=︒∴,211408624242255255t S DE CE t t -=⋅=⨯⨯=-+∴; 如图2,当58t <<时,(D 在AC 上),则210AD t =-,162CD t =-∴,DE BC ∵,ADE ACB ∴△∽△,DE AE AD CB AB AC==∴, 21086DE t -=∴, 8403t DE -=∴, ()2118408104320162223333t S DE CD t t t -=⋅=⨯⨯-=-+-∴,综上所述,S 关于t 的函数解析式为()()22242405255810432058333t t S t t t ⎧-+⎪⎪=⎨⎪-+-⎪⎩<<<<.【考点】一元一次方程的应用,函数关系式,函数自变量的取值范围25.【答案】(1)CGA ∠;解:(2)12AD BD =,理由是: 如图,在CG 上取点M ,使GM AF =,连接AM ,EM , CAG CGA AG GA ∠=∠=∵,,()AGM GAF SAS ∴△≌△,AM GF AFG AMG =∠=∠∴,,GF DE AFG CDE =∠=∠∵,,AM DE AMG CDE =∠=∠∴,,AM DE ∴,∴四边形AMED 为平行四边形,AD EM AD EM = ∴,,BE CE =∵,即点E 为BC 中点,ME ∴为BCD △的中位线,12AD ME BD ==∴; (3)延长BA 至点N ,使AD AN =,连接CN ,90BAC NAC ∠=∠=︒∵,AC ∴垂直平分DN ,CD CN =∴,ACD ACN ∠=∠∴,设ACD ACN α∠==∠,则2ABC α∠=,则90ANC α∠=-,()18029090BCN ααα∠=---=-∴, BN BC =∴,即BCN △为等腰三角形, 设1AD =,则1AN =,2BD =, 43BC BN AB ===∴,,AC ==∴,AC AB =∴【解析】(1)解:(1)CA CG =∵, CAG CGA ∠=∠∴,故答案为:CGA ∠;【考点】三角形综合题26.【答案】(1)4(2)1(3)解:①21F y ax bx c =++∵:, 22F y ax bx c =-+∴:,t =∵1F ,2F ,可得:a a P c Q c b b ⎫⎫++-+⎪⎪⎪⎪⎝⎭⎝⎭,,a a PQ c cb b ⎛⎫=++--+= ⎪⎝⎭∴,112OPQ S =⨯=△∴; ②∵函数1F 和2F 的图象与x 轴正半轴分别交于点()5,0A ,()1,0B ,而函数1F 和2F 的图象关于y 轴对称,∴函数1F 的图象经过()5,0A 和()1,0-,∴设()()211545F y a x x ax ax a =+-=--:,则2245F y ax ax a =+-:,1F ∴的图象的对称轴是直线2x =,且5c a =-,5c a =-∴, 0c ∵>,则0a <,11c +>,而2F 的图象在0x >时,y 随x 的增大而减小,当01c <<时,1F 的图象y 随x 的增大而增大,2F 的图象y 随x 的增大而减小,∴当1x c =+时,245y ax ax a =+-的最大值为()()21415a c a c a +-+-, 245y ax ax a =+-的最小值为()()21415a c a c a +++-,则()()()()221415141588h a c a c a a c a c a ac a ⎡⎤=+-+--+++-=--⎣⎦, 又5c a =-∵, 28855h c c =+∴; 当12c 时,1F 的最大值为()()245494a a a a a⨯---=-,2F 的图象y 随x 的增大而减小, 2F ∴的最小值为:()()21415a c a c a +++-,则()()()()22291415141469h a a c a c a a c a c a ac ac a ⎡⎤=--+++-=-+-+-=---⎣⎦, 又5c a =-∵, 32169555h c c c =++∴, 当2c >时,1F 的图象y 随x 的增大而减小,2F 的图象y 随x 的增大而减小,∴当x c =时,245y ax ax a =--的最大值为245ac ac a --,当1x c =+时,245y ax ax a =--的最小值为()()21415a c a c a +-+-,则()()22451415h ac ac a a c a c a ⎡⎤=---+-+-⎣⎦, 又5c a =-∵, 22h c c =+∴;综上:h 关于x 的解析式为:()()2322880155169125552<<⎧+⎪⎪⎪++⎨⎪⎪+⎪⎩c c c c c c c c c . 【解析】解:(1)11F y x =+∵:,1F 和2F 关于y 轴对称,21F y x =-+∴:,分别令2x =,则213+=,211-+=-,()()2,32,1P Q -∴,,()314PQ =--=,故答案为:4;(2)13F y x=∵:, 可得:23F y x -=:, x t =∵,可得:33,,P t Q t t t -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,, 3366PQ t t t-=-==∴, 解得:1t =,经检验:1t =是原方程的解,故答案为:1.【考点】二次函数综合题。
2020年辽宁省大连市中考数学试卷
2020年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1. 下列四个数中,比−1小的数是( )A.−12B.−2C.1D.02. 如图是由5个相同的小正方体组成的立体图形,它的主视图是()A. B.C. D.3. 2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.36×103B.360×102C.0.36×105D.3.6×1044. 如图,△ABC中,∠A=60∘,∠B=40∘,DE // BC,则∠AED的度数是()A.60∘B.50∘C.80∘D.70∘5. 平面直角坐标系中,点P(3, 1)关于x轴对称的点的坐标是()A.(3, −1)B.(3, 1)C.(−3, −1)D.(−3, 1)6. 下列计算正确的是()A.a2⋅a3=a6B.a2+a3=a5C.(−2a2)3=−6a6D.(a2)3=a67. 在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.13B.14C.47D.378. 如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60∘方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100√2mB.100mC.200√33m D.100√3m9. 抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(−1, 0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(3, 0)B.(72, 0) C.(2, 0) D.(52, 0)10. 如图,△ABC中,∠ACB=90∘,∠ABC=40∘.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.70∘B.50∘C.120∘D.110∘二、填空题(本题共6小题,每小题3分,共18分)不等式5x+1>3x−1的解集是________.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.这个公司平均每人所创年利润是________万元.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为________.如图,菱形ABCD中,∠ACD=40∘,则∠ABC=________∘.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=kx(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0, 2),则k的值为________.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为________.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)计算(√2+1)(√2−1)+√−83+√9.计算x2+4x+4x+2÷x2+2xx−2−1.如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为________人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为________%;(2)被调查学生的总人数为________人,其中读书量为2本的学生数为________人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=512,BC=1,求PD的长.甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)如图,△ABC中,∠ACB=90∘,AC=6cm,BC=8cm,点D从点B出发,沿边BA→AC以2cm/s的速度向终点C运动,过点D作DE // BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是________;(2)用等式表示线段AD与BD的数量关系,并证明;的值.(3)若∠BAC=90∘,∠ABC=2∠ACD(如图2),求ACAB在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为________;,当PQ=6时,t的值为________;(2)函数F1为y=3x(3)函数F1为y=ax2+bx+c(a≠0),时,求△OPQ的面积;①当t=√bb②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5, 0),B(1, 0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为ℎ,求ℎ关于c的函数解析式,并直接写出自变量c的取值范围.参考答案与试题解析2020年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.【答案】此题暂无答案【考点】有理根惯小比较【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】简单组水都的三视图【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】科学较盛法含-表项较大的数【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】三角形常角簧定理平行体的省质【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】关于较洗、y装对氢的点的坐标【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】合较溴类项同底水水的乘法幂的乘表与型的乘方【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】概水常式【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】解直都三连慢的日用-方向角问题【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】二次明数织性质抛物线明x稀的交点【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】旋因末性质【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共6小题,每小题3分,共18分)【答案】此题暂无答案【考点】解一元因次不丙式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】加水正均数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】由实较燥题元效出一元二次方程数射常过【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】菱都资性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】正方来的性稳反比射函可铜象上误的坐标特征【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相验极角家的锰质与判定矩来兴性质【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)【答案】此题暂无答案【考点】实因归运算平使差香式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】分式因混合似算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】全根三烛形做给质与判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】频数(常)换布表用样射子计总体扇表统病图【解析】此题暂无解析【解答】此题暂无解答四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)【答案】此题暂无答案【考点】二元一正构程组的置用——移程问题二元一水使程组种应用—鉴其他问题二元一因方程似应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆内接根边形的萄质圆明角研理切表的木质解直于三角姆垂都着理【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水根的应用【解析】此题暂无解析【解答】此题暂无解答五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)【答案】此题暂无答案【考点】一元一表方型的应片——解程进度问题一元体次拉程的言亿——其他问题函数自变于的取旋范围函较燥系式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角使如合题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次使如综合题【解析】此题暂无解析【解答】此题暂无解答。
2020年辽宁省大连市中考数学试题及参考答案(word解析版)
大连市2020年初中毕业升学考试数学试卷(满分150,考试时间120分钟)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.12.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.360×102B.36×103C.3.6×104D.0.36×1054.如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)6.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(﹣2a2)3=﹣6a67.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.8.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°二、填空题(本题共6小题,每小题3分,共18分)11.不等式5x+1>3x﹣1的解集是.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8C 7 5这个公司平均每人所创年利润是万元.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.(第14题图)(第15题图)(第16题图)三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算(+1)(﹣1)++.18.(9分)计算﹣1.19.(9分)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为 人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为 %;(2)被调查学生的总人数为 人,其中读书量为2本的学生数为 人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.(10分)四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AD =CD .(1)如图1,求证∠ABC =2∠ACD ;(2)过点D 作⊙O 的切线,交BC 延长线于点P (如图2).若tan ∠CAB =,BC =1,求PD的长.23.(10分)甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象.(1)求这两个气球在上升过程中y 关于x 的函数解析式;(2)当这两个气球的海拔高度相差15m 时,求上升的时间.读书量 频数(人) 频率 1本 4 2本 0.3 3本 4本及以上 10五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA →AC以2cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.25.(11分)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.26.(12分)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;(2)函数F1为y=,当PQ=6时,t的值为;(3)函数F1为y=ax2+bx+c(a≠0),①当t=时,求△OPQ的面积;②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.1【知识考点】有理数大小比较.【思路分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解题过程】解:根据有理数比较大小的方法,可得﹣2<﹣1,0>﹣1,﹣>﹣1,1>﹣1,∴四个数中,比﹣1小的数是﹣2.故选:A.【总结归纳】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,画出从正面看所得到的图形即可.【解题过程】解:从正面看,底层是三个小正方形,上层右边的一个小正方形.故选:B.【总结归纳】此题主要考查了三视图,关键是把握好三视图所看的方向.属于基础题,中考常考题型.3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.360×102B.36×103C.3.6×104D.0.36×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解题过程】解:36000=3.6×104,故选:C.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.4.如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°【知识考点】平行线的性质;三角形内角和定理.【思路分析】利用三角形内角和定理求出∠C,再根据平行线的性质求出∠AED即可.【解题过程】解:∵∠C=180°﹣∠A﹣∠B,∠A=60°,∠B=40°,∴∠C=80°,∵DE∥BC,∴∠AED=∠C=80°,故选:D.【总结归纳】本题考查三角形内角和定理,平行线的性质,解题的关键是熟练掌握三角形内角和定理,平行线的性质解决问题,属于中考常考题型.5.平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解题过程】解:点P(3,1)关于x轴对称的点的坐标是(3,﹣1)故选:B.【总结归纳】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(﹣2a2)3=﹣6a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.a2与a3不是同类项,所以不能合并,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.(a2)3=a6,故本选项符合题意;D.(﹣2a2)3=﹣8a6,故本选项不合题意.故选:C.【总结归纳】本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.7.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.【知识考点】概率公式.【思路分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.【解题过程】解:根据题意可得:袋子中有3个白球,4个红球,共7个,从袋子中随机摸出一个球,它是红球的概率.故选:D.【总结归纳】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】根据题意求出∠AOB,根据直角三角形的性质解答即可.【解题过程】解:由题意得,∠AOB=90°﹣60°=30°,∴AB=OA=100(m),故选:A.【总结归纳】本题考查的是解直角三角形的应用﹣方向角问题,掌握方向角的概念、熟记含30度角的直角三角形的性质是解题的关键.9.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)【知识考点】二次函数的性质;抛物线与x轴的交点.【思路分析】根据抛物线的对称性和(﹣1,0)为x轴上的点,即可求出另一个点的交点坐标.【解题过程】解:设抛物线与x轴交点横坐标分别为x1、x2,且x1<x2,根据两个交点关于对称轴直线x=1对称可知:x1+x2=2,即x2﹣1=2,得x2=3,∴抛物线与x轴的另一个交点为(3,0),故选:B.【总结归纳】本题考查了抛物线与x轴的交点,要知道抛物线与x轴的两交点关于对称轴对称.10.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°【知识考点】旋转的性质.【思路分析】根据旋转可得∠A′BA=∠ABC=40°,A′B=AB,得∠BAA′=70°,根据∠CAA'=∠CAB+∠BAA′,进而可得∠CAA'的度数.【解题过程】解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=(180°﹣40°)=70°,∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.【总结归纳】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.二、填空题(本题共6小题,每小题3分,共18分)11.不等式5x+1>3x﹣1的解集是.【知识考点】解一元一次不等式.【思路分析】先对不等式进行移项,合并同类项,再系数化1即可求得不等式的解集.【解题过程】解:5x+1>3x﹣1,移项得,5x﹣3x>﹣1﹣1,合并得,2x>﹣2,即x>﹣1,故答案为x>﹣1.【总结归纳】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A 1 10B 2 8C 7 5这个公司平均每人所创年利润是万元.【知识考点】加权平均数.【思路分析】直接利用表格中数据,求出10人的总创年利润进而求出平均每人所创年利润.【解题过程】解:这个公司平均每人所创年利润是:(10+2×8+7×5)=6.1(万).故答案为:6.1.【总结归纳】此题主要考查了加权平均数,正确利用表格获取正确信息是解题关键.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.【知识考点】数学常识;由实际问题抽象出一元二次方程.【思路分析】由矩形的宽及长与宽之间的关系可得出矩形的长为(x+12)步,再利用矩形的面积公式即可得出关于x的一元二次方程,此题得解.【解题过程】解:∵矩形的宽为x步,且宽比长少12步,∴矩形的长为(x+12)步.依题意,得:x(x+12)=864.故答案为:x(x+12)=864.【总结归纳】本题考查了由实际问题抽象出一元二次方程以及数学常识,找准等量关系,正确列出一元二次方程是解题的关键.14.如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.【知识考点】菱形的性质.【思路分析】由菱形的性质得出AB∥CD,∠BCD=2∠ACD=80°,则∠ABC+∠BCD=180°,即可得出答案.【解题过程】解:∵四边形ABCD是菱形,∴AB∥CD,∠BCD=2∠ACD=80°,∴∠ABC+∠BCD=180°,∴∠ABC=180°﹣80°=100°;故答案为:100.【总结归纳】本题考查了菱形的性质、平行线的性质;熟练掌握菱形的性质是解题的关键.15.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.【知识考点】反比例函数图象上点的坐标特征;正方形的性质.【思路分析】连接BD,与AC交于点O′,利用正方形的性质得到O′A=O′B=O′C=O′D=2,从而得到点A坐标,代入反比例函数表达式即可.【解题过程】解:连接BD,与AC交于点O′,∵四边形ABCD是正方形,AC⊥x轴,∴BD所在对角线平行于x轴,∵B(0,2),∴O′C=2=BO′=AO′=DO′,∴点A的坐标为(2,4),∴k=2×4=8,故答案为:8.【总结归纳】本题考查了正方形的性质,反比例函数表达式的求法,解题的关键是利用正方形的性质求出点A的坐标.16.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.【知识考点】矩形的性质;相似三角形的判定与性质.【思路分析】根据题干条件可证得△DEF∽△BCF,从而得到,由线段比例关系即可求出函数解析式.【解题过程】解:在矩形中,AD∥BC,∴△DEF∽△BCF,∴,∵BD==10,BF=y,DE=x,∴DF=10﹣y,∴,化简得:,∴y关于x的函数解析式为:,故答案为:.【总结归纳】本题主要考查的是相似三角形的判定与性质定理,难度不大,熟练掌握性质和判定定理是解得本题的关键,注意掌握数形结合思想与函数思想的应用.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算(+1)(﹣1)++.【知识考点】实数的运算;平方差公式.【思路分析】原式利用平方差公式,立方根、算术平方根性质计算即可求出值.【解题过程】解:原式=2﹣1﹣2+3=2.【总结归纳】此题考查了平方差公式,以及实数的运算,熟练掌握公式及运算法则是解本题的关键.18.(9分)计算﹣1.【知识考点】分式的混合运算.【思路分析】直接利用分式的混合运算法则分别化简得出答案.【解题过程】解:原式=•﹣1=﹣1==﹣.【总结归纳】此题主要考查了分式的混合运算,正确化简分式是解题关键.19.(9分)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.【知识考点】全等三角形的判定与性质.【思路分析】根据等腰三角形等边对等角的性质可以得到∠B=∠C,然后证明△ABD和△ACE 全等,根据全等三角形对应边相等有AD=AE,再根据等边对等角的性质即可证明.【解题过程】证明:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE=∠AED(等边对等角).【总结归纳】本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率1本 42本0.33本4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为%;(2)被调查学生的总人数为人,其中读书量为2本的学生数为人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.【知识考点】用样本估计总体;频数(率)分布表;扇形统计图.【思路分析】(1)直接根据图表信息可得;(2)用4本及以上对应的频数除以所占百分比可得总人数,再乘以读书量为2本的频率即可;(3)求出读书量为3本的人数,除以样本人数50,再乘以全校总人数550可得结果.【解题过程】解:(1)由图表可知:被调查学生中,读书量为1本的学生数为4人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为20%,故答案为:4;20;(2)10÷20%=50人,50×0.3=15人,∴被调查学生的总人数为50人,其中读书量为2本的学生数为15人,故答案为:50;15;(3)(50﹣4﹣10﹣15)÷50×550=231人,该校八年级学生读书量为3本的学生有231人.【总结归纳】本题考查了频数统计表和扇形统计图,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?【知识考点】二元一次方程组的应用.【思路分析】设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,根据“第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解题过程】解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,依题意,得:,解得:.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(10分)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=,BC=1,求PD 的长.【知识考点】垂径定理;圆周角定理;圆内接四边形的性质;切线的性质;解直角三角形.【思路分析】(1)由等腰三角形的性质得出∠DAC=∠ACD,由圆内接四边形的性质得出∠ABC+∠ADC=180°,则可得出答案;(2)由切线的性质得出∠ODP=90°,由垂径定理得出∠DEC=90°,由圆周角定理∠ACB=90°,可得出四边形DECP为矩形,则DP=EC,求出EC的长,则可得出答案.【解题过程】(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,又∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD;(2)解:连接OD交AC于点E,∵PD是⊙O的切线,∴OD⊥DP,∴∠ODP=90°,又∵=,∴OD⊥AC,AE=EC,∴∠DEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP为矩形,∴DP=EC,∵tan∠CAB=,BC=1,∴,∴AC=,∴EC=AC=,∴DP=.【总结归纳】本题考查了切线的性质,圆周角定理的应用,圆内接四边形的性质,垂径定理,解直角三角形等知识,熟练切线的性质是解题的关键.23.(10分)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.【知识考点】一次函数的应用.【思路分析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x大于20时,两个气球的海拔高度可能相差15m,可得方程x+5﹣(x+15)=15,解之即可.【解题过程】解:(1)设甲气球的函数解析式为:y=kx+b,乙气球的函数解析式为:y=mx+n,分别将(0,5),(20,25)和(0,15),(20,25)代入,,,解得:,,∴甲气球的函数解析式为:y=x+5,乙气球的函数解析式为:y=x+15;(2)由初始位置可得:当x大于20时,两个气球的海拔高度可能相差15m,且此时甲气球海拔更高,∴x+5﹣(x+15)=15,解得:x=50,∴当这两个气球的海拔高度相差15m时,上升的时间为50min.【总结归纳】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA →AC以2cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.【知识考点】函数关系式;函数自变量的取值范围.【思路分析】(1)根据勾股定理即可得到结论;(2)根据相似三角形的判定和性质以及三角形的面积公式即可得到结论.【解题过程】解:(1)∵△ABC中,∠ACB=90°,AC=6cm,BC=8cm,∴AB===10(cm),当点D与点A重合时,BD=AB=10cm,∴t==5(s);(2)当0<t<5时,(D在AB上),∵DE∥BC,∴△ADE∽△ABC,∴,∴==,解得:DE=,CE=t,∵DE∥BC,∠ACB=90°,∴∠CED=90°,∴S=DE•CE=×t=﹣t2+;当t=5时,点D与点A重合,△CDE不存在;如图2,当5<t<8时,(D在AC上),则AD=2t﹣10,∴CD=16﹣2t,∵DE∥BC,∴△ADE∽△ACB,∴==,∴=,∴DE=,∴S=DE•CD=×(16﹣2t)=﹣t2+t﹣,综上所述,S关于t的函数解析式为S=.【总结归纳】本题考查了函数关系式,相似三角形的判定和性质,勾股定理,正确的理解题意是解题的关键.25.(11分)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.【知识考点】三角形综合题.【思路分析】(1)根据等腰三角形等边对等角回答即可;(2)在CG上取点M,使GM=AF,连接AM,EM,证明△AGM≌△GAF,得到AM=GF,∠AFG=∠AMG,从而证明四边形AMED为平行四边形,得到AD=EM,AD∥EM,最后利用中位线定理得到结论;(3)延长BA至点N,使AD=AN,连接CN,证明△BCN为等腰三角形,设AD=1,可得AB 和BC的长,利用勾股定理求出AC,即可得到的值.【解题过程】解:(1)∵CA=CG,∴∠CAG=∠CGA,故答案为:∠CGA;(2)AD=BD,理由是:如图,在CG上取点M,使GM=AF,连接AM,EM,∵∠CAG=∠CGA,AG=GA,∴△AGM≌△GAF(SAS),∴AM=GF,∠AFG=∠AMG,∵GF=DE,∠AFG=∠CDE,∴AM=DE,∠AMG=∠CDE,∴AM∥DE,∴四边形AMED为平行四边形,∴AD=EM,AD∥EM,∵BE=CE,即点E为BC中点,∴ME为△BCD的中位线,∴AD=ME=BD;(3)延长BA至点N,使AD=AN,连接CN,∵∠BAC=∠NAC=90°,∴AC垂直平分DN,∴CD=CN,∴∠ACD=∠ACN,设∠ACD=α=∠ACN,则∠ABC=2α,则∠ANC=90﹣α,∴∠BCN=180﹣2α﹣(90﹣α)=90﹣α,∴BN=BC,即△BCN为等腰三角形,设AD=1,则AN=1,BD=2,∴BC=BN=4,AB=3,∴AC=,∴.【总结归纳】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,平行四边形的判定和性质,中位线定理,解题的关键是根据题意构造平行四边形,转化已知条件.26.(12分)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;(2)函数F1为y=,当PQ=6时,t的值为;(3)函数F1为y=ax2+bx+c(a≠0),①当t=时,求△OPQ的面积;②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.【知识考点】二次函数综合题.【思路分析】(1)根据F1和F2关于y轴对称得出F2的解析式,求出P、Q两点坐标,即可得到PQ;(2)根据F1和F2关于y轴对称得出F2的解析式,求出P、Q两点坐标,根据PQ=6得出方程,解出t值即可;(3)①根据F1和F2关于y轴对称得出F2的解析式,将x=代入解析式,求出P、Q两点坐标,从而得出△OPQ的面积;②根据题意得出两个函数的解析式,再分当0<c<1时,当1≤c≤2时,当c>2时,三种情况,分析两个函数的增减性,得出最值,相减即可.【解题过程】解:(1)∵F1:y=x+1,F1和F2关于y轴对称,∴F2:y=﹣x+1,分别令x=2,则2+1=3,﹣2+1=﹣1,∴P(2,3),Q(2,﹣1),∴PQ=3﹣(﹣1)=4,故答案为:4;(2)∵F1:,可得:F2:,∵x=t,可得:P(t,),Q(t,),∴PQ=﹣==6,解得:t=1,经检验:t=1是原方程的解,故答案为:1;(3)①∵F1:y=ax2+bx+c,∴F2:y=ax2﹣bx+c,∵t=,分别代入F1,F2,可得:P(,),Q(,),∴PQ=||=,∴S△OPQ==1;②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),而函数F1和F2的图象关于y轴对称,∴函数F1的图象经过A(5,0)和(﹣1,0),∴设F1:y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,则F2:y=ax2+4ax﹣5a,∴F1的图象的对称轴是直线x=2,且c=﹣5a,∴a=,∵c>0,则a<0,c+1>1,而F2的图象在x>0时,y随x的增大而减小,当0<c<1时,F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,∴当x=c+1时,y=ax2﹣4ax﹣5a的最大值为a(c+1)2﹣4a(c+1)﹣5a,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,则h=a(c+1)2﹣4a(c+1)﹣5a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣8ac﹣8a,又∵a=,∴h=;当1≤c≤2时,F1的最大值为=﹣9a,F2的图象y随x的增大而减小,∴F2的最小值为:a(c+1)2+4a(c+1)﹣5a,则h=﹣9a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣a(c+1)2﹣4a(c+1)﹣4a=﹣ac2﹣6ac﹣9a,又∵a=,∴h=,当c>2时,F1的图象y随x的增大而减小,F2的图象y随x的增大而减小,∴当x=c时,y=ax2﹣4ax﹣5a的最大值为ac2﹣4ac﹣5a,当x=c+1时,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,则h=ac2+4ac﹣5a﹣[a(c+1)2+4a(c+1)﹣5a],又∵a=,∴h=2c2+c;综上:h关于x的解析式为:h=.【总结归纳】本题是二次函数综合题,考查了一次函数,反比例函数,以及二次函数的图象与性质,二次函数的最值,解题的关键是要理解题意,尤其(3)问中要读懂题干,结合图象进行分析求解.21。
2020年辽宁省大连市中考数学试卷(含详细解析)
A. B. C. D.
4.如图, 中, ,则 的度数是()
A. B. C. D.
5.在直角坐标系中,点P(3,1)关于x轴对称点的坐标是( )
(1)求这两个气球在上升过程中y关于x的函数解析式;
(2)当这两个气球的海拔高度相差 时,求上升的时间.
24.如图, 中, ,点D从点B出发,沿边 以 的速度向终点C运动,过点D作 ,交边 (或 )于点E.设点D的运动时间为 , 的面积为 .
(1)当点D与点A重合时,求t的值;
(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.
【详解】
解:根据有理数比较大小的方法,可得
-2<-1,0>-1, >-1,1>-1,
∴四个数中,比-1小的数是-2.
故选:A.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
2.B
【解析】
(2)函数 为 ,当 时,t的值为______;
(3)函数 为 ,
①当 时,求 的面积;
②若 ,函数 和 的图象与x轴正半轴分别交于点 ,当 时,设函数 的最大值和函数 的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.
参考答案
1.A
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
辽宁省大连市2020年中考数学试题
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
A.
7 2
,
0
B. (3, 0 )
试卷第 7 页,总 28 页
…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
…………○…………外…………○…………装…………○…………订…………○…………线…………○…………
【答案】 x 1 【解析】 【分析】 根据不等式的性质移项,合并同类项,系数化为一即可. 【详解】 解: 5 x 1 3 x 1 5x 3x 11 2x 2
A. 1 4
B. 1 3
C. 3 7
D. 4 7
【答案】D
【解析】
【分析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值
就是其发生的概率,即可求出答案.
【详解】
解:根据题意可得:袋子中有有 3 个白球,4 个红球,共 7 个,
从袋子中随机摸出一个球,它是红色球的概率是 4 ; 7
C.
5 2
,
0
【答案】B
【解析】
【分析】
由函数的对称性可得结论.
【详解】
解:设此抛物线与 x 轴的另一个交点坐标为(x,0),
D. (2, 0)
∵抛物线与 x 轴的一个交点坐标为 (1, 0) ,对称轴是直线 x 1 ,
∴ x (1) 1 ,解得 x=3, 2
2020年辽宁省大连中考数学试卷
绝密★启用前2020年辽宁省大连市初中学业水平考试数 学一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.下列四个数中,比1-小的数是( )A .2-B .12-C .0D .1 2.如图是由5个相同的小正方体组成的立体图形,它的主视图是( )ABCD3.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36 000公里的天疆.数36 000用科学记数法表示为( )A .236010⨯B .33610⨯C .43.610⨯D .50.3610⨯4.如图,ABC △中,60A ∠=︒,40B ∠=︒,∥DE BC ,则AED ∠的度数是 ( )A .50°B .60°C .70°D .80°5.平面直角坐标系中,点()3,1P 关于x 轴对称的点的坐标是 ( ) A .()3,1B .()3,1-C .()3,1-D .()3,1-- 6.下列计算正确的是( )A .235a a a +=B .236a a a ⋅=C .()326a a =D .()32626a a -=-7.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( )A .14B .13C .37D .478.如图,小明在一条东西走向公路的O 处,测得图书馆A 在他的北偏东60°方向,且与他相距200 m ,则图书馆A 到公路的距离AB 为( )A .100 mB.C.D.39.抛物线()20y ax bx c a =++<与x 轴的一个交点坐标为()1,0-,对称轴是直线1x =,其部分图象如图所示,则此抛物线与x 轴的另一个交点坐标是( )A .702⎛⎫⎪⎝⎭,B .()3,0C .5,02⎛⎫ ⎪⎝⎭D .()2,0毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------10.如图,ABC △中,90ACB ∠=︒,40ABC ∠=︒.将ABC △绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CAA '∠的度数是( )A .50°B .70°C .110°D .120°二、填空题(本题共6小题,每小题3分,共18分)11.不等式5131x x +->的解集是________.12.某公司有10这个公司平均每人所创年利润是________万元.13.我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x 步,根据题意,可列方程为________.14.如图,菱形ABCD 中,40ACD ∠=︒,则ABC ∠=________°.15.如图,在平面直角坐标系中,正方形ABCD 的顶点A 与D 在函数()0ky x x=>的图象上,AC x ⊥轴,垂足为C ,点B 的坐标为()0,2,则k 的值为________.16.如图,矩形ABCD 中,6AB=,8AD =,点E 在边AD 上,CE 与BD 相交于点F .设DE x =,BF y =,当08x ≤≤时,y 关于x 的函数解析式为________.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.计算)1118.计算22442122x x x xx x +++÷-+-.19.如图,ABC △中,AB AC =,点D ,E 在边BC 上,BD CE =.求证:ADE AED ∠=∠.20.某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统读书量 频数(人)频率 1本 4 2本 0.3 3本 4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为________人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为________%;(2)被调查学生的总人数为________人,其中读书量为2本的学生数为________人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.四边形ABCD 内接于O ,AB 是O 的直径,AD CD =. (1)如图1,求证2ABC ACD ∠=∠;(2)过点D 作O 的切线,交BC 延长线于点P (如图2).若5tan 12CAB ∠=,1BC =,求PD 的长.23.甲、乙两个探测气球分别从海拔5 m 和15 m 处同时出发,匀速上升60 min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象.(1)求这两个气球在上升过程中y 关于x 的函数解析式; (2)当这两个气球的海拔高度相差15 m 时,求上升的时间.-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.如图,ABC △中,90ACB ∠=︒, 6 cm AC =,8 cm BC =,点D 从点B 出发,沿边BA AC →以2 cm 的速度向终点C 运动,过点D 作∥DE BC ,交边AC (或AB )于点E .设点D 的运动时间为()s t ,CDE △的面积为()2cm S .(1)当点D 与点A 重合时,求t 的值;(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.25.如图1,ABC △中,点D ,E ,F 分别在边AB ,BC ,AC 上,BE CE =,点G 在线段CD 上,CG CA =,GF DE =,AFG CDE ∠=∠.(1)填空:与CAG ∠相等的角是________;(2)用等式表示线段AD 与BD 的数量关系,并证明; (3)若90BAC ∠=︒,2ABC ACD ∠=∠(如图2),求ACAB的值.26.在平面直角坐标系xOy 中,函数1F 和2F 的图象关于y 轴对称,它们与直线()0x t t =>分别相交于点P ,Q .(1)如图,函数1F 为1y x =+,当2t =时,PQ 的长为________; (2)函数1F 为3y x=,当6PQ =时,t 的值为________; (3)函数1F 为()20y ax bx c a =++≠,①当t 时,求OPQ △的面积; ②若0c >,函数1F 和2F 的图象与x 轴正半轴分别交于点()5,0A ,()1,0B ,当1+c x c 时,设函数1F 的最大值和函数2F 的最小值的差为h ,求h 关于c 的函数解析式,并直接写出自变量c 的取值范围.。
2020年辽宁省大连市初中毕业升学统一考试初中数学
2020年辽宁省大连市初中毕业升学统一考试初中数学数 学〔本试卷共150分,考试时刻120分钟〕请考生预备好圆规,直尺、三角板、运算器等答题工具,祝愿所有考生都能发挥最正确水平。
一、选择题(此题8小题,每题3分,共24分)讲明:将以下各题唯独正确的答案代号A 、B 、C 、D 填到题后的括号内。
1.-8的相反数是 ( ) A .8 B .-8 C .81 D .-81 2.在平面直角坐标系中,点P (-2,3)在 ( )A .第一象限B .第二象限C .第三象限D .第四象限3.在一条东西向的跑道上,小亮先向东走了8米,记作〝+8米〞,又向西走了10米,现在他的位置可记作 ( ) A .+2米 B .-2米 C .+18米 D .-18米4.如图1,在矩形ABCD 中,对角线AC 、BD 相交于点O ,假设O A = 2,那么BD 的长为 ( )A .4B .3C .2D .1 5.以下图形能折成正方体的是 ()DC B A6.如图2,AB 、A C 是⊙O 的两条切线,B 、C 是切点,假设∠A = 70°,那么∠BOC 的度数为 ( )A .130°B .120°C .110°D .100°7.五箱苹果的质量分不为(单位:千克):18,20,21,22,19,那图 1DCBA 图 2C OB A么这五箱苹果质量的平均数和中位数分不为 ( ) A .19和20 B .20和19 C .20和20 D .20和218.如图3,直线b kx y +=通过点A 、B ,那么k 的值为 ( ) A . 3 B .23 C .32 D .23- 二、填空题(此题共7小题,每题3分,共21分) 讲明:将答案直截了当填在题后的横线上。
9.把780 000用科学记数法表示为_______________________. 10.方程022=-x 的解为____________________________. 11.如图4,在△ABC 中,∠C = 90°,AB = 10cm ,54sin =A ,那么BC 的长为_________cm . 12.运算:x x xx 112-⋅-=_____________. 13.如图5,为测量学校旗杆的高度,小东用长为3.2m 的竹竿做测量工具.移动竹竿,全竹竿、旗杆顶端的影子恰好落在地面的同一点,现在,竹竿与这一点相距8m ,与旗杆相距22米,那么旗杆的高为_____________m .14.钟面上分针的长是6cm ,通过10分钟,分针在钟面上扫过的面积是______________cm 2.(结果用含π代数式表示)15.如图6,A 、B 是双曲线xky =的一个分支上的两点,且点B (a ,b ) 在点A 的右侧,那么b 的取值范畴是___________________. 三、解答题(此题共5小题,其中16、17题各9分,18、 19、20题各10分,共48分)16.如图7,在△ABC 中,AB = AC ,点D 、E 分不是AB 、AC 的中点,点F 是BE 、CD 的交点,请写出图中两组全等的三角形,并选出其中一组加以证明. (要求:写出证明过程中的重要依据)图 33-2yxAB O 图 4ABC21Oyx图 7FEDCBA17.解方程:13112=++xx x 18.某学校为丰富大课间自由活动的内容,随机选取本校100名学生进行调查,调查内容是〝你最喜爱的自由活动项目是什么〞,整理收集到的数据,绘制成图8. ⑴学校采纳的调查方式是______________________;⑵求喜爱〝踢毽子〞的学生人数,并中图8中将〝踢毽子〞部分的图形补充完整; ⑶该校共有800名学生,请估量喜爱〝跳绳〞的学生人数.图 819.如图9,在直角坐标系中,图形①与图形②关于点P 成中心对称. ⑴画出对称中心P ,并写出点P 的坐标;⑵将图形②向下平移4个单位,画出平移后的图形③,并判定图形③与图形①的位置关系.(直截了当写出结果)图 920.为丰富学生的校园文化生活,振兴中学举办了一次学生才艺竞赛,三个年级都有男、女各一名选手进入决赛.初一年级选手编号为男1号、女1号,初二年级选手编号为男2号、女2号,初三年级选手编号为男3号、女3号.竞赛规那么是男、女各一名选手组成搭档展现才艺.⑴用列举法讲明所有可能显现搭档的结果;⑵求同一年级男、女选手组成搭档的概率;⑶求高年级男选手与低年级女选手组成搭档的概率.四、解答题(此题共3小题,21、22题各8分,其中23题7分,共23分)21.星期天,小强骑自行车到郊外与同学一起游玩.从家动身2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,图10是他们离家的路程y(千米)与时刻x(时)的函数图象.小强骑车的速度为15千米/时,妈妈驾车的速度为60千米/时.⑴小强家与游玩地的距离是多少?⑵妈妈动身多长时刻与小强相遇?图 1022.某班级为预备元旦联欢会,欲购买价格分不为2元、4元和10元的三种奖品,每种奖品至少购买一件,共买16件,恰好用50元.假设2元的奖品购买a 件. ⑴用含a 的代数式表示另外两种奖品的件数; ⑵请你设计购买方案,并讲明理由.23.如图11-1,小明在研究正方形ABCD 的有关咨询题时,得出:〝在正方形ABCD 中,假如点E 是CD 的中点,点F 是BC 边上的一点,且∠F AE =∠EAD ,那么EF ⊥AE 〞.他又将〝正方形〞改为〝矩形〞、〝菱形〞和〝任意平行四边形〞(如图11-2、11-3、图11-4),其他条件不变,发觉仍旧有〝EF ⊥AE 〞的结论.你同意小明的观点吗?假设同意,请结合图11-4加以证明;假设不同意,请讲明理由. 图11-4图11-3图11-2图11-1ABCDE F A BCDE F ABCDF EF EDC BA五、解答题和附加题(此题共3小题,24、25题各12分,26题10分,共34分,附加题5分,全卷累积不超过150分,建议考生最后答附加题) 24.抛物线22++=x ax y .⑴当a =-1时,求此抛物线的顶点坐标和对称轴; ⑵假设代数式22++-x x 的值为正整数,求x 的值;⑶当1a a =时,抛物线22++=x ax y 与x 轴的正半轴相交于点M (m ,0);当2a a =时,抛物线22++=x ax y 与x 轴的正半轴交于点N (n ,0).假设点M 在点N 的左边,试比较1a 与2a 的大小.25.两个全等的Rt △ABC 和Rt △EDA 如图12放置,点B 、A 、D 在同一直线上. 操作:在图12中,作∠ABC 的平分线BF ,过点D 作DF ⊥BF ,垂足为F ,连结CE . 探究:线段BF 、CE 的关系,并证明你的结论.讲明:假如你无法证明探究所得的结论,能够将〝两个全等的Rt △ABC 和Rt △EDA 〞改为〝两个全等的等腰直角△ABC 和等腰直角△EDA(点C 、A 、E 在同一直线上)〞,其他条件不变,完成你的证明,此证明过程最多得...2.分.. 图12EDCB A26.如图13,直线AB 交x 轴于点A (2,0),交抛物线2ax y =于点B(1,3),点C 到△OAB各顶点的距离相等,直线AC 交y 轴于点D .当x > 0时,在直线OC 和抛物线2ax y =上是否分不存在点P 和点Q ,使四边形DOPQ 为专门的梯形?假设存在,求点P 、Q 的坐标;假设不存在,讲明理由.附加题:在第26题中,抛物线的解析式和点D 的坐标不变(如图14).当x > 0时,在直线kx y =(0 < k < 1)和这条抛物线上,是否分不存在点P 和点Q ,使四边形DOPQ 为以OD 为底的等腰梯形.假设存在,求点P、Q的坐标;假设不存在,讲明理由.图14。
辽宁省大连市2020年部编人教版中考数学试题及答案精析(word版).doc
2020年辽宁省大连市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分1.﹣3的相反数是()A.B.C.3 D.﹣32.在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=24.如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40° B.70° C.80° D.140°5.不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm2二、填空题:本大题共8小题,每小题3分,共24分9.因式分解:x2﹣3x=.10.若反比例函数y=的图象经过点(1,﹣6),则k的值为.11.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.12.下表是某校女子排球队队员的年龄分布年龄/岁13 14 15 16频数 1 1 7 3则该校女子排球队队员的平均年龄是岁.13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.14.若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是.15.如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).16.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是.三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17.计算:(+1)(﹣1)+(﹣2)0﹣.18.先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.19.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分分组家庭用水量x/吨家庭数/户A 0≤x≤4.0 4B 4.0<x≤6.5 13C 6.5<x≤9.0D 9.0<x≤11.5E 11.5<x≤14.0 6F x>4.0 3根据以上信息,解答下列问题(1)家庭用水量在4.0<x≤6.5范围内的家庭有户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是%;(2)本次调查的家庭数为户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是%;(3)家庭用水量的中位数落在组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.22.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.23.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC (1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是;(2)求S关于x的函数关系式,并写出x的取值范围.25.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).26.如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.2020年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.﹣3的相反数是()A.B.C.3 D.﹣3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(1,5)所在的象限是第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=2【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:2x+3=7,移项合并得:2x=4,解得:x=2,故选D【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40° B.70° C.80° D.140°【考点】平行线的性质.【分析】先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数.【解答】解:∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,故选B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③同旁内角互补;并会书写角平分线定义的三种表达式:若AP平分∠BAC,则①∠BAP=∠PAC,②∠BAP=∠BAC,③∠BAC=2∠BAP.5.不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<1【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>﹣2,解②得x<1,则不等式组的解集是:﹣2<x<1.故选D.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是:=.故选C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2,据此列方程即可.【解答】解:若月平均增长率为x,则该文具店五月份销售铅笔的支数是:100(1+x)2,故选:B.【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm2【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为10÷2=5cm,故表面积=πrl+πr2=π×5×8+π×52=65πcm2.故选:B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题:本大题共8小题,每小题3分,共24分9.因式分解:x2﹣3x=x(x﹣3).【考点】因式分解-提公因式法.【专题】因式分解.【分析】确定公因式是x,然后提取公因式即可.【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.10.若反比例函数y=的图象经过点(1,﹣6),则k的值为﹣6.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(1,﹣6)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,﹣6),∴k=1×(﹣6)=﹣6.故答案为:﹣6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.【考点】旋转的性质.【分析】由旋转的性质得:AB=AD=1,∠BAD=∠CAE=90°,再根据勾股定理即可求出BD.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.【点评】本题考查了旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.12.下表是某校女子排球队队员的年龄分布年龄/岁13 14 15 16频数 1 1 7 3则该校女子排球队队员的平均年龄是15岁.【考点】加权平均数;频数与频率.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15岁.故答案为:15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是24.【考点】菱形的性质.【分析】直接利用菱形的性质结合勾股定理得出BD的长,再利用菱形面积求法得出答案.【解答】解:连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,∴BO==3,故BD=6,则菱形的面积是:×6×8=24.故答案为:24.【点评】此题主要考查了菱形的性质以及勾股定理,正确求出BD的长是解题关键.14.若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是a>﹣.【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的方程2x2+x﹣a=0有两个不相等的实数根,∴△=12﹣4×2×(﹣a)=1+8a>0,解得:a>﹣.故答案为:a>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a>0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.15.如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为11海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).【考点】解直角三角形的应用-方向角问题.【分析】作PC⊥AB于C,先解Rt△PAC,得出PC=PA=9,再解Rt△PBC,得出PB=≈11.【解答】解:如图,作PC⊥AB于C,在Rt△PAC中,∵PA=18,∠A=30°,∴PC=PA=×18=9,在Rt△PBC中,∵PC=9,∠B=55°,∴PB=≈≈11,答:此时渔船与灯塔P的距离约为11海里.故答案为11.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.16.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是(﹣2,0).【考点】抛物线与x轴的交点.【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标.【解答】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣2,即A点坐标为(﹣2,0),故答案为:(﹣2,0).【点评】本题考查了抛物线与x轴的交点,利用函数值相等的点关于对称轴对称是解题关键.三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17.计算:(+1)(﹣1)+(﹣2)0﹣.【考点】实数的运算;零指数幂.【分析】本题涉及平方差公式、零指数幂、三次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(+1)(﹣1)+(﹣2)0﹣=5﹣1+1﹣3=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算.18.先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2﹣4a2﹣3ab=ab+b2,当a=1,b=时,原式=+2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据平行线的性质得出∠ABE=∠CDF,求出∠AEB=∠CFD=90°,根据AAS推出△ABE≌△CDF,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明△ABE≌△CDF是解决问题的关键.20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分分组家庭用水量x/吨家庭数/户A 0≤x≤4.0 4B 4.0<x≤6.5 13C 6.5<x≤9.0D 9.0<x≤11.5E 11.5<x≤14.0 6F x>4.0 3根据以上信息,解答下列问题(1)家庭用水量在4.0<x≤6.5范围内的家庭有13户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是30%;(2)本次调查的家庭数为50户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是18%;(3)家庭用水量的中位数落在C组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.【考点】扇形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)观察表格和扇形统计图就可以得出结果;(2)利用C组所占百分比及户数可算出调查家庭的总数,从而算出D组的百分比;(3)从第二问知道调查户数为50,则中位数为第25、26户的平均数,由表格可得知落在C组;(4)计算调查户中用水量不超过9.0吨的百分比,再乘以小区内的家庭数就可以算出.【解答】解:(1)观察表格可得4.0<x≤6.5的家庭有13户,6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比为30%;(2)调查的家庭数为:13÷26%=50,6.5<x≤9.0 的家庭数为:50×30%=15,D组9.0<x≤11.5 的家庭数为:50﹣4﹣13﹣6﹣3﹣15=9,9.0<x≤11.5 的百分比是:9÷50×100%=18%;(3)调查的家庭数为50户,则中位数为第25、26户的平均数,从表格观察都落在C组;故答案为:(1)13,30;(2)50,18;(3)C;(4)调查家庭中不超过9.0吨的户数有:4+13+15=32,=128(户),答:该月用水量不超过9.0吨的家庭数为128户.【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【考点】一元一次方程的应用.【专题】应用题.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.22.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【考点】抛物线与x轴的交点;二次函数的性质.【分析】(1)利用坐标轴上点的特点求出A、B、C点的坐标,再用待定系数法求得直线BC的解析式;(2)设点D的横坐标为m,则纵坐标为(m,),E点的坐标为(m,),可得两点间的距离为d=,利用二次函数的最值可得m,可得点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则纵坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,∴当m==时,d===,最大∴D点的坐标为(,).【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出D的坐标,利用二次函数最值得D点坐标是解答此题的关键.23.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC (1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.【考点】切线的判定.【分析】(1)连接OD,由AB是⊙O的直径,得到∠ACB=90°,求得∠A+∠ABC=90°,等量代换得到∠BOD=∠A,推出∠ODE=90°,即可得到结论;(2)连接BD,过D作DH⊥BF于H,由弦且角动量得到∠BDE=∠BCD,推出△ACF与△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH=BF=1,则FH=1,根据勾股定理得到HD==3,然后根据勾股定理列方程即可得到结论.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)解:连接BD,过D作DH⊥BF于H,∵DE与⊙O相切,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,∵∠AFC=∠DFB,∴△ACF与△FDB都是等腰三角形,∴FH=BH=BF=1,则FH=1,∴HD==3,在Rt△ODH中,OH2+DH2=OD2,即(OD﹣1)2+32=OD2,∴OD=5,∴⊙O的半径是5.【点评】本题考查了切线的判定和性质,等腰三角形的判定,直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是3;(2)求S关于x的函数关系式,并写出x的取值范围.【考点】四边形综合题.【分析】(1)由图象即可解决问题.(2)分三种情形①如图1中,当0≤x≤1时,作DM⊥AB于M,根据S=S△ABC﹣S△BDF﹣S即四边形ECAG可解决.②如图2中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,利用勾股定理求出x,再根据S=S△ABC ﹣S△BDF﹣S即可解决.四边形ECAG③如图3中,根据S=CD•CM,求出CM即可解决问题.【解答】解;(1)由图象可知BC=3.故答案为3.(2)①如图1中,当0≤x≤1时,作DM⊥AB于M,由题意BC=3,AC=2,∠C=90°,∴AB==,∵∠B=∠B,∠DMB=∠C=90°,∴△BMD∽△BCA,∴==,∴DM=,BM=,∵BD=DF,DM⊥BF,∴BM=MF,∴S△BDF=x2,∵EG∥AC,∴=,∴=,∴EG=(x+2),∴S= [2+(x+2)]•(1﹣x),四边形ECAG∴S=S△ABC﹣S△BDF﹣S=3﹣x2﹣[2+(x+2)]•(1﹣x)=﹣x2+x+.四边形ECAG②如图②中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,∵AN2=CN2+AC2,∴x2=22+(3﹣x)2,∴x=,∴当1<x≤时,S=S△ABC﹣S△BDF=3﹣x2,③如图3中,当<x≤3时,∵DM∥AN,∴=,∴=,∴CM=(3﹣x),∴S=CD•CM=(3﹣x)2,综上所述S=.【点评】本题考查四边形综合题、等腰三角形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会分类讨论,正确画出图形,属于中考压轴题.25.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).【考点】相似形综合题.【分析】(1)作AF⊥BC,判断出△ABF≌△BAE(AAS),得出BF=AE,即可;(2)先求出tan∠DAE=,再由tan∠F=tan∠DAE,求出CG,最后用△DCG∽△ACE求出AC;(3)构造含30°角的直角三角形,设出DG,在Rt△ABH,Rt△ADN,Rt△ABH中分别用a,k表示出AB=2a(k+1),BH=a(k+1),BC=2BH=2a(k+1),CG=a(2k+1),DN=ka,最后用△NDE∽△GDC,求出AE,EC即可.【解答】证明:(1)如图2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,,∴△ABF≌△BAE(AAS),∴BF=AE∵AB=AC,AF⊥BC,∴BF=BC,∴BC=2AE,故答案为AAS(2)如图3,连接AD,作CG⊥AF,在Rt△ABC中,AB=AC,点D是BC中点,∴AD=CD,∵点E是DC中点,∴DE=CD=AD,∴tan∠DAE===,∵AB=AC,∠BAC=90°,点D为BC中点,∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE=,∴,∴CG=×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD=AC,CE=CD=AC,∴,∴AC=4;∴AB=4;(3)如图4,过点D作DG⊥BC,设DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG=a,∵AD=kDB,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),过点A作AH⊥BC,在Rt△ABH中,∠B=30°.∴BH=a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=2a(k+1),∴CG=BC﹣BG=a(2k+1),过D作DN⊥AC交CA延长线与N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN=ka,∵∠DGC=∠AND=90°,∠AED=∠BCD,∴△NDE∽△GDC.∴,∴,∴NE=3ak(2k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),∴=.【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.26.如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是(0,);(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.【考点】二次函数综合题.【分析】(1)由抛物线解析式可求得A点坐标,再利用对称可求得B点坐标;(2)可先用k表示出C点坐标,过B作BD⊥l于点D,条件可知P点在x轴上方,设P点纵坐标为y,可表示出PD、PB的长,在Rt△PBD中,利用勾股定理可求得y,则可求出PB的长,此时可得出P点坐标,代入抛物线解析式可判断P点在抛物线上;(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC的长,代入抛物线解析式可求得P点坐标.【解答】解:(1)∵抛物线y=x2+与y轴相交于点A,∴A(0,),∵点B与点O关于点A对称,∴BA=OA=,∴OB=,即B点坐标为(0,),故答案为:(0,);(2)∵B点坐标为(0,),∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣,∴OC=﹣,∵PB=PC,∴点P只能在x轴上方,如图1,过B作BD⊥l于点D,设PB=PC=m,则BD=OC=﹣,CD=OB=,∴PD=PC﹣CD=m﹣,在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,即m2=(m﹣)2+(﹣)2,解得m=+,∴PB+,∴P点坐标为(﹣,+),当x=﹣时,代入抛物线解析式可得y=+,∴点P在抛物线上;(3)如图2,连接CC′,∵l∥y轴,∴∠OBC=∠PCB,又PB=PC,∴∠PCB=∠PBC,∴∠PBC=∠OBC,又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,∴∠PBC=∠PBC′,∴∠OBC=∠CBP=∠C′BP=60°,在Rt△OBC中,OB=,则BC=1∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,∴P点坐标为(,1).【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于PC的长的方程是解题的关键,在(3)中求得∠OBC=∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
辽宁省大连市中考数学真题试题(含解析)
2020年辽宁省大连市中考数学试卷一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)﹣2的绝对值是()A.2 B.C.﹣D.﹣22.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)2020年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8x1044.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是()A.B.C.D.6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)计算(﹣2a)3的结果是()A.﹣8a3B.﹣6a3C.6a3D.8a38.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为()A.2B.4 C.3 D.210.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.二、填空题(本题共6小题,每小題分,共18分)11.(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D=°.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).16.(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x(单位;min)的函数图象,则a﹣b=.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.(9分)计算:(﹣2)2++618.(9分)计算:÷+19.(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.20.(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.根据以上信息,解答下列问题(1)被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2)被测试男生的总人数为人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为%;(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21.(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2020年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2020年村该村的人均收入是多少元?22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B 在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长.23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED 在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.25.(12分)阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB =kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).26.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.2020年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.【解答】解:﹣2的绝对值是2.故选:A.2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.3.【解答】解:将数58000用科学记数法表示为5.8×104.故选:D.4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.5.【解答】解:5x+1≥3x﹣1,移项得5x﹣3x≥﹣1﹣1,合并同类项得2x≥﹣2,系数化为1得,x≥﹣1,在数轴上表示为:故选:B.6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.7.【解答】解:(﹣2a)3=﹣8a3;故选:A.8.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.9.【解答】解:连接AC交EF于点O,如图所示:∵四边形ABCD是矩形,∴AD=BC=8,∠B=∠D=90°,AC===4,∵折叠矩形使C与A重合时,EF⊥AC,AO=CO=AC=2,∴∠AOF=∠D=90°,∠OAF=∠DAC,∴则Rt△FOA∽Rt△ADC,∴=,即:=,解得:AF=5,∴D′F=DF=AD﹣AF=8﹣5=3,故选:C.10.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.二、填空题(本题共6小题,每小題分,共18分)11.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130.12.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【解答】解:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°,∵CD=AC,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD===2.故答案为2.14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.15.【解答】解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3,∴AB=AC﹣BC=3.3≈3(m),故答案为:3.16.【解答】解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.【解答】解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.18.【解答】解:原式=×﹣=﹣=.19.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE.20.【解答】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人,被测试男生总数15÷0.3=50(人),成绩等级为“及格”的男生人数占被测试男生总人数的百分比:,故答案为15,90;(2)被测试男生总数15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:,故答案为50,10;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%,该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人)答:该校八年级男生成绩等级为“良好”的学生人数72人.四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2020年村该村的人均收入是26620元.22.【解答】解:(1)∵点A(3,2)在反比例函数y=(x>0)的图象上,∴k=3×2=6,∴反比例函数y=;答:反比例函数的关系式为:y=;(2)过点A作AE⊥OC,垂足为E,连接AC,设直线OA的关系式为y=kx,将A(3,2)代入得,k=,∴直线OA的关系式为y=x,∵点C(a,0),把x=a代入y=x,得:y=a,把x=a代入y=,得:y=,∴B(a,),即BC═a,D(a,),即CD=∵S△ACD=,∴CD•EC=,即,解得:a=6,∴BD=BC﹣CD==3;答:线段BD的长为3.23.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠PAC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.【解答】解:(1)当x=0时,y=3,当y=0时,x=4,∴直线y=﹣x+3与x轴点交A(4,0),与y轴交点B(0,3)∴OA=4,OB=3,∴AB=,因此:线段AB的长为5.(2)当CD∥OA时,如图,∵BD=OC,OC=m,∴BD=m,由△BCD∽△BOA得:,即:,解得:m=;①当0<m≤时,如图1所示:DE=m≤,此时点E在△AOB的内部,S=0 (0<m≤);②当<m≤3时,如图2所示:过点D作DF⊥OB,垂足为F,此时在x轴下方的三角形与△CDF全等,∵△BDF∽△BAO,∴,∴DF=,同理:BF=m,∴CF=2m﹣3,∴S△CDF==(2m﹣3)×=m2﹣4m,即:S=m2﹣4m,(<m≤3)③当m>3时,如图3所示:过点D作DF⊥y轴,DG⊥x轴,垂足为、FG,同理得:DF=,BF=m,∴OF=DG=m﹣3,AG=m﹣4,∴S=S△OGE﹣S△ADG==∴S=,(m>3)答:S=25.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA∴∵∠ABE=∠BAF,∠ABE=∠AFB∴△ABF∽△BAD∴,且AB=kBD,AF=BC=BF∴k=,即∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°∴∠ABH=∠C,且∠BAC=∠BAC∴△ABH∽△ACB∴∴AB2=AC×AH设BD=m,AB=km,∵∴BC=2k2m∴AC==km∴AB2=AC×AH(km)2=km×AH∴AH=∴HC=AC﹣AH=km﹣=∴26.【解答】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,t=2m﹣1,故答案为:2m﹣1;(2)a=﹣1时,C1:y=(x﹣1)2﹣4,①当t<1时,x=时,有最小值y2=,x=t时,有最大值y1=﹣(t﹣1)2+4,则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解;②1≤t时,x=1时,有最大值y1=4,x=时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=≠1(舍去);③当t时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=,当C2过点D′时,同理可得:a=1,故:0<a或a≥1;当a<0时,当C2过点D′时,﹣3a=1,解得:a=﹣,故:a≤﹣;综上,故:0<a或a≥1或a≤﹣.。
2020年辽宁省大连市中考数学试卷
2020年辽宁省大连市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)下列四个数中,比﹣1小的数是()A.﹣2B.﹣C.0D.12.(3分)如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()A.360×102B.36×103C.3.6×104D.0.36×1054.(3分)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°5.(3分)平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)6.(3分)下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(﹣2a2)3=﹣6a67.(3分)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.8.(3分)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60°方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.100m C.100m D.m9.(3分)抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是()A.(,0)B.(3,0)C.(,0)D.(2,0)10.(3分)如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°二、填空题(本题共6小题,每小题3分,共18分)11.(3分)不等式5x+1>3x﹣1的解集是.12.(3分)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A110B28C75这个公司平均每人所创年利润是万元.13.(3分)我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.14.(3分)如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.15.(3分)如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.16.(3分)如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.(9分)计算(+1)(﹣1)++.18.(9分)计算﹣1.19.(9分)如图,△ABC中,AB=AC,点D,E在边BC上,BD=CE.求证:∠ADE=∠AED.20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率1本42本0.33本4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为%;(2)被调查学生的总人数为人,其中读书量为2本的学生数为人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?22.(10分)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=,BC=1,求PD的长.23.(10分)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.(11分)如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点B出发,沿边BA→AC以2cm/s的速度向终点C运动,过点D作DE∥BC,交边AC(或AB)于点E.设点D的运动时间为t(s),△CDE的面积为S(cm2).(1)当点D与点A重合时,求t的值;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.25.(11分)如图1,△ABC中,点D,E,F分别在边AB,BC,AC上,BE=CE,点G 在线段CD上,CG=CA,GF=DE,∠AFG=∠CDE.(1)填空:与∠CAG相等的角是;(2)用等式表示线段AD与BD的数量关系,并证明;(3)若∠BAC=90°,∠ABC=2∠ACD(如图2),求的值.26.(12分)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x =t(t>0)分别相交于点P,Q.(1)如图,函数F1为y=x+1,当t=2时,PQ的长为;(2)函数F1为y=,当PQ=6时,t的值为;(3)函数F1为y=ax2+bx+c(a≠0),①当t=时,求△OPQ的面积;②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.2020年辽宁省大连市中考数学试卷参考答案一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.A;2.B;3.C;4.D;5.B;6.C;7.D;8.A;9.B;10.D;二、填空题(本题共6小题,每小题3分,共18分)11.x>﹣1;12.6.1;13.x(x+12)=864;14.100;15.8;16.;三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17.;18.;19.;20.4;20;50;15;四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)21.;22.;23.;五、解答题(本题共3小题,其中24、25题各11分,26题12分,共34分)24.;25.∠CGA;26.4;1;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年辽宁省大连市中考数学试卷
一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)
1.(3分)下列四个数中,比﹣1小的数是()
A.﹣2B.−1
2C.0D.1
2.(3分)如图是由5个相同的小正方体组成的立体图形,它的主视图是()
A.B.
C.D.
3.(3分)2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为()
A.360×102B.36×103C.3.6×104D.0.36×105 4.(3分)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()
A.50°B.60°C.70°D.80°
5.(3分)平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)6.(3分)下列计算正确的是()
A.a2+a3=a5B.a2•a3=a6
C .(a 2)3=a 6
D .(﹣2a 2)3=﹣6a 6
7.(3分)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相
同.从袋子中随机摸出一个球,它是红球的概率是( )
A .14
B .13
C .37
D .47 8.(3分)如图,小明在一条东西走向公路的O 处,测得图书馆A 在他的北偏东60°方向,
且与他相距200m ,则图书馆A 到公路的距离AB 为( )
A .100m
B .100√2m
C .100√3m
D .200√33m
9.(3分)抛物线y =ax 2+bx +c (a <0)与x 轴的一个交点坐标为(﹣1,0),对称轴是直线
x =1,其部分图象如图所示,则此抛物线与x 轴的另一个交点坐标是( )
A .(72,0)
B .(3,0)
C .(52,0)
D .(2,0)
10.(3分)如图,△ABC 中,∠ACB =90°,∠ABC =40°.将△ABC 绕点B 逆时针旋转
得到△A ′BC ′,使点C 的对应点C ′恰好落在边AB 上,则∠CAA ′的度数是( )
A .50°
B .70°
C .110°
D .120°
二、填空题(本题共6小题,每小题3分,共18分)
11.(3分)不等式5x +1>3x ﹣1的解集是 .
12.(3分)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万
元
A110
B28
C75
这个公司平均每人所创年利润是万元.
13.(3分)我国南宋数学家杨辉所著《田亩比类乘除算法》中记载了这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步.”其大意为:一个矩形的面积为864平方步,宽比长少12步,问宽和长各多少步?设矩形的宽为x步,根据题意,可列方程为.
14.(3分)如图,菱形ABCD中,∠ACD=40°,则∠ABC=°.
15.(3分)如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=k
x(x>0)
的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.
16.(3分)如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为.
三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)
17.(9分)计算(√2+1)(√2−1)+√−83+√9.
18.(9分)计算x 2+4x+4x+2÷x 2+2x x−2−1.
19.(9分)如图,△ABC 中,AB =AC ,点D ,E 在边BC 上,BD =CE .求证:∠ADE =
∠AED .
20.(12分)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020
版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.
读书量
频数(人) 频率 1本
4 2本
0.3 3本
4本及以上
10
根据以上信息,解答下列问题:
(1)被调查学生中,读书量为1本的学生数为 人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为 %;
(2)被调查学生的总人数为 人,其中读书量为2本的学生数为 人;
(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.
四、解答题(本题共3小题,其中21题9分,22、23题各10分,共29分)
21.(9分)某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?
22.(10分)四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.
(1)如图1,求证∠ABC=2∠ACD;
(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB=5
12,BC=1,
求PD的长.
23.(10分)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.
(1)求这两个气球在上升过程中y关于x的函数解析式;
(2)当这两个气球的海拔高度相差15m时,求上升的时间.。