第5讲 数列总复习
高二数学经典讲义 第5讲 数列与等差数列学生版
满分晋级第5讲数列和等差数列数列1级数列初步数列2级数列的小伙伴们数列3级求和知识切片考点1:数列的定义与分类1.数列的概念按照一定次序排列的一列数称为数列.数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…,所以,数列的一般形式可以写成:123a a a L ,,,简记为{}n a . 2.数列的分类① 按照数列的项数的多少可分为:有穷数列与无穷数列.项数有限的数列叫有穷数列,项数无限的数列叫无穷数列.② 按照数列的每一项随序号变化的情况可分为:递增数列、递减数列、常数列、摆动数列.从第2项起,每一项都大于它的前一项的数列叫做递增数列;从第2项起,每一项都小于它的前一项的数列叫做递减数列;各项相等的数列叫做常数列;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列.③ 按照任何一项的绝对值是否小于某一正数可分为:有界数列和无界数列.【例1】 ⑴下面数列哪些是递增数列,递减数列,常数列,摆动数列?哪些是有穷数列,无穷数列?①全体自然数组成数列:0,1,2,3,…;②某校6个班学生人数构成的数列:15,16,18,20,22,30;2.1数列的认识经典精讲知识点睛③数列:5,1-,3, 2.6-, 1.5-,8; ④数列:5,5,5,5,5;⑤数列:100,90,80,70,60,50,…. ⑵根据数列的规律填空①1 1 2 3 5 8 __②5 3 10 6 15 12 __ __ ③3 5 9 17 33 __④1 2 2 3 4 6 __ ⑶给出下面的数表序列:12845314311表3表2表1 其中表(123)n n =L ,,,有n 行,第1行的n 个数是1,3,5,…,21n -,从第2行起,每行中的每个数都等于它肩上的两数之和,写出表4.【趣味答题】请写出下列数列的下一项:2,12,1112,3112,211213,______.2.按规律填空:①17 __ 9 100;②3 6 21 42 84 69 291 __ __;考点2:数列的通项公式与递推公式数列的表示方法:⑴ 图象法:数列是以正整数集*N (或它的有限子集{}12n L ,,,)为定义域的函数()n a f n =,当自变量按照从小到大的顺序取值时,所对应的项是一系列函数值.所以,可以以序号为横坐标,相应的项为纵坐标,描点作图来表示这个数列.全体正偶数组成的数列246L ,,,用图象法表示为(如图): 数列图象与一般函数图象的区别在于数列的图象是一系列孤立的点.⑵ 列表法:与函数一样,数列也可以用列表的方法来表示.n 1 2 3 … k …n a2 4 6 … 2k …整的反映一个数列,或数列的具体规律,所以并不是每一个数列都可以用列表的方法表示.⑶ 递推公式法:如果已知数列{}n a 的第1项(或前几项),且任意一项n a 与它相邻的一项(或几项)间的关系可以用一个公式来表示,那么这个公式就叫做数列的递推公式.如:数列知识点睛10865443221Ona n5,6,7,…用递推公式可这样表示:13a =,11n n a a +=+,n *∈N .⑷ 通项公式法:数列{}n a 的第n 项n a 也叫做数列的通项.如果数列{}n a 的第n 项n a 与n 之间的关系可用一个函数关系()n a f n =来表示,这个公式就叫做这个数列的通项公式.⑶中的数列可以用()*2n a n n =+∈N 来表示.【例2】 ⑴观察数列前几项,求出下列数列的一个通项公式① 1111--L ,,,,; ② 0101L ,,,,; ③ 1234--L ,,,,; ④ 1111111111L ,,,,; ⑤ 131793832435--L ,,,,,; ⑥ 11315228432,,,,,…; ⑵已知数列{}n a 满足11a =,11n n n a a n -=+(*2n n ∈N ,≥),则2a =_____;5a =______. ⑶已知数列{}n a 满足11a =,121n n a a -=+(*2n n ∈N ,≥)),则2a =_____;10a =______.⑷(目标班专用)我们可以利用数列{}n a 的递推公式2,,n n n n a a n ⎧⎪=⎨⎪⎩为奇数为偶数()n *∈N ,求出这个数列各项的值,使得这个数列中的每一项都是奇数.则2425a a +=_________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第_____项.【例3】 ⑴根据下列数列的前几项,写出数列的一个通项公式,并分析. ① 24816⋅⋅⋅,求出()n a f n =,n a 是否有最大、最小值?②111124816⋅⋅⋅,求出()n a f n =,n a 是否有最大、最小值? ③111124816----⋅⋅⋅,求出()n a f n =,n a 是否有最大、最小值? ④ 111124816--⋅⋅⋅,求出()n a f n =,n a 是否有最大、最小值? ⑵类比函数的单调性、有界性来分析数列的性质.① 数列{}n a 的通项公式是2610n a n n =-+,*n ∈N ,当n 取何值时,n a 最小? ② 数列{}n a 的通项公式是()23.61n a n =-+,*n ∈N ,当n 取何值时,n a 最小?【拓展】若25n a n n λ=-+,当且仅当3n =时n a 有最小值,问λ的取值范围.考点3:数列的前n 项和n S经典精讲数列{}n a 的前n 项和用n S 来表示,如果n S 与n 的关系可用一个公式表示,这个公式就叫做这个数列的前n 项和公式.数列的前n 项和121n n n S a a a a -=++++L .于是有1112n nn S n a S S n -=⎧=⎨-⎩,,≥111n n n S S n a S n --=⎨=⎩,≥,【铺垫】⑴已知数列{}n a 的前n 项和3n S n =,则1a =______,3a =_____,通项n a =______.⑵已知数列{}n a 的前n 项和1n n S n+=,则1a =_____,6a =______. 【例4】 ⑴已知数列{}n a 的前n 项和29n S n n =-,则其通项n a =__;若它的第k 项满足58k a <<,则k =__.⑵已知数列{}n a 的前n 项和21n n S =-,则其通项n a =______;满足2013k a <的最大正整数k 为______.1.已知数列{}n a 的前n 项和22n S n n =+-,求n a .2.已知数列{}n a 的前n 项和2n n S =,求n a .知识点睛经典精讲前n 项和减去前1n -项和第1项 12n n S a a a =+++L<教师备案>前面我们对于一般的数列学习了一些基本概念和知识,总体而言,大部分数列是没什么规律的,小部分规律明显,接下来我们学习一类有迹可循的特殊数列.例如:自然数数列,每个数都比它后面的数小1,正偶数数列,从第二项起,每项都比它前面的数多2,等等.这一类特殊的数列就是等差数列.考点4:等差数列的概念定义:一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫等差数列.这个常数叫做等差数列的公差,常用字母d 表示.【例5】 下列数列是等差数列吗?如果是求出公差,如果不是请说明理由.①13579L ,,,,,;②5137--L ,,,,;③5555L ,,,,; ④222222---L ,,,,,,;⑤531123---L ,,,,,,;考点5:等差数列的通项公式已知等差数列{}n a ,首项为1a ,公差为d ,第n 项(通项)为n a ,通项公式:()11n a a n d =+-.)1a n d +-【例6】 ⑴已知等差数列{}n a 的通项公式为73n a n =-,则公差为_______,首项为_____.⑵等差数列951L ,,,的第4项4a =_______,第20项20a =_______.2.2等差数列基本量计算经典精讲知识点睛经典精讲知识点睛首项公差 等差数列{}n a 第n 项⑶等差数列3711103L ,,,,的项数n =______,第5项为_______.⑷已知数列{}n a 是等差数列,且22a =-,510a =,则数列{}n a 的通项n a =_______.【挑战5分钟】 ⑴已知43n a n =-,则d =______.⑵已知1001n a n =-,则d =______.⑶已知123a d ==,,则n a =______.⑷已知512a d ==-,,则n a =______.⑸已知4132a d ==,,则n a =______.⑹已知315122a d ==-,,则n a =_____.⑺等差数列34575L ,,,,的项数为______. ⑻等差数列42026-L ,,,,的项数为_______. ⑼等差数列3032013-L ,,,,的项数为______. ⑽等差数列110824--L ,,,,的项数为______.考点6:等差数列的求和公式已知等差数列{}n a ,首项为1a ,公差为d ,通项为n a ,前n 项和为n S . 前n 项和n S 的公式:⑴()12n n n a a S +=;⑵()112n n n S na d -=+.1n n a d n a S ,,,,知三求二,可考虑根据公式统一转化为两个基本量.()()11122n n n a a n n S na d +-==+【铺垫】⑴等差数列371179L ,,,,的各项的和为_______.⑵已知数列{}n a 是等差数列,13a =,2d =,则20S =________.经典精讲知识点睛项数 首项 等差数列前n 项和 第n 项 公差【例7】 ⑴已知数列{}n a 是等差数列,15a =,525a =,则前n 项和n S =________.⑵已知数列{}n a 是等差数列,14a =,716a =,则使得154n S =的项数n =________. ⑶已知等差数列{}n a 的前n 项和236n S n n =+,则1a =_____,n a =_______. ⑷设n S 为等差数列{}n a 的前n 项和,若36324S S ==,,则9a = .⑸已知正整数按如下规律排成一列:()1,1、()1,2、()2,1、()1,3、()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,……,则第60个数对是( )A .()10,1B .()2,10C .()5,7D .()7,5考点7:等差数列的性质1.等差中项:若x A y ,,成等差数列,则A 称为x y ,的等差中项,2x yA +=. 2.等差数列{}n a 的简单性质(其中公差为d ): ⑴ ()n m a a n m d =+-(*m n ∈N ,);⑵ 若p q m n +=+,则有p q m n a a a a +=+;若2m p q =+,则有2m p q a a a =+(p ,q ,m ,n *∈N );n +p q m n⑶ 在等差数列中,等距离取出若干项也构成一个等差数列,即n a ,n m a +,2n m a +K ,,为等差数列,公差为md ;⑷{}n a 的前n 项和为n S ,则()2121n n S n a -=-. (2121n S n -=-【铺垫】⑴在等差数列{}n a 中,1910a a +=,则5a 的值为( )2.3 等差数列性质初步 经典精讲知识点睛下标和相等对应项的和相等211221n n S a a a --=+++L项数中间项A .5B .6C .8D .10⑵在等差数列{}n a 中,37513a a ==,,则d =_______.11a =______.13S =_______.【例8】 ⑴①a 是42-与42+的等差中项,则a = ;②220180a ,,为等差数列,则a = .⑵如果等差数列{}n a 中,34512a a a ++=,那么127a a a +++=L ( ) A .14 B .21 C .28 D .35⑶设n S 是等差数列{}n a 的前n 项和,128a =-,99S =-,则16S = . ⑷已知等差数列{}n a 满足244a a +=,7910a a +=,则其前10项的和10S =______.⑸(目标班专用)在等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值为________.【演练1】 写出下列数列{}n a 的通项n a :⑴ 9999999999L ,,,,;⑵1313L ,,,;⑶24816--L ,,,,.【演练2】 数列{}n a :111234L ,,,,求出()n a f n =,n a 是否有最大、最小值?【演练3】 已知数列{}n a 是一个等差数列,且48a =-,820a =-,则数列{}n a 的通项n a =______.【演练4】 ⑴已知等差数列{}n a 满足3824a a +=,则它的前10项的和10S 为________.⑵在等差数列{}n a 中,{}n a 的前n 项和为n S ,若515S =,则24a a += .实战演练【演练5】 设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,求5a 的值,当n S 取最小值时n 的值.【演练6】 第1列 第2列 第3列... 第1行 1 2 3 ... 第2行 2 4 6 (3)369… … … … ……列的数是 .1.已知数列{}n a 的前n 项和为n S ,则n a =___________.2.等差数列{}n a 的前n 项和公式n S =_______________=_____________. 3.等差数列{}n a ,若2p q m +=,则p q a a +____2m a概念要点回顾11谷神星的发现1766年,德国有一位名叫提丢斯的中学数学教师,把下面的数列:3,6,12,24,48,96,192……的前面加上0,即:0,3,6,12,24,48,96,192……然后再把每个数字都加上4,就得到了下面的数列:4,7,10,16,28,52,100,196……再把每个数都除以10,最后得到:0.40.711.6 2.8 5.21019.6L ,,,,,,,,令提丢斯惊奇的是,他发现这个数列的每一项与当时已知的六大行星(即水星、金星、地球、火星、木星、提丢斯的朋友,天文学家波得深知这一发现的重要意义,就于1772年公布了提丢斯的这一发现,这串数从此引起了科学家的极大重视;并被称为提丢斯——波得定则即太阳系行星与太阳的平均距离.当时,人们还没有发现天王星、海王星,以为土星就是距太阳最远的行星.1781年,英籍德国人赫歇尔在接近19.6的位置上(即数列中的第八项)发现了天王星,从此,人们就对这一定则深信不疑了.根据这一定则,在数列的第五项即2.8的位置上也应该对应一颗行星,只是还没有被发现.于是,许多天文学家和天文爱好者便以极大的热情,踏上了寻找这颗新行星的征程.1801年新年的晚上,意大利天文学家皮亚齐还在聚精会神地观察着星空.突然,他从望远镜里发现了一颗非常小的星星,正好在提丢斯——波得定则中2.8的位置上.可是,当皮亚齐再想进一步观察这颗小行星时,他却病倒了.等到他恢复健康,再想寻找这颗小行星时,它却不知去向了.皮亚齐没有放弃这一偶然的机会,他认为这可能就是人们一直没有发现的那颗行星,并把它命名为“谷神星”.在高斯之前,著名数学家欧拉曾经研究出了一种计算行星轨道的方法.可是,这个方法太麻烦.高斯决心去寻找一种简便易行的方法.在前人的基础上,高斯经过艰苦的运算,以其卓越的数学才能创立了一种崭新的行星轨道计算理论.他根据皮亚齐的观测资料,利用这种方法,只用了一个小时就算出了谷神星的轨道形状,并指出它将于何时出现在哪一片天空里.1801年12月31日夜,德国天文爱好者奥伯斯,在高斯预言的时间里,用望远镜对准了这片天空.果然不出所料,谷神星出现了!高斯的计算方法成功了.高斯从笔尖上寻找到的这颗行星,在隐藏了整整一年后,向人们显示了数学在科学研究中的巨大作用.。
第5讲1.5无穷小与无穷大
显然 ,
例如, 无界数列 { xn } : 0, 2, 0, 4,, 0, 2n, 0, .
总有等于 0 的项使
不成立.
| xn | M
故,当 n 时, { xn } 不是无穷大 .
数统教研室
广东科贸职业学院
三. 无穷大量与无穷小量的关系
思考:当 n 时, xn (2)n 是否为无穷大?
解 M 0, | xn | | (2)n | 2n,是单调增加的, 且在n
的过程中, 有
| (2)n | M
即,当n 时,xn (2)n的绝对值无限增大.故
lim
n
xn
lim(2)n
n
.
注意:无穷大是按绝对值定义的.
数统教研室
广东科贸职业学院
lim
x 0
tan
x sin x3
x
lim
x0
x x x3
0.
( x 0 时, tan x ~ x; sin x ~ x. )
此题利用等价无穷小量替代定理,如何计算?
数统教研室
广东科贸职业学院
当x 0时, tan x ~ x, sin x ~ x
例6 求 lim tan 3 x x0 sin 5 x
解
lim tan 3 x x0 sin 5 x
lim 3x x0 5x
3 5
数统教研室
广东科贸职业学院
当x 0时, ln(1 x) ~ x, tan x ~ x, sin x ~ x
例7
求 lim ln x0
1 x 2sin x tan x
解 lim ln 1 x 2sin x
05讲找规律(二)
05讲找规律(⼆)第5讲找规律(⼆)会点:应⽤四则运算表⽰数之间的关系解决⼀步运算规律问题;重点:掌握数列中的找规律、以及数组的找规律,解决数列、数组变化规律问题;难点:找出数表的规律,根据数表之间的数解决数组规律问题。
⼀、数列规律我们经常会碰到许多个按⼀定顺序排列的数,这样的⼀列数叫作数列。
例如:(1)1,3,5,7,9,……(2)2,5,8,11,14,……(3)3,4,6,9,13,18,24……在⼀个数列中,从左向右数到第⼏个数,这个数就叫作这个数列的第⼏项,如数列(1)中的第2项是3,数列(3)中的第5项是13。
数列中的项的个数可以是有限个的,如数列(3),也可以是⽆限个,如数列(1)和数列(2)。
数列中的数是按照⼀定规律排列的。
对于⽐较简单的数列,⼀般从相邻两个数的和、差、积、商中找规律。
对于⽐较复杂的数列则要考虑先将数列合理地拆分成若⼲个部分,再分别考虑它们的排列规律。
数列中的规律有很多种类型:有的是所给的每个数之间有规律,有的是隔⼀个数之间有规律。
这些规律可能是同加、同减、同乘⼀个数、⼀个数列或⼀个数的平⽅。
⼆、数组规律找数组中的规律时,⼀般我们可以考虑从每个数组的对应位置上的数进⾏规律性分析。
我们还可以以每个数组的第⼀个数为基准,分析已知数组中所有数的⼀个共性规律。
三、数表规律除了可以将数排成⼀⾏形成数列之外,还可以将数按照⼀定的形状排成图表,这样就得到了数表。
数表往往是由⼀个或多个数列组成的。
第 1 关数列找规律1、观察下列数列,找到规律并填空。
(1)1,4,7,10,(),16,……(2)2,3,6,11,(),(),……(3)1,2,4,8,(),32,(),……(4)1,1,2,3,5,8,13,(),(),……2、观察下列数列,找到规律并填空。
(1)18,2,15,2,12,2,9,2,(),(),……(2)1,2,2,4,3,8,4,16,5,(),(),……(3)1,4,9,16,25,(),(),64,……【过关检测】1、观察下列数列,找到规律并填空。
数学分析第五讲 上下极限定义与基本性质与应用
能否用数列 极限保序性?
1 N lim sup yn A lim( xk A ) . n n n k 1
由 任意性: limsup yn A 0.
n
因此 lim inf yn A limsup yn A 0
n n
所以 lim yn A.
n
数列上下极限的定义与基本性质
例3 证明:
xn 0, lim xn A 0, 证明:lim n x1 x2
n n
xn A.
因为 lim xn A, 所以
n
0, N N * , n N : A xn A
n
8n +3
8n
8n
sinΒιβλιοθήκη 8n+3 4
1 2 = 1 8n 2
8n
lim x8n e
n n
lim x8n 1
n
2 e 2 2 2
lim x8n 2 e 1
lim x8n 3 e
总习题课
2 2
lim x8n 4 e , lim x8n 5 e
n n
2 , 2
lim x8n 6 e 1, lim x8n 7 e
2 n n 2 2 lim sup xn e 1,lim inf xn e n n 2
斯笃茨定理的应用
例3 1p 2 p 求极限 lim p n n
p p 1 2 n
np
n , p N *. p1
解:原式 lim
数列知识点归纳总结讲义
数列知识点归纳总结讲义数列是数学中常见的一个概念,它在各个领域都有广泛的应用。
正如其名称所示,数列是一系列按照特定规律排列的数的集合。
在学习和应用数列时,我们需要了解一些基本概念和常见的数列类型。
本文将对数列的知识点进行归纳总结,帮助读者更好地理解和掌握相关概念。
一、数列的基本概念1. 数列的定义:数列是按照一定的规律排列的一组数,用字母表示为{a₁,a₂,a₃,...}。
2. 项与序号:数列中的每个数称为项,对应的位置称为序号。
第一项为a₁,第二项为a₂,以此类推。
3. 通项公式:数列中每个项与它所在的序号之间存在着一定的关系,这种关系用通项公式来表示,通常用aₙ表示第n个项的值。
4. 数列的有穷与无穷:当数列中的项有限个时,称其为有穷数列;当数列中的项无限多时,称其为无穷数列。
二、常见的数列类型1. 等差数列:等差数列是一种最为常见的数列类型,其特点是每个项之间的差值相等。
通项公式:aₙ = a₁ + (n - 1)d其中,a₁为首项,d为公差,n为项数。
例如:2,5,8,11,14...就是一个以3为公差的等差数列。
2. 等比数列:等比数列是指数列中每个项与它前一项的比值相等的数列。
通项公式:aₙ = a₁ * r^(n-1)其中,a₁为首项,r为公比,n为项数。
例如:1,2,4,8,16...就是一个以2为公比的等比数列。
3. 斐波那契数列:斐波那契数列是指从第3项开始,每个项都是前两项的和。
通项公式:aₙ = aₙ₋₂ + aₙ₋₁其中,a₁和a₂为斐波那契数列的前两项。
例如:1,1,2,3,5,8,13...就是一个斐波那契数列。
4. 平方数列:平方数列是指数列中每个项都是某个整数的平方。
通项公式:aₙ = n²其中,n表示项数。
例如:1,4,9,16,25...就是一个平方数列。
5. 等差数列与等比数列混合:有时数列中既存在等差关系,又存在等比关系,称其为等差数列与等比数列混合数列。
2020版新高考复习理科数学教学案:数列含答案 (2)
6.[20xx·惠州调研]已知各项均为正数的等比数列{an}中.a1=1,2a3.a5,3a4成等差数列.则数列{an}的前n项和Sn=( )
A.2n-1B.2n-1-1
C.2n-1D.2n
解析:通解:设{an}的公比为q(q>0).由题意知2a5=2a3+3a4.∴2a3q2=2a3+3a3q.∴2q2=2+3q.∴q=2或q=- (舍去).所以an=2n-1.
■备考工具——————————————
1.求数列的前n项和的方法
(1)公式法
①等差数列的前n项和公式
Sn= =na1+ .
②等比数列的前n项和公式
a.当q=1时.Sn=na1;
b.当q≠1时.Sn= = .
(2)分组求和:把一个数列分成几个可以直接求和的数列.
(3)裂项相消:把一个数列的通项分成两项差的形式.相加过程中消去中间项.只剩有限项再求和.
通项公式的推广
an=a1qn-1
(揭示首末两项的关系)
an=amqn-m
(揭示任意两项之间的关系)
(2)前n项和公式
Sn= 或Sn=
7.等比数列的性质
若{an}为等比数列.则
(1){a }. .{c·an}(c≠0)都是等比数列.
(2)各项及公比都不为0.
8.等比数列项的运算性质
若m+n=p+q(m.n.p.q∈N*).则am·an=ap·aq.
令n=101.则S101+a101=2×101-6+ .所以S101+(S101-S100)=196+ .得2S101-S100=196+ ②.
将①代入②得S100=2× -196- =396+ -196- =200.选B.
答Байду номын сангаас:B
数列综合讲义十三种题型归纳梳理
数列综合讲义第1讲 累加法、累乘法、差商法求通项 题型1 累加法1.已知数列{}n a 满足11a =,213a =,若1111(2)3(2,*)n n n n n a a a a a n n N -+-++=∈,则数列{}n a 的通项n a = .【解析】111123(2,)n n n n n n a a a a a a n n N +-+-++=∈,∴1111112()n n n n a a a a +--=-,2111312a a -=-= ∴数列111{}n n a a +-是等比数列,首项与公比都为2,∴1112n n na a +-= 2n ∴时,1212122212121n n n n n a ---=++⋯⋯++==--,则数列{}n a 的通项121n n a =-∴则数列{}n a 的通项121n n a =- 2.若数列{}n a 满足11a =,且对于任意*n N ∈都有11n n a a n +=++,则1220172018201911111a a a a a ++⋯+++= . 【解析】由11n n a a n +=++,得11n n a a n +-=+,112211()()()n n n n n a a a a a a a a ---∴=-+-+⋯+-+(1)(1)(2)212n n n n n +=+-+-+⋯++=∴12112()(1)1n a n n n n ==-++ 则1220172018201911111111111120192(1)22334201920201010a a a a a ++⋯+++=-+-+-+⋯+-= 3.已知数列{}n a 满足11a =,213a =,且*111123(2,)n n n n n n a a a a a a n n N -+-++=∈(1)证明:数列111n n a a +⎧⎫-⎨⎬⎩⎭是等比数列 (2)求数列1{2n n a a +}n 的前n 项和【解析】(1)证明:当2n 且*n N ∈时,在111123n n n n n n a a a a a a -+-++=两边同除以11n n n a a a -+,得11123n n n a a a +-+=,1111112()n n n n a a a a +--=-,1111211n nn n a a a a +--=-为常数,且21112a a -= 所以数列111n n a a +⎧⎫-⎨⎬⎩⎭是以2为首项,2为公比的等比数列. (2)设数列{}12nn n a a +的前n 项和为n S由(1)知1112n n n a a +-=,1111112221n n n n a a a ++-=-=⋯=-=-,∴11121n n a ++=-,11121n n a ++=- 又由1112n n n a a +-=,112n n n n n a a a a ++=-,所以122311111()()()121n n n n n S a a a a a a a a +++=-+-+⋯+-=-=-- 题型2 累乘法1.已知数列{}n a 满足11a =,且1(1)n n na n a +=+,则(n a = ) A .1n + B .n C .1n -D .2n -【解析】数列{}n a 满足11a =,且1(1)n n na n a +=+,可得11321111321n n n a a a a a an n n +-===⋯====+- 可得n a n =,选B2.已知数列{}n a 满足1(2)(1)n n n a n a ++=+,且213a =,则(n a = )A .11n + B .121n - C .121n n -- D .11n n -+ 【解析】1(2)(1)n n n a n a ++=+,∴112n n a n a n ++=+,∴3234a a =,4345a a =,11n n a n a n -⋯=+ 以上各式两边分别相乘得1(2)1n a n n =+,由1n =时也适合上式,所以11n a n =+,选A 3.已知数列{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,若数列{}n b 满足12n n n b b +=+,且12b =,则式子312123n nb b b b a a a a +++⋯+的值是( ) A .122n n +- B .(1)22n n -+ C .(1)22n n +- D .1(1)22n n +-+【解析】根据题意,数列{}n a 满足2211(1)0n n n n n a na a a +++-+=,变形可得11[(1)]()0n n n n n a na a a +++-+= 又由数列{}n a 是首项为1的正项数列,则有1(1)0n n n a na ++-=,变形可得:11n n a na n +=+ 则有11n n a n a n --=,则有1211211211112n n n n n a a a n n a a a a a n n n -----=⨯⨯⋯⋯+⨯=⨯⨯⋯⋯⨯⨯=-,故1n a n= 数列{}n b 满足12n n n b b +=+,即12n n n b b +-=,则有112n n n b b ---=则有12112211()()()22222n n n n n n n n b b b b b b b b -----=-+-+⋯⋯+-+=++⋯⋯++=,故2n n b = 则2n n n b n a =⨯,设312123n n nbb b b S a a a a =+++⋯+,则212222n n S n =⨯+⨯+⋯⋯⨯,① 则有231212222n n S n +=⨯+⨯+⋯⋯⨯,②-②可得:231112(21)2(222)22(1)2221nn n n n nS n n n +++--=+++⋯⋯-⨯=-⨯=---变形可得:1(1)22n n S n +=-+,选D4.设{}n a 是首项为1的正项数列,且2211(1)0(1n n n n n a na a a n +++-+==,2,3,)⋯,则4a = 14,n a = . 【解析】2211(1)0(1n n n n n a na a a n +++-+==,2,3,)⋯,11[(1)]()0n n n n n a na a a ++∴+-+= 又0n a >,1(1)n n n a na +∴+=,11a =,111n na a ∴=⨯=,1n a n ∴=,414a =,故答案为:14;1n5.已知数列{}n a 满足123a =,12n n na a n +=+,求通项公式n a . 【解析】12n n n a a n +=+,∴12n n a n a n +=+ 1232112321n n n n n n n a a a a a a a a a a a a -----∴=⋯12321211433n n n n n n ---=⋯⨯+-43(1)n n =+,43(1)n a n n ∴=+.6.已知数列{}n a 满足13a =,131(1)32n n n a a n n +-=+,求n a 的通项公式. 【解析】数列{}n a 满足13a =,131(1)32n n n a a n n +-=+,∴134(2)31n n a n n a n --=-, 13211221n n n n n a a a aa a a a a a ---∴=⋯3437523313485n n n n --=⋯--631n =-,当1n =时也成立,631n a n ∴=-题型3 差商法1.已知数列{}n a 中,11a =,对所有*n N ∈,都有212n a a a n ⋯=,则3(a = ) A .32B .3C .9D .94【解析】因为数列{}n a 中,11a =,对所有*n N ∈,都有212n a a a n ⋯=,所以3n =时,21233a a a =,2n =时,2122a a =,所以394a =.选D . 2.已知数列满足11222()2n n na a a n N -+++⋯+=∈.(Ⅰ)求数列{}n a 的通项;(Ⅱ)若n n nb a =,求数列{}n b 的前n 项和n S ;(Ⅲ)求证221n S n n +-.【解析】()1I n =时,112a =,112222n n n a a a -++⋯+=,2n ∴时,21211222n n n a a a ---++⋯+=两式相减可得,1122n n a -=,∴12n n a = ()II 解:2n n nnb n a ==,∴231222322n n S n =+++⋯+,231212222n n S n +=++⋯+ 两式相减可得,23112(12)22222212n nn n n S n n ++--=+++⋯+-=--∴1(1)22n n S n +=-+()III 证明:由()II 可知,12(1)2(1)(11)n n n S n n +-=-=-+0110112111111(1)()(1)()(1)(3)23n n n n n n n n n C C C n C C C n n n n ++++++++=-++⋯+-++=-+=+-∴2223n S n n ---,∴221n S n n +-3.已知数列n a 满足21*123222()2n n na a a a n N -+++⋯+=∈.(Ⅰ)求数列{}n a 的通项;(Ⅱ)若n n nb a =求数列{}n b 的前n 项和n S .【解析】(Ⅰ)1n =时,112a =,21123222..2n n n a a a a -+++⋯+=⋯(1) 2n ∴时,22123112222n n n a a a a ---+++⋯+=⋯.(2) (1)-(2)得1122n n a -=即12n n a =,又112a =也适合上式,∴12n n a = (Ⅱ)2n n b n =,∴231222322n n S n =+++⋯+(3),23121222(1)22n n n S n n +=++⋯+-+(4) (3)-(4)可得231121212122nn n S n +-=+++⋯+-1112(12)222212n n n n n n +++-=-=---∴1(1)22n n S n +=-+4.已知数列{}n a 满足112324296n n a a a a n -+++⋯+=-. (1)求数列{}n a 的通项公式; (2)设2||(3log )3n n a b n =-,探求使123111116n m b b b b -+++⋯+>恒成立的m 的最大整数值.【解析】(1)当1n =时,1963a =-=,当2n 时,112324296n n a a a a n -+++⋯+=-,① 2123124296(1)n n a a a a n --+++⋯+=--,②①-②得,126n n a -=-,232n n a -∴=-;23,13,22n n n a n -=⎧⎪∴=⎨-⎪⎩,(2).2||(3log )3n n a b n =-,1231(3log )33b ∴=-=,1113b =;2n 时,2||(3log )3n n a b n =-223||2(3log )(3(2))3n n n n --=-=--(1)n n =+;1111n b n n =-+; ∴123111116n m b b b b -+++⋯+>可化为:11111111()()()3233416m n n -+-+-+⋯+->+; 即11112316m n -+->+恒成立,即511616m n -->+恒成立,故1136m ->成立,故m 的最大整数值为2.5.已知数列{}n a 满足1231(1)(41)23(1)6n n n n n a a a n a na -+-+++⋯+-+=.(Ⅰ)求2a 的值; (Ⅱ)若111nn i i i T a a =+=∑,则求出2020T 的值; (Ⅲ)已知{}n b 是公比q 大于1的等比数列,且11b a =,35b a =,设1n n c b λ+=,若{}n c 是递减数列,求实数λ的取值范围【解析】(Ⅰ)由题意,数列{}n na 的前n 项和(1)(41)6n n n n S +-=.当1n =时,有1111a S ⋅==,所以11a =. 当2n 时,1(1)(41)(1)(45)66n n n n n n n n n na S S -+---=-=-22[(1)(41)(1)(45)][(431)(495)](21)66n nn n n n n n n n n n =+----=+---+=-.所以,当2n 时,21n a n =-; 又11a =符合,2n 时n a 与n 的关系式,所以21n a n =-,所以2a 的值为3. (Ⅱ)由(Ⅰ)可知21n a n =-. 可令11111111()(21)(21)22121n n n n n c a a a a n n n n ++===-⋅-+-+因为111nn i i i T a a =+=∑所以12233411111n n n T a a a a a a a a +=+++⋯+11111111[(1)()()()]2335572121n n =-+-+-+⋯+--+11(1)22121n n n =-=++ 所以2020T 的值为20204041. (Ⅲ)由111b a ==,359b a ==得29q =.又1q >,所以3q = 所以1113n n n b b q --==,123n n n n c b λλ+==-⋅因为{}n c 是递减数列,所以1n n c c +<,即112323n n n n λλ++-⋅<-⋅.化简得232n n λ⋅> 所以*n N ∀∈,12()23nλ>⋅恒成立 又12()23n ⎧⎫⋅⎨⎬⎩⎭是递减数列,所以12()23n ⎧⎫⋅⎨⎬⎩⎭的最大值为第一项1121()233a =⨯=所以13λ>,即实数λ的取值范围是1(,)3+∞6.已知数列{}n a 满足12a =,1121222(*)n n n n a a a na n N -+++⋯+=∈ (Ⅰ)求{}n a (Ⅱ)求证:1223111132(*)61112n n a a a n n n N a a a +----<++⋯+<∈--- 【解析】(Ⅰ)由1121222n n n n a a a na -+++⋯+=可得3121212222n n n na a na a a +-+++⋯+= 所以当2n 时,3121211(1)2222n n n n a a n a a a ----+++⋯+= 因此,有111(1)(2)222n n nn n n a na n a n ----=-,即122(1)n n n a na n a +=--,整理得12(2)n n a a n +=,又12a =,212a a = 所以数列{}n a 是首项为2,公比为2的等比数列,求得2n n a =(Ⅱ)记1111212112121212n nn nn n n a b a +++---==<=---,故122311111111112222n n a a a na a a +---++⋯+<++⋯+=---, 又112111212111111122121212222422232n nn nn n n n nn a b a ++++----====-=------⨯-⨯,所以1223111(1)1111111326211112233223612n n nn a a a n n n n a a a +-----++⋯+-=-+⨯>-=----. 综上可得:122311113261112n n a a a n n a a a +----<++⋯+<---. 7.已知数列{}n a 满足11121(22)2(*)n n n a a a n N n -+++⋯+=∈.(1)求1a ,2a 和{}n a 的通项公式;(2)记数列{}n a kn -的前n 项和为n S ,若4n S S 对任意的正整数n 恒成立,求实数k 的取值范围. 【解析】(1)由题意得1112222n n n a a a n -+++⋯+=,所以:21124a =⨯=,312222a a +=⨯.解得:26a =.由1112222n n n a a a n -+++⋯+=, 所以212122(1)2(2)n n n a a a n n --++⋯+=-,相减得1122(1)2n n n n a n n -+=--, 得22n a n =+,1n =也满足上式.所以{}n a 的通项公式为22n a n =+. (2)数列{}n a kn -的通项公式为:22(2)2n a kn n kn k n -=+-=-+说以:该数列是以4k -为首项,公差为2k -的等差数列,若4n S S 对任意的正整数n 恒成立,等价于当4n =时,n S 取得最大值,所以4524(2)2025(2)20a k k a k k -=-+⎧⎨-=-+⎩解得12552k . 所以实数k 的取值范围是125[,]52.8.(1)设数列{}n a 满足211233333n n n a a a a -+++⋯+=,*n N ∈,求数列{}n a 的通项公式;(2)已知等比数列{}n a 的各项均为正数,且12231a a +=,23269a a a =,求数列{}n a 的通项公式. 【解析】(1)由211233333n n n a a a a -+++⋯+=①,得113a =,且22123113333n n n a a a a ---+++⋯+=②①-②得:1133n n a -=,∴1(2)3n n a n =,验证1n =时上式成立,∴13n n a =(2)设等比数列{}n a 的公比为q由12231a a +=,23269a a a =,且0n a >,得1122342319a a q a a +=⎧⎨=⎩,∴134(23)13a q a a +=⎧⎨=⎩,解得:113a q ==,∴13n n a = 第2讲 已知n S 求n a1.已知n S 为数列{}n a 的前n 项和,且2log (1)1n S n +=+,则数列{}n a 的通项公式为( ) A .2n n a =B .3122n n n a n =⎧=⎨⎩C .12n n a -=D .12n n a +=【解析】由2log (1)1n S n +=+,得112n n S ++=,当1n =时,113a S == 当2n 时,12n n n n a S S -=-=,所以数列{}n a 的通项公式为3,12,2n n n a n =⎧=⎨⎩,选B2.已知n S 为数列{}n a 的前n 项和,12a =-,1n n a S +=,那么5(a = ) A .4- B .8- C .16- D .32-【解析】2n 时,1n n a S +=,1n n a S -=,可得:1n n n a a a +-=,化为12n n a a +=,1n =时,212a a ==-∴数列{}n a 从第二项起为等比数列,公比为2,首项为2-,那么352216a =-⨯=-,选C3.已知数列{}n a 的前n 项和为n S ,24a =,*(1)()2nn n a S n N +=∈,则数列{}n a 的通项公式为( ) A .*2()n a n n N =∈B .*2()n n a n N =∈C .*2()n a n n N =+∈D .2*()n a n n N =∈【解析】因为数列{}n a 的前n 项和为n S ,24a =,*(1)()2nn n a S n N +=∈∴当2n =时,22121(21)22a S a a a +==+⇒=,把1n =代入检验,只有答案A B 成立,排除CD 当3n =时,331233(31)62a S a a a a +==++⇒=;排除B ,选A 4.已知数列{}n a 的前n 项和为n S ,且14121n n S a n +-=-,11a =,*n N ∈,则{}n a 的通项公式(n a = ) A .nB .1n +C .21n -D .21n +【解析】14121n n S a n +-=-,1(21)41n n n a S +∴-=-①,1(23)41(2)n n n a S n -∴-=-② ①-②得:1(21)(23)4(2)n n n n a n a a n +---=,整理得:121(2)21n n a n n a n ++=- 1232112321n n n n n n n a a a a a a a a a a a a -----∴=⋯21232553123252731n n n n n n ---=⋯---21(2)n n =-,11a =,符合上式21n a n ∴=-,选C5.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22a =,2121(*)n n a S n n N +=++∈,若对任意的*n N ∈,123111120nn a n a n a n a λ+++⋯+-++++恒成立,则实数λ的取值范围为( ) A .(-∞,2] B .(-∞,1] C .1(,]4-∞ D .1(,]2-∞【解析】22a =,2121(*)n n a S n n N +=++∈,2n ∴时,22112()121n n n n n a a S S a +--=-+=+化为:222121(1)n n n n a a a a +=++=+,0na >,11n n a a +∴=+,即11n n a a +-= 1n =时,212224a a +==,解得11a =,∴数列{}n a 为等差数列,首项为1,公差为1 11n a n n ∴=+-=,∴123111111111222n n n a n a n a n a n n n nn +++⋯+=++⋯⋯+=+++++++ 对任意的*n N ∈,123111120n n a n a n a n a λ+++⋯+-++++恒成立,122λ∴,解得14λ ∴实数λ的取值范围为(-∞,1]4,选C6.已知数列{}n a 满足:12a =,21(1)0(*)n n n a S S n N ++-=∈,其中n S 为{}n a 的前n 项和.若对任意的n 均有12(1)(1)(1)n S S S n ++⋯+恒成立,则的最大整数值为( )A .2B .3C .4D .5【解析】当1n 时,由条件21(1)0(*)n n n a S S n N ++-=∈可得21(1)n n n nS S S S +--=-,整理得221(21)n n n n n S S S S S +-=--+,化简得:121n n n S S S +=-从而111n n n S S S +--=-,故111111n n S S +-=-- 由于:1111S =-,所以:数列1{}1n S -是以1111S =-为首项,1为公差的等差数列,则:11n n S =-, 整理得:1n n S n+=,依题只须12(1)(1)(1)()n min S S S n++⋯+12(1)(1)(1)()n S S S f n n ++⋯+=,则12(1)(1)(23)1()1(1)n n S f n n n f n n n ++++==>++,故11()(1)31ninS f n f +=== 3max∴=,选B7.已知数列{}n a 的前n 项和为n S ,满足22(*)n S n n n N =+∈,则数列{}n a 的通项公式n a = n .设211(1)nn n n n a b a a ++=-,则数列{}n b 的前n 项和n T =( ).【解析】22(*)n S n n n N =+∈,212(1)1(2,*)n S n n n n N -∴=-+-∈,两式相减得:22n a n =,即(2)n a n n =又212112a =+=,11a ∴=,也符合上式,n a n ∴=,又2112111(1)(1)(1)()(1)1nn n n n n n a n b a a n n n n +++=-=-=-+++1111111(1)()()(1)()223341n n T n n ∴=-+++-+-⋯+-++121,,1111,,11n n n n n n n n n n +⎧⎧---⎪⎪⎪⎪++==⎨⎨⎪⎪-+-⎪⎪++⎩⎩为奇数为奇数为偶数为偶数8.已知数列{}n a 的前n 项和为S ,若11a =,12n n S a +=,则数列{}n a 的通项公式n a =( ). 【解析】当2n 时,12n n S a -=①,12n n S a +=②②-①得12n n n a a a +=-,即13n n a a +=,故数列{}n a 从第二项起为等比数列,又22a =,则223n n a -=⨯ 当1n =时,11a =,故2*1,123,2,n n n a n n N -=⎧=⎨⨯∈⎩9.已知数列{}n a 的前n 项和为n S ,且1211121n nS S S n ++⋯+=+,则数列{}n a 的通项公式n a = 【解析】数列{}n a 的的前n 项和为n S ,且1211121n nS S S n ++⋯+=+① 当2n 时,12111122n n S S S n--++⋯+=② ①-②得122221(1)n n n S n n n n -=-=++,所以(1)2n n n S += 故1(1)(1)22n n n n n n n a S S n -+-=-=-=(首项1符合通项), 故n a n =10.已知数列{}n a 的前n 项和为n S ,且231122n S n n =++,则数列{}n a 的通项公式n a =( ).【解析】231122n S n n =++,可得113a S ==当2n 时,22131311(1)(1)1312222n n n a S S n n n n n -=-=++-----=-则数列{}n a 的通项公式3,131,2n n a n n =⎧=⎨-⎩,故答案为:3,131,2n n n =⎧⎨-⎩ 11.已知数列{}n a 的各项均为正数,n S 为其前n 项和,且对任意的*n N ∈,均有n a ,n S ,2n a 成等差数列,则n a =( )【解析】各项均为正数的数列{}n a 的前n 项和为n S对任意*n N ∈,总有n a ,n S ,2n a 成等差数列,22n n n S a a ∴=+,21112n n n S a a ---=+两式相减,得22112n n n n n a a a a a --=+--,111()()n n n n n n a a a a a a ---∴+=+- 又n a ,1n a -为正数,11n n a a -∴-=,2n ,{}n a ∴是公差为1的等差数列 当1n =时,21112S a a =+,得11a =,或10a =(舍),n a n ∴=. 第3讲 构造辅助数列求通项1.已知数列{}n a 满112,413n n a a a +==+,则数列{}n a 的通项公式为( ).【解析】知数列{}n a 满112,413n n a a a +==+,则设14()n n a p a p ++=+,整理得13p =,所以113413n n a a ++=+(常数),则数列1{}3n a +是以1113a +=为首项,4为公比的等比数列.所以11143n n a -+=,整理得1143n n a -=-(首项符合通项).故数列的通项公式:1143n n a -=-.2.已知数列{}n a 的首项12a =,1122n n n a a ++=+,则{}n a 的通项n a =( ). 【解析】由1122n n n a a ++=+两边同除以12n +可得,11122n n n n a a ++=+,即11122n nn na a ++-=, 所以数列2n n a ⎧⎫⎨⎬⎩⎭以1为首项,1为公差的等差数列所以2n n a n =,所以2n n a n =. 3.数列{}n a 中12a =,11)(2)n n a a +=+,*n N ∈,则{}n a 的通项公式为( ).变式:已知数列{}n a 中12a =,312n n a a +=,*n N ∈,则{}n a 的通项公式为( ).【解析】由11)(2)1)2n n n a a a +=+=+,得11)(n n a a +=,120a =,∴数列{n a -构成以21为公比的等比数列,则11)(21)1)nn n a --=,则1)n n a =故答案为:1)n n a = 变式:由12a =,312n n a a +=,可知0n a >,两边取对数,得132n n lga lga lg +=+,∴11123(2)22n n lga lg lga lg ++=+, 11322022lga lg lg +=≠,∴数列1{2}2n lga lg +构成以322lg 为首项,以3为公比的等比数列,则11332322222n n n lga lg lg lg -+==,∴31122(31)2222n n n lga lg lg lg =-=-,则1(31)22n n a -=. 4.已知数列{}n a 满足12a =,且*112(2,)1n n n na a n n N a n --=∈+-,则n a = 221nn n - .【解析】由*112(2,)1n n n na a n n N a n --=∈+-,可得:11122n n n n a a --=+,于是1111(1)2n n n n a a ---=-,又11112a -=-,∴数列{1}n n a -是以12-为首项,12为公比的等比数列,故112n n n a -=-,*2()21n n n n a n N ∴=∈-. 5.已知数列{}n a 满足1a a =,*121()n n a a n N +=+∈. (1)若数列{}n a 是等差数列,求通项公式n a ;(2)已知2a =,求证数列{1}n a +是等比数列,并求通项公式n a .【解析】(1)数列{}n a 是等差数列,1a a =,121(*)n n a a n N +=+∈,设数列的公差为d ,则(1)n a a n d =+-. 2((1))1a nd a n d ∴+=+-+,即21nd d a =--对*n N ∈成立,于是0d =. n a a ∴=,且21a a =+,解得1a =-.1n a ∴=-;证明:(2)2a =,121(*)n n a a n N +=+∈,112(1)n n a a +∴+=+.1130a +=≠,∴数列{1}n a +是以3为首项,公比为2的等比数列.∴1132n n a -+=.∴1321n n a -=-.6.已知数列{}n a 满足:132a =,且*113(2,)21n n n na a n n N a n --=∈+-. (1)求1212nna a a ++⋯+的值; (2)求证:*2151()263n n a a a n n N n++⋯++-∈; (3)设*()nn a b n N n=∈,求证:122n b b b ⋯<.【解析】(1)132a =,且*113(2,)21n n n na a n n N a n --=∈+-,∴112113n n n a n a na --+-=,121133n n n n a a --=+⨯.∴1312n n n n a a --=+,113(1)1n n n n a a --∴-=-. 故可得{1}n n a -是以13-位首项,以13为公比的等比数列,∴1111()33n n n a --=-,∴11()3n n n a =-.∴1211[1()]1211133()122313n n n n n n a a a -++⋯+=-=-+-.(2)11()3n n n a =-,∴3121131313n n n n n a n ==++--, 1*2121[1()]11115193()()1222336313n n nn a aa n n n n N n--∴++⋯+++=++-=+-∈-. (3)331n n n n a b n ==-,现用数学归纳法证明122n b b b ⋯<313n n-,(2)n . 当2n =时,1239271623191169b b ==<=--919-.假设当n k =(2)k 时,122k b b b ⋯<313k k -,当1n k =+时,1212k k b b b b +⋯<11313331k kk k ++--.要证明 2 11113133123313k k k k k k +++--<-,只需证明1133(k k ++1231)3(31)k k k +-<-, 只要证133k +⨯(1231)(31)k k +-<-,222221333231k k k k ++++-<-⨯+,即证213231k k ++>⨯-,即证131k +>-. 而131k +>- 显然成立,1n k ∴=+ 时,112113123k k k k b b b b ++-⋯<,综上得1121131223k k k k b b b b ++-⋯<<.又当1n =时,12b <,所以1212k k b b b b +⋯< 第4讲 分组求和1.数列1,1,2,3,5,8,13,21,⋯最初是由意大利数学家斐波拉契于1202年研究兔子繁殖问题中提出来的,称之为斐波拉契数列.又称黄金分割数列.后来发现很多自然现象都符合这个数列的规律.某校数学兴趣小组对该数列探究后,类比该数列各项产生的办法,得到数列{}:1n a ,2,1,6,9,10,17,⋯,设数列{}n a 的前n 项和为n S .(1)请计算123a a a ++,234a a a ++,345a a a ++.并依此规律求数列{}n a 的第n 项n a =( ).(2)31n S +=( ).(请用关于n 的多项式表示,其中2222(1)(21)123)6n n n n +++++⋯+=【解析】(1)由题意得11a =,22a =,31a =,46a =,59a =,610a =,717a =,计算:1234a a a ++=,2349a a a ++=,34516a a a ++=,⋯ 可归纳得数列{}n a 满足的递推关系式为212(1)n n n a a a n ++++=+,由212(1)n n n a a a n ++++=+,2123(2)n n n a a a n +++++=+,两式相减得323n n a a n +-=+. 可得1211,23n n n n a a a n --=⎧=⎨+⎩. (2)由212(1)n n n a a a n ++++=+可得2222212345678932313(11),(41),(71),(31)961n n n a a a a a a a a a a a a n n n --++=+++=+++=+⋯++=-=-+ 312345632313()()()n n n n S a a a a a a a a a --∴=++++++⋯+++,222329(12)6(12)(1)(21)(1)319636222n n n n n n n n n n n n=++⋯+-++⋯+++++=-+=+- 由323n n a a n +-=+得:41213a a -=+,74243a a -=+,107273a a -=+,⋯,31322(32)3n n a a n +--=-+, ∴2311(321)2(1432)323322n n n a a n n n n n +-+-=++⋯+-+=+=+,∴231321n a n n +=++ ∴322323133131933321312222n n n S S a n n n n n n n n ++=+=+-+++=+++. 2.求数列的前n 项和:2111111,4,7,,32,n n a a a -+++⋯+-⋯.【解析】设21111(11)(4)(7)(32)n n S n a a a -=++++++⋯++-将其每一项拆开再重新组合得21111(1)(14732)n n S n a a a-=+++⋯+++++⋯+- 当1a =时,(31)(31)22n n n n n S n -+=+=,当1a ≠时,111(31)(31)12121n n n n n a a n n a S a a-----=+=+-- 3.数列{}n a 中,*1112,,()22n n n a a a a n N n +-=-=∈+,n P 为抛物线24y x =与直线n y a =的交点,过n P 作抛物线的切线交直线1x =-于点n Q ,记n Q 的纵坐标为n b . (Ⅰ)求n a ,n b 的通项公式;(Ⅱ)求数列{}n b 的前n 项和n S .(附2222(1)(21):123)6n n n n +++++⋯+=【解析】(Ⅰ)*1,()2n n n a a n N n +=∈+,由112a =易得0n a ≠,11,(2)1n n a n n a n --=+,1212111232121143(1)n n n n n a a a a n n n a a a a n n n n n ------⨯⨯⋯⨯==⨯⨯⨯⋯⨯⨯=+-+,112a =, 故1(2)(1)n a n n n =+,经检验1n =时也符合,故n a 的通项公式为*1()(1)n a n N n n =∈+.对24y x =两边取导数,可得2y y'=,0(x ,0)y 处切线斜率为002(0)k y y =≠,切线方程为0000022()2y y x x y x y y =-+=+, 与1x =-的交点的纵坐标为0022y y -+,故n b 的通项公式为*212(1)()22(1)n n n a b n n n N a n n =-+=-++∈+. (Ⅱ)2111111112(1)22()2(1)21nn n n n k k k k S k k k k k k k k =====-++=--+-++∑∑∑∑ (1)(21)112(1)(1)621n n n n n n ++=-⨯-++-+(1)(24)32(1)n n n n n ++=-++.4.已知数列{}n a 满足11a =,2*12(1)()n n na n a n n n N +-+=+∈.(1)求证:数列1n a n ⎧⎫+⎨⎬⎩⎭为等比数列:(2)求数列{}n a 的前n 项和n S .【解析】(1)由212(1)n n na n a n n +-+=+,两边同除以(1)n n +得1211n n a an n+-⨯=+,∴11222(1)1n n n a a an n n++=⨯+=++.11201a +=≠,∴10n a n +≠,∴11121n na n a n+++=+, ∴数列1n a n ⎧⎫+⎨⎬⎩⎭是以2为首项,2为公比的等比数列. (2)由(1)有12nn a n+=,∴2n n a n n =-,1212(1).12222(123)122222n n n n n S n n n +=⨯+⨯+⋯+-+++⋯+=⨯+⨯+⋯+-. 令1212222n n T n =⨯+⨯+⋯+,23412122232(1)22n n n T n n +=⨯+⨯+⨯+⋯+-+,∴231112(12)222222(1)2212n nn n n n T n n n +++⨯--=+++⋯+-=-=---,∴1(1)22n n T n +=-+.则前n 项和1(1)(1)222n n n n S n ++=-+-. 5.已知正项数列{}n a 的前三项分别为1,3,5,n S 为数列的前n 项和,满足:22321(1)(1)(3)(n n nS n S n n An Bn A +-+=+++,B R ∈,*)n N ∈.(1)求A ,B 的值; (2)求数列{}n a 的通项公式;(3)若数列{}n b 满足122(1)()222n n nb b b n a n N ++=++⋯+∈,求数列{}n b 的前n 项和n T . (参考公式:222112(1)(21))6n n n n ++⋯+=++【解析】(1)正项数列{}n a 的前三项分别为1,3,5,n S 为数列的前n 项和,满足:22321(1)(1)(3)(n n nS n S n n An Bn A +-+=+++,B R ∈,*)n N ∈.分别令1n =,2,可得:222122(3)S S A B -=++,2232233(2442)S S A B -=++,又111S a ==,23a =,35a =,24S =,39S =.24212(3)A B ∴-⨯=++,2229343(2442)A B ⨯-⨯=++, 化为:427A B A B +=⎧⎨+=⎩,解得3A =,1B =.(2)由(1)可得:22321(1)(1)(33)n nnSn S n n n n +-+=+++化为:22213311n n S S n n n n+-=+++.∴22222222222112211()()()3[(1)(2)1]3(121)11221n n n n n S S S S S S S S n n n n n n n n n ---=-+-+⋯+-+=-+-+⋯++++⋯+-+--- (1)(21)(1)3362n n n n n n ---=⨯+⨯+3n =,0n S >.2n S n ∴=.(3)由(2)可得:2n 时,221(1)21n n n a S S n n n -=-=--=-. 数列{}n b 满足122(1)()222n n n b b b n a n N ++=++⋯+∈,即122(1)(21)()222n n b b b n n n N ++-=++⋯+∈, 1n ∴=时,122b =,解得14b =.当2n 时,11221(23)222n n b b bn n ---=++⋯+,可得:412n nb n =-,即(41)2n n b n =-. ∴数列{}n b 的前n 项和23472112(41)2n n T n =+⨯+⨯+⋯+-.231243272(45)2(41)2n n n T n n +=-+⨯+⨯+⋯+-+-,231112(21)84(222)(41)24(41)2(54)2821n n n n n n T n n n +++-∴-=+++⋯+--=⨯--=---,1(45)28(1n n T n n +∴=-+=时也成立).6.设等差数列{}n a 的前n 项和为n S ,39S =,45627a a a ++=. (1)求数列{}n a 的通项公式;(2)若2n n b a =,求数列{}n b 前n 项和n T .参考公式:222(1)(21)126n n n n ++++⋯⋯+=.【解析】(1)设等差数列{}n a 的公差为d ,由1322a a a +=,知3239S a ==,即23a =. 又由4565327a a a a ++==,得59a =.52932523a a d --∴===-.2(2)32(2)21n a a n d n n ∴=+-=+-=-; (2)由222(21)441n nb a n n n ==-=-+. ∴2224(12)4(12)n T n n n =++⋯+-++⋯++(1)(21)(1)4462n n n n n n +++=⨯-⨯+3(1)(21)14[441]623n n n n nn +++-=⨯-⨯+⨯=7.已知数列{}n a 的前n 项和为3n n S =,数列{}n b 满足11b =-,*1(21)()n n b b n n N +=+-∈. (1)求数列{}n a 的通项公式n a ; (2)求数列{}n b 的通项公式n b ;(3)求数列{}n b 的前n 项和n T .参考公式:22221123(1)(21)6n n n n +++⋯+=++.【解析】(1)数列{}n a 的前n 项和为3n n S =,1n ∴=时,113a S ==.2n 时,1113323n n n n n n a S S ---=-=-=⨯.13,123,2n n n a n -=⎧∴=⎨⨯⎩. (2)数列{}n b 满足11b =-,*1(21)()n n b b n n N +=+-∈,即121n n b b n +-=-. 112211()()()n n n n n b b b b b b b b ---∴=-+-+⋯+-+(23)(25)311n n =-+-+⋯++-2(231)22n n n n --==-. (3)数列{}n b 的前n 项和22221(1)(1)(25)1232(12)(1)(21)2626n n n n n n T n n n n n ++-=+++⋯+-++⋯+=++-⨯=.8.已知数列{}n a 满足123(1)258(31)2n n n a a a n a ++++⋯+-=. (1)求数列{}n a 的通项公式;(2)设(31)32(32)nn a nn a b n n -=++,求数列{}n b 的前n 项和n T .【解析】(1)数列{}n a 满足123(1)258(31)2n n n a a a n a ++++⋯+-=,① 当2n 时,1231(1)258(34)2n n n a a a n a --+++⋯+-=,② ①-②得:(1)(1)(31)22n n n n n n a n +--=-=,故(2)31n n a n n =-,当1n =时,解得112a =,首项符合通项,故31n n a n =-.(2)由(1)得:(31)3311222()(32)(31)(32)3132nn a n n n n a b n n n n n n -=+=+=+-+-+-+, 所以12111111(222)()25583132nn T n n =++⋯++-+-+⋯+--+2(21)1121232n n ⨯-=+--+1132322n n +=--+ 9.已知数列{}n a 满足123(1)258(31)2n n n a a a n a ++++⋯+-=. (1)求数列{}n a 的通项公式;(2)设(31)22nn a n nn b a -=+,求数列{}n b 的前n 项和n T . 【解析】(1)数列{}n a 满足123(1)258(31)2n n n a a a n a ++++⋯+-=,① 当2n 时,1231(1)258(34)2n n n a a a n a --+++⋯+-=,② ①-②得:(1)(1)(31)22n n n n n n a n +--=-=,故(2)31n n a n n =-,当1n =时,解得112a =,首项符合通项, 故31n na n =-. (2)设(31)2222(31)nn a n n n n b n a -=+=+-,所以122(21)(231)2232212n n n n n T n n +-+-=+⨯=++--.10.已知数列{}n a 满足*1(1)(1)()n n nS n S n n n N +=+++∈,且11a =. (1)求数列{}n a 的通项公式; (2)设(2)1(1)(1)(1)n n n n a b n n n ++=≠+-,记23n n T b b b =++⋯+,求n T .【解析】(1)*1(1)(1)()n n nS n S n n n N +=+++∈,且11a =.∴111n n S S n n +=++,即111n n S Sn n+-=+, ∴数列{}n S n 是等差数列,首项为1,公差为1.∴1(1)n Sn n n=+-=,2n S n ∴=. ∴当2n 时,221(1)21n n n a S S n n n -=-=--=-.当1n =时也成立,21n a n ∴=-.(2)2n 时,(2)1(2)(21)111232()(1)(1)(1)(1)11n n n n a n n n b n n n n n n n +++-+===++-+-+--+,23(1)(523)1111111112[(1)()()()()]232435211n n n n T b b b n n n n -++∴=++⋯+=+-+-+-+⋯+-+---+2111342(1)21n n n n =+-++--+24231(1)n n n n n +=+--+.11.在数列{}n a 中,13a =,12(2)(2n n a a n n -=+-,*)n N ∈. (1)求证:数列{}n a n +是等比数列,并求{}n a 的通项公式; (2)求数列{}n a 的与前n 项和n S .【解析】(1)证明:13a =,12(2)(2n n a a n n -=+-,*)n N ∈.12(1)n n a n a n -∴+=+-,∴数列{}n a n +是等比数列,首项为4,公比为2.11422n n n a n n -+∴=⨯-=-.(2){}n a 与前n 项和231(222)(12)n n S n +=++⋯+-++⋯+4(21)(1)212n n n -+=--22242n n n ++=-- 12.单调递增数列{}n a 满足21231()2n na a a a a n +++⋯+=+. (1)求1a ,并求数列{}n a 的通项公式;(2)设111,21,n n n a n a n c a n -+-⎧=⎨⨯+⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T . 【解析】(1)21231()2n n a a a a a n +++⋯+=+,①∴当1n =时,2111(1)2a a =+,解得11a =,当2n 时,2123111(1)2n n a a a a a n --+++⋯+=+-,② ①-②并整理,得2211(1)2n n n a a a -=-+,∴221(1)0n n a a ---=,解得11nn a a --=或11(2)n n a a n -+= 又{}n a 单调递增数列,故11n n a a --=,{}n a ∴是首项是1,公差为1的等差数列,n a n ∴=⋯ (2)111,21,n n n a n a n c a n -+-⎧=⎨⨯+⎩为奇数为偶数,∴13212(242)[1232(21)2]n n T n n n -=++⋯++⨯+⨯+⋯-⨯+ 1321(1)[1232(21)2]n n n n n -=++⨯+⨯+⋯-⨯+,记13211232(21)2n n S n -=⨯+⨯+⋯-⨯③ 352141232(21)2n n S n +=⨯+⨯+⋯-⨯④,由③-④得4622132222(21)2n n n S n +-=+++⋯+--,∴24622132222(21)22n n n S n +-=+++⋯+---,214(14)3(21)2214n n n S n +--=----,∴214(14)(21)22933n n n n S +--=++,21(65)21099n n n S +-=+,∴2122(65)210299n n n T n n +-=+++.⋯(13分)第5讲 裂项求和1.已知等差数列{}n a 的前n 项和为n S ,且912162a a =+,24a =,则数列1{}n S 的前20项的和为( )A .1920 B .2021C .2122D .2223【解析】由912162a a =+及等差数列通项公式得1512a d +=,又214a a d ==+,12a d ∴==,2(1)222n n n S n n n -∴=+⨯=+,∴1111(1)1n S n n n n ==-++, ∴数列1{}n S 的前20项的和为1111111120112233420212121-+-+-+⋯+-=-=,选B 2.已知数列{}n a 的前n 项和n S 满足(1)2n n n S +=,则数列11{}n n a a +的前10项的和为 . 【解析】数列{}n a 的前n 项和n S 满足(1)2n n n S +=,可得1n =时,111a S ==, 2n 时,1(1)(1)22n n n n n n na S S n -+-=-=-=,上式对1n =也成立,故n a n =,*n N ∈, 11111(1)1n n a a n n n n +==-++,则数列11{}n n a a +的前10项的和为111111101122310111111-+-+⋯+-=-=. 3.数列{}n a 的各项均为正数,12a =,114n n n n a a a a ++-=+,若数列11{}n na a -+的前n 项和为5,则n = . 【解析】数列{}n a 的各项均为正数,12a =,114n n n n a a a a ++-=+,2214n n a a +∴-=,2214n n a a +∴=+,1n a +∴ 12a =,2a ∴=3a ∴=4a =,⋯由此猜想n a =.11142,n n n n a a a a a ++=-=+,若数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为5,∴21321111()(2)544n n n a a a a a a a ++-+-+⋯+-=-=,22∴=,解得1121n +=,120n ∴=. 4.已知数列{}n a 中,11a =,214a =,且1(1)(2n n n n a a n n a +-==-,3,4,)⋯. (1)求3a 、4a 的值;(2)设*111()n n b n N a +=-∈,试用n b 表示1n b +并求{}n b 的通项公式; (3)设*1sin3()cos cos n n n c n N b b +=∈,求数列{}n c 的前n 项和n S .【解析】(1)数列{}n a 中,11a =,214a =, 且1(1)(2nn nn a a n n a +-==-,3,4,)⋯,∴2321(21)1412724a a a -===--,34312(31)17131037a a a ⨯-===--,∴317a =,4110a = (2)当2n 时,1(1)1111(1)(1)(1)1n n n n n n n a n a n a n a n a n a +---=-==----,∴当2n 时,11n n n b b n -=-, 故*11,n n n b b n N n++=∈,累乘得1n b nb =,13b =,3n b n ∴=,*n N ∈ (3)1sin 3cos cos n n n c b b +=sin(333)tan(33)tan3cos(33)cos3n n n n n n+-==+-+,12n n S c c c ∴=++⋯+(tan6tan3)(tan9tan6)(tan(33)tan3)n n =-+-+⋯++-tan(33)tan3n =+-5.已知等差数列{}n a 的前n 项和为n S ,且223n n a a =+,33S =,数列{}n b 为等比数列,13310b b a +=,24610b b a +=.(1)求数列{}n a ,{}n b 的通项公式; (2)若11(1)(1)(1)n n n n n b c b b b -+=+++,求数列{}n c 的前n 项和n T ,并求使得2116n T λλ<-恒成立的实数λ的取值范围.【解析】(1)设等差数列{}n a 的公差为d ,223n n a a =+,33S =,21123a a a d ∴=+=+,1333a d +=, 解得11a =-,2d =.12(1)23n a n n ∴=-+-=-.设等比数列{}n b 的公比为q ,13310b b a +=,24610b b a +=.∴21(1)103b q +=⨯,31()109b q q +=⨯, 解得13b =,3q =.3n n b ∴=.(2)1111113311[](1)(1)(1)(31)(31)(31)8(31)(31)(31)(31)n n n n n n n n n n n n n b c b b b -+-+-+===-++++++++++, ∴数列{}n c 的前n 项和13113[]824(31)(31)64n n n T +=-<⨯++,2116n T λλ<-恒成立,化为2316416λλ-,即264430λλ--,解得:14λ,或316λ-. 6.设等差数列{}n a 的前n 项和为n S ,且5125S S =,212n n a a -=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b a =,且n b,2n ,*n N ∈,求证:{}n b 的前n 项和n T <.【解析】(1)设等差数列{}n a 的公差为d ,5125S S =,212n n a a -=,11545252a d a ⨯∴+=,111(1)[(21)1]2a n d a n d +-=+--,解得11a =,2d =.12(1)21n a n n ∴=+-=-.(2)证明:2(121)2n n n S n +-==.n b =,2n ,*n N ∈,则:{}n b 的前n项和1n T b =+⋯⋯+11==222()2()a b a b ++,a ,0b >,a b ≠.1∴+=.n T ∴<.7.已知数列{}n a 的前n 项和为n S ,且2321112322n S S S S n n n +++⋯+=+. (1)求数列{}n a 的前n 项和n S 和通项公式n a ; (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求使得715n T >的最小正整数n . 【解析】(1)2321112322n S S S S n n n +++⋯+=+,① ∴2312111(1)(1)23122n S S S S n n n -+++⋯+=-+--,2n ,② ①②两式相减得nS n n=,2n 故2n S n =,2n ,又11S =,从而2n S n =,*n N ∈ 易得11,11,1,221,2n nn S n n a S S n n n -==⎧⎧==⎨⎨--⎩⎩,21n a n ∴=-.(2)由(1)得1111()(21)(21)22121n b n n n n ==--+-+,故12311111111(1)(1)2335212122121n n nT b b b b n n n n =+++⋯+=-+-+⋯+-=-=-+++.由715n T >得7n >, 又当*n N ∈时,n T 单调递增,故所求最小正整数n 为8.。
高考数学一轮复习 第六章 第5讲 数列的综合应用配套课件 理 新人教A版
考点自测
1.若数列{an}为等比数列,则下面四个命题:
①{a2n}是等比数列; ②{a2n}是等比数列; ③a1n是等比数列; ④{lg|an|}是等比数列.其中正确的个数是________.
答案 3
2.(2012·南京一模)若数列{an}满足:lg an+1=1+lg an(n∈N*), a1+a2+a3=10,则lg(a4+a5+a6)的值为________.
答案 (-∞,7]
5.(2012·盐城第一学期摸底考试)设等差数列{an}满足:公差 d∈N*,an∈N*,且{an}中任意两项之和也是该数列中的 一项.若a1=35,则d的所有可能取值之和为________.
解析 由题意知,an=35+(n-1)d.对数列{an}中的任意两 项ar,as其和为ar+as=35+35+(r+s-2)d,设at=35+(t -1)d,则35+(r+s-2)d=(t-1)d,即35=(t-r-s+1)d. 因为r,s,t,d∈N*,所以35是d的整数倍,即d所有可能 取值为1,3,9,27,81,243,和为364. 答案 364
∴{an}是以 a4 为首项,a2 为公比的等比数列.
(2)解 bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2. 当 a= 2时,bn=(2n+2)( 2)2n+2=(n+1)2n+2. Sn=2·23+3·24+4·25+…+(n+1)·2n+2,① 2Sn=2·24+3·25+4·26+…+n·2n+2+(n+1)·2n+3,② ①-②得 -Sn=2·23+24+25+…+2n+2-(n+1)·2n+3 =16+2411--22n-1-(n+1)·2n+3 =16+2n+3-24-n·2n+3-2n+3=-n·2n+3. ∴Sn=n·2n+3.
小学初级奥数第5讲-等差数列的计算
例二 同学们,你知道每一行数列各有多少个数字吗?
3、4、5、6、……、76、77、78 2、4、6、8、……、96、98、100 1、3、5、7、……、87、89、91 4、7、10、13、……、40、43、46
例三
1,3,5,7,……是从1开始的奇数,其中第 2005个奇数是________。
课后作业
课后作业 <作业5>
1 3 4 6 7 9 10 12 13 ... 66 67 69 70
例九 用等差数列的求和公式计算下面各题。
3 4 5 6 ... 76 77 78
练一练 1 3 5 7 ... 87 99 4 7 10 13 ... 40 43 46
例十
5000 2 4 6 ... 98 100
练一练
4000 5 10 15 ... 95 100
课后作业
<作业1> 1966、1976、1986、1996、2006这五个数的总和是多少?
<作业2>
4 8 12 16 ... 32 36
课后作业
<作业3>
65 63 61 ... 5 3 1
课后作业
<作业4>
(1 3 5 ... 2009)(2 4 6 ... 2008)
想一想
1+2+3+4+5+6···+99+100=?
找一找
请观察下列数有什么特点?
1、2、3、4、……、98、99、100 1、3、5、7、……、95、97、99 5、10、15、20、……、40、45、50
找一找
请观察下列数有什么特、100 1、3、5、7、……、95、97、99 5、10、15、20、……、40、45、50
数列的综合应用经典教案【强烈推荐】
第5讲数列的综合应用一、考点、热点回顾1.考查数列的函数性及与方程、不等式、解析几何相结合的数列综合题。
2.考查运用数列知识解决数列综合题及实际应用题的能力。
【复习指导】1.熟练把握等差数列与等比数列的基本运算。
2.掌握隐藏在数列概念和解题方法中的数学思想,如“函数与方程”、“数形结合”、“分类讨论”、“等价转化”等。
3.注意总结相关的数列模型以及建立模型的方法。
基础梳理1.等比数列与等差数列比较表不同点相同点等差数列(1)强调从第二项起每一项与前项的差;(2)a1和d可以为零;(3)等差中项唯一(1)都强调从第二项起每一项与前项的关系;(2)结果都必须是同一个常数;(3)数列都可由a1,d或a1,q确定等比数列(1)强调从第二项起每一项与前项的比;(2)a1与q均不为零;(3)等比中项有两个值2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意。
(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么。
(3)求解——求出该问题的数学解。
(4)还原——将所求结果还原到原实际问题中。
3.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差。
(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比。
(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n与a n +1的递推关系,还是S n与S n+1之间的递推关系。
一条主线数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解。
两个提醒(1)对等差、等比数列的概念、性质要有深刻的理解,有些数列题目条件已指明是等差(或等比)数列,但有的数列并没有指明,可以通过分析,转化为等差数列或等比数列,然后应用等差、等比数列的相关知识解决问题.(2)数列是一种特殊的函数,故数列有着许多函数的性质.等差数列和等比数列是两种最基本、最常见的数列,它们是研究数列性质的基础,它们与函数、方程、不等式、三角等内容有着广泛的联系,等差数列和等比数列在实际生活中也有着广泛的应用,随着高考对能力要求的进一步增加,这一部分内容也将受到越来越多的关注.三种思想(1)数列与函数方程相结合时主要考查函数的思想及函数的性质(多为单调性).(2)数列与不等式结合时需注意放缩.(3)数列与解析几何结合时要注意递推思想.双基自测1.(人教A 版教材习题改编)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2的值为( ). A .-4 B .-6 C .-8 D .-10解析 由题意知:a 23=a 1a 4.则(a 2+2)2=(a 2-2)(a 2+4),解得:a 2=-6. 答案 B 2.(·运城模拟)等比数列{a n }的前n 项和为S n ,若a 1=1,且4a 1,2a 2,a 3成等差数列,则S 4=( ). A .7 B .8 C .15 D .16解析 设数列{a n }的公比为q ,则4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2,即q 2-4q +4=0,∴q =2.∴S 4=1-241-2=15. 答案 C3.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有( ). A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定 解析 记等比数列{a n }的公比为q (q >0),由数列{b n }为等差数列可知b 4+b 10=2b 7,又数列{a n }是各项均为正数的等比数列,∴a 3+a 9=a 3(1+q 6)=a 6⎝⎛⎭⎫1+q 6q 3=b 7⎝⎛⎭⎫1+q 6q 3,又1+q 6q 3=1q 3+q 3≥2(当且仅当q =1时,等号成立),∴a 3+a 9≥2b 7,即a 3+a 9≥b 4+b 10. 答案 B4.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a +3b +c =10,则a =( ). A .4 B .2 C .-2 D .-4解析 由c ,a ,b 成等比数列可将公比记为q ,三个实数a ,b ,c ,待定为cq ,cq 2,c .由实数a 、b 、c 成等差数列得2b =a +c ,即2cq 2=cq +c ,又等比数列中c ≠0,所以2q 2-q -1=0,解一元二次方程得q =1(舍去,否则三个实数相等)或q =-12,又a +3b +c =a +3aq +a q =-52a =10,所以a =-4.答案 D 5.(·苏州质检)已知等差数列的公差d <0,前n 项和记为S n ,满足S 20>0,S 21<0,则当n =________时,S n 达到最大值.解析 ∵S 20=10(a 1+a 20)=10(a 10+a 11)>0, S 21=21a 11<0,∴a 10>0,a 11<0, ∴n =10时,S n 最大. 答案 10考向一 等差数列与等比数列的综合应用【例1】►在等差数列{a n }中,a 10=30,a 20=50. (1)求数列{a n }的通项a n ;(2)令b n =2a n -10,证明:数列{b n }为等比数列.[审题视点] 第(1)问列首项a 1与公差d 的方程组求a n ;第(2)问利用定义证明. (1)解 由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2.∴a n =12+(n -1)·2=2n +10.(2)证明 由(1),得b n =2a n -10=22n+10-10=22n =4n ,∴b n +1b n =4n +14n =4.∴{b n }是首项是4,公比q =4的等比数列.对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系.往往用到转化与化归的思想方法.【训练1】 数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1). (1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且T 3=15, 又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n .解 (1)由a n +1=2S n +1,可得a n =2S n -1+1(n ≥2), 两式相减得a n +1-a n =2a n ,则a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1.故{a n }是首项为1,公比为3的等比数列,∴a n =3n -1. (2)设{b n }的公差为d ,由T 3=15,b 1+b 2+b 3=15,可得b 2=5,故可设b 1=5-d ,b 3=5+d ,又a 1=1,a 2=3,a 3=9, 由题意可得(5-d +1)(5+d +9)=(5+3)2, 解得d 1=2,d 2=-10.∵等差数列{b n }的各项为正,∴d >0,∴d =2,b 1=3,∴T n =3n +n (n -1)2×2=n 2+2n .考向二 数列与函数的综合应用【例2】►等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上. (1)求r 的值;(2)当b =2时,记b n =n +14a n(n ∈N *),求数列{b n }的前n 项和T n .[审题视点] 第(1)问将点(n ,S n )代入函数解析式,利用a n =S n -S n -1(n ≥2),得到a n ,再利用a 1=S 1可求r . 第(2)问错位相减求和.解 (1)由题意,S n =b n +r ,当n ≥2时,S n -1=b n -1+r ,所以a n =S n -S n -1=b n -1·(b -1),由于b >0且b ≠1,所以n ≥2时,{a n }是以b 为公比的等比数列,又a 1=b +r ,a 2=b (b -1),a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1.(2)由(1)知,n ∈N *,a n =(b -1)b n -1=2n -1,所以b n =n +14×2n -1=n +12n +1.T n =222+323+424+…+n +12n +1,12T n =223+324+…+n2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=34-12n +1-n +12n +2, ∴T n =32-12n -n +12n +1=32-n +32n +1.此类问题常常以函数的解析式为载体,转化为数列问题,常用的数学思想方法有“函数与方程”“等价转化”等.【训练2】 (·福建)已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求函数f (x )的解析式.解 (1)由q =3,S 3=133得a 1(1-33)1-3=133,解得a 1=13.所以a n =13×3n -1=3n -2.(2)由(1)可知a n =3n -2,所以a 3=3.因为函数f (x )的最大值为3,所以A =3;因为当x =π6时f (x )取得最大值,所以sin ⎝⎛⎭⎫2×π6+φ=1. 又0<φ<π,故φ=π6.所以函数f (x )的解析式为f (x )=3sin ⎝⎛⎭⎫2x +π6. 考向三 数列与不等式的综合应用【例3】►(·惠州模拟)在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2.(1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和S n ;(3)是否存在k ∈N *,使得S 11+S 22+…+S nn<k 对任意n ∈N *恒成立,若存在,求出k 的最小值,若不存在,请说明理由.[审题视点] 第(1)问由等比数列的性质转化为a 3+a 5与a 3a 5的关系求a 3与a 5;进而求a n ;第(2)问先判断数列{b n },再由求和公式求S n ;第(3)问由S n n 确定正负项,进而求S 11+S 22+…+S nn的最大值,从而确定k 的最小值.解 (1)∵a 1a 5+2a 3a 5+a 2a 8=25,∴a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,又a n >0,∴a 3+a 5=5,又a 3与a 5的等比中项为2, ∴a 3a 5=4,而q ∈(0,1),∴a 3>a 5,∴a 3=4,a 5=1,∴q =12,a 1=16,∴a n =16×⎝⎛⎭⎫12n -1=25-n. (2)∵b n =log 2a n =5-n , ∴b n +1-b n =-1,b 1=log 2a 1=log 216=log 224=4,∴{b n }是以b 1=4为首项,-1为公差的等差数列,∴S n =n (9-n )2.(3)由(2)知S n =n (9-n )2,∴S n n =9-n2.当n ≤8时,S n n >0;当n =9时,S nn =0;当n >9时,S nn<0.∴当n =8或9时,S 11+S 22+S 33+…+S nn =18最大.故存在k ∈N *,使得S 11+S 22+…+S nn<k 对任意n ∈N *恒成立,k 的最小值为19.解决此类问题要抓住一个中心——函数,两个密切联系:一是数列和函数之间的密切联系,数列的通项公式是数列问题的核心,函数的解析式是研究函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行灵活的处理. 【训练3】 (·岳阳模拟)已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.(1)解 设等比数列{a n }的首项为a 1,公比为q .依题意,有2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28, 可得a 3=8,∴a 2+a 4=20,所以⎩⎪⎨⎪⎧ a 1q 2=8,a 1q +a 1q 3=20,解之得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32. 又∵数列{a n }单调递增,所以q =2,a 1=2, ∴数列{a n }的通项公式为a n =2n .(2)因为b n =2n log 122n =-n ·2n ,所以S n =-(1×2+2×22+…+n ·2n ),2S n =-[1×22+2×23+…+(n -1)·2n +n ·2n +1], 两式相减,得S n =2+22+23+…+2n -n ·2n +1=2n +1-2-n ·2n +1.要使S n +n ·2n +1>50,即2n +1-2>50,即2n +1≥52.易知:当n ≤4时,2n +1≤25=32<50;当n ≥5时,2n +1≥26=64>50.故使S n +n ·2n +1>50成立的正整数n 的最小值为5.难点突破14——数列与解析几何、三角的交汇问题从近几年新课标高考试题可以看出,不同省市的高考对该内容要求的不尽相同,考生复习时注意把握.数列与解析几何交汇问题主要是解析几何中的点列问题,关键是充分利用解析几何的有关性质、公式,建立数列的递推关系式,然后借助数列的知识加以解决. 一、数列与解析几何交汇 【示例】► (·陕西)如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n .记P k 点的坐标为(x k,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(2≤k ≤n ); (2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.二、数列与三角交汇【示例】►(·安徽)在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n,再令a n=lg T n,n≥1.(1)求数列{a n}的通项公式;(2)设b n=tan a n·tan a n+1,求数列{b n}的前n项和S n.。
等差数列
第5讲等差数列(1)1,2,3,4,5,6,7,8,…(2)2,4,6,8,10,12,14,16,…(3)1,4,9,16,25,36,49,…上面三组数都是数列。
数列中的数称为项,第一个数叫第一项,又叫首项,第二个数叫第二项,……以此类推,最后一个数叫做这个数列的末项。
项的个数叫做项数。
一个数列中,如果从第二项起,每一项与它前面一项的差都相等,这样的数列叫做等差数列。
后项与前项的差叫做这个等差数列的公差。
如等差数列:4,7,10,13,16,19,22,25,28。
首项是4,末项是28,公差是3。
这一讲我们学习有关等差数列的知识。
例题与方法:例1.在等差数列1,5,9,13,17,…,401中,401是第几项?思路点拨:丁丁:我从1,5,9,13,17,…一直数到401共101项。
机灵猴:你这样数太烦了,应从这个数列的规律入手。
求401是第几次,就是求这个等差数列的项数。
观察下图:第一项第二项第三项第四项第五项第六项第七项小麦斯:对!求401是第几项,就是求项数。
将401看作末项,1看作首项,这个数列的公差是4,即求项数的方法是:项数=(末项-首项)÷公差+1 解:(401-1)÷4+1=101答:401是第101项。
小麦斯:求项数的方法是:项数=(末项-首项)÷公差+1例2:有一堆粗细均匀的圆木,堆成梯形,最上面的一层有5根圆木,每向下一层增加一根,一共堆了28层,最下面一层有多少根?思路点拨:丁丁:将每层圆木根数写出来是:5,6,7,8,9,10,…,可以看出是一组等差数列。
小麦斯:能将这一梯形堆放的圆木每层的根数抽象出等差数列是解题的关键,在这组等差数列中,已知首项是5,公差是1,项数是28,求最下面的一层有多少根就是求这个等差数列的第28项,即末项。
机灵猴:因为第2项比第1项多1根,也就是多一个公差“1”,求第28项,就是求比第一项(首项)多27个公差就可以了。
2021届新课标数学一轮复习讲义_第五章_第5讲_数列的综合应用
第5讲 数列的综合应用考点一__等差数列与等比数列的综合问题______已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.[解] (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n =1,2,…).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…). (2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1-2n 1-2=2n -1.所以,数列{b n }的前n 项和为32n (n +1)+2n -1.[规律方法] 解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开弄清两个数列各自的特征,再进行求解.1.已知等差数列{a n }的公差不为零,a 1=25 ,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d ,由题意得a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2.故a n =-2n +27. (2)令S n =a 1+a 4+a 7+…+a 3n -2. 由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .考点二__数列的实际应用问题__________________某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设S n 表示数列{a n }的前n 项和,求S n (n ≥7).[解] (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ; 当n ≥6时,数列{a n }是以a 6为首项,34为公比的等比数列.又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝⎛⎭⎫34n -6,n ≥7. (2)由等差及等比数列的求和公式得 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6 =780-210×⎝⎛⎭⎫34n -6.[规律方法] 解答数列实际应用问题的步骤:(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单的递推数列模型.基本特征见下表:数列模型 基本特征 等差数列 均匀增加或者减少等比数列 指数增长,常见的是增产率问题、存款复利问题 简单递推数列指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a (常数)作为下年度的开销,即数列{a n }满足a n +1=1.2a n -a(2)或者不等式(组)等,在解模时要注意运算准确;(3)给出问题的答案:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.2.现有流量均为300 m 3s 的两条河A ,B 汇合于某处后,不断混合,它们的含沙量分别为2 kgm 3和0.2 kgm 3,假设从汇合处开始,沿岸设有若干观测点,两股水流在流经相邻两个观测点的过程中,其混合效果相当于两股水流在1 s 内交换100 m 3的水量,即从A 股流入B 股100 m 3水,经混合后,又从B 股流入A 股100 m 3水并混合,问从第几个观测点开始,两股河水的含沙量之差小于0.01 kgm 3(不考虑沙沉淀). 解:设第n 个观测点处A 股水流含沙量为a n kg m 3,B 股水流含沙量为b n kgm 3,则a 1=2,b 1=0.2,b n =1400(300b n -1+100a n -1)=14(3b n -1+a n -1),a n =1400(300a n -1+100b n -1)=14(3a n -1+b n -1),a n -b n =12(a n -1-b n -1),∴{a n -b n }是以(a 1-b 1)为首项,12为公比的等比数列.∴a n -b n =95×⎝⎛⎭⎫12n -1.解不等式95×⎝⎛⎭⎫12n -1<10-2,得2n -1>180,∴n ≥9.因此,从第9个观测点开始,两股水流的含沙量之差小于0.01 kg m 3.考点三__数列与不等式的综合问题(高频考点)__数列与不等式的综合问题是每年高考的难点,多为解答题,难度偏大. 高考对数列与不等式的综合问题的考查常有以下两个命题角度: (1)以数列为载体,考查不等式的恒成立问题; (2)考查与数列问题有关的不等式的证明问题.等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,若不等式S n >ka n -2对一切n ∈N *恒成立,求实数k 的取值范围. [解] (1)设等比数列{a n }的公比为q , ∵a n +1+a n =9·2n -1,n ∈N *, ∴a 2+a 1=9,a 3+a 2=18, ∴q =a 3+a 2a 2+a 1=189=2.∴2a 1+a 1=9,∴a 1=3. ∴a n =3·2n -1,n ∈N *.(2)由(1)知S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1),∴3(2n -1)>k ·3·2n -1-2,∴k <2-13·2n -1对一切n ∈N *恒成立. 令f (n )=2-13·2n -1,则f (n )随n 的增大而增大,∴f (n )min =f (1)=2-13=53,∴k <53.∴实数k 的取值范围为⎝⎛⎭⎫-∞,53. [规律方法] 数列与不等式的综合问题的解题策略(1)数列与不等式的恒成立问题.此类问题常构造函数,通过函数的单调性、最值等解决问题;(2)与数列有关的不等式证明问题.解决此类问题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.3.(1)已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12.①当n ∈N *时,求f (n )的表达式;②设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2; (2)已知数列{a n }的前n 项和为S n ,且S n =2-⎝⎛⎭⎫2n +1a n (n ∈N *).①求证:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列;②设数列{2n a n }的前n 项和为T n ,A n =1T 1+1T 2+1T 3+…+1T n ,试比较A n 与2na n 的大小.解:(1)①令x =n ,y =1,得f (n +1)=f (n )·f (1)=12f (n ),∴{f (n )}是首项为12,公比为12的等比数列,∴f (n )=⎝⎛⎭⎫12n .②证明:设T n 为{a n }的前n 项和,∵a n =n ·f (n )=n ·⎝⎛⎭⎫12n, ∴T n =12+2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+…+n ×⎝⎛⎭⎫12n ,12T n =⎝⎛⎭⎫122+2×⎝⎛⎭⎫123+3×⎝⎛⎭⎫124+…+(n -1)×⎝⎛⎭⎫12n +n ×⎝⎛⎭⎫12n +1, 两式相减得12T n =12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -n ×⎝⎛⎭⎫12n +1,∴T n =2-⎝⎛⎭⎫12n -1-n ×⎝⎛⎭⎫12n <2.(2)①证明:由a 1=S 1=2-3a 1,得a 1=12,当n ≥2时,由a n =S n -S n -1,得a n n =12×a n -1n -1,所以⎩⎨⎧⎭⎬⎫a n n 是首项和公比均为12的等比数列.②由①得a n n =12n ,于是2n a n =n ,所以T n =1+2+3+…+n =n (n +1)2,则1T n =2⎝⎛⎭⎫1n -1n +1,于是A n =2⎝⎛⎭⎫1-1n +1=2nn +1,而2na n =2n +1n 2,所以问题转化为比较2n n 2与n n +1的大小. 设f (n )=2n n 2,g (n )=n n +1,当n ≥4时,f (n )≥f (4)=1,而g (n )<1,所以f (n )>g (n ). 经验证当n =1,2,3时,仍有f (n )>g (n ). 因此对任意的正整数n ,都有f (n )>g (n ).即A n <2na n.交汇创新——数列与函数的交汇设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n . [解] (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2.解得d =a 8-a 7=2.所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1,从而a n =n ,b n =2n . 所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以T n =2n +1-n -22n.[名师点评] 数列与函数的交汇创新主要有以下两类:(1)如本例,已知函数关系转化为数列问题,再利用数列的有关知识求解;(2)已知数列,在求解中利用函数的性质、思想方法解答.[提醒] 解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常见解法有助于该类问题的解决,同时要注意n 的范围.已知数列{a n }的前n 项和为S n ,a 1=1且3a n +1+2S n =3(n 为正整数).(1)求{a n }的通项公式;(2)若∀n ∈N *,32k ≤S n 恒成立,求实数k 的最大值.解:(1)当n =1时,a 1=1,3a n +1+2S n =3⇒a 2=13;当n ≥2时,3a n +1+2S n =3⇒3a n +2S n -1=3,得3(a n +1-a n )+2(S n -S n -1)=0,因此3a n +1-a n =0,即a n +1a n =13,因为a 2a 1=13,所以数列{a n }是首项a 1=1,公比q =13的等比数列,所以a n =⎝⎛⎭⎫13n -1.(2)因为∀n ∈N *,32k ≤S n 恒成立,S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫13n ,即32k ≤32⎣⎡⎦⎤1-⎝⎛⎭⎫13n ,所以k ≤1-⎝⎛⎭⎫13n .令f (n )=1-⎝⎛⎭⎫13n,n ∈N *,所以f (n )单调递增,k 只需小于等于f (n )的最小值即可, 当n =1时,f (n )取得最小值,所以k ≤f (1)=1-13=23,实数k 的最大值为23.1.设等差数列{a n }和等比数列{b n }首项都是1,公差与公比都是2,则a b 1+a b 2+a b 3+a b 4+a b 5=( )A .54B .56C .58D .57解析:选D.由题意,a n =1+2(n -1)=2n -1,b n =1×2n -1=2n -1, ∴ab 1+…+ab 5=a 1+a 2+a 4+a 8+a 16=1+3+7+15+31=57.2.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时.若a 6=1,则m 所有可能的取值为( )A .{4,5}B .{4,32}C .{4,5,32}D .{5,32}解析:选C.a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时,注意递推的条件是a n (而不是n )为偶数或奇数.由a 6=1一直往前面推导可得a 1=4或5或32.3.设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( )A .d <0B .d >0C .a 1d <0D .a 1d >0解析:选C.设b n =2a 1a n ,则b n +1=2a 1a n +1,由于{2a 1a n }是递减数列,则b n >b n +1,即2a 1a n >2a 1a n +1.∵y =2x 是单调增函数,∴a 1a n >a 1a n +1,∴a 1a n -a 1(a n +d )>0,∴a 1(a n -a n -d )>0,即a 1(-d )>0,∴a 1d <0. 4.在数列{a n }中,若a 1=-2,a n +1=a n +n ·2n ,则a n =( ) A .(n -2)·2n B .1-12n C.23⎝⎛⎭⎫1-14n D.23⎝⎛⎭⎫1-12n 解析:选A.因为a n +1=a n +n ·2n ,所以a n +1-a n =n ·2n ,所以a n -a 1=(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)=(n -1)×2n -1+(n -2)×2n -2+…+2×22+1×21(n ≥2).设T n =(n -1)×2n -1+(n -2)×2n -2+…+2×22+1×21(n ≥2),则2T n =(n -1)×2n +(n -2)×2n -1+(n -3)×2n-2+…+2×23+1×22,两式相减得T n =(n -2)·2n +2(n ≥2),所以a n =(n -2)·2n +2+a 1=(n -2)·2n (n ≥2).又n=1时,上式成立,所以选A.5.在等比数列{a n }中,0<a 1<a 4=1,则能使不等式⎝⎛⎭⎫a 1-1a 1+⎝⎛⎭⎫a 2-1a 2+…+⎝⎛⎭⎫a n -1a n ≤0成立的最大正整数n 是( )A .5B .6C .7D .8解析:选C.设等比数列{a n }的公比为q ,则⎩⎨⎧⎭⎬⎫1a n 为等比数列,其公比为1q ,因为0<a 1<a 4=1,所以q >1且a 1=1q 3.又因为⎝⎛⎭⎫a 1-1a 1+⎝⎛⎭⎫a 2-1a 2+…+⎝⎛⎭⎫a n -1a n ≤0,所以a 1+a 2+…+a n ≤1a 1+1a 2+…+1a n , 即a 1(1-q n)1-q≤1a 1⎝⎛⎭⎫1-1q n 1-1q,把a 1=1q 3代入,整理得q n ≤q 7,因为q >1,所以n ≤7,故选C.6.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102.由于26=64,27=128.则n +1≥7,即n ≥6.答案:67.在等比数列{a n }中,若a n >0,且a 1·a 2·…·a 7·a 8=16,则a 4+a 5的最小值为________. 解析:由等比数列性质得,a 1a 2…a 7a 8=(a 4a 5)4=16,又a n >0,∴a 4a 5=2. 再由基本不等式,得a 4+a 5≥2a 4a 5=2 2.∴a 4+a 5的最小值为2 2. 答案:2 28.设S n 是数列{a n }的前n 项和,若S 2nS n(n ∈N *)是非零常数,则称数列{a n }为“和等比数列”.若数列{2b n }是首项为2,公比为4的等比数列,则数列{b n }__________(填“是”或“不是”)“和等比数列”.解析:数列{2b n }是首项为2,公比为4的等比数列,所以2b n =2·4n -1=22n -1,b n =2n -1.设数列{b n }的前n项和为T n ,则T n =n 2,T 2n =4n 2,所以T 2nT n=4,因此数列{b n }是“和等比数列”.答案:是9.在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0,设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项公式a n . 解:(1)证明:∵b n =log 2a n , ∴b n +1-b n =log 2a n +1a n =log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q .(2)设数列{b n }的公差为d ,∵b 1+b 3+b 5=6,∴b 3=2. ∵a 1>1,∴b 1=log 2a 1>0. ∵b 1b 3b 5=0,∴b 5=0.∴⎩⎪⎨⎪⎧b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1. ∴S n =4n +n (n -1)2×(-1)=9n -n 22.∵⎩⎪⎨⎪⎧log 2q =-1,log 2a 1=4,∴⎩⎪⎨⎪⎧q =12,a 1=16.∴a n =25-n (n ∈N *).10.已知数列{a n }和{b n }满足a 1a 2a 3…·a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n (n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n .解:(1)由题意知a 1a 2a 3…a n =(2)b n ,b 3-b 2=6,知a 3=(2)b 3-b2=8.又由a 1=2,得公比q =2(q =-2舍去), 所以数列{a n }的通项公式为a n =2n (n ∈N *), 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n+1).故数列{b n }的通项公式为b n =n (n +1)(n ∈N *).(2)①由(1)知c n =1a n -1b n =12n -⎝⎛⎭⎫1n -1n +1(n ∈N *),所以S n =1n +1-12n (n ∈N *).②因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎡⎦⎤n (n +1)2n -1, 而n (n +1)2n-(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n ≤5×(5+1)25<1, 所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4.1.已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0. (1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *), 所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1. (2)由b n =3n-1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1, 3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n ,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n , 所以S n =(n -1)3n +1.2.为了加强环保建设,提高社会效益和经济效益,北京市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数S (n ); (2)若该市计划7年内完成全部更换,求a 的最小值.解:(1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量.依题意,得{a n }是首项为128,公比为1+50%=32的等比数列,{b n }是首项为400,公差为a 的等差数列.所以{a n }的前n 项和S n =128×⎣⎡⎦⎤1-⎝⎛⎭⎫32n1-32=256⎣⎡⎦⎤⎝⎛⎭⎫32n-1,{b n }的前n 项和T n =400n +n (n -1)2a . 所以经过n 年,该市被更换的公交车总数为S (n )=S n +T n =256⎣⎡⎦⎤⎝⎛⎭⎫32n-1+400n +n (n -1)2a .(2)若计划7年内完成全部更换,则S (7)≥10 000,所以256⎣⎡⎦⎤⎝⎛⎭⎫327-1+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥1461621.又a ∈N *,所以a 的最小值为147.3.已知点⎝⎛⎭⎫1,13是函数f (x )=a x (a >0且a ≠1)的图象上一点,等比数列{a n }的前n 项和为f (n )-c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n -S n -1=S n +S n -1(n ≥2,n ∈N *).(1)求数列{a n }和{b n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为T n .问T n >1 0002 015的最小正整数n 是多少?解:(1)∵f (1)=a =13,∴f (x )=⎝⎛⎭⎫13x,a 1=f (1)-c =13-c , a 2=[f (2)-c ]-[f (1)-c ]=-29,当一个人先从自己的内心开始奋斗,他就是个有价值的人。
高中数学教案 第5讲 数列求和
第5讲数列求和1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法.1.公式法(1)等差数列{a n }的前n 项和S n =□1n (a 1+a n )2=□2na 1+n (n -1)d2.(2)等比数列{a n }的前n 项和S n2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或其他可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.常用结论1.一些常见的数列的前n 项和(1)1+2+3+…+n =n (n +1)2;(2)2+4+6+…+2n =n (n +1);(3)1+3+5+…+2n -1=n 2.2.几种常见变形(1)1(2n -1)(2n +1)=12(12n -1-12n +1);(2)等差数列{a n }(a n ≠0)的公差为d (d ≠0),则1a n a n +1=1d (1a n -1a n +1);(3)1n (n +1)(n +2)=121n (n +1)-1(n +1)(n +2);(4)2n (2n -1)(2n +1-1)=12n -1-12n +1-1.1.思考辨析(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.()(2)当n ≥2时,1n 2-1=)(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.()(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.()答案:(1)√(2)√(3)×(4)√2.回源教材(1)数列{a n }的前n 项和为S n .若a n =1n (n +1),则S 5等于()A.1B.56C.16D.130解析:B因为a n =1n (n +1)=1n -1n +1,所以S 5=a 1+a 2+…+a 5=1-12+12-13+…+15-16=56.(2)已知a n =2n +n ,则数列{a n }的前n 项和S n =.解析:S n =(2+22+ (2))+(1+2+…+n )=2(1-2n )1-2+12n (n +1)=2n +1-2+12n 2+12n .答案:2n +1-2+12n 2+12n(3)数列{(n +3)·2n -1}前20项的和为.解析:S 20=4·1+5·21+6·22+…+23·219,2S 20=4·2+5·22+6·23+…+23·220,两式相减,得-S 20=4+2+22+…+219-23·220=4+2(1-219)1-2-23·220=-22·220+2.故S 20=22·220-2.答案:22·220-2分组(并项)法求和例1(2024·菏泽模拟)已知数列{a n }中,a 1=1,它的前n 项和S n 满足2S n +a n +1=2n +1-1.(1)n (2)求S 1+S 2+S 3+…+S 2n .解:(1)证明:由2S n +a n +1=2n +1-1(n ≥1),①得2S n -1+a n =2n -1(n ≥2),②由①-②得a n +a n +1=2n (n ≥2),得a n +1=-a n +2n⇒a n +1-2n +13=-(a n -2n 3)(n ≥2),又当n =1时,由①得a 2=1⇒a 2-223=-(a 1-23),所以对任意的n ∈N *,都有a n +1-2n +13=-(a n -2n 3),故{a n -2n 3}是以13为首项,-1为公比的等比数列.(2)由(1)知a n -2n 3=(-1)n -13⇒a n =2n +(-1)n -13,所以a n +1=2n +1+(-1)n 3①得S n =2n +13-(-1)n 6-12,所以S 1+S 2+…+S 2n =13(22+23+…+22n +1)-16[(-1)+(-1)2+…+(-1)2n ]-2n 2=13×22-22n +21-2-0-n =22n +2-3n -43.反思感悟1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n n ,n 为奇数,n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{c n }的前n 项和.训练1已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5,∴3(1+d )=1+4d ,解得d =2.∴a n =1+(n -1)×2=2n -1.(2)由(1)可得b n =(-1)n -1·(2n -1).当n 为偶数时,T n =1-3+5-7+…+(2n -3)-(2n -1)=-n .当n 为奇数时,T n =T n -1+b n =-(n -1)+(-1)n -1(2n -1)=-(n -1)+(2n -1)=n .综上,T n =(-1)n +1n .裂项相消法求和例2(2023·南京一模)已知等比数列{a n }的前n 项和为S n ,a 1=1,S n +1+2S n-1=3S n (n ≥2).(1)求数列{a n }的通项公式;(2)令b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)当n ≥2时,S n +1+2S n -1=3S n ⇒S n +1-S n =2S n -2S n -1即a n +1=2a n ,∵{a n }是等比数列,∴q =2,又a 1=1,∴数列{a n }的通项公式为a n =2n -1,n ∈N *.(2)由(1)知,S n=1×(1-2n)1-2=2n-1,∴b n=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,∴T n=b1+b2+…+b n=1-122-1+122-1-123-1+…+12n-1-12n+1-1,即T n=1-12n+1-1.反思感悟1.裂项相消法求和的基本步骤2.裂项相消法的原则及规律(1)裂项原则一般是前面裂几项,后面就裂几项,直到发现被消去项的规律为止.(2)消项规律消项后前面剩几项,后面就剩几项,前面剩第几项,后面就剩倒数第几项.训练2已知S n是数列{a n}的前n项和,S n=n2.(1)求数列{a n}的通项公式;(2)求数列{1a n a n+1}的前n项和T n.解:(1)当n≥2时,由S n=n2,得S n-1=(n-1)2,则a n=S n-S n-1=n2-(n-1)2=2n-1.当n=1时,有S1=a1=1,符合上式.综上,a n=2n-1.(2)由(1)得,1a n a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),则T n=12(11-13+1 3-15+15-17+…+12n-1-12n+1)=12(1-12n+1)=n2n+1.错位相减法求和例3(2024·盐城模拟)已知数列{a n}的前n项和为S n,a n+1>a n,4S n=a2n+4n.(1)求{a n}的通项公式;(2)求数列{a n2n+1}的前n项和T n.解:(1)∵4S n=a2n+4n,①∴n≥2时,4S n-1=a2n-1+4(n-1),②①-②得4a n=a2n-a2n-1+4,∴(a n-2)2=a2n-1(n≥2),在①式中令n=1,a21-4a1+4=0,(a1-2)2=0,a1=2,∵a n+1>a n,∴数列{a n}为单调递增数列,∴a n≥2,∴a n-2=a n-1,a n-a n-1=2,∴{a n}为等差数列且首项为2,公差为2,∴a n=2+2(n-1)=2n.(2)a n2n+1=2n2n+1=n2n,∴T n=121+222+323+…+n2n,③1 2T n=122+223+…+n-12n+n2n+1,④③-④得12T n=12+122+…+12n-n2n+1,1 2T n=12[1-(12)n]1-12-n2n+1,1 2T n=1-n+22n+1,则T n=2-n+2 2n.反思感悟1.如果数列{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,常采用错位相减法.2.错位相减法求和时,应注意:(1)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.(2)应用等比数列求和公式时必须注意公比q是否等于1,如果q=1,应用公式S n=na1.训练3已知等比数列{a n}的前n项和为S n,且a1=2,S3=a3+6.(1)求数列{a n}的通项公式;(2)设b n=log2a n,求数列{a n b n}的前n项和T n.解:(1)设等比数列{a n}的公比为q.由a1=2,S3=a3+6,得a1(1+q+q2)=6+a1q2,解得q=2,所以a n=2n.(2)由(1)可得b n=log2a n=n,所以a n b n=n·2n,T n=1×2+2×22+3×23+…+n×2n,2T n=1×22+2×23+…+(n-1)2n+n·2n+1,所以-T n=2+22+…+2n-n·2n+1=2(1-2n)1-2-n·2n+1=2n+1-2-n·2n+1,所以T n=(n-1)2n+1+2.限时规范训练(四十四)1.(2023·全国乙卷)记S n为等差数列{a n}的前n项和,已知a2=11,S10=40.(1)求{a n}的通项公式;(2)求数列{|a n|}的前n项和T n.解:(1)设{a n}的公差为d,2=a1+d=11,10=10a1+45d=40,解得a1=13,d=-2.所以{a n}的通项公式为a n=13+(n-1)·(-2)=15-2n.(2)由(1)得|a n|-2n,n≤7,n-15,n≥8.当n≤7时,T n=13n+n(n-1)2×(-2)=14n-n2,当n≥8时,T n=T7+1+3+5+…+(2n-15)=T7+1+3+5+…+[2(n-7)-1]=14×7-72+(n-7)[1+2(n-7)-1]2=98-14n+n2.综上,T n n-n2,n≤7,-14n+n2,n≥8.2.已知单调递增的等差数列{a n}的前n项和为S n,且S4=20,a2,a4,a8成等比数列.(1)求数列{a n}的通项公式;(2)若b n=2a n+1-3n+2,求数列{b n}的前n项和T n.解:(1)设数列{a n}的公差为d(d>0),4=20,24=a2·a8,a1+4×32d=20,a1+3d)2=(a1+d)(a1+7d),1=2,=21=5,=0(舍),所以a n=2+(n-1)·2=2n.(2)由(1)得,a n=2n,所以b n=4(n+1)-3n+2,所以T n=4×2-33+4×3-34+…+4(n+1)-3n+2=4[2+3+…+(n+1)]-(33+34+…+3n+2)=4n·2+n+12-27(1-3n)1-3=2n2+6n+272-3n+32.3.在①S5=50,②S1,S2,S4成等比数列,③S6=3(a6+2)这三个条件中任选两个,补充到下面问题中,并解答本题.已知等差数列{a n}的公差为d(d≠0),前n项和为S n,且满足.(1)求a n;(2)若b n-b n-1=2a n(n≥2),且b1-a1=1,求数列{1b n}的前n项和T n.注:如果选择不同的组合分别解答,则按第一个解答计分.解:(1)选择条件①②.由S5=50,得5a1+5×42d=5(a1+2d)=50,即a1+2d=10.由S1,S2,S4成等比数列,得S22=S1S4,即4a21+4a1d+d2=4a21+6a1d,即d=2a1,解得a1=2,d=4,因此a n=4n-2.选择条件①③.由S5=50,得5a1+5×42=5(a1+2d)=50,即a1+2d=10.由S 6=3(a 6+2),得6(a 1+a 6)2=3a 1+3a 6=3a 6+6,即a 1=2,解得d =4,因此a n=4n -2.选择条件②③.由S 1,S 2,S 4成等比数列,得S 22=S 1S 4,即4a 21+4a 1d +d 2=4a 21+6a 1d ,则d=2a 1.由S 6=3(a 6+2),得6(a 1+a 6)2=3a 1+3a 6=3a 6+6,即a 1=2,解得d =4,因此a n =4n -2.(2)由a 1=2,a n =4n -2可得b 1=3,b n -b n -1=2a n =8n -4.当n ≥2时,(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)=(8n -4)+(8n -12)+…+12=[(8n -4)+12](n -1)2=4n 2-4,即b n -b 1=4n 2-4,则b n =4n 2-1.当n =1时,b 1=3,符合b n =4n 2-1,所以当n ∈N *时,b n =4n 2-1,则1b n =14n 2-1=12(12n -1-12n +1),因此T n =12(11-13+13-15+…+12n -1-12n +1)=12(1-12n +1)=n 2n +1.4.(2024·扬州模拟)已知数列{a n }的前n 项和为S n ,a 1=4且a n +1=S n +4(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =(-1)n +12n +1n log 2a n ,求数列{b n }的前n 项和T n .解:(1)因为a n +1=S n +4,当n =1时,a 2=S 1+4=8,当n ≥2时,a n =S n -1+4,所以a n +1-a n =a n ,即a n +1=2a n (n ≥2,n ∈N *),又a 2a 1=84=2,满足上式,所以{a n }是以4为首项,2为公比的等比数列,则a n =4×2n -1=2n +1.(2)因为b n =(-1)n +12n +1n log 2a n =(-1)n+12n +1n (n +1)=(-1)n +1(1n +1n +1),所以T n =(11+12)-(12+13)+…+(-1)n +1(1n +1n +1)=1+(-1)n +1n +1.5.(2024·宁波模拟)已知数列{a n }满足a n +1a n -2n 2(a n +1-a n )+1=0,且a 1=1.(1)求出a 2,a 3的值,猜想数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,且b n =S na n ·a n +1,求数列{b n }的前n 项和T n .解:(1)由已知得,当n =1时,a 2a 1-2(a 2-a 1)+1=0,又a 1=1,代入上式,解得a 2=3,同理可求得a 3=5.猜想a n =2n -1.(2)由(1)可知a n =2n -1,经检验符合题意,所以S n =n 2,则b n =n 2(2n -1)(2n +1)=14[1+1(2n -1)(2n +1)]=14+18(12n -1-12n +1),所以T n =[14+18(1-13)]+[14+18(13-15)]+…+[14+18(12n -1-12n +1)]=n 4+18(1-12n +1)=n 2+n 4n +2.6.(2023·广西联盟校检测)已知数列{a n }和{b n }的项均为正整数,前n 项和分别为S n ,T n ,且S n =12n -T n+n 2(n ∈N *).(1)求{a n }和{b n }的通项公式;(2)求数列{a n b n }的前n 项和.解:(1)因为{a n }和{b n }的项均为正整数,所以前n 项和S n ,T n 也是正整数,又S n =12n -T n+n 2(n ∈N *),所以(S n -n 2)(2n -T n )=1,n -n 2=1,n-T n =1n -n 2=-1,n -T n =-1.若S n -n 2=-1,则a 1=S 1=0,与{a n }的项均为正整数相矛盾,故不符合题意,所以S n =n 2+1,T n =2n -1.当n=1时,a1=S1=2,当n≥2时,a n=S n-S n-1=2n-1,所以a n ,n=1,n-1,n≥2,同理,b n=2n-1.(2)记数列{a n b n}的前n项和为C n,当n=1时,a1=2,b1=1,所以C1=a1b1=2.当n≥2时,C n=2×1+3×2+5×22+…+(2n-1)·2n-1,①①×2,得2C n=2×2+3×22+5×23+…+(2n-1)·2n,②①-②,得-C n=4+8(2n-2-1)-(2n-1)·2n,化简得C n=(2n-3)·2n+4.综上,数列{a n b n}的前n项和C n=(2n-3)·2n+4.。
【冀教版】四年级奥数上册讲义-第五讲 数列数表规律
第五讲数列数表规律◆温故知新:1. 找规律填空:8、15、22、29、36、、、572.找规律填空:1、2、4、8、、32、643.一个等差数列共有13项,每一项都比它的前一项大2,首项为23,末项是。
4.一个等差数列共有13项,每一项都比它的前一项小7,末项为125,首项是。
5.等差数列通项公式:末项=首项+(项数-1)×公差;项数公式:项数=(末项-首项)÷公差+1求和公式:和=(首项+末项)×项数÷26.寻找数列、数表中的数排列的规律,利用周期性计算。
7.在数列中需要关注所求的是第几个数,在数表中则要考虑所求的数在第几行、第几列◆练一练1. 一个等差数列的首项是为11,第10项为200,这个等差数列的公差等于多少?第19项等于多少?305是第几项?2.计算:(1)3+6+9+12+15+18+21+24+27+30(2)41+37+33+29+25+21+17+13+9+5+13.有9个连续的自然数的和是126,其中最小的数是多少?4.已知一个等差数列的前13项之和为533,前15项之和为690.请问:这个等差数列的首项是多少?◆例题展示例题1观察数列的规律1、1、4、2、7、3、10、1、13、2、16、3、19、1、22、2、25、3、…、100。
这个数列一共有多少项?练习1观察数列的规律3、1、6、2、9、3、12、1、15、2、18、3、21、1、24、2、27、3、…、102。
这个数列一共有多少项?例题21、100、2、98、3、96、2、94、1、92、2、90、3、88、2、86、1、84、 0请观察上面数列的规律,请问:(1)这个数列有多少项是2?(2)这个数列所有项的总和是多少?练习210、2、10、4、10、6、10、8、10、10、10、12、 (100)观察数列的规律并回答以下问题:(1)这个数列中有多少项是10?(2)这个数列所有项的总和是多少?例题31、2、3、4、4、5、6、7、7、8、9、10、……、97、98、99、100请观察数列的规律并回答以下问题:(1)这个数列一共有多少个数?(2)50在数列中是第几个数?练习3 1、2、3、2、3、4、3、4、5、……9、10、11请观察数列的规律并回答以下问题:(1)这个数列中一共有多少个数?(2)数字8出现了几次?例题4观察数组(1、2、3)、(3、4、5)、(5、6、7)、(7、8、9)……的规律,求:(1)第20组中三个数的和;(2)前20组中所有数的和。
第5讲 数列
3.等差数列的性质 (1)当公差 d≠0 时,等差数列的通项公式 an=a1+(n -1)d=dn+a1-d 是关于 n 的一次函数,且斜率为公 n(n-1) d 2 d 差 d;前 n 项和 Sn=na1+ d= n +(a1- )n 是 2 2 2 关于 n 的二次函数且常数项为 0. (2)若公差 d>0,则为递增等差数列;若公差 d<0,则 为递减等差数列;若公差 d=0,则为常数列. (3)当 m+n=p+q 时,则有 am+an=ap+aq,特别地, 当 m+n=2p 时, 则有 am+an=2ap.如①等差数列{an} 中, n=18, n+an-1+an-2=3, 3=1, n= 27 . S a S 则
精品回扣练习
1.(2009· 安徽)已知{an}为等差数列,a1+a3+a5=105, a2+a4+a6=99,则 a20 等于 A.-1 B.1 C.3 ( D.7
B)
解析 由已知得 a1+a3+a5=3a3=105, a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=-2. ∴a20=a3+17d=35+(-2)× 17=1.
n(a1+an) (3)等差数列的前 n 项和:Sn = ,Sn =na1 + 2 n(n-1) d. 2 1 3 * 如①数列{an}中,an=an-1+ (n≥2,n∈N ),an= ,前 2 2 15 n 项和 Sn=- ,则 a1= -3 ,n= 10 . 2 ②已知数列{an}的前 n 项和 Sn=12n-n2,求数列{|an|} 的前 n 项和 Tn. 12n-n2 (n≤6,n∈N*) 答案 Tn= 2 n -12n+72 (n>6,n∈N*) (4)等差中项:若 a,A,b 成等差数列,则 A 叫做 a 与 b a+b 的等差中项,且 A= . 2
高中数学《数列》总复习
第四章 数列§4.1等差数列的通项与求和一、知识导学1.数列:按一定次序排成的一列数叫做数列.2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式.4. 有穷数列:项数有限的数列叫做有穷数列.5. 无穷数列:项数无限的数列叫做无穷数列6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项.7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2ba +叫做a和b的等差中项.二、疑难知识导析1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相同而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数.2.一个数列的通项公式通常不是唯一的.3.数列{a n }的前n 项的和S n 与a n 之间的关系:⎩⎨⎧≥-==-).2(),1(11n S S n S a n n n 若a 1适合a n (n>2),则n a 不用分段形式表示,切不可不求a 1而直接求a n .4.从函数的角度考查等差数列的通项公式:a n = a 1+(n-1)d=d ·n+ a 1-d, a n 是关于n 的一次式;从图像上看,表示等差数列的各点(n,n a )均匀排列在一条直线上,由两点确定一条直线的性质,不难得出,任两项可以确定一个等差数列.5、对等差数列的前n 项之和公式的理解:等差数列的前n 项之和公式可变形为n d a n d S n )2(212-+=,若令A =2d ,B =a 1-2d,则n S =An 2+Bn. 6、在解决等差数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。
人教版高数必修五第5讲:等差数列前n项和公式(学生版)
等差数列的前n 项和__________________________________________________________________________________ __________________________________________________________________________________教学重点: 掌握等差数列前项和通项公式及性质, 数列最值的求解, 与函数的关系教学难点: 数列最值的求解及与函数的关系1. 数列的前n 项和一般地, 我们称为数列的前项和, 用表示;记法: 显然, 当时, 有 所以与的关系为n a = ①1S ()1n =②______________2. 等差数列的前n 项和公式___________________3. 等差数列前n 项和公式性质(1) 等差数列中, 依次项之和仍然是等差数列, 即 成等差数列, 且公差为_______(2) n S n ⎧⎫⎨⎬⎩⎭是等差数列 (3) 等差数列中, 若, 则;若 则(4) 若和均为等差数列, 前项和分别是和, 则有4. 项数为的等差数列, 有有偶 -奇 =, 奇 /偶 =5. 等差数列前n 项和公式与函数的关系等差数列前n 项和公式()112n n n S na d -=+可以写成____________________若令1,,22d d A a B =-=类型一: 数列及等差数列的求和公式例1.已知数列{}n a 的前n 项和22,n S n n =+ 求{}n a练习1.已知数列的前项和求.练习2: 已知数列的前项和求例2.已知等差数列的前项和为 , 求及练习3.已知等差数列的前项和为,,求.....练习4.已知等差数列的前项和为, 求.(1) 例3.在等差数列中, 前项和为(2) 若81248,168,S S ==求1a 和公差d(3) 若499,6,a a ==-求满足54n S =的所有n 的值练习5.设 是等差数列的前项和, 则___________练习6.在等差数列中, 则的前5项和 ______________类型二: 等差数列前项和公式的性质(1) 例4.在等差数列中,(2) 若, 求(3) 若共有项, 且前四项之和为21, 后四项之和为67, 前项和 , 求(4) 若10100100,10S S ==求110S练习7.(2014山东淄博一中期中)设 是等差数列的前项和, 若, 则等于() A.19 B.13 C.310 D.18练习8.(2014山东青岛期中)已知等差数列的公差, 则 ()A.2014B.2013C.1007D.1006例5.已知等差数列和的前项和分别为和, 且则=()A..........B...........C..........D..练习9.已知是等差数列, 为其前项和, 若则的值为______练习10.已知等差数列的公差为2, 项数是偶数, 所有奇数项之和为15, 所有偶数项之和为35, 则这个数列的项数为______________类型三: 等差数列前项和公式的最值及与函数的关系例6.已知数列{}n a 的前项和为2230n S n n =-(1) 这个数列是等差数列吗? 求出它的通项公式(2) 求使得n S 最小的n 值练习11.已知等差数列的前项和为, 为数列的前项和, 求数列的通项公式练习12.等差数列中, 若, 求=_____________例7.已知等差数列中, 求使该数列前项和取得最小值的的值练习13.已知等差数列中, 则使前项和取得最小值的值为()A.7B.8C.7或8D.6或7练习14.数列满足, 则使得其前项和取得最大值的等于()A.4B.5C.6D.71.四个数成等差数列, S4=32, a2a3=13, 则公差d 等于( )A. 8B. 16C. 4D. 02.设{an}是等差数列,Sn 为其前n 项和,且S5<S6,S6=S7>S8,则下列结论错误的是( )A. d<0B. a7=0C. S9>S5D. S6与S7均为Sn 的最大值.3.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,Sn 是等差数列{an}的前n 项和,则使得Sn 达到最大值的n 是( )A. 21B. 20C. 19D. 184.已知等差数列{an}的前n 项和为Sn ,a5=5,S5=15,则数列{}的前100项和为( )A.100101B.99101C.99100D.1011005.在等差数列{an}中, 若S12=8S4, 且d ≠0, 则等于( )A. B. C. 2 D.6.设Sn 为等差数列{an}的前n 项和,若a1=1,公差d =2,Sk +2-Sk =24,则k =( )A. 8B. 7C. 6D. 57.(2014·福建理,3)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( )A. 8B. 10C. 12D. 14_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.等差数列{an}的前n项和为Sn, 已知am-1+am+1-a=0, S2m-1=38, 则m=( )A. 38B. 20C. 10D. 92.数列{an}是等差数列, a1+a2+a3=-24, a18+a19+a20=78, 则此数列的前20项和等于( )A. 160B. 180C. 200D. 2203.等差数列{an}的公差为d, 前n项和为Sn, 当首项a1和d变化时, a2+a8+a11是一个定值, 则下列各数中也为定值的是( )A. S7B. S8C. S13D. S154.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )A. 5B. 4C. 3D. 25.在等差数列{an}中, a1>0, d=, an=3, Sn=, 则a1=________, n=________.6.设Sn是等差数列{an}(n∈N*)的前n项和, 且a1=1, a4=7, 则S5=________.7.设{an}是公差为-2的等差数列,若a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99的值为________.8.若等差数列{an}满足a7+a8+a9>0, a7+a10<0, 则当n=________时, {an}的前n项和最大.9.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{a n}的通项公式;(2)求数列{}的前n项和.10.设{an}是等差数列,前n项和记为Sn,已知a10=30,a20=50.(1)求通项a n;(2)若Sn=242, 求n的值.能力提升11.在等差数列{an}和{bn}中, a1=25, b1=15, a100+b100=139, 则数列{an+bn}的前100项的和为( )A. 0B. 4 475C. 8 950D. 10 00012.等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )A. a8B. a9C. a10D. a1113.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A. 12B. 16C. 9D. 16或914.已知一个等差数列的前四项之和为21,末四项之和为67,前n 项和为286,则项数n 为( )A. 24B. 26C. 27D. 2815.设Sn 为等差数列{an}的前n 项和,S3=4a3,a7=-2,则a9=( )A. -6B. -4C. -2D. 216.设Sn 是等差数列{an}的前n 项和,若=,则等于( )A.310B.13C.18D.1917.已知等差数列{an}的前n 项和为Sn, 若=a1+a200, 且A.B.C 三点共线(该直线不过点O), 则S200=( )A. 100B. 101C. 200D. 20118.已知等差数列{an}的前n 项和为18, 若S3=1, an +an -1+an -2=3, 则n =________.19.已知数列{an}的前n 项和Sn =n2-8,则通项公式an =________.20.设{an}是递减的等差数列, 前三项的和是15, 前三项的积是105, 当该数列的前n 项和最大时, n 等于( )A. 4B. 5C. 6D. 721.等差数列{an}中, d<0, 若|a3|=|a9|, 则数列{an}的前n 项和取最大值时, n 的值为______________.22.设等差数列的前n 项和为Sn.已知a3=12,S12>0,S13<0.(1)求公差d 的取值范围;(2)指出S1, S2, …, S12中哪一个值最大, 并说明理由.23.已知等差数列{an}中, a1=1, a3=-3.(1)求数列{a n }的通项公式;(2)若数列{an}的前k 项和Sk =-35, 求k 的值.24.在等差数列{an}中:(1)已知a5+a10=58, a4+a9=50, 求S10;(2)已知S7=42, Sn =510, an -3=45, 求n.25.已知等差数列{an}的前n 项和Sn =-n2+n, 求数列{|an|}的前n 项和Tn.课程顾问签字: 教学主管签字:。
高中数学竞赛辅导讲义-第五章--数列【讲义】
第五章 数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。
其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。
定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。
若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn .定义3 等比数列,若对任意的正整数n ,都有q a a nn =+1,则{a n }称为等比数列,q 叫做公比。
定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。
奥数教程3年级第7版-第5讲-等差数列
第5讲-等差数列【知识导航】首先要先认识一下几个基本概念1、等差数列都是长什么样的?(1)自然数数列:公差是1,首项可以是1,也可以不是1;任意一个数都可以是第1项;(2)奇数数列:公差是2,每一项都是奇数(单),这是一个比较特殊的数列;(3)偶数数列:公差是2,每一项都是偶数(双),这是一个比较特殊的数列;(4)其他的数列:公差可以是3、4、5、6等等,这些数列就没有什么特别之处了,没有特殊性;2、公差--------相邻两个数之差,在一个等差数列中,任意相邻的两个数之差必然是相同的(相等的),,这有保持这个差始终相等,才能叫等差数列呢。
3、首项------顾名思义,就是数列的第1项;4、末项----顾名思义,就是数列的最后一项,一般情况下,数列的项数都是无限多,但是为什么会有最后一项呢?【答案】这里的限制,是人为的限制,我们要有结束的时候,我们可以任意选择结束的地方,这是在锻炼我们使用概念,使用公式的一种方法。
我们需要在有限的范围内研究一些事情。
这种限定,可以帮助我们很好的在一定范围内充分理解基本概念,然后我们再根据自己的理解去发挥想象,举一反三。
这就是:有限制,才有想象。
人的创造力,来源于限制。
5、项数-----顾名思义,就是这个数列的“个数”。
专业一点就叫做“项数”。
【为什么数学里面会有那么多的概念,名词,定理呢?】【答案】概念-----这个词可以给我们提供很多有用的东西,节约我们学习的时间,提高学习的效率。
假如,我们没有概念这个词,你每次要跟别人说一个东西的时候,都说很多的话,是不是很费劲?比如说俄罗斯人的名字就很长,那我们用一个代号称呼是不是更快,更清楚的认识一个人呢?这就是概念的作用,用最简短的词语表示了一个新事物,表达了一件事情。
这就体现了快捷,有效。
名词----也就是词语,是组成概念的主要单位。
没有名词,概念就失去了有力的武器,所以,概念离不开词语,词语并不是语文的特产。
定理---大家公认的一件事情,至少目前是没有人可以推翻的,也就是大家公认的一件事。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列、等比数列
知识巩固:
1.等差、等比数列的通项公式
等差数列{a n }的通项公式为a n =a 1+(n -1)d =a m +(n -m)d ;等比数列{a n }的通项公式为a n =a 1q n -1=a m q n -m .
2.等差、等比数列的前n 项和
(1)等差数列的前n 项和为
d n n na a a n S n n 2
)1(2)(11-+=+=. 特别地,当d ≠0时,S n 是关于n 的二次函数,且常数项为0,即可设S n =an 2+bn (a ,b 为常数).2,21d a b d a -==
(2)等比数列的前n 项和 S n =⎩⎨⎧ na 1,q =1,a 11-q n 1-q =a 1-a n q 1-q ,q ≠1,
特别地,若q ≠1,设a =
a 11-q , 则S n =a -aq n .
3.等差数列、等比数列常用性质
(1)若序号m +n =p +q ,在等差数列中,则有a m +a n =a p +a q ;特别的,若序号m +n =2p ,则a m +a n =2a p ;在等比数列中,则有a m ·a n =a p ·a q ;特别的,若序号m +n =2p ,则a m ·a n =a 2p ; (2)在等差数列{a n }中,S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,其公差为kd ;其中S n 为前n 项的和,且S n ≠0(n ∈N *);在等比数列{a n }中,当q ≠-1或k 不为偶数时S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其中S n 为前n 项的和(n ∈N *).
例题讲解:
【例1】 (2013·盐城模拟)设数列{a n }是公差不为0的等差数列,S n 为其前n 项的
和,满足:7,725242322
=+=+S a a a a
(1)求数列{a n }的通项公式及前n 项的和S n ; (2)设数列{b n }满足b n =2an ,其前n 项的和为T n ,当n 为何值时,有T n >512.
1+S n是公比为2的等比【训练1】已知数列{a n}的前n项和为S n,a1=3,{}
数列.
(1)证明:{a n}是等比数列,并求其通项;
(2)设数列{b n}满足b n=log2a n,其前n项和为T n,当n为何值时,有T n≤2 012?【例2】已知数列{a n}是各项均不为0的等差数列,S n为其前n项和,且满足
a2n=S2n-1,令b n=1
a n·a n+1
,数列{b n}的前n项和为T n.
(1)求数列{a n}的通项公式及数列{b n}的前n项和T n;
(2)是否存在正整数m,n(1<m<n),使得T1,T m,T n成等比数列?若存在,
求出所有的m,n的值;若不存在,请说明理由.
【训练2】设{a n}是单调递增的等差数列,Sn为其前n项和,且满足4S3=S6,a2+2是a1,a13的等比中项.
(1)求数列{an}的通项公式;
(2)是否存在m,k∈N*,使a m+a m+4=a k+2?说明理由;
(3)若数列{bn}满足b1=-1,b n+1-bn=an,求数列{bn}的通项公式.
数列求和的方法归纳
(1)转化法:将数列的项进行分组重组,使之转化为n个等差数列或等比数列,然后应用公式求和;
(2)错位相减法:适用于{an·bn}的前n项和,其中{an}是等差数列,{bn}是等比数列;
(3)裂项法:求{an}的前n项和时,若能将an拆分为
an=bn-bn+1,则a1+a2+…+an=b1-b n+1;
(4)倒序相加法:一个数列倒过来与原数列相加时,若有公因式可提,并且剩余的项的和容易求出,那么这样的数列求和可采用此法.其主要用于求组合数列的和.这里易忽视因式为零的情况;
(5)试值猜想法:通过对S1,S2,S3,…的计算进行归纳分析,寻求规律,猜想出Sn,然后用数学归纳法给出证明.易错点:对于Sn不加证明;
(6)并项求和法:先将某些项放在一起先求和,然后再求Sn.例如对于数列{an}:a1=1,a2=3,a3=2,a n+2=a n+1-an,可证其满足a n+6=an,在求和时,依次6项求和,再求Sn.
【例3】已知数列{an}满足a1=1,a2=3,a n+2=3a n+1-2an(n∈N*).
(1)证明:数列{a n+1-an}是等比数列;
(2)求数列{an}的通项公式;
【训练3】在数列{an}中,a1=1,a2=2,且a n
+1=(1+q)an-qa n
-1
(n≥2,q≠0,
q≠1).
(1)求证:数列{a n +1-an}为等比数列;
(2)若a 6,a 3,a 9成等差数列,问对任意的n ∈N*,a n +3,an ,a n +6是否成等差数列?说明理由.
【例4】 (2013·泰州调研)已知数列{a n }满足a 1=1,a 2=-1,当n ≥3,n ∈N *时,
a n n -1-a n -1n -2=3n -1 n -2
.
(1)求数列{a n }的通项公式; (2)是否存在k ∈N *,使得n ≥k 时,不等式S n +(2λ-1)a n +8λ≥4对任意实数
λ∈[0,1]恒成立?若存在,求出k 的最小值;若不存在,请说明理由.
【训练4】 (2013·广东卷)设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-
1 3n 2-n-
2
3,n∈N
*.
(1)求a2的值;
(2)求数列{a n}的通项公式;
(3)证明:对一切正整数n,有1
a1+1
a2+…+
1
a n<
7
4.
例题4:解(1)∵当n≥3时,n∈N*时,
a n n-1-
a n-1
n-2
=
3
(n-1)(n-2)
=3
⎝
⎛
⎭
⎪
⎫
1
n-2
-
1
n-1,
∴a n +3n -1=a n -1+3n -2.∴当n ≥2时,⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫a n +3n -1是常数列. ∴n ≥2时,a n +3n -1=a 2+32-1
=2,a n =2n -5. ∴a n =⎩⎨⎧ 1,n =1,2n -5,n ≥2.
(2)S n =⎩⎨⎧ 1,n =1,n 2-4n +4,n ≥2.
当n =1时,不等式S n +(2λ-1)a n +8λ≥4可化为λ≥25
,不满足条件. 当n ≥2时,S n +(2λ-1)a n +8λ≥4可化为
2(2n -1)λ+n 2-6n +5≥0.
令f (λ)=2(2n -1)λ+n 2-6n +5,由已知得,
f (λ)≥0对于λ∈[0,1]恒成立,
当且仅当⎩⎨⎧ f (0)≥0,f (1)≥0.化简得,⎩⎨⎧
n 2-6n +5≥0,n 2-2n +3≥0. 解得,n ≤1或n ≥5.
∴满足条件的k 存在,k 的最小值为5.
训练4:(1)解 2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.
(2)解 当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,
2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),
两式相减得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,
整理得(n +1)a n =na n +1-n (n +1),
即a n +1n +1
-a n n =1,又a 22-a 11=1, 故数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差为1的等差数列,
所以a n n =1+(n -1)×1=n ,所以a n =n 2.
(3)证明 1a 1+1a 2+1a 3+…+1a n
=1+14+132+142+…+1n 2<1+14+12×3+13×4+…+1n (n -1)
=1+14+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭
⎪⎫1n -1-1n =54+12-1n =74-1n <74,
所以对一切正整数n ,有1a 1+1a 2+…+1a n
<74.。