26.3实际问题与二次函数课件
合集下载
实际问题与二次函数课件
03 二次函数的应用
最大最小值问题
要点一
总结词
通过求二次函数的顶点,解决生活中的最大最小值问题。
要点二
详细描述
在二次函数中,顶点坐标可以通过公式$-frac{b}{2a}$和 $fleft(-frac{b}{2a}right)$求得。在解决实际问题时,我们 可以通过找到二次函数的顶点,来找到某个量的最大值或 最小值。例如,在建筑设计中,为了使建筑物的窗户或阳 台获得最好的视野,需要找到最佳的窗户或阳台的高度和 宽度。
02 实际问题与二次函数
生活中的二次函数问题
抛物线运动
在投掷、射箭等运动中,物体的运动 轨迹可以近似地用二次函数描述。这 是因为物体在空中的运动受到重力的 影响,形成抛物线形状。
桥梁振动
大型桥梁在风力或地震作用下会产生 振动,其振动幅度和频率与二次函数 相关,通过研究这些函数的特性,可 以预测桥梁的安全性。
04 实际问题的解决策略
建模策略
总结词
将实际问题转化为数学模型的关键步 骤
详细描述
通过理解问题的本质,将实际问题的 语言描述转化为数学表达式,构建出 反映问题内在规律的数学模型。
图像分析策略
总结词
利用二次函数的图像解决实际问题的有 效方法
VS
详细描述
通过绘制二次函数的图像,直观地展示函 数的性质和变化规律,从而解决与二次函 数相关的实际问题,如最值问题、交点问 题等。
面积问题
总结词
利用二次函数解决生活中的面积问题。
详细描述
在解决与面积相关的问题时,我们可以将面积表示为二次函数的形式。例如,在农业中,为了最大化 农作物的产量,需要找到最佳的种植密度。通过将种植密度表示为二次函数,可以找到最佳的种植密 度,从而最大化农作物的产量。
26.3(2)实际问题与二次函数
△PCQ △ABC
解:(1)∵P、Q分别从A、C两点同时出发, 速度相等 ∴AP=CQ=x 当P在线段AB上时 D
x C
S PCQ
A 1 1 2 S x(2 x) x x (0 x 2) 2 2
1 1 CQ PB AP PB 2 2
x P 2-x B
+ 4 -4)
C Q x
8-2x
= -(x-2)2 +4
B
所以,当P、Q同时运动2秒后Δ PBQ的面积y最大,
最大面积是 4cm2
例5:如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点
同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,
点Q沿边BC的延长线运动,PQ与直线相交于点D。 (1)设 AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式; Q (2)当AP的长为何值时,S = S
(2) S五边形APQCD S矩形ABCD SPBQ
1 解:( 1 )S PBQ (6 t ) 2t 8 解得:t1 2, t2 4. 2 72 (0 t 6)
1 S 6 12 2t (6 t ) 2
b 30 当l 15时, 2a 2 (1)
S最大值 152 30 15 225.
答:当l 15m时, 场地的面积最大(S最大值 225m ).
2
练习:已知直角三角形两条直角边的和等于8,两条直 角边各为多少时,这个直角三角形的面积最大, 最大值是多少?
∴ 花圃宽为(24-4x)米
∴ S=x(24-4x) =-4x2+24 x (0<x<6)
A
D
x
x
解:(1)∵P、Q分别从A、C两点同时出发, 速度相等 ∴AP=CQ=x 当P在线段AB上时 D
x C
S PCQ
A 1 1 2 S x(2 x) x x (0 x 2) 2 2
1 1 CQ PB AP PB 2 2
x P 2-x B
+ 4 -4)
C Q x
8-2x
= -(x-2)2 +4
B
所以,当P、Q同时运动2秒后Δ PBQ的面积y最大,
最大面积是 4cm2
例5:如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点
同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,
点Q沿边BC的延长线运动,PQ与直线相交于点D。 (1)设 AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式; Q (2)当AP的长为何值时,S = S
(2) S五边形APQCD S矩形ABCD SPBQ
1 解:( 1 )S PBQ (6 t ) 2t 8 解得:t1 2, t2 4. 2 72 (0 t 6)
1 S 6 12 2t (6 t ) 2
b 30 当l 15时, 2a 2 (1)
S最大值 152 30 15 225.
答:当l 15m时, 场地的面积最大(S最大值 225m ).
2
练习:已知直角三角形两条直角边的和等于8,两条直 角边各为多少时,这个直角三角形的面积最大, 最大值是多少?
∴ 花圃宽为(24-4x)米
∴ S=x(24-4x) =-4x2+24 x (0<x<6)
A
D
x
x
人教版26.3实际问题与二次函数第1课时
问题:用总长为60m的篱笆围成矩形场地,矩形面积S随矩 形一边长l的变化而变化.当l是多少时,场地的面积S最大? 分析:先写出S与l的函数关系式,再求出使S最大的l的值. 矩形场地的周长是60m,一边长为l,则另一边长为 m,场地的面积: S=l(30-l) 即S=-l2+30l 请同学们画出此函数的图象
你能回答了吧! 由(1)(2)的讨论及现在的销售情况,你知道应该如何定价 能使利润最大了吗?
解决这类题目的一般步骤
(1)列出二次函数的解析式,并根据自变量的 实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通 过配方求出二次函数的最大值或最小值.
1.(2010·包头中考)将一条长为20cm的铁丝剪成两 段,并以每一段铁丝的长度为周长各做成一个正方形,则
10 20 x 13 x 7 x (0<x≤50) 1 y [(20 13) 0.1( x 10)] x 2 8 x(10<x<50) 10 16 x 13 x =3 x ( x≥50)
y 1 2 x 8x 10
(说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可)
分析: 调整价格包括涨价和降价两种情况 先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品 的利润y也随之变化,我们先来确定y与x的函数关系式.涨 价x元,则每星期少卖 10x 件,实际卖出 (300-10x) 件, 每件利润为 (60+x-40) 元,因此,所得利润
怎样确定x 的取值范 围
为 (60+x-40)(300-10x) 元.
y=(60+x-40)(300-10x) 即y=-10(x-5)2+6250 ∴当x=5时,y最大值=6250 (0≤x≤30)
实际问题与二次函数_课件
(2)当x=20时,绿化带面积最大
练习
如图,用一段长为 60 m 的篱笆围成一个一边靠墙的矩形菜园 ,墙长32 m,这个矩形的长、宽各为多少时,菜园的面积最大 ,最大面积是多少?
练习
如图,用一段长为 60 m 的篱笆围成一个一边靠墙的矩形菜园 ,墙长18 m,这个矩形的长、宽各为多少时,菜园的面积最大 ,最大面积是多少?
225.
0<15<30 满足要求
即l是15m时,场地的面积S最大(. S=225㎡)
归纳
篱笆问题的求解步骤
①写出关系式:写出面积和边长之间的函数关系式
取顶点时,一定要 考虑自变量的范围 是否符合要求
练习
(1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围. (2)当 x 为何值时,满足条件的绿化带的面积最大 ?答案:
抛球问题
小球的运动时间是多少时,小球最高? 小球运动中的最大高度是多少?
小球运动的时间是3 s 时,小球最高. 小球运动中的最大高度是 45 m.
归纳
顶点是最低(高)点,
当
时
最小(大)值
练习 7
篱笆问题
用总长为 60 m 的篱笆围成矩形场地,矩形面积 S 随矩形一边 长 l 的变化而变化.当 l 是多少米时,场地的面积 S 最大?
练习
(1) 求 y 关于 x 的函数表达式,并直接写出自变量 x 的取值范围;
答案:(1) (2)能.
(0<x<15);
定价问题 某商品现在的售价为每件 60 元,每星期可卖出300件.市场调 查反映:如调整价格,每涨价 1 元,每星期要少卖出 10 件; 每降价 1 元,每星期可多卖出 20 件. 已知商品的进价为每件 40 元, 如何定价才能使利润最大?
练习
如图,用一段长为 60 m 的篱笆围成一个一边靠墙的矩形菜园 ,墙长32 m,这个矩形的长、宽各为多少时,菜园的面积最大 ,最大面积是多少?
练习
如图,用一段长为 60 m 的篱笆围成一个一边靠墙的矩形菜园 ,墙长18 m,这个矩形的长、宽各为多少时,菜园的面积最大 ,最大面积是多少?
225.
0<15<30 满足要求
即l是15m时,场地的面积S最大(. S=225㎡)
归纳
篱笆问题的求解步骤
①写出关系式:写出面积和边长之间的函数关系式
取顶点时,一定要 考虑自变量的范围 是否符合要求
练习
(1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围. (2)当 x 为何值时,满足条件的绿化带的面积最大 ?答案:
抛球问题
小球的运动时间是多少时,小球最高? 小球运动中的最大高度是多少?
小球运动的时间是3 s 时,小球最高. 小球运动中的最大高度是 45 m.
归纳
顶点是最低(高)点,
当
时
最小(大)值
练习 7
篱笆问题
用总长为 60 m 的篱笆围成矩形场地,矩形面积 S 随矩形一边 长 l 的变化而变化.当 l 是多少米时,场地的面积 S 最大?
练习
(1) 求 y 关于 x 的函数表达式,并直接写出自变量 x 的取值范围;
答案:(1) (2)能.
(0<x<15);
定价问题 某商品现在的售价为每件 60 元,每星期可卖出300件.市场调 查反映:如调整价格,每涨价 1 元,每星期要少卖出 10 件; 每降价 1 元,每星期可多卖出 20 件. 已知商品的进价为每件 40 元, 如何定价才能使利润最大?
26.3 第1课时 抛物线形实际问题(课件)九年级数学下册(华东师大版)
12
1 m2 3 2.25 , 整理得,m2 9 ,解得 m 3(舍去)或 m 3 ,
12
∴平移后抛物线顶点为3,3 ,∴抛物线应向右平移 1 个单位.
课堂练当习堂练习
1. 某种商品每件的进价为 20 元,调查表明:在 某段时间内若以每件 x 元 (20≤x≤30) 出售,可 卖出 (600-20x) 件,为使利润最大,则每件售价 应定为 25 元.
解:设每件玩具的售价定为x元时,月销售利润
恰为2160元,根据题意,得
x 20 200 10 x 30 2160
整理,得 x2 70x 1216 0 解得 x1 38,x2 32 ∵每件玩具售价不能高于40元,答:每件玩具
的售价定为38或32元时,月销售利润恰为2160
元;
(2)解:设每件玩具的售价定为x元,月销售利润
为迎佳节,拟在图①桥洞前面的桥拱上悬挂40 cm长的
灯笼,如图③.为了安全,灯笼底部距离水面不小于1 m; 素 为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6 m; 材 为了美观,要求在符合条件处都挂上灯笼,且挂满后 2 成轴对称分布.
问题解决
任 务
1
确定桥 在图②中建立合适的直角坐标系,求抛物 拱形状 线的函数表达式.
解:建立如图所示的坐标系,
根据题意得 A 点坐标为 (0,1.25),
顶点 B 坐标为 (1,2.25).
数学化
●
D
y ● B(1,2.25) A●(0,1.25)
x
o
●
C
设 y 轴右侧的抛物线为 y = a(x + h)2 + k,由待定
系数法可求得抛物线表达式为 y = -(x - 1)2 + 2.25.
1 m2 3 2.25 , 整理得,m2 9 ,解得 m 3(舍去)或 m 3 ,
12
∴平移后抛物线顶点为3,3 ,∴抛物线应向右平移 1 个单位.
课堂练当习堂练习
1. 某种商品每件的进价为 20 元,调查表明:在 某段时间内若以每件 x 元 (20≤x≤30) 出售,可 卖出 (600-20x) 件,为使利润最大,则每件售价 应定为 25 元.
解:设每件玩具的售价定为x元时,月销售利润
恰为2160元,根据题意,得
x 20 200 10 x 30 2160
整理,得 x2 70x 1216 0 解得 x1 38,x2 32 ∵每件玩具售价不能高于40元,答:每件玩具
的售价定为38或32元时,月销售利润恰为2160
元;
(2)解:设每件玩具的售价定为x元,月销售利润
为迎佳节,拟在图①桥洞前面的桥拱上悬挂40 cm长的
灯笼,如图③.为了安全,灯笼底部距离水面不小于1 m; 素 为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6 m; 材 为了美观,要求在符合条件处都挂上灯笼,且挂满后 2 成轴对称分布.
问题解决
任 务
1
确定桥 在图②中建立合适的直角坐标系,求抛物 拱形状 线的函数表达式.
解:建立如图所示的坐标系,
根据题意得 A 点坐标为 (0,1.25),
顶点 B 坐标为 (1,2.25).
数学化
●
D
y ● B(1,2.25) A●(0,1.25)
x
o
●
C
设 y 轴右侧的抛物线为 y = a(x + h)2 + k,由待定
系数法可求得抛物线表达式为 y = -(x - 1)2 + 2.25.
实际问题与二次函数课件
掌握二次函数的基本性质、特点和常见应用,提高数学建模和解决问模型,运用二次函数解决实际问题,提高问题解决能力。
1 建模和解决
通过实际问题的建模和解决过程,理解如何 将问题转化为二次函数模型。
2 例子:抛物线运动问题
通过具体的抛物线运动问题,展示如何运用 二次函数对实际情况进行建模和解决。
3 应用
探索二次函数在经济学中的应用,揭示二次 函数的实际应用领域和其重要性。
4 例子:二次函数在经济学中的应用
通过实际例子,展示二次函数在经济学中的 应用场景,如市场需求曲线等。
实际问题与二次函数ppt 课件
本课程将探讨实际问题如何使用二次函数进行建模和解决,通过丰富的实例, 深入了解二次函数的定义、性质以及实际应用。
引入
1 研究实际问题
实际问题是数学和科学的重要应用之一,可以通过二次函数进行建模和解决。
2 重要的数学工具
二次函数是解决实际问题的重要数学工具,在多个领域中得到广泛应用。
实践演习
1 编写二次函数程序
通过编写二次函数程序,模拟实际问题,加深对二次函数应用的理解。
2 利用数学工具求解
利用数学工具或编程语言,运用二次函数相关知识,求解实际问题,加深应用能力。
总结
1 实际问题与二次函数关系
通过本课程的学习,加深对实际问题与二次函数之间关系的理解和把握。
2 二次函数的基本性质和应用
二次函数
1 定义和一般式
了解二次函数的定义和一般式,掌握其基本 形式和常见表示方法。
2 性质
• 对称性:探讨二次函数的对称轴和对 称性质。
• 开口方向:了解二次函数的开口方向 和相关概念。
• 零点和交点:掌握二次函数零点、交 点和相关解析方法。
1 建模和解决
通过实际问题的建模和解决过程,理解如何 将问题转化为二次函数模型。
2 例子:抛物线运动问题
通过具体的抛物线运动问题,展示如何运用 二次函数对实际情况进行建模和解决。
3 应用
探索二次函数在经济学中的应用,揭示二次 函数的实际应用领域和其重要性。
4 例子:二次函数在经济学中的应用
通过实际例子,展示二次函数在经济学中的 应用场景,如市场需求曲线等。
实际问题与二次函数ppt 课件
本课程将探讨实际问题如何使用二次函数进行建模和解决,通过丰富的实例, 深入了解二次函数的定义、性质以及实际应用。
引入
1 研究实际问题
实际问题是数学和科学的重要应用之一,可以通过二次函数进行建模和解决。
2 重要的数学工具
二次函数是解决实际问题的重要数学工具,在多个领域中得到广泛应用。
实践演习
1 编写二次函数程序
通过编写二次函数程序,模拟实际问题,加深对二次函数应用的理解。
2 利用数学工具求解
利用数学工具或编程语言,运用二次函数相关知识,求解实际问题,加深应用能力。
总结
1 实际问题与二次函数关系
通过本课程的学习,加深对实际问题与二次函数之间关系的理解和把握。
2 二次函数的基本性质和应用
二次函数
1 定义和一般式
了解二次函数的定义和一般式,掌握其基本 形式和常见表示方法。
2 性质
• 对称性:探讨二次函数的对称轴和对 称性质。
• 开口方向:了解二次函数的开口方向 和相关概念。
• 零点和交点:掌握二次函数零点、交 点和相关解析方法。
二次函数(实践与探索)优秀课件
开始BC以4cm/s的速度移动(不与点C重合).如果P、Q分别从A、
B同时出发,那么经过 3 秒,四边形APQC的面积最小. C
Q
AP
B
总结
图形面积 的最大值
一个关键
依据
常见几何图形 的面积公式
建立函数 关系式
一个注意
最值有时不在顶点处,则要 利用函数的增减性来确定
二 课后作业
某广告公司设计一幅周长为12m的矩形广告牌,广告设计费用每平 方米1000元,设矩形的一边长为x(m),面积为S(m2). (1)写出S与x之间的关系式,并写出自变量x的取值范围; (2)请你设计一个方案,使获得的设计费最多,并求出这个费用 .
为 6 3xm.这里应有x>0,6 3x >0
2
2
故0<x<2.
x 矩形窗框的透光面积y与x之间的函数关系式是:
y x 6 3x 2
二 几何图形的最大面积
即
y 3 x2 3x. 2
配方得
y 3 (x 1)2 3 .
2
2
所以,当x=1时,函数取得最大值,最大值y=1.5.
x=1满足0<x<2,这时
第26章 二次函数
26.3 实践与探索
运用二次函数解决实际问题
课程安排
Part 1 学习目标 1.分析实际问题中变量之间的二次函数关系.(难点) 2.能应用二次函数的性质求出图形面积的最大值.(重点)
Part 2 基础复习
y=ax2+bx+c 开口方向 对称轴 顶点坐标
最值
增减性
a>0 向上
直线 x b
合作探究
问题2 当自变量x为全体实数时,二次函数 y ax2 bx c
的最值是多少?
B同时出发,那么经过 3 秒,四边形APQC的面积最小. C
Q
AP
B
总结
图形面积 的最大值
一个关键
依据
常见几何图形 的面积公式
建立函数 关系式
一个注意
最值有时不在顶点处,则要 利用函数的增减性来确定
二 课后作业
某广告公司设计一幅周长为12m的矩形广告牌,广告设计费用每平 方米1000元,设矩形的一边长为x(m),面积为S(m2). (1)写出S与x之间的关系式,并写出自变量x的取值范围; (2)请你设计一个方案,使获得的设计费最多,并求出这个费用 .
为 6 3xm.这里应有x>0,6 3x >0
2
2
故0<x<2.
x 矩形窗框的透光面积y与x之间的函数关系式是:
y x 6 3x 2
二 几何图形的最大面积
即
y 3 x2 3x. 2
配方得
y 3 (x 1)2 3 .
2
2
所以,当x=1时,函数取得最大值,最大值y=1.5.
x=1满足0<x<2,这时
第26章 二次函数
26.3 实践与探索
运用二次函数解决实际问题
课程安排
Part 1 学习目标 1.分析实际问题中变量之间的二次函数关系.(难点) 2.能应用二次函数的性质求出图形面积的最大值.(重点)
Part 2 基础复习
y=ax2+bx+c 开口方向 对称轴 顶点坐标
最值
增减性
a>0 向上
直线 x b
合作探究
问题2 当自变量x为全体实数时,二次函数 y ax2 bx c
的最值是多少?
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7. 有一经销商,按市场价收购了一种活蟹1000千克, 放养在塘内,此时市场价为每千克30元。据测算,此后 每千克活蟹的市场价,每天可上升1元,但是,放养一天 需各种费用支出400元,且平均每天还有10千克蟹死去, 假定死蟹均于当天全部售出,售价都是每千克20元(放 养期间蟹的重量不变). ⑴设x天后每千克活蟹市场价为P元,写出P关于x的 函数关系式. ⑵如果放养x天将活蟹一次性出售,并记1000千克蟹 的销售总额为Q元,写出Q关于x的函数关系式。 ⑶该经销商将这批蟹放养多少天后出售,可获最大 利润,(利润=销售总额-收购成本-费用)?最大利润是 多少?
教学重难点
利用二次函数解决商品利润问题。 用二次函数的知识分析解决有关面积问 题的实际问题。 建立二次函数数学模型,函数的最值。 通过图形之间的关系列出函数解析式。
即
y 10 x 100 x 6000 (0≤x≤30)
2
y 10 x 100 x 6000 (0≤x≤30)
2
b x 5时,y最大值 10 52 100 5 6000 6250 2a
所以,当定价为65元时,利润最大,最大利润为6250元
5. 某个商店的老板,他最近进了价格为30元 的书包。起初以40元每个售出,平均每个月能售 出200个。后来,根据市场调查发现:这种书包 的售价每上涨1元,每个月就少卖出10个。现在 请你帮帮他,如何定价才使他的利润最大?
解:以AB的垂直平分线为y轴,以过点O的y 轴的垂线为x轴,建立直角坐标系。这时,屋顶的 横截面所成抛物线的顶点在原点,对称轴是y轴, 开口向下,所以可设它的函数关系式为: 2 (1) y ax a 0 因为y轴垂直平分AB,并交AB于点C,所 AB 2cm ,又CO=0.8m,所以点B的坐 以 CB 2 标为(2,-0.8)。 因为点B在抛物线上,将它的坐标代入(1), 2 所以a=-0.2 得 0.8 a 2 因此,所求函数关系式是 y 0.2 x 2 。
涨价:
(1)设每件涨价x元,则每星期售出商品的利润y也 随之变化,我们先来确定y与x的函数关系式。涨价x元 (300-10x) 时则每星期少卖 _____件,实际卖出 ___________件,销额 10x 为_______________ 元,买进商品需付________________ 40(300-10x) (60+x)(300-10x) 元因此,所得利润为_____________________________ y=(60+x)(300-10x)-40(300-10x) 元
y \元
6250 6000
0
5
30
x\元
解:设降价x元时利润最大,则每星期可多卖18x件,实 际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买 进商品需付40(300-10x)元,因此,得利润
y 60 x 300 18 x 40300 18 x
教学目标
【知识与能力】
生活实际问题转化为数学问题,体验二次函数 在生活中的应用。
【过程与方法】
通过实际问题,体验数学在生活实际中的 广泛应用性,提高数学思维能力。 在转化、建模中,学会合作、交流。 通过图形间的关系,进一步体会函数,体 验运动变化的思想
【情感态度与价值观】
通过对商品涨价与降价问题的分析,感受数 学在生活中的应用,激发学习热情。 在转化、建模中,体验解决问题的方法,培 养学生的合作交流意识和探索精神。 正确面对困难,迎接挑战的坚强品质。
某商店经营T恤衫,已知成批购进时单价是2.5元. 根据市场调查,销售量与销售单价满足如下关系:在 某一时间内,单价是13.5元时,销售量是500件,而单价 每降低1元,就可以多售出200件.请你帮助分析:销售 单价是多少时,可以获利最多? 设销售价为x元(x≤13.5元),那么 销售量可表示为 : 500 20013.5 x 件;
解得:k=-1,b=40。 所以一次函数解析为 y x 40 。 (2)设每件产品的销售价应定为 x 元,所获销售利润为 w 元。则
w x 10 x 40 x 2 50 x 400 x 25 225
2
产品的销售价应定为25元,此时每日获得最大销售利 润为225元。
y(件)
25
20
10
…
若日销售量 y 是销售价 x 的一次函数。 (1)求出日销售量 y(件)与销售价 x(元) 的函数关系式; (2)要使每日的销售利润最大,每件产品 的销售价应定为多少元?此时每日销售利润是 多少元?
b (1)设此一次函数解析式为 y kx 。
15k b 25 则 20k b 20
x500 20013.5 x 元; ; 所获利润可表示为: x 2.5500 20013.5 x元 当销售单价为 9.25 元时,可以获得最大利润,最 大利润是 9112.5 元.
销售额可表示为:
某商品现在的售价为每件60元,每星期可卖出 300件,市场调查反映:每涨价1元,每星期少卖出10 件;每降价1元,每星期可多卖出18件,已知商品的 进价为每件40元,如何定价才能使利润最大? (1)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是自变量? 哪些量随之发生了变化? 调整价格包括涨价和降价两种情况
1 2 h gt (g为定值) 2
实际问题
喷泉与二次函数
一公园要建造圆形喷水池,在水池中央垂直于 水面处安装一个柱子OA,O恰在水面中心, OA=1.25m,由柱子顶端A处的喷头向外喷水,水流 在各个方向沿形状相同的抛物线落下,为使水流形 状较为漂亮,要求设计成水流在离OA距离为1m处达 到距水面最大高度2.25m. 如果不计其它因素,那么水池的半径至少要多少 m才能使喷出的水流不致落到池外?
6. 某商场销售某种品牌的纯牛奶,已知进价为 每箱40元,市场调查发现:若每箱以50 元销售,平 均每天可销售100箱. 价格每箱降低1元,平均每天 多销售25箱 ; 价格每箱升高1元,平均每天少销售4 箱。如何定价才能使得利润最大? 若生产厂家要求每箱售价在45—55元之间。如 何定价才能使得利润最大?(为了便于计算,要求 每箱的价格为整数)
解:建立如图所示的坐标系,根据题意得,A点 坐标为(0,1.25),顶点B坐标为(1,2.25)
y x 1 2.25
2
y
●B(1,2.25)
A (0,1.25)
● D(-2.5,0)
数学化
o
● C(2.5,0)
x
设抛物线为y=a(x-h)2+k,由待定系数法可求得抛 物线表达式为:y=- (x-1)2+2.25. 当y=0时,可求得点C的坐标为(2.5,0) ; 同理,点D的坐标为(-2.5,0) .
新课导入
1. 某一物体的质量为m,它运动时的能量E 与它的运动速度v之间的关系是: 1 2 E mv (m为定值) 2 2. 导线的电阻为R,当导线中有电流通过时,单 位时间所产生的热量Q与物线在生 产、生活中广泛应用。 1
Q 2 RI 2(R为定值)
3. g表示重力加速度,当物体自由下落时, 下落的高度h与下落时间t之间的关系是:
10x 55 30250.
2
4. 某宾馆有50个房间供游客居住,当每个 房间的定价为每天180元时,房间会全部住满。 当每个房间每天的定价每增加10元时,就会有 一个房间空闲。如果游客居住房间,宾馆需对 每个房间每天支出20元的各种费用.房价定为多 少时,宾馆利润最大?
解:设每个房间每天增加x元,宾馆的利润为y元 y =(50-x/10)(180+x)-20(50-x/10) y =-1/10x2+34x+8000
2
18 x 60 x 6000
(0≤x≤20)
2
b 5 5 5 当x 时,y最大 18 60 6000 6050 2a 3 3 3
1 答:定价为 58 元时,利润最大,最大利润为6050元 3
最大面积问题
在一个直角三角形的内部作一个矩形ABCD,其 中AB和AD分别在两直角边上. (1)如果设矩形的一边AD=xcm,那么AB边的长 M 度如何表示? (2)设矩形的面积为ym2,当x取何值时,y的最大 C D 值是多少?
2x 2 4 2 2 7 2 15 7 15 225 x x x . 2 2 2 14 56 b 15 4ac b 2 225 或用公式 : 当x 1.07时, y最大值 4.02. 2a 14 4a 56
根据对称性,如果不计其它因素,那么水池的 半径至少要2.5m,才能使喷出的水流不致落到池外.
跳水与抛物线
某跳水运动员进行10米跳台跳水训 练时,身体(看成一点)在空中的运动路线 是经过原点O的一条抛物线.在跳某规定 动作时,正常情况下,该运动员在空中的 最高处距水面32/3米,入水处距池边的距 离为4米,同时,运动员在距水面高度为5 米以前,必须完成规定的翻腾动作,并调 整好入水姿势,否则就会出现失误. (1)求这条抛物线的解析式; (2)在某次试跳中,测得运动员在空 中运动路线是(1)中的抛物线,且运动员 在空中调整好入水姿势时,距池边的水平 距离为18/5米,问此次跳水会不会失误? 并通过计算说明理由.
┐ bcm
N
最多光线问题
某建筑物的窗户如图所示,它的上半部是半圆,下 半部是矩形,制造窗框的材料总长(图中所有的黑线的 长度和)为15m.当x等于多少时,窗户通过的光线最多 (结果精确到0.01m)?此时,窗户的面积是多少? x x 15 7 x x 解 : 1由4 y 7 x x 15.得, y . 4 2 2 x 15 7 x x x y