2015定西市数学中考试题
定西市中考数学试卷
定西市中考数学试卷一、选择题:本大题共10小题.每小题3分.共30定西市中考数学试卷1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数.正确把握相反数的定义是解题关键.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4.不符合题意;B、x4﹣x不能再计算.不符合题意;C、x+x2不能再计算.不符合题意;D、x2•x=x3.符合题意;故选:D.【点评】本题主要考查整式的运算.解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)若一个角为65°.则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角.解决本题的关键是熟记互为补角的和等于180°.4.(3分)已知=(a≠0.b≠0).下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得.3a=2b.A、由原式可得:3a=2b.正确;B、由原式可得2a=3b.错误;C、由原式可得:3a=2b.正确;D、由原式可得:3a=2b.正确;故选:B.【点评】本题考查了比例的性质.主要利用了两内项之积等于两外项之积.5.(3分)若分式的值为0.则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0.∴x2﹣4=0.解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件.正确把握定义是解题关键.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中.在相同条件下各投掷10次.他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.1 11.1 10.9 10.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛.则应该选择()A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看.成绩好的同学有甲、乙.从方差看甲、乙两人中.甲方差小.即甲发挥稳定.故选:A.【点评】本题考查了平均数和方差.熟悉它们的意义是解题的关键.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根.则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4D.k<4【分析】根据判别式的意义得△=42﹣4k≥0.然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0.解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时.方程有两个不相等的实数根;当△=0时.方程有两个相等的实数根;当△<0时.方程无实数根.8.(3分)如图.点E是正方形ABCD的边DC上一点.把△ADE绕点A顺时针旋转90°到△ABF 的位置.若四边形AECF的面积为25.DE=2.则AE的长为()A.5 B. C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积.进而可求出正方形的边长.再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置.∴四边形AECF的面积等于正方形ABCD的面积等于25.∴AD=DC=5.∵DE=2.∴Rt△ADE中.AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质.正确利用旋转的性质得出对应边关系是解题关键.9.(3分)如图.⊙A过点O(0.0).C(.0).D(0.1).点B是x轴下方⊙A上的一点.连接BO.BD.则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC.利用三角函数得出∠DCO=30°.进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC.∵C(.0).D(0.1).∴∠DOC=90°.OD=1.OC=.∴∠DCO=30°.∴∠OBD=30°.故选:B.【点评】此题考查圆周角定理.关键是利用三角函数得出∠DCO=30°.10.(3分)如图是二次函数y=ax2+bx+c(a.b.c是常数.a≠0)图象的一部分.与x轴的交点A 在点(2.0)和(3.0)之间.对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时.y>0.其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系.由抛物线与y轴的交点判断c与0的关系.然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时.y=a﹣b+c;然后由图象确定当x取何值时.y>0.【解答】解:①∵对称轴在y轴右侧.∴a、b异号.∴ab<0.故正确;②∵对称轴x=﹣=1.∴2a+b=0;故正确;③∵2a+b=0.∴b=﹣2a.∵当x=﹣1时.y=a﹣b+c<0.∴a﹣(﹣2a)+c=3a+c<0.故错误;④根据图示知.当m=1时.有最大值;当m≠1时.有am2+bm+c≤a+b+c.所以a+b≥m(am+b)(m为实数).故正确.⑤如图.当﹣1<x<3时.y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系.关键是熟练掌握①二次项系数a决定抛物线的开口方向.当a>0时.抛物线向上开口;当a<0时.抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0).对称轴在y轴左;当a与b异号时(即ab<0).对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0.c).二、填空题:本大题共8小题.每小题4分.共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0.故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值.解答本题的关键是明确它们各自的计算方法.12.(4分)使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义.∴x﹣3>0.∴x>3.∴x的取值范围是x>3.故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件.如果所给式子中含有分母.则除了保证被开方数为非负数外.还必须保证分母不为零.13.(4分)若正多边形的内角和是1080°.则该正多边形的边数是8.【分析】n边形的内角和是(n﹣2)•180°.如果已知多边形的边数.就可以得到一个关于边数的方程.解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式.得(n﹣2)•180=1080.解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角.熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理.求边数的问题就可以转化为解方程的问题来解决.14.(4分)已知某几何体的三视图如图所示.其中俯视图为正六边形.则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱.然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱.其底面边长为3.高为6.所以其侧面积为3×6×6=108.故答案为:108.【点评】本题考查了由三视图判断几何体的知识.解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸.难度不大.15.(4分)已知a.b.c是△ABC的三边长.a.b满足|a﹣7|+(b﹣1)2=0.c为奇数.则c=7.【分析】根据非负数的性质列式求出a、b的值.再根据三角形的任意两边之和大于第三边.两边之差小于第三边求出c的取值范围.再根据c是奇数求出c的值.【解答】解:∵a.b满足|a﹣7|+(b﹣1)2=0.∴a﹣7=0.b﹣1=0.解得a=7.b=1.∵7﹣1=6.7+1=8.∴6<c<8.又∵c为奇数.∴c=7.故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方.解题的关键是明确题意.明确配方法和三角形三边的关系.16.(4分)如图.一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n.﹣4).则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n.﹣4)代入y=﹣x﹣2.求出n的值.再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n.﹣4).∴﹣4=﹣n﹣2.解得n=2.∴P(2.﹣4).又∵y=﹣x﹣2与x轴的交点是(﹣2.0).∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式.体现了数形结合的思想方法.准确确定出n 的值.是解答本题的关键.17.(4分)如图.分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧.三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a.则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°.AB=BC=CA=a.再利用弧长公式求出的长=的长=的长==.那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形.∴∠A=∠B=∠C=60°.AB=BC=CA=a.∴的长=的长=的长==.∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l.圆心角度数为n.圆的半径为R).也考查了等边三角形的性质.18.(4分)如图.是一个运算程序的示意图.若开始输入x的值为625.则第2018次输出的结果为1.【分析】依次求出每次输出的结果.根据结果得出规律.即可得出答案.【解答】解:当x=625时.x=125.当x=125时.x=25.当x=25时.x=5.当x=5时.x=1.当x=1时.x+4=5.当x=5时.x=1.当x=1时.x+4=5.当x=5时.x=1.…(2018﹣3)÷2=1007.5.即输出的结果是1.故答案为:1【点评】本题考查了求代数式的值.能根据求出的结果得出规律是解此题的关键.三、解答题(一);本大题共5小题.共38分.解答应写出必要的文字说明.证明过程或演算步骤19.(6分)计算:÷(﹣1)【分析】先计算括号内分式的减法.再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.20.(6分)如图.在△ABC中.∠ABC=90°.(1)作∠ACB的平分线交AB边于点O.再以点O为圆心.OB的长为半径作⊙O;(要求:不写做法.保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系.直接写出结果.【分析】(1)首先利用角平分线的作法得出CO.进而以点O为圆心.OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点.∵CO平分∠ACB.∴OB=OD.即d=r.∴⊙O与直线AC相切.【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系.正确利用角平分线的性质求出是解题关键.21.(8分)《九章算术》是中国古代数学专著.在数学上有其独到的成就.不仅最早提到了分数问题.也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题.原文如下:今有共买鸡.人出九.盈十一;人出六.不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡.如果每人出9文钱.就会多11文钱;如果每人出6文钱.又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人.鸡的价格为y文钱.根据“如果每人出9文钱.就会多11文钱;如果每人出6文钱.又会缺16文钱”.即可得出关于x、y的二元一次方程组.解之即可得出结论.【解答】解:设合伙买鸡者有x人.鸡的价格为y文钱.根据题意得:.解得:.答:合伙买鸡者有9人.鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用.找准等量关系.正确列出二元一次方程组是解题的关键.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高.中国高铁正迅速崛起.高铁大大缩短了时空距离.改变了人们的出行方式.如图.A.B两地被大山阻隔.由A地到B地需要绕行C地.若打通穿山隧道.建成A.B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°.∠CBA=45°.AC=640公里.求隧道打通后与打通前相比.从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7.≈1.4)【分析】过点C作CD⊥AB于点D.利用锐角三角函数的定义求出CD及AD的长.进而可得出结论.【解答】解:过点C作CD⊥AB于点D.在Rt△ADC和Rt△BCD中.∵∠CAB=30°.∠CBA=45°.AC=640.∴CD=320.AD=320.∴BD=CD=320.不吃20.∴AC+BC=640+320≈1088.∴AB=AD+BD=320+320≈864.∴1088﹣864=224(公里).答:隧道打通后与打通前相比.从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题.解题的关键是学会添加常用辅助线.构造直角三角形解决问题.需要熟记锐角三角函数的定义.23.(10分)如图.在正方形方格中.阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上.那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A.B.C.D.E.F)中任取2个涂黑.得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果.从中找到新图案是轴对称图形的结果数.利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份.其中阴影部分面积占其中的3份.∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA (B.A)(C.A)(D.A)(E.A)(F.A)B (A.B)(C.B)(D.B)(E.B)(F.B)C (A.C)(B.C)(D.C)(E.C)(F.C)D (A.D)(B.D)(C.D)(E.D)(F.D)E (A.E)(B.E)(C.E)(D.E)(F.E)F (A.F)(B.F)(C.F)(D.F)(E.F)由表可知.共有30种等可能结果.其中是轴对称图形的有10种.故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法.用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题.共50分。
2015年青海省中考数学试卷与答案
2015年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分)1.﹣的绝对值是,的算术平方根是.2.4x•(﹣2xy2)=;分解因式:xy2﹣4x=.3.已知关于x的一元二次方程2x2﹣3mx﹣5=0的一个根是﹣1,则m=.4.我省具有发展太阳能光伏发电产业得天独厚的条件.截止2015年,我省光伏并网发电容量将超过5000000千瓦,该数字用科学记数法可以表示为千瓦.5.如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于l,若∠1=58°,则∠2=.6.若实数m,n满足(m﹣1)2+=0,则(m+n)5=.7.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).8.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为.9.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=.10.如图,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是(只需写一个,不添加辅助线).11.在一个不透明的袋子中装有红白两种颜色的球(形状大小质地完全相同)共25个,其中白球有5个.每次从中随机摸出一个球,并记下颜色后放回,那么从袋子中随机摸出一个红球的概率是.12.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由个组成的,依此,第n个图案是由个组成的.二、选择题(本大题共8小题,每小题3分,共24分)13.下列计算正确的是()A.x7÷x4=x11B.(a3)2=a5C.2+3=5D.÷=14.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A. 5 B. 6 C.12 D.1615.在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A.B.C.D.16.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x个零件,依题意下面所列方程正确的是()A.=B.=C.=D.=17.如图中的几何体是由一个正方体切去一个小正方体后形成的,它的俯视图是()A.B.C.D.18.甲、乙、丙、丁四位同学最近五次数学成绩统计如表,如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加即将举行的中学生数学竞赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 5919..已知一次函数y=2x﹣3与反比例函数y=﹣,那么它们在同一坐标系中的图象可能是()A.B.C.D.20.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角形的斜边上,AC与DM,DN分别交于点E,F,把△DEF绕点D旋转到一定位置,使得DE=DF,则∠BDN的度数是()A.105°B.115°C.120°D.135°三、(本大题共3小题,第21题5分,第22题7分,第23题8分,共20分)21..计算:+(π﹣2015)0﹣|﹣2|+2sin60°.22..先化简再求值:,其中.23..如图,为测量某建筑物BC上旗杆AB的高度,小明在距离建筑物BC底部11.4米的点F处,测得视线与水平线夹角∠AED=60°,∠BED=45°.小明的观测点与地面的距离EF为1.6米.(1)求建筑物BC的高度;(2)求旗杆AB的高度(结果精确到0.1米).参考数据:≈1.41,≈1.73.四、(本大题共3小题,第24题8分,第25题8分,第26题8分,共24分)24..如图,梯形ABCD中,AB∥DC,AC平分∠BAD,CE∥DA交AB于点E.求证:四边形ADCE是菱形.25...某玩具商计划生产A、B两种型号的玩具投入市场,初期计划生产100件,生产投入资金不少于22400元,但不超过22500元,且资金要全部投入到生产这两种型号的玩具.假设生产的这两种型号玩具能全部售出,这两种玩具的生产成本和售价如表:型号 A B成本(元)200 240售价(元)250 300(1)该玩具商对这两种型号玩具有哪几种生产方案?(2)该玩具商如何生产,就能获得最大利润?26...如图,在△ABC中,∠B=60°,⊙O是△ABC的外接圆,过点A作⊙O的切线,交CO的延长线于点M,CM交⊙O于点D.(1)求证:AM=AC;(2)若AC=3,求MC的长.五、(本大题共2小题,第27题9分,第28题13分,共22分)27.(9分).为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.28.(13分).如图,二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.(1)求该抛物线的解析式;(2)判断△BCM的形状,并说明理由;(3)探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.2015年青海省中考数学试卷解析1.;2.﹣8x2y2,x(y+2)(y﹣2).3.. 1.4.5×1065.32°.6.﹣1.7..8.(﹣1,﹣1).9.28°.10.AC=DF.11..12.16,3n+1.13.D.14.C.15.A.16.A.17.C18.B.19.D.20.C.21.解:原式=9+1﹣(2﹣)+2×=8+2.22.解:原式=×=×=a﹣2,当a=2+时,原式=2+﹣2=.23.解:(1)过点E作ED⊥BC于D,根据题意得:EF⊥FC,ED∥FC,∴四边形CDEF是矩形,已知底部B的仰角为45°即∠BED=45°,∴∠EBD=45°,∴BD=ED=FC=11.4,∴BC=BD+DC=BD+EF=11.4+1.6=13,答:建筑物BC的高度为13m;(2)已知由E点观测到旗杆顶部A的仰角为60°,即∠AED=60°,∴AD=ED•tan60°≈11.4×1.73≈19.7,∴AB=AD﹣BD=19.7﹣11.4=8.3,答:旗杆AB的高度约为8.3m.24.证明:∵AB∥DC,CE∥DA,∴四边形ADCE是平行四边形,∵AC平分∠BAD,∴∠CAD=∠CAE,又∵CE∥DA,∴∠ACE=∠CAD,∴∠ACE=∠CAE,∴AE=CE,又∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.25.解:(1)设该厂生产A型挖掘机x台,则生产B型挖掘机(100﹣x)台,由“该厂所筹生产资金不少于22400万元,但不超过22500万元”和表中生产成本可得:22400≤200x+240(100﹣x)≤22500,37.5≤x≤40,∵x为整数,∴x取值为38、39、40.故有三种生产方案.即:第一种方案:生产A型挖掘机38台,生产B型挖掘机62台;第二种方案:生产A型挖掘机39台,生产B型挖掘机61台;第三种方案:生产A型挖掘机40台,生产B型挖掘机60台.(2)三种方案获得的利润分别为:第一种方案:38×(250﹣200)+62×(300﹣240)=5620;第二种方案:39×(250﹣200)+61×(300﹣240)=5610;第三种方案:40×(250﹣200)+60×(300﹣240)=5600.故生产A型挖掘机38台,生产B型挖掘机62台的方案获得利润最大.26.(1)证明:连接OA,∵AM是⊙O的切线,∴∠OAM=90°,∵∠B=60°,∴∠AOC=120°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOM=60°,∴∠M=30°,∴∠OCA=∠M,∴AM=AC;(2)作AG⊥CM于G,∵∠OCA=30°,AC=3,∴AG=,由勾股定理的,CG=,则MC=2CG=3.27.解:(1)接受调查的总人数是:=300(人),则步行上学的人数为:300﹣54﹣126﹣12﹣20=88(人).故答案是:300;(2)在扇形统计图中,“步行”的人数所占的百分比是:×100%≈29.3%;“其他方式”所在扇形的圆心角度数是:360°××100%=24°.故答案是:29.3%;24°;(3)画树状图:由图可知,共有20种等可能的结果,其中一男一女有12种结果;则P(一男一女)==.28.解:(1)∵二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,∴,解得:,则抛物线解析式为y=x2﹣2x﹣3;(2)△BCM为直角三角形,理由为:对于抛物线解析式y=x2﹣2x﹣3=(x﹣1)2﹣4,即顶点M坐标为(1,﹣4),令x=0,得到y=﹣3,即C(0,﹣3),根据勾股定理得:BC=3,BM=2,CM=,∵BM2=BC2+CM2,∴△BCM为直角三角形;(3)如图1,连接AC,∵△COA∽△CAP,△PCA∽△BCD,∴Rt△COA∽Rt△BCD,P点与O点重合,∴点P(0,0).如图2,过A作AP1⊥AC交y轴正半轴于P1,∵Rt△CAP1∽Rt△COA∽Rt△BCD,∴=,即=,∴点P1(0,).如图3,过C作CP2⊥AC交x轴正半轴于P2,∵Rt△P2CA∽Rt△COA∽Rt△BCD,∴=,即=,AP2=10,∴点P2(9,0).∴符合条件的点有三个:O(0,0),P1(0,),P2(9,0)。
定西市数学中考评价检测试卷(一)
定西市数学中考评价检测试卷(一)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) -2013的绝对值是A . 2013B . -2013C .D .2. (2分)(2017·徐州) 肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A . 7.1×107B . 0.71×10﹣6C . 7.1×10﹣7D . 71×10﹣83. (2分)如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A .B .C .D .4. (2分) (2018八上·许昌期末) 下列运算正确的是()A .B .C .D .5. (2分) (2017七下·莆田期末) 下列调查中,适合进行普查的是()A . 《新闻联播》电视栏目的收视率B . 我国中小学生喜欢上数学课的人数C . 一批灯泡的使用寿命D . 一个班级学生的体重6. (2分)某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A .B .C .D .7. (2分)(2019·新宾模拟) 方程的根的情况是()A . 有两个不相等的实数根B . 没有实数根C . 有两个相等的实数根D . 有一个实数根8. (2分) (2019九上·兰州期末) 小芳和小丽是乒乓球运动员,在一次比赛中,每人只允许报“双打”或“单打”中的一项,那么至少有一人报“单打”的概率为()A .B .C .D .9. (2分)(2014·湖州) 如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正确的是()A . ①②③B . ①②④C . ①③④D . ②③④10. (2分)如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C为顶点的三角形与△AOB相似(不包括全等),则点C的个数是()A . 1B . 2C . 3D . 4二、填空题 (共5题;共6分)11. (1分) (2019七下·巴南月考) +- =________.12. (1分)若点p(a+1,a﹣2)在第四象限,则a的取值范围为________.13. (1分)(2013·徐州) 如图,点A、B、C在⊙O上,若∠C=30°,则∠AOB的度数为________°.14. (2分)如图,AB是⊙O的直径,点C在⊙O上,∠AOC=40°,D是BC弧的中点,则∠ACD=________.15. (1分)(2016·遵义) 如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE= ,S△BDE= ,则AC=________.三、解答题 (共8题;共27分)16. (5分)先化简,再求值:,其中x=﹣1.5,y=2.17. (7分)(2018·江城模拟) 国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我区就“你每天在校体育活动时间是多少”的问题随机调查了区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h B组:0.5h≤t<1h C组:1h≤t<1.5h D组:t≥1.5h请根据上述信息解答下列问题:(1) C组的人数是________.(2)本次调查数据的中位数落在________组内;(3)若我区有5400名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?18. (2分) (2017八下·定安期末) 如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y= 的图象经过点C,一次函数y=ax+b的图象经过点A、C,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.19. (2分)(2018·朝阳模拟) 如图,BD是□ABCD的对角线,AB⊥BD,BD=8cm,AD=10cm,动点P从点D出发,以5cm/s的速度沿DA运动到终点A,同时动点Q从点B出发,沿折线BD—DC运动到终点C,在BD、DC上分别以8cm/s、6cm/s的速度运动.过点Q作QM⊥AB,交射线AB于点M,连接PQ,以PQ与QM为边作□PQMN.设点P的运动时间为t(s)(t>0),□PQMN与□ABCD重叠部分图形的面积为S(cm2).(1) AP=________cm(同含t的代数式表示).(2)当点N落在边AB上时,求t的值.(3)求S与t之间的函数关系式.(4)连结NQ,当NQ与△ABD的一边平行时,直接写出t的值.20. (5分)(2018·烟台) 汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)21. (2分) (2015八下·成华期中) 如图,点A的坐标是(﹣2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.22. (2分)(2019·武汉模拟) 如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥CM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若 =2,求的值;(3)若 =n,当n为何值时,MN∥BE?23. (2分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1 , 0),C(x2 , 0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共27分)16-1、17-1、17-2、17-3、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、。
2015年甘肃省白银市、定西市、平凉市、酒泉市、临夏州中考数学试题(含答案)
2015年甘肃省定西市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)B△BDE△CDE 3,则S△DOE:S△AOC的值为()B10.(3分)(2015•定西)如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 与点B 、C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E .设BP=x ,BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )B11.(3分)(2015•定西)分解因式:x 3y ﹣2x 2y+xy= . 12.(3分)(2015•定西)分式方程的解是 .13.(3分)(2015•定西)在函数y=中,自变量x 的取值范围是 .14.(3分)(2015•定西)定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为 .15.(3分)(2015•定西)已知α、β均为锐角,且满足|sin α﹣|+=0,则α+β=.16.(3分)(2015•定西)关于x 的方程kx 2﹣4x ﹣=0有实数根,则k 的取值范围是 . 17.(3分)(2015•定西)如图,半圆O 的直径AE=4,点B ,C ,D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为 .18.(3分)(2015•定西)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是 ,2016是第 个三角形数. 三、解答题(本题共5小题,共26分) 19.(4分)(2015•定西)计算:()0++(﹣1)2015﹣tan60°. 20.(4分)(2015•定西)先化简,再求值:÷(1﹣),其中x=0.21.(6分)(2015•定西)如图,已知在△ABC 中,∠A=90°(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P 的面积.22.(6分)(2015•定西)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2015•定西)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.四、解答题(本题共5小题,共40分)24.(7分)(2015•定西)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.(1)训练后篮球定时定点投篮人均进球数为个;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.25.(7分)(2015•定西)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)26.(8分)(2015•定西)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.27.(8分)(2015•定西)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.28.(10分)(2015•定西)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由2015年甘肃省定西市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)2.(3分)(2015•定西)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示5.(3分)(2015•定西)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()B2015年投入35007.(3分)(2015•定西)今年来某县加大了对教育经费的投入,2013年投入2500万元,ABC=∠AOC=9.(3分)(2015•定西)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()B=,,10.(3分)(2015•定西)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()B,即二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2015•定西)分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.12.(3分)(2015•定西)分式方程的解是x=2.13.(3分)(2015•定西)在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.14.(3分)(2015•定西)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为x>﹣1.15.(3分)(2015•定西)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=75°.|+16.(3分)(2015•定西)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.=0,﹣)17.(3分)(2015•定西)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.=,,+=,=18.(3分)(2015•定西)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45,2016是第63个三角形数.三、解答题(本题共5小题,共26分)19.(4分)(2015•定西)计算:()0++(﹣1)2015﹣tan60°.×20.(4分)(2015•定西)先化简,再求值:÷(1﹣),其中x=0.÷﹣•,21.(6分)(2015•定西)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.AP=ABP=AP=22.(6分)(2015•定西)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)(2015•定西)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.)代数式所有可能的结果共有种,其中代数式是分式的有种:=四、解答题(本题共5小题,共40分)24.(7分)(2015•定西)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.(1)训练后篮球定时定点投篮人均进球数为5个;(2)选择长跑训练的人数占全班人数的百分比是10%,该班共有同学40人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.25.(7分)(2015•定西)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= 3.5cm时,四边形CEDF是矩形;②当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)26.(8分)(2015•定西)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.落在函数落在函数(在,x=﹣,.27.(8分)(2015•定西)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.28.(10分)(2015•定西)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.t t+4a=(x x+4=(,))代入得x,×﹣,),t+4x+4﹣,﹣t+4﹣(t﹣﹣AM NG NG×(﹣﹣t=时,面积的最大值为,t=t t+4=,﹣第21页(共21页)。
甘肃省定西市2015-2016学年八年级数学下册第一阶段考试题
甘肃省定西市秦祁中学、新寨中学2015-2016学年八年级数学下学期第一阶段考试试题第I 卷(选择题) 一、选择题(30分)1.下列各式中,与2是同类二次根式的是( ) A .6B .a 2(a >0)C .23D.212.下列二次根式中,最简二次根式是( ) A .B .C .D .3.若代数式在实数范围内有意义,则x 的取值范围为( )A .x >0B .x≥0C .x≠0D .x≥0且x≠1 4.已知数a ,b -a ,则 ( )A .a>bB .a < bC .a≥bD .a≤b5.设a=,19a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和56.在Rt △ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( )A .B .C .D .7.下列各组数是勾股数的是( )A .2,3,4B .0.3,0.4,0.5C .7,24,25D .,,8.已知a 、b 、c 是三角形的三边长,如果满足(a ﹣6)2+=0,则三角形的形状是( )A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形 9.若a >3,则+=( )A .1B .﹣1C .2a ﹣5D .5﹣2a10.如图,正方形ABCD 的面积是( ) A .5 B .25 C .7 D .10第II 卷(非选择题)二、填空题(30分)11.、计算:201420152)2)⋅+= .12x 的取值范围是 . 13.已知一个直角三角形的两条边长分别为3和4,则第三边长是14.如图,一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm .第10题15.三个正方形的面积如图,正方形A 的边长为 .16.如图,四边形ABCD 是平行四边形,∠ABC=70°,BE 平分∠ABC 且交AD 于点E ,DF ∥BE 且交BC 于点F ,则∠1的度数为 .17.已知x ,y 为实数,且y=﹣+4,则+= .18.已知+=y+4,则y x 的平方根为 .19.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为 米.20.实数a 、b 在数轴上的位置如图所示, 化简= .三、计算题(10分)第14题第15题第16题第19题第20题21.计算:(1)(﹣1)2015﹣3-+12 +(3﹣π)0;(2))(53)13(2+--)(53-四、解答题(50分)22.(本题12分)如图,一根2.5米长的竹竿AB 斜靠在竖直的墙AC 上,这时B 到墙底端为0.7米,如果竹竿的底端沿地面向外滑动0.8米,那么点A 将向下移动多少米?23.(本题12分)如图,在平行四边形ABCD 中,E 、F 分别在AD 、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.24.(本题12分)如图,已知平行四边形ABCD,延长BC至E,使CE=BC,连接AC,DE,求证:AC=DE.第22题第23题第24题25.(本题14分)观察下列一组等式的化简.然后解答后面的问题:=;1==;2==(1示大于0的自然数)(2)通过上述化简过程,“>”、“<”或“=”);(3)利用你发现的规律计算下列式子的值:++1)沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
定西市中考数学试卷
定西市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 3的倒数是()A . 3B . -3C .D .2. (2分) (2016七下·蒙阴期中) 下列实数中,是无理数的为()A . ﹣3.567B . 0.101001C .D .3. (2分)如图,AB//CD ,EF⊥AB于E , EF交CD于F ,已知∠1=63°,则∠2=()A . 63°B . 53°C . 37°D . 27°4. (2分)下列运算正确的是()A .B .C .D .5. (2分) (2017八下·青龙期末) 下列调查中,最适合采用普查方式的是()A . 对我县青龙河流城水质情况的调查B . 对乘坐飞机的旅客是否携带违禁物品的调查C . 对一批节能灯管使用寿命的调查D . 对全县八年级学生视力情况的调查6. (2分) (2016七上·连州期末) 如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是()A .B .C .D .7. (2分)(2019·海珠模拟) 下列图形中是中心对称图形的是()A .B .C .D .8. (2分)(2020·新乡模拟) 若将函数y=2x2的图象向右平行移动1个单位,再向上平移3个单位,得到的抛物线是()A . y=2(x+5)2﹣1B . y=2(x+5)2+1C . y=2(x﹣1)2+3D . y=2(x+1)2﹣39. (2分) (2019八上·梅里斯达斡尔族月考) 如图,在△ABC,∠C=90°,按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E、F;②分别以点E,F为圆心,大于 EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D,若CD=6, AB=15则△ABD的面积为()A . 45B . 30C . 15D . 6010. (2分)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A . 76B . 72C . 68D . 52二、填空题 (共6题;共6分)11. (1分) (2018七上·翁牛特旗期末) 光年是天文学中的距离单位,1光年大约是95000亿 km,这个数据用科学记数法表示是________km12. (1分) (2019七上·潮安期末) 方程的解是________.13. (1分)若关于x的不等式组有解,且关于x的方程有非负整数解,则符合条件的所有整数k的积为________.14. (1分)一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是________ .15. (1分) (2020九下·哈尔滨月考) 如图,在菱形ABCD中,BD为对角线,点N为BC边上一点,连接AN,交BD于点L,点R为CD边上一点,连接AR、LR,若tan∠BLN=2,∠ARL=45°,AR=10 ,CR=10,则AL=________ 。
2015甘肃中考数学真题试卷.docx
2015年兰州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共60分)一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是()A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+1x2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同3.在下列二次函数中,其图象的对称轴为x=-2的是()A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)24.如图,△ABC中,∠B=90°,BC=2AB,则cos A=()A.√52B.12C.2√55D.√555.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)6.一元二次方程x2-8x-1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=157.下列命题错误..的是()A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y=kx-k与反比例函数y=kx(k≠0)的图象大致是()9.如图,经过原点O的☉P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF 的面积是()A.4√3B.3√3C.2√3D.√311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=10912.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则()A.y1<y2B.y1=y2C.y1>y2D.y1=-y213.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是()A.当n<0时,m<0B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x115.如图,☉O的半径为2,AB、CD是互相垂直的两条直径,点P是☉O上任意一点(P与A、B、C、D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()A.π4B.π2C.π6D.π3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程ax 2-bx-2 015=0有一根为x=-1,则a+b= . 17.如果a b =c d =ef =k(b+d+f ≠0),且a+c+e=3(b+d+f),那么k= .18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数 46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数y=kx 图象上的两点,PA ⊥y 轴于点A,QN ⊥x 轴于点N,作PM ⊥x 轴于点M,QB ⊥y 轴于点B,连结PB 、QM,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC=4 cm,☉O 是其外接圆,且半径也为4 cm,则∠A 的度数是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分) (1)计算:2-1-√3tan 60°+(π-2 015)0+|-12|;(2)解方程:x 2-1=2(x+1).22.(本小题满分5分)如图,在图中求作☉P,使☉P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.(本小题满分9分)如图,四边形ABCD 中,AB ∥CD,AB ≠CD,BD=AC. (1)求证:AD=BC;(2)若E,F,G,H 分别是AB,CD,AC,BD 的中点.求证:线段EF 与线段GH 互相垂直平分.26.(本小题满分10分)如图,A (-4,12),B(-1,2)是一次函数y 1=ax+b 与反比例函数y 2=mx 图象的两个交点,AC ⊥x 轴于点C,BD ⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时,y 1-y 2>0? (2)求一次函数解析式及m 的值;(3)P 是线段AB 上一点,连结PC,PD,若△PCA 和△PDB 面积相等,求点P 的坐标.27.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作☉O,使☉O经过点A和点D.(1)判断直线BC与☉O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求☉O的半径;②设☉O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)28.(本小题满分12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于A(x1,y1)、B(x2,y2)两点.①当m=3时(图①),求证:△AOB为直角三角形;2时(图②),△AOB的形状,并证明;②试判断当m≠32(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)答案全解全析:一、选择题1.C根据二次函数的定义:形如y=ax2+bx+c(a、b、c为常数,且a≠0)的函数叫做二次函数,结合各选项知,选C.2.B左视图为,主视图为,俯视图为,故选B.评析本题主要考查物体的三视图,属容易题.3.A根据二次函数y=a(x-h)2+k(a≠0)的图象的对称轴为直线x=h,知只有A选项符合题意.4.D设AB=k(k>0),则BC=2k,∵∠B=90°,∴AC=√AB2+BC2=√5k,∴cos A=ABAC =√5k=√55,故选D.5.B设点A的坐标为(x,y),由位似图形的性质知,x1=y2=52,得x=2.5,y=5,则点A的坐标为(2.5,5).故选B.6.C变形得x2-8x=1,x2-8x+16=1+16,(x-4)2=17,故选C.7.D对角线相等的平行四边形是矩形,故D错误,选D.8.A分k>0和k<0两种情况讨论:当k>0时,反比例函数的图象经过第一、三象限,一次函数的图象经过第一、三、四象限,没有符合题意的选项;当k<0时,反比例函数的图象经过第二、四象限,一次函数的图象经过第一、二、四象限,故选A.9.B根据同弧所对的圆周角相等,得到∠ACB=∠AOB=90°,故选B.10.B连结AC,在菱形ABCD中,AB=BC,∵∠B=60°,∴△ABC是等边三角形,∵AE⊥BC,∴AE=2√3,∠EAC=30°,同理可得AF=2√3,∠CAF=30°,则△EAF为等边三角形,∴S△AEF=√34×(2√3)2=3√3.故选B.11.B设原价为1,则某天跌停后是0.9,根据题意可列方程为0.9(1+x)2=1,即(1+x)2=10,故选B.12.D由题意,得xy=k,因为k是定值,所以当x1=-x2时,y1=-y2,故选D.13.A由题意得点C的坐标为(0,c),∵OA=OC,∴点A的坐标为(-c,0).将(-c,0)代入二次函数解析式,得ac2-bc+c=0,∵c≠0,∴ac-b+1=0,即ac+1=b.故选A.14.C 由已知得,函数图象开口向上,对称轴在y 轴左侧,画出草图(如图),当n>0时,m<x 1或m>x 2;当n<0时,x 1<m<x 2.故选C.15.A 连结OP.∵∠PMO=∠PNO=∠MON=90°,∴四边形MPNO 为矩形,∵Q 为MN 的中点,∴Q 在OP 上,且OQ=12OP=1.∵点P 沿圆周转过45°,∴点Q 也沿相应的圆周转过45°,∴点Q 走过的路径长为45×1×π180=π4. 二、填空题16.答案 2 015解析 将x=-1代入方程得a+b-2 015=0,则a+b=2 015. 17.答案 3解析 由题意得a=bk,c=dk,e=fk,则a+c+e=k(b+d+f)=3(b+d+f),故k=3. 18.答案 10解析 当试验次数越多时,频率越接近概率,由题表得,概率为0.5,故n=10. 19.答案 =解析 由反比例函数的性质得,S矩形APMO =S矩形BONQ .同时减去公共部分后,所得两个矩形的面积仍相等,即2S △ABP =2S △MNQ ,故S 1=S 2. 20.答案 30°解析 ∵OB=OC=BC=4 cm,∴△OBC 为等边三角形, ∴∠BOC=60°,故∠A=30°.。
青海省西宁市2015年中考数学真题试题(含解析)
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,恰 有一项是符合题目要求的) 1.﹣2﹣1 的结果是( ) A.﹣1 B. ﹣3 C. 1 D. 3 考点: 有理数的减法.. 分析: 根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法, 根据有 理数的加法法则计算即可. 解答: 解:﹣2﹣1=﹣2+(﹣1)=﹣3, 故选:B. 点评: 有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握 法则是解题的关键. 2. (3 分) (2015•西宁)下列计算正确的是( ) A.a•a3=a3 B. a4+a3=a2 C. (a2)5=a7
D. x≥﹣2
解一元一次不等式.. 根据解一元一次不等式的步骤:去括号、移项、合并同类项计算,即可得到答
解答: 解:去括号得,3x≤2x﹣2, 移项、合并同类项得,x≤﹣2, 故选:C. 点评: 本题考查的是一元一次不等式的解法,掌握解一元一次不等式的一般步骤是解题 的关键. 4. (3 分) (2015•西宁)下列说法正确的是( ) A. 了解飞行员视力的达标率应使用抽样调查 B. 一组数据 3,6,6,7,9 的中位数是 6 C. 从 2000 名学生中选 200 名学生进行抽样调查,样本容量为 2000 D. 掷一枚质地均匀的硬币,正面朝上是必然事件 考点: 中位数;全面调查与抽样调查;总体、个体、样本、样本容量;随机事件.. 分析: 根据全面调查以及抽样调查的知识对 A 选项进行判断;根据中位数的定义对 B 选 项作出判断;根据样本容量的知识对 C 选项作出判断;根据随机事件的意义对 D 选项作出 判断. 解答: 解:A、了解飞行员视力的达标率应使用全面调查,此选项错误; B、一组数据 3,6,6,7,9 的中位数是 6,此选项正确; C、从 2000 名学生中选 200 名学生进行抽样调查,样本容量为 200,此选项错误; D、掷一枚质地均匀的硬币,正面朝上是随机事件,此选项错误; 故选 B. 点评: 本题主要考查了中位数、随机事件、抽样调查以及样本容量等知识点,解答本题 的关键是熟练掌握中位数、随机事件、抽样调查以及样本容量的意义,此题难度不大. 5. (3 分) (2015•西宁)有四张分别画有线段、等边三角形、平行四边形和正方形的四个 图形的卡片,它们的背面都相同,现将它们背面朝上,从中翻开任意一张的图形是中心对 称图形,但不是轴对称图形的概率是( ) A. B. C. D. 1
甘肃省定西市中考数学试卷及答案
甘肃省定西市中考数学试卷及答案(本试卷满分为150分,考题时间为120分钟)A 卷(满分100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.图中几何体的主视图是2.下列运算中,计算结果正确的是A .x 2·x 3=x 6B .x 2n ÷x n -2=x n +2C .(2x 3)2=4x 9D .x 3+x 3=x3.如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是4.多项式2a 2-4ab +2b 2分解因式的结果正确的是A .2(a 2-2ab +b 2)B .2a (a -2b )+2b 2C .2(a -b ) 2D .(2a -2b ) 25.如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是 A .30° B .45° C .40° D .50°6.在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是 A .12 B .13 C .14 D .1 7.将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D .y =(x -1)2+2 8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是 A .8B .5C .2 2D .39.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 A .13 B .12 C .34D .1 10.如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为a b 1C . B . A .D .正面A .6B .4C .2D .1二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.计算8-12=_ ▲ . 12.若x +y =3,xy =1,则x 2+y 2=_ ▲ .13.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测考沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7m ,观测者目高CD =1.6m ,则树高AB 约是_ ▲ .(精确到0.1m )14.如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是_ ▲ .15.如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等.则x =_ ▲ .16.计算:sin 230°+tan44°tan46°+sin 260°=_ ▲ .17.抛物线y =-x 2+bx +c 的部分图象如图所示,若函数y >0值时,则x 的取值范围是_▲ .(1)(2)EB D CE18.如图,在梯形ABCD 中,AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且AE =2(AE <AD ),点P 是AC 上的动点,则PE +PB 的最小值是_ ▲ .三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程.19.本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分)Ⅰ.先化简(,再从-2、-1、0、1、2中选一个你认为适合的数作为x 的值代入求值.Ⅱ.已知l 1:直线y =-x +3和l 2:直线y =2x ,l 1与x 轴交点为A .求: (1)l 1与l 2的交点坐标.(2)经过点A 且平行于l 2的直线的解析式20.已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.21.本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)Ⅰ.爱养花的李先生为选择一个合适的时间去参观西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、BAED F中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题: (1)5月10日至16日这一周中,参观人数最多的是日是_ ▲ ,有_ ▲ 万人,参观人数最少的是日是_ ▲ ,有_ ▲ 万人,中位数是_ ▲ .(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?Ⅱ.如图在等腰Rt △OBA 和Rt △BCD 中,∠OBA =∠BCD =90°,点A 和点C 都在双曲线y =4x(k >0)上,求点D 的坐标.B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤过程及推理过程.) 22.(8分)如图,在平面直角坐标系中,O 为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD 顶点都在格点上,其中,点A 的坐标为 (1,1).(1)若将正方形ABCD 绕点A 顺时针方向旋转,点B 到达点B 1,点C 到达点C 1,点D 到达点D 1,求点B 1、C 1、D 1的坐标.(2)若线段AC 1的长度..与点D 1的横坐标...的差.恰好是一元二次方程x 2+ax +1=0的一个根,求a 的值.第220题A BC D Ox y ABCD Oxyy =4x23.(10分)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于点F 、G ,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.24.(10分)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A 型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A 型号电脑可以是多少台?甲乙型号 ABCDE单价(元/台)6000400025005000200025.(10分)在△ABC 中,AB =AC ,点O 是△ABC 的外心,连接AO 并延长交BC 于D ,交△ABC的外接圆于E ,过点B 作⊙O 的切线交AO 的延长线于Q ,设OQ =92,BQ =32.(1)求⊙O 的半径;(2)若DE =35,求四边形ACEB 的周长.26.(10分)在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以点O为原点,OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图(1)),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△DEF 运动时间为t ,△DEF 与梯形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式.(2)探究:在△DEF 运动过程中,如果射线DF 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△OAG 的面积与梯形OABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.A B C QED OA B CDE GF O (1)AD E GF (2)数学试题参照答案及评分标准A卷(满分100分)一、选择题(满分40分)评分标准:答对一题得4分,不答或答错均得0分1.D 2.B 3.B 4.C 5.D 6.A 7.D 8.A 9.B10.C二、填空题(满分32分)评分标准:在每小题后的横线上填上最终结果,答对一题得4分,不答或答错和不是最终结果均得0分.11.7 13.5.2 14.(322)(2)570x x x--= 15.112.25或16.2 17.31x-<< 18.三、解答题(满分28分)19.Ⅰ.原式=2(1)(1)1x x xx--++·21xx-.=11x+·(1)(1)x xx+-=1xx-当2x=-时,原式=32(或当x==22)Ⅱ.解:(1)设直线1l与2l的交点为M,则由32y xy x=-+⎧⎨=⎩解得1,2.x y =⎧⎨=⎩∴(12)M ,.(2)设经过点A 且平行于2l 的直线的解析式为2.y x b =+ ∵直线1l 与x 轴的交点(30)A , ∴60b +=, ∴ 6.b =-则:所求直线的解析式为2 6.y x =-20.解:结论:四边形ABCD 是平行四边形. 证明:∵DF ∥BE . ∴∠AFD =∠CEB .又∵AF CE DF BE ==,, ∴△AFD ≌△CEB (SAS ). ∴AD CB =,∠DAF =∠BCE . ∴AD ∥CB .∴四边形ABCD 是平行四边形.说明:其它证法可参照上面的评分标准评分.21.Ⅰ.①15,34;10,16;22万; ②34(74%-6%)≈23(万人)③答案不唯一,只要符合题意均可得分. Ⅱ.解:点A 在双曲线4y x=上,且在△OBA 中,AB OB =,∠90OBA =°则4OB AB =. ∴2AB OB ==过点C 作CE ⊥x 轴于E CF ,⊥y 轴于F .设BE x =. 由在BCD △中90BC CD BCD ==,∠°.则CE x =. 又点C 在双曲线4y x=上 (2) 4.x x ∴+=解得10x x =>,,1.21)x OD ∴=∴=+=∴点D .B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.解:(1)由已知111(21)(40)(32)B C D -,,,,, (2)由勾股定理得:AC =则3)是方程210x ax ++=的一根,设另一根为0x ,则0x 3)=1.03x ==3)3)]a ∴=-+=-另解:23)3)10a a ++==,23.解:连接FG 并延长交AB 于M AC ,于N , BCE △和四边形ABCD 分别是正三角形和正方形..4530MN AB MN CD BAC ABE ∴⊥⊥=︒=︒,∠,∠∴设MF x =,则 1.x +=122.BCE ABF x S S S S ∴==∴--△△阴影正方形=112==另解:14BCDF S S S =-阴影正方形四边形1111()(12)4222264=---⨯-=24.解:(1)树状图如下:共有6种选购方案:(,)A D 、(B ,D )、(C ,D )、(A ,E )、(B ,E )、(C ,E ).1(.3P A 型号被选中)=(2) 设购买A 型号x 台,由(1)知当选用方案(,)A D 时:由已知9200060005000(36)100000x x +-≤≤得8880x --≤≤,不符合题意.当选用方案()A E ,时,由已知:9200060002000(36)100000x x +-≤≤ 得57.x ≤≤答:购买A 型号电脑可以是5台,6台或7台. 25.(1)连接OB BQ ,切O 于B ..OB BQ ∴⊥在Rt OBQ △中,92OQ BQ ==,32OB ∴==. 即O 的半径是32.(2)延长BO 交AC 于F .AB BC =则.AB BC BF AC =∴⊥,又AE 是O 的直径,90ACE ABE ∴==︒∠∠.BF CE ∴∥(另解:DBF OBA OAB DCE =∠=∠=∠∠) ..33521.3325BOD CED BO ODCE DEDE BO CE OD ∴∴=⨯∴===-△∽△∴在Rt ACE △中,3,1AE CE ==,则AC =又O 是AE 的中点,1122OF CF ∴==,则 2.BF = ∴在Rt ABF △中,12AF AC ==AB ∴=在Rt ABE △,BE =(如用ABQ BEQ △∽△及解Rt ABE △得AB BE ,,计算正确也得分) 故:四边形ACEB的周长是:1+26.解:(1)DEF △是边长为2OABC 中,2460OC BC COA AB x ===︒⊥,,∠,轴5,OA AB ∴==依题意:①当201t <≤时 ②222122)(2)422t S t t <<=--=--+时,③当25t S =≤≤时(2)由已知点(00)(1(5O C B ,,,设过点O 、C 、B 的抛物线的解析式为2.y ax bx =+则255a b a b =+=+,, 解得5a b ⎧=-⎪⎪⎨⎪=⎪⎩∴该抛物线的解析式为:255y x x =-+. ∴若存在点G ,使得DCA OABC S S =△梯形;此时,设点G 的坐标为2().55x x x -+,射线DF 与抛物线的交点在x 轴上方.2115()(54)22x ∴⨯⨯=⨯+化简得2690x x -+=,解得 3.x =则此时点(3G GH x ⊥,作轴于H ,则9cot 605DH GH =︒== ∴此时9192)55t =+=(秒 故:存在时刻195t =(秒)时,OAG △与梯形OABC 的面积相等.。
甘肃省定西市中考数学试题及答案D
甘肃省定西市中考数学试题及答案D考生注意:本试卷满分为120分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效. 一.选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项,将此选项的字母填在答题卡上.1.下列图形中,是中心对称图形的是【 】2.在1,-2,0,35这四个数中,最大的数是【 】 A.2 B.0 C.35D.13.在数轴上表示不等式01<-x 的解集,正确的是【 】4.下列根式中是最简二次根式的是【 】12.9.3.32.D C B A5.已知点),0(m P 在y 轴的负半轴上,则点M )1,(+--m m 在【 】 A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,AB ∥CD,DE ⊥CE,∠1=34°,则∠DCE 的度数为【 】 A .34° B.54° C.66° D.56°7.如果两个相似三角形的面积比是1∶4,那么它们的周长比是【 】 A.1∶16 B.1∶4 C.1∶6 D.1∶28.某工厂现在平均每天比原计划每天多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器.根据题意,下面所列方程正确的是【 】.50600800.;50600800.;60050800.;60050800.A -=+==-=+x x D x x C x x x x B9.若,0442=-+x x 则)1)(1(6)2(32-+--x x x 的值为【 】第6题图A.-6B.6C.18D.3010.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是【 】二、填空题:本大题共8小题,每小题3分,共24分. 11.因式分解:.___________822=-x 12.计算:=-⋅-)8()5(24ab a ___________.13.如图,点A(3,t )在第一象限,射线OA 与x 轴所夹的锐角为α,,23tan =α则t 的值是________.14.如果单项式2222+-+m n n m y x与75y x 是同类项,那么m n 的值是________.15.三角形的两边长分别是3和4,第三边长是方程040132=+-x x 的根,则该三角形的周长为____.16.如图,在⊙O 中,弦AC=32,点B 是圆上一点,且∠ABC=45°,则⊙O 的半径R=_______. 17.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC=_______cm.18.古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性.若把第一个三角形数记为,1x第二个三角形数记为,2x …,第n 个三角形数记为n x ,则1++n n x x =_________.三.解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤:第13题图第16题图 第17题图19.(4分)计算:.)3-(-160sin 231--210-2+︒++⎪⎭⎫⎝⎛20.(4分)如图,在平面直角坐标系中,△ABC 的顶点A(0,1),B(3,2),C(1,4)均在正方形的网格的格点上. (1)画出△ABC 关于x 轴的对称图形;△111C B A (2)将111C B A △沿x 轴方向向左平移3个单位后得到222C B A △,写出顶点222C B A ,,的坐标.21.(6分)已知关于x 的方程022=-++m mx x . (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.22.(6分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景.图②是小明锻炼时上半身由ON 位置运动到与地面垂直的OM 位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).(1)求AB 的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N 点运动到M 点的路径的长度(结果保留π)23.(6分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字-1,-2,0.现从甲袋中任意摸出第20题图第22题图第25题图第27题图一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ).(1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数xy 2-=的图象上的概率. 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.24.(7分)2016年《政府工作报告》中提出了十大新词汇.为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A :“互联网+政务服务”,B :“工匠精神”,C :“光网城市”,D :“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图. 请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了多少名同学? (2)条形统计图中,m =_______,n =_____.(3)扇形统计图中,热词B 所在扇形的圆心角是多少度?25.(7分)如图,函数41+-=x y 的图象与函数)0(2>=x xky 的图象交于),1(),1,(n B m A 两点. (1)求k ,m ,n 的值;(2)利用图象写出当1≥x 时,21y y 与的大小关系. 26.(8分)如图,已知EC ∥AB,∠EDA=∠ABF. (1)求证:四边形ABCD 为平行四边形; (2)求证:.OF OE OA 2⋅=第24题图第26题图27.(8分)如图,在△ABC 中,AB=AC,点D 在BC 上,BD=DC,过点D 作DE ⊥AC,垂足为E,⊙O 经过A,B,D 三点.(1)求证:AB 是⊙O 的直径;(2)判断DE 与⊙O 的位置关系,并加以证明; (3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.28.(10分)如图,已知抛物线c bx x y ++-=2经过A(3,0),B(0,3)两点. (1)求此抛物线的解析式和直线AB 的解析式;(2)如图①,动点E 从O 点出发,沿着OA 方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从A 点出发,沿着AB 方向以2个单位/秒的速度向终点B 匀速运动,当E,F 中任意一点到达终点时另一点也随之停止运动.连接EF,设运动时间为t 秒.当t 为何值时,△AEF 为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B 处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.第28题图数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题3分,共24分. 11.2(2)(2)x x +-;12.5240a b ;13.92;14.13;15.12 ;16.6;17. 6 ;18.2(1)n +或n2+2n+1.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)解:原式=22-(3-1)+2×3+1 2分 =4-3+1+3+1 3分 =6 4分 20.(4分)解:(1)△A1B1C1为所作; 2分 (2)A2(-3,-1),B2(0,-2),C2(-2,-4). 4分21.(6分)(1)解:把x =1代入方程 220x mx m ++-=得 1m m ++ 解得 m =12. 2分 (2)证明:△=24(2)m m -- 3分题号 1 2 3 4 5 6 7 8 9 10 答案ACCBADDABByxO ABCB 1C 1A 12(2)4m =-+ 4分 ∵ 2(2)m -≥0,∴ 2(2)4m -+>0, 即 △>0, 5分 ∴ 此方程有两个不相等的实数根. 6分22.(6分)解:(1) 过点B 作BF ⊥AC 于点F . 1分 ∴ AF=AC -BD=0.4(米), 2分 ∴B=AF ÷sin20°≈1.17(米); 3分 (2)∵∠MON=90°+20°=110°, 4分 ∴ 1100.82218045MN ⨯π==π(米). 6分23.(6分)解:(1)画树状图:方法一: 方法二:2分 所以点M (x, y )共有9种可能:(0,-1),(0,-2),(0,0),(1,-1),(1,-2),(1,0),(2,-1),(2,-2),(2,0); 4分(2)∵只有点(1,-2),(2,-1)在函数2y x=-的图象上, 5分 ∴点M (x ,y )在函数2y x =-的图象上的概率为29. 6分四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.(注:解法合理,答案正确均可得分)24.(7分)解:(1)105÷35%=300(人).答:共调查了300名学生; 1分 (2)n =300×30%=90(人),m =300-105-90-45=60(人). 故答案为:60,90;(每空2分) 5分 (3)60300×360°=72°.答:B 所在扇形的圆心角是72°. 7分 (0, 0) (0, -1)(0, -2) (1, -1) (1, -2) (1, 0) (2, -2)(2, -1)1 0 2-1-2 0 乙袋甲袋结果(2, 0)25.(7分)解:(1)把点A (m,1)代入14y x =-+,得m=3, 2分 则 A (3,1),∴k =3×1=3; 3分 把点B (1,n )代入2ky x=,得出n=3; 4分 (2)如图,由图象可知:①当1<x <3时,1y >2y ; 5分②当x =1或x =3时,1y =2y ; 6分(注:x 的两个值各占0.5分) ③当x >3时,1y <2y . 7分 26.(8分)(1)证明:∵EC ∥AB, ∴∠C=∠ABF . 1分 又∵∠EDA=∠ABF,∴∠C=∠EDA . 2分 ∴AD ∥BC, 3分 ∴四边形ABCD 是平行四边形. 4分 (2)证明:∵EC ∥AB, ∴OA OB OEOD=. 5分又∵AD ∥BC, ∴OF OB OA OD =, 6分 ∴OA OF OEOA=, 7分∴2OA OE OF =⋅. 8分 27.(8分)(1)证明:如图①,连接AD, ∵在△ABC 中, AB=AC,BD=DC, ∴AD ⊥BC 1分∴∠ADB=90°,AB 是⊙O 的直径; 2分 (2)DE 与⊙O 的相切. 3分 证明:如图②,连接OD, ∵AO=BO,BD=DC, ∴OD 是△BAC 的中位线,图②ABCD E O图①AB CD E O∴OD ∥AC, 4分 又∵DE ⊥AC ∴DE ⊥OD,∴DE 为⊙O 的切线; 5分 (3)解:如图③,∵AO=3,∴AB=6, 又∵AB=AC,∠BAC=60°, ∴△ABC 是等边三角形, ∴AD=33, 6分 ∵AC ∙DE=CD ∙AD,∴6∙DE=3×33, 7分 解得 DE =332. 8分 28.(10分)解:(1)设直线AB 的解析式为y kx m =+, 1分 把A(3,0),B(0,3)代入,得 330m k m =⎧⎨+=⎩, 解得13k m =-⎧⎨=⎩ ∴直线AB 的解析式为3y x =-+ 2分 把A(3,0),B(0,3) 代入 2y x bx c =-++中,得 9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩∴抛物线的解析式为 223y x x =-++. 3分 (2)∵OA=OB=3,∠BOA=90°,∴∠EAF=45°. 设运动时间为t 秒,则AF=2t,AE=3-t . 4分 (i )当∠EFA=90°时,如图①所示: 在Rt △EAF 中,cos45°22AF AE ==,即2232t t =-. 解得 t =1. 5分(ii) 当∠FEA=90°时,如图②所示:在Rt △AEF 中,cos45°22AE AF ==, AB CDEO图③图①OyAxBEF图②yOA BE F即222t=. 解得t =32. 综上所述,当t =1或t =32时,△AEF 是直角三角形. 6分 (3)存在. 如图③,过点P 作PN ∥y 轴,交直线AB 于点N,交x 轴于点D. 过点B 作BC ⊥PN 交PN 于点C .设点P (x ,223x x -++),则点N (x ,3x -+)∴PN=2223(3)3x x x x x -++--+=-+. 7分 ∴ABP BPN APN S S S ∆∆∆=+=1122PN BC PN AD ⋅+⋅ 8分=2211(3)(3)(3)22x x x x x x -+⋅+-+- =23327228x ⎛⎫--+ ⎪⎝⎭ 9分当32x =时,△ABP 的面积最大,最大面积为278. 此时点P(32,154). 10分yx O xA x xB AP图③NC MD M。
2015年中考数学试题(含答案)
2015年河南初中学业水平暨高级中等学校招生考试试题数 学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。
2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的。
1. 下列各数中最大的数是( )A. 5B.3C. πD. -8 2. 如图所示的几何体的俯视图是( )3. 据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为( ) A.4.0570×109 B. 0.40570×1010 C. 40.570×1011 D. 4.0570×10124. 如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ) A. 55° B. 60° C.70° D. 75°5. 不等式组⎩⎨⎧>-≥+13,05x x 的解集在数轴上表示为( )6. 小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A. 255分B. 84分C. 84.5分D.86分7. 如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为( )C DB A 正面 第2题dc ba第4题-52 0 -520 -52 0 -520 CDBAA. 4B. 6C. 8D. 108. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A.(2014,0)B.(2015,-1)C. (2015,1)D. (2016,0)二、填空题(每小题3分,共21分) 9.计算:(-3)0+3-1=.10. 如图,△ABC 中,点D 、E 分别在边AB ,BC 上,DE //AC ,若DB =4,DA =2,BE =3,则EC = . 11. 如图,直线y =kx 与双曲线)0(2>=x xy 交于点 A (1,a ),则k = .12. 已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是 . 13. 现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再 背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数 字不同的概率是 .14. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径 作CD 交OB 于点D ,若OA =2,则阴影部分的面积为 .15. 如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .E FCDBGA第7图第8题E CDBA第14题EFCDBA 第15题B ′三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b .17.(9分)如图,AB 是半圆O 的直径,点P 是半圆上不与点A 、B 重合的一个动点,延长BP 到点C ,使PC =PB ,D 是AC 的中点,连接PD ,PO . (1)求证:△CDP ≌△POB ; (2)填空:① 若AB =4,则四边形AOPD 的最大面积为 ; ② 连接OD ,当∠PBA 的度数为 时,四边形BPDO18.(9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图。
2015年青海省西宁中考真题数学
13.写出一个在三视图中俯视图与主视图完全相同的几何体
.
解析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.球的俯视图与主视图都 为圆;正方体的俯视图与主视图都为正方形.(答案不唯一) 答案:球或正方体 14.若点(a,1)与(-2,b)关于原点对称,则 a =
b
.
b -1
解析:∵点(a,1)与(-2,b)关于原点对称,∴b=-1,a=2,∴a =2 = 答案:
1 . 4
A.x≤-2 B.x≥-2 C.x<-2 D.x>-2 解析:当 x≤-2 时,直线 l1:y1=k1x+b1 都在直线 l2:y2=k2x 的上方,即 y1≥y2. 答案:A 7.如图,∠AOB 的一边 OA 为平面镜,∠AOB=37°36′,在 OB 上有一点 E,从 E 点射出一束 光线经 OA 上一点 D 反射,反射光线 DC 恰好与 OB 平行,则∠DEB 的度数是( )
Байду номын сангаас
则 OB=12,∴BD=OB·sin30°=12×
1 =6,则 BC=2×6=12, 2
可知边长为 12mm,就是完全覆盖住的正六边形的边长最大. 答案:A 9.如图,在半径为 2,圆心角为 90°的扇形内,以 BC 为直径作半圆交 AB 于点 D ,连接 CD, 则阴影部分的面积是( )
A.
1 π-1 2
2 5 10
2 2
都相同,现将它们背面朝上,从中翻开任意一张的图形是中心对称图形,但不是轴对称图形 的概率是( )
1 4 1 B. 2 3 C. 4
A. D.1 解析:线段、等边三角形、平行四边形和正方形的四个图形的卡片中是中心对称图形,但不 是轴对称图形只有平行四边形, 所以翻开任意一张的图形是中心对称图形,但不是轴对称图形的概率为 答案:A 6.同一直角坐标系中,一次函数 y1=k1x+b 与正比例函数 y2=k2x 的图象如图所示,则满足 y1 ≥y2 的 x 取值范围是( )
甘肃省定西市中考数学试卷
甘肃省定西市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017七上·拱墅期中) 若,,,则、、的大小关系是().A .B .C .D .2. (2分) t an60°的值等于()A .B .C .D .3. (2分)(2017·虞城模拟) 下列运算正确的是()A . a3+a3=a6B . 2(a+1)=2a+1C . (a﹣b)2=a2﹣b2D . a6÷a3=a34. (2分) (2018九下·盐都模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分)如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O.过点O作OE⊥AC,交AD于点E.连接CE,则△CDE的周长为()A . 3B . 5C . 8D . 116. (2分)二次函数y=﹣3x2﹣2的图象经过哪几个象限()A . 一、三象限B . 二、四象限C . 一、二象限D . 三、四象限7. (2分)(2017·延边模拟) 用4个完全相同的小正方体组合成如图所示的立体图形,它的左视图为()A .B .C .D .8. (2分) (2019八上·兰州期末) 在一组数据3,4,4,6,8中,下列说法错误的是()A . 它的众数是4B . 它的平均数是5C . 它的中位数是5D . 它的众数等于中位数9. (2分) (2016八上·徐州期中) 对于二次函数 y=﹣(x+1)2﹣3,下列结论正确的是()A . 函数图象的顶点坐标是(﹣1,﹣3)B . 当 x>﹣1时,y随x的增大而增大C . 当x=﹣1时,y有最小值为﹣3D . 图象的对称轴是直线x=110. (2分)在截面为半圆形的水槽内装有一些水,如图.水面宽AB为6分米,如果再注入一些水后,水面AB上升1分米,水面宽变为8分米,则该水槽截面直径为()A . 5分米B . 6分米C . 8分米D . 10分米11. (2分) (2017八下·吴中期中) 如图,将矩形ABCO放在直角坐标系中,其中顶点B的坐标为(10,8),E是BC边上一点,将△ABE沿AE折叠,点B刚好与OC边上点D重合,过点E的反比例函数y= 的图象与边AB 交于点F,则线段AF的长为()A .B . 2C .D .12. (2分)(2017·黔东南模拟) 观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…仔细观察,用你发现的规律写出22017的末位数字是()A . 2B . 4C . 8D . 6二、填空题 (共6题;共6分)13. (1分) (2019七上·凤翔期中) 的平方的相反数的倒数是________.14. (1分) (2017七上·西城期末) 用四舍五入法对8.637取近似数并精确到0.01,得到的值是________。