朝阳公司烟气脱硫设计计算(师弟)

合集下载

脱硫计算公式比较全

脱硫计算公式比较全

Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)=0.2430kcal/kg.℃。

Cp空气=(0.2452+0.2430)/2=0.2441 kcal/kg.℃Cp水(20~40℃)=1.0kcal/kg.℃r水(20)=586kcal/kgr水(40)=575kcal/kg烟气蒸发水量=[0.2528×(70-40)×1630224+0.2441×15491.12×(80-40)]/[1.0×(40-20)+(586+575)/2]=20841kg/h=1156.55kmol/h水蒸汽含量=(2551.78+1156.55)/(54816.21+1156.55)=6.63%40℃水蒸汽饱和蒸汽压=0.00737MPa。

烟气总压102000Pa。

40℃烟气饱和水蒸汽含量=0.00737/0.102=7.23%根据以上计算,假设温度下烟气蒸发水量及原烟气含水量之和小于40℃烟气饱和水蒸汽含量。

因此,实际出口温度小于40℃。

2)假设出口温度为35℃烟气蒸发水量=[0.2528×(70-35)×1630224+0.2441×15491.12×(80-35)] /[1.0×(40-20)+(586+575)/2]=24296.6kg/h=1348.31kmol/h水蒸汽含量=(2551.78+1348.31)/(54816.21+1348.31)=6.94%35℃水蒸汽饱和蒸汽压=0.00562MPa。

35℃烟气饱和水蒸汽含量=0.00562/0.102=5.51%根据以上计算,假设温度下烟气蒸发水量及原烟气含水量之和大于35℃烟气饱和水蒸汽含量。

因此,实际出口温度大于35℃,取38.5℃,则烟气蒸发水量为1213.82kmol/h×18.02=21873kg/h,其水蒸汽含量=(2551.78+1213.82)/(54816.21+1213.82)=6.72%38.5℃水蒸汽饱和蒸汽压=0.00684MPa。

烟气脱硫设计计算

烟气脱硫设计计算

烟气脱硫设计计算烟气脱硫是一种用于控制和减少燃烧过程中排放的二氧化硫(SO2)的技术手段。

SO2是一种有害气体,其排放对环境和人类健康造成严重影响。

烟气脱硫的设计计算涉及到多个方面,如脱硫剂选择、脱硫效率计算、废水处理等。

在烟气脱硫设计计算中,首先需要选择合适的脱硫剂。

常用的脱硫剂包括石灰石、石膏等。

脱硫剂的选择应考虑其成本、可获得性以及与废气中其他成分的相互作用等。

一般来说,选择含有较高钙含量的石灰石能够达到比较好的脱硫效果。

脱硫效率的计算是烟气脱硫设计的关键环节。

脱硫效率是指系统中硫的去除率。

常用的脱硫效率计算公式为:脱硫效率(%)=(SO2进-SO2出)/SO2进×100其中,SO2进和SO2出分别表示烟气中进入和出口的SO2浓度。

脱硫效率的计算需要准确测量这两个参数。

测量SO2浓度的方法包括湿法(如碘液法、苏金孚法等)和干法(如紫外线光谱法等)。

根据实际情况,选择合适的测量方法。

废水处理也是烟气脱硫设计中重要的环节。

在石灰石湿法脱硫中,产生的废水中含有大量的钙离子和硫离子。

废水的处理需要通过中和、沉淀等过程来除去其中的污染物。

一种常用的废水处理方法是利用石膏脱硫法中产生的石膏作为副产物,可以通过进一步的处理将其中的污染物去除。

在烟气脱硫设计计算中,还需要考虑一些其他因素,如烟气的温度、湿度、流量等,以及设备的尺寸、系统的布置等。

这些因素将直接影响脱硫效率和处理效果。

总之,烟气脱硫的设计计算是一项复杂的工程,需要考虑多个因素。

合理选择脱硫剂、准确测量SO2浓度、有效处理废水,以及考虑其他因素,能够有效地控制和减少烟气中的SO2排放,保护环境和人类健康。

脱硫系统常用计算公式

脱硫系统常用计算公式

1)由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基\湿基,标态\实际态,6%O2\实际O2等),开始计算前一定要核算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。

常用折算公式如下:烟气量(dry)=烟气量(wet)×(1-烟气含水量%)实际态烟气量=标态烟气量×气压修正系数×温度修正系数烟气量(6%O2)=(21-烟气含氧量)/(21-6%)SO2浓度(6%O2)=(21-6%)/(21-烟气含氧量)SO2浓度(mg/Nm3)=SO2浓度(ppm)×2.857物料平衡计算1)吸收塔出口烟气量G2G2=(G1×(1-mw1)×(P2/(P2-Pw2))×(1-mw2)+G3×(1-0.21/K))×(P2/(P2-Pw2))G1:吸收塔入口烟气流量mw1:入口烟气含湿率P2:烟气压力Pw2:饱和烟气的水蒸气分压说明:Pw2为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。

(计算步骤见热平衡计算)2)氧化空气量的计算根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50-60%。

采用氧枪式氧化分布技术,在浆池中氧化空气利用率ηo2=25-30%,因此,浆池内的需要的理论氧气量为:S=(G1×q1-G2×q2)×(1-0.6)/2/22.41所需空气流量QreqQreq=S×22.4/(0.21×0.3)G3=Qreq×KG3:实际空气供应量K:根据浆液溶解盐的多少根据经验来确定,一般在2.0-3左右。

3)石灰石消耗量计算W1=100×qs×ηsW1:石灰石消耗量qs::入口SO2流量ηs:脱硫效率4)吸收塔排出的石膏浆液量计算W2=172××qs×ηs/SsW2:石膏浆液量Ss:石膏浆液固含量5)脱水石膏产量的计算W3=172××qs×ηs/SgW3:石膏浆液量Sg:脱水石膏固含量(1-石膏含水量)6)滤液水量的计算W4=W3-W2W3:滤液水量7)工艺水消耗量的计算W5=18×(G4-G1-G3×(1-0.21/K))+W3×(1-Sg)+36×qs×ηs??+WWT? ?? ?蒸发水量? ?? ?? ?石膏表面水? ? 石膏结晶水??排放废水。

脱硫系统常用计算公式

脱硫系统常用计算公式

1) 由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基湿基,标态实际态,实际O2 等),开始计算前一定要核算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。

常用折算公式如下:烟气量(dry)=烟气量(wet) >(1-烟气含水量%)实际态烟气量=标态烟气量>气压修正系数x温度修正系数烟气量(6%02) = ( 21-烟气含氧量)/ ( 21 -6%)S02 浓度(6%02 ) = ( 21 - 6%) / (21 -烟气含氧量)S02 浓度( mg/Nm3 ) =S02 浓度( ppm) x2.857物料平衡计算1 )吸收塔出口烟气量G2G2= (G1 x (1 - mw1) X(P2/(P2-Pw2)) (X —mw2 )+ G3X (1- 0.21/K) ) >(P2/(P2-Pw2))G1: 吸收塔入口烟气流量mw1: 入口烟气含湿率P2:烟气压力Pw2 :饱和烟气的水蒸气分压说明: Pw2 为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。

(计算步骤见热平衡计算)2) 氧化空气量的计算根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50 - 60 %。

采用氧枪式氧化分布技术,在浆池中氧化空气利用率n 02=25-30%,因此,浆池内的需要的理论氧气量为:S=(G1 x q1-G2 x q2) x(1-0.6)/2/22.41所需空气流量QreqQreq=S x22.4/(0.21 0.x3)G3= Qreq >KG3:实际空气供应量K :根据浆液溶解盐的多少根据经验来确定,一般在 2.0-3左右。

3) 石灰石消耗量计算W1=100x qs xnsW1: 石灰石消耗量qs: :入口S02 流量n S兑硫效率4) 吸收塔排出的石膏浆液量计算W2=172xx qs xn s/SsW2:石膏浆液量Ss石膏浆液固含量5) 脱水石膏产量的计算W3=172xx qs xn s/SgW3: 石膏浆液量Sg:脱水石膏固含量(1-石膏含水量)6) 滤液水量的计算W4=W3-W2W3: 滤液水量7) 工艺水消耗量的计算W5=18x (G4-G1-G3 x(1-0.21/K))+W3 (1x-Sg)+36x qs x n+W s WT蒸发水量石膏表面水石膏结晶水排放废水。

烟气脱硫设计计算范例

烟气脱硫设计计算范例

2.4.干烟气总量为:
( VCO2 VN2 VSO2 VO2 ) 83.89 1000 30.4355 Q 22.4 897455.93 (kg / hr )
2.5.冷却增湿水量
M水 =(0.07624-0.0391)×897455.93 = 33538.49(kg / hr) = 33.54 (t / hr)
6. 离心机
进口水量为: 44017.08 (kg/hr) 固体含量: 6846.447816(kg/hr) 进口含固量≤ 15.00% 出口含固量≥70.00% MgSO3.xH2O溶解度,47.54℃时为1.4(g/100g) xH2O质量 = 523.8033(kg/hr) 溶解的MgSO3· 出口混合物质量: 9032.3493 (kg/hr) xH2O质量: 6078.7592(kg/hr) 混合物中MgSO3· 混合物中杂质质量: 243.8854(kg/hr) 混合物中表液质量: 2953.5902(kg/hr) 出口分离液质量: 34984.7337(kg/hr) xH2O质量: 523.8033(kg/hr) 分离液中MgSO3·
水分68774.50(kg/hr)
除雾器冲洗水

出烟量(标态,湿态) 782687.69 (Nm3/hr )
16000 (kg/hr) 循环浆液量


水分69027.33 (kg/hr)
2821.86 (kg/hr)
补充水 27984.29(kg/hr)
浆液,20% 1hr)
MgO + H2O SO2+ Mg(OH)2+ 5H2O SO2+ MgSO3· 2O 6H Mg(OH)2 MgSO3· 2O 6H ——7-1 ——7-2

朝阳公司烟气脱硫设计计算(师弟)

朝阳公司烟气脱硫设计计算(师弟)

设计参数耗煤量:27t/d,全硫含量:0.8%-1%,烟气温度:150℃煤气硫含量:450mg/ m3, 发生炉煤气产量:4000 m3/t转化成二氧化硫的硫含量:847 mg/ m3设计计算1.烟气量计算单日产气总量=27x4000=108000m3则所选煤气的分子量M=2x13.33%+28x27.40%+16x1.5%+44x3.8%+28x49.6%+18x4.17%+32x0.2%=24.553则所选煤气24.553kg/kmol÷22.4Nm3/kmol=1.096kg/ m3低位发热值Qd=10805x13.33%+12650x27.40%=4906.4kJ/Nm3=4906.4/4.1868=1171.88kcal/N m3=4906.4/1.3053=3758.83kcal/kg设1立方米发生炉煤气完全燃烧,空气系数ɑ=1.5经计算,理论空气需要量Qv=1.11 m3实际空气量=1.11x1.5=1.67 m3理论需氧量=0.234 m3烟气中过剩氧气量=(a-1)x理论需氧量=0.5x0.234=0.117 m3过剩氮气量=过剩氧气量x78/21=0.117X78/21=0.435 m3理论烟气量=1.03 m3实际烟气量=理论生成物总量+过剩氧气量+过剩氮气量=1.03+0.117+0.435=1.582 m3则烟气量Q=108000x1.582/24=7119 m3/h(150度)进行温度修正后的烟气量Q’=7119*(273.15+20)/(273.15+150)=4908.7 m3/h(20度)锅炉烟尘最高允许排放浓度及黑度限值锅炉二氧化硫和氮氧化物最高允许排放浓度限值本设计中燃气锅炉属于二时段(2001年1月1日),即烟尘最高允许排放浓度为50mg/m3,二氧化硫最高允许排放浓度为100mg/ m3。

2.工艺流程见设计方案3.二氧化硫排放量Qs=847/1000/1000x7119=6.03kg/h;烟气脱硫主要设备设计计算1.喷淋塔设计计算烟道烟气流速取18m/s。

烟气脱硫设计计算

烟气脱硫设计计算

烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5%工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。

吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。

净烟气经过除雾器降低烟气中的水分后排入烟囱。

粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。

吸收过程吸收过程发生的主要反应如下:Mg(OH)2+SO2→MgSO3+H2OMgSO3+SO2+H2O→Mg(HSO3)2Mg(HSO3)2+Mg(OH)2→2MgSO3+2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。

这个阶段化学反应如下:MgSO3+1/2O2→MgSO4Mg(HSO3)2+1/2O2→MgSO4+H2SO3H2SO3+Mg(OH)2→MgSO3+2H2OMgSO3+1/2O2→MgSO4是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。

塔底吸收液pH由自动喷注的20%氢氧化镁浆液调整,而且与酸碱计连锁控制。

当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。

20%氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。

烟气脱硫设计计算

烟气脱硫设计计算

烟气脱硫工艺吸收塔设计和选型4.1吸收塔的设计吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。

4.1.1 吸收塔的直径和喷淋塔高度设计本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。

但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。

而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。

通常烟气中的二氧化硫浓度比较低。

吸收区高度的理论计算式为h=H 0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。

)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。

根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。

烟气脱硫设计有关计算

烟气脱硫设计有关计算
之一,它在相当程度上决定着水平衡。热平 衡中的蒸发水是系统的主要水耗。
Ò由于烟气中含有腐蚀性的酸性气体和水蒸
气的存在,烟气温度的高低,对于系统烟道 的防腐有着直接的影响,它决定了防腐材料 及措施的选择。而烟气温度的高低与吸收塔 的热平衡有很大的关系。
系统热平衡示意图
净 烟 气热 (处理后的烟气) 散热
5、热平衡
计算公式如下:公式4
不含蒸发水的烟气热量 氧化空气热量 工艺水热量
Q y1C p1T 1−Q y 2 C p 2T2 + Q yk (C k 1T 3−C k 2T2 ) + G w (C w1T w1−C w 2T2 )
Θ + ΔH m = M zf ( h 2 − h1)+ G石膏 C 石膏T2+ YC wT2
CaCO 3
64
SO 2
CaCO 3
其中:钙硫比Ca/S<=1.05 CaCO3量为: G石灰石×ACaCO3 kg/h 杂质量为: G石灰石×(1-ACaCO3)kg/h 如使用工业水制备30%含固量浆液,则需水量:G石灰石/0.3×0.7 kg/h 如使用v%含固量的脱硫反应塔塔底浆液旋流分离液制备30%含固量 浆液,设v%含固量旋流分离液中的固体物量为S kg/h,以水平衡可列 下式: S/v%×(1-v%)=(S+ G石灰石)/30%×(1-30%) 计算得到S kg/h,则所需的水量为: G水=S/v%×(1-v%)kg/h 则需v%的塔底浆液旋流分离液为: G制浆水=S+G水kg/h 30%浆液量为:G浆液=G水/(1-30%)kg/h
(1 − 25.5%) X (t ) (1 − 25.5%) X 3%( s )
Y (t ) 1.3%Y ( s )

脱硫设计计算书

脱硫设计计算书

设 计 计 算 书一、脱硫塔根据技术协议:锅炉情况:锅炉类型:煤粉炉锅炉额定蒸发量:75t锅炉最大烟气量:151000m 3/h烟气温度:140℃燃煤含硫量:按2%考虑(1.5-3.0%)燃煤量:12t1.每秒烟气量:151000 m 3/h=151000/3600 m 3/s=41.9 4m 3/s2.脱硫塔内烟气上升速度≤4m/s,此处取为3.5m/s3.脱硫塔直径(m ):m s m s m d 91.3/5.3/94.4123==π此处取直径为4m4.金宇轮胎现场情况:烟囱进烟道为2400×1800×5(外径),标高为8.2m,烟道底部表面标高为7.3m5.脱硫塔高度确定:(1)循环池内除硫液循环时间为10分钟,单台水泵流量为200m 3/t,两台水泵流量200m 3/h×2=400m 3/h;400m 3/h=0.11 m 3/s则循环水池至少体积为0.11 m 3/s ×10min ×60s=66 m 3此处循环水池体积为66 m 3×1.15=75.9 m 3 此处取为76 m 3循环水池深度为m m m h 05.647623==π(2)烟气在脱硫塔内反应段长度为8m(3) 最上一层喷头距最下一层除雾器为2m,除雾器间距为1.5-2m(4)进烟口距分布板为0.5m(5)地表距上液面为4m(6)进烟道口高度为1.8m脱硫塔高度为:H=4m+1.5m+1.8m+0.5m+8m+2m+1.5m=19.3mH 取为20m计:脱硫塔内部几何尺寸:Ф4000×20m6.(1)烟气进口温度为140℃,烟气流量为151000 m 3/h ,压力为:103.5Kpa(2)烟气出口温度为65℃,压力为:102.7Kpa,烟气流量为:124541 m 3/h(3)烟气单位体积比热容为1.409KJ/m 3℃(4)水单位质量比热容为4.187KJ/ Kg ℃(5)空气温度为65℃时,1立方空气带走水蒸气的质量为0.05Kg(6)烟气中一个小时带走水蒸汽质量为:0.05Kg ×124541 m 3/h=6227Kg/小时烟气一个小时带走水量为6.227t(7)进烟道烟气热量值:151000 m3/h×140℃×1.409KJ/m3℃=29786260KJ(8)出烟道烟气热量值:124541 m3/h×65℃×1.409 KJ/m3℃=11406087KJ(9)烟气中带走水蒸气的热量值:6227Kg×4.187KJ/ Kg℃×45℃=1173240KJ(喷头喷出水温℃,成为水蒸气温度为65℃,温差为45℃)(10)喷头喷水温度取为20℃,一小时喷水量为mKg/h,最大升温10℃,则:29786260KJ-11406087KJ=mKg/h×10℃×4.187KJ/ Kg℃+1173240KJ得出:m=656136Kg(11)技术协议中规定液气比≤3设一个小时喷水量为mkg,烟气量为151000m3/h,则Mkg/151000m3/h≤3,则m≤453000Kg基于以上(9)、(10)两条件,喷头喷水量为400000Kg,计400 m3(12)最高一层喷头至地面高度为15.8m, 喷头压力为0.15Mpa(15mH2O),则水泵扬程为(15.8m+15m)×1.3=40.04m水泵功率:1000Kg/m3×9.8N/kg×40.04m×200m3/h × 1.5/3600 s/h×1000×0.97×0.96 = 35.1Kw循环水泵取流量为200m3/h,扬程为40m,功率37KW二、氧化再生池氢氧化钠与二氧化硫反应生成亚硫酸钠,根据分子式(Na)2SO37H2O知:亚硫酸钠与七个水生成晶体,所以为方便输送亚硫酸钠,亚硫酸钠与水的质量比大于1。

烟气脱硫简单设计计算

烟气脱硫简单设计计算

欢迎共阅烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。

吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。

净烟气经过除雾器降低烟气中的水分后排入烟囱。

粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。

吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HSO3)2Mg(HSO3)2 + Mg(OH)2 → 2MgS O3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。

这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。

塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。

当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。

20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。

烟气脱硫简单设计计算

烟气脱硫简单设计计算

烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h引风机量1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。

吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。

净烟气经过除雾器降低烟气中的水分后排入烟囱。

粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。

吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HS O3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。

这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。

塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。

当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。

20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。

脱硫工程计算

脱硫工程计算

工程计算双碱法 计算过程入口烟气量:4.5×105Nm 3/h ;SO2浓度:2090mg/Nm 3;烟气入口温度:T=160℃、常压标态:h Nm Q /105.4350⨯=160℃:h m Q /713736105.4273160273351=⨯⨯+=脱硫塔(1)塔径及底面积计算:塔内流速:取s m v /2.3=m v Q r r v vs Q 44.42.314.33600/713736121=⨯==⇒⋅⋅==ππ D=2r=8.88m 即塔径为8.88米。

底面积S=∏r 2=61.9 m 2塔径设定为一个整数,如4.5m(2)脱硫塔高度计算:液气比取L/G= 4 烟气中水气含量设为8%SO2如果2090mg/m3,液气比2.5即可,当SO2在2090mg/m3时,选4①循环水泵流量:h m m l HG Q GL Q /28321000)08.01(7137364)/(100033=-⨯⨯=⨯⨯= 取每台循环泵流量=Q 191m 。

选100LZ A -360型渣浆泵,流量194m 3/h ,扬程122.8米, 功率130KW ,3台②计算循环浆液区的高度:取循环泵8min的流量H1=349.735÷61.9=5.65m如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。

采用塔外循环,泵的杨程选35m,管道采用碳钢即可。

③计算洗涤反应区高度停留时间取3秒洗涤反应区高度H2=3.2×3=9.6m④除雾区高度取6米H3=6m⑤脱硫塔总高度H=H1+H2+H3=5.65+9.6+6=21.3m塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。

如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。

塔的高度可设定在16~18m物料恒算每小时消耗99%的NaOH1.075Kg。

烟气脱硫设计计算

烟气脱硫设计计算

烟气脱硫设计计算The Standardization Office was revised on the afternoon of December 13, 2020烟气脱硫设计计算1⨯130t/h循环流化床锅炉烟气脱硫方案主要参数:燃煤含S量% 工况满负荷烟气量 285000m3/h引风机量 1台,压力满足FGD系统需求要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程)出口SO2含量〈200mg/Nm3第一章方案选择1、氧化镁法脱硫法的原理锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应,氧化镁法脱硫法脱去烟气中的硫份。

吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。

净烟气经过除雾器降低烟气中的水分后排入烟囱。

粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。

吸收过程吸收过程发生的主要反应如下:Mg(OH)2 + SO2 → MgSO3 + H2OMgSO3 + SO2 + H2O → Mg(HSO3)2Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。

这个阶段化学反应如下:MgSO3 + 1/2O2 → MgSO4Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3H2SO3 + Mg(OH)2 → MgSO3 + 2H2OMgSO3 + 1/2O2 → MgSO4循环过程是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。

塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。

当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。

烟气脱硫计算公式汇总(烟气量、脱硫量、空气量、产物量等)

烟气脱硫计算公式汇总(烟气量、脱硫量、空气量、产物量等)
9)
干烟气中SO2含量
ngSO2'
%
0.01866*0.375Sar/Vgy'
10)
湿烟气中N2含量
nshN2'
%
(0.79alfa'V0+0.008Nar)/Vy'
11)
干烟气中N2含量
ngN2'
%
(0.79alfa'V0+0.008Nar)/Vgy'
6
总燃烧产物实际湿体积
Vtshy
Nm3/h
Vy'*Bj*1000
Nm3/kg
0.79V0+0.008Nar
2)
二氧化物
VRO20
Nm3/kg
0.01866(Car+0.375Sar)
3)
水蒸汽
VH2O0
Nm3/kg
0.111Har+0.0124Mar+0.0161V0
3
燃烧产物实际体积
Vy'
Nm3/kg
Vy0+0.0161(alfa'-1)V0+(alfa'-1)V0
Cso2
mg/Nm3
M/Vtshy(标态,干基,6%O2)
ppm
Cso2*22.41/64
3
要求脱硫量
Ms
kg/h
M*η*n/100
kmol/h
Ms/64
4、吸收剂消耗量计算
1
石灰石(CaCO3)理论消耗量
M3
kmol/h
Ms/64*(Ca/S)
kg/h
M3*M1
2
石灰石(CaCO3)实际消耗量
M3'

烟气脱硫工艺计算书

烟气脱硫工艺计算书

第 1 页,共 4 页
序 号


7 滤出液箱 8 滤出液泵 9 滤布冲洗水箱
10 滤布冲洗水泵
11 滤饼冲洗水泵
单位
数 量
个1 台 1+1
个2
2*(1 台 +1)
2*(1 台 +1)
容积 (m3) 76
30
流量 (m3/h)
12
15 9
压力(Pa)/ 扬程(m)
基本选型参数
温度 (℃)
含固量 (wt%)
套1
2 石膏旋流站溢流箱 个 1 82
3 石膏旋流器溢流泵 台 1+1
55.9
17.6
4 石膏浆液缓冲箱
个 1 90
5 石膏浆液输送泵
台 1+1

15
6 真空皮带脱水机
台 1+1
进料15, 底流50
3 3 50
50
21092 15819
78118
上0.5m,下1.0m 上0.5m,下1.0m
来料密度1.09,底流密度 1.40 1.5h的容量 浆液密度1.02 6h的容量,密度1.40 容量系数2,密度1.40 设计煤种,2炉, BMCR,75%
3000*5000*450 4500*5000*450 3000*5000*450
进口压力-0.5mbar,容量系 数1.1,压力系数1.2
Ф14.10×9.50m
3m×3m×3m 3m×3m×3m
按单塔容量设计 10小时排空 顶入式
第 2 页,共 4 页
序 号


1 工艺水箱
2 工艺水泵 3 除雾器冲洗水泵
序 号

烟气脱硫设计计算表格

烟气脱硫设计计算表格

20.51
烧碱费用
万元
5.96
150.00
180000.00
65.00
脱硫塔蒸发水量(Kg/h) 除雾器冲洗水量(Kg/h) 钠碱含水量(Kg/h)
4500.00
3391.20
5.76
二氧化硫含量计算
耗煤量(t/h)
标况烟气量(Nm3/h)
燃煤含硫率(%)
5.00
50000.00
1.00
二氧化硫浓度(mg/Nm3) 二氧化硫总量(Kg/h) 二氧化硫脱除量(Kg/h)
44.51
21.262Leabharlann 47反应池中的钠、钙、硫平衡
进反应池的Na2SO3
155.63
进反应池的Ca(OH)2
91.40
出反应池的CaSO3
148.22
出反应池的Na(OH)
98.81
输入值
计算值
锅炉数量
1.00
脱硫塔计算公式
设计参数 塔高 塔径
85%生石灰价格 烧碱价格 脱硫效率 年运行时间
脱硫塔截面积 烟气流速
1700.00
85.00
79.05
物料计算(小时耗量)
排放浓度(mg/Nm3)
脱硫效率(%)
纯生石灰的量(Kg/h)
400.00
76.47
72.63
需要烧碱的量(Kg)
石膏产生量(Kg/h) 氧化空气用量(m3/h)
98.81
212.64
79.05
石膏结晶水(Kg/h)
脱硫渣含水(Kg/h)
烧碱耗量(Kg/h)
年脱出SO2总量 纯生石灰的量
烧碱的量
单位 m m
元/吨 元/吨
% h m2 m/s t t/年 t/年

烟气脱硫CA与S摩尔比计算

烟气脱硫CA与S摩尔比计算

% 已知
7 脱硫效率
η
% 已知
60qc
8 Ca/S摩尔比
Ca/S
mol/mol Ca / S
M CaO QC
106 M SO2
60qc
9 总Ca/S摩尔比
总Ca/S
mol/mol 总Ca / S
M CaO QC
106 M SO2
烟气脱硫Ca/S摩尔比计算(按燃煤量和含硫量)
序号 1 2 3 4 5 6 7 8 9
和含硫量)
数值 56 64 32 14.68 1 0.9 4.6 85 97
备注 试凑此数使Ca/S摩尔比达推荐值
1.046 推荐值1.05
1.015 脱硫效率较低时可能小于1
名称 CaO分子量 SO2分子量 S分子量 锅炉燃煤量 燃煤含硫量 燃煤可燃硫份额 石灰流量 石灰纯度 脱硫效率
10 Ca/S摩尔比
11 总Ca/S摩尔比
符号
MCaO MSO2 MS
B C n q c η
Ca/S
总Ca/S
单位 kg/kmol 已知
计算公式
kg/kmol 已知
kg/kmol 已知
T/h 已知
烟气脱硫Ca/S摩尔比计算(按烟气量和浓度)
序号
名称
1 CaO分子量
符号
MCaO
单位 kg/kmol 已知
计算公式
2 SO2分子量 3 脱硫系统入口烟气流量
MSO2 Q
kg/kmol 已知 Nm3/h 已知
4 脱硫系统入口烟气SO2浓度 C
5 石灰流量
q
mg/Nm3 已知 kg/min
6 石灰纯度
c% 已知已知kg/min% 已知% 已知

脱硫分析计算公式

脱硫分析计算公式

脱硫分析计算公式(总1页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--经济性分析计算公式1、基本概念(1)煤中硫的氧化反应机理:S + O2=SO2(2)二氧化硫排放量: D1=B×S×其中:D1……SO2产生量(kg/h)S……燃煤全硫份含量(%)B……耗煤量(kg/h)……可燃硫转化二氧化硫的转换系数。

2、脱硫效率以耗煤量15t/h、烟气量100000Nm3/h、燃煤全硫份含量为%计算:脱硫前二氧化硫排放量=D1=B×S× =15t/h×%×=153kg/h标准状况下的烟气量为100000Nm3/h(压强近似为标准大气压),则转换成工况烟气量为:(200℃+273K)×100000Nm3/h/273K=173260m3/h脱硫前每立方米烟气中的二氧化硫含量=153kg/h×106÷173260m3/h=m3满足脱硫后SO2排放浓度≤300 mg/m3要求,则最低脱硫效率η= 1-( 300/)=67%3、计算氨消耗量(费用)计算依据NH3·H2O +SO2→NH4H SO3根据SO2原始排放量为153kg/h,脱硫效率67%计算得每小时消耗纯氨(100%浓度)h。

折合浓度为5%氨水a、需5%浓度的氨水÷5%=544kg/hb、需加水=hc、折合成20%浓度的氨水质量136kg。

配成5%浓度加水408kg(每小时流量)d、按市场价20%浓度氨水元/吨、自来水元/吨计算:(1)*136*10-3=元/h(2)*408*10-3=元/h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烟气脱硫主要设备设计计算
1.喷淋塔设计计算
烟道烟气流速取18m/s。
塔直径及底面积计算
D取1m,底面积S=0.785 .
脱硫塔高度设计(参考四川省犍为玻业有限责任公司玻璃炉石油焦粉烟气除尘脱硫项目-双碱法)
空塔气速取2.2m/s,氢氧化钠与二氧化硫等的接触反应时间一般为2-3秒,则脱硫塔内下层喷嘴以下至塔底的高度为2.2*2.5=5.5m。塔体上部空间取1.5m,两层喷嘴之间的高度为1.8m,则全塔高度为:
取100mm,计算流速为0.63m/s,在0.5-3.0m/s之内,符合要求。
脱硫液循环泵的选择
选择65FSB-20(L)型氟塑料离心泵,其参数见上表
冲洗泵的选择
选择IS80-50-200型离心泵,其参数为:转速2900r/min,效率55-71%,轴功率7.87-10.8kW,所配电动机功率为15kW。
从这个方程式可以看出 、 和 的化学计量比为1:3:2.参加反应的二氧化硫质量流速为:6.03*92%=5.55kg/h,为了保证达到脱硫效果,取富裕系数1.5。
消耗的 质量流量为:
5.55/64x1/3x106x1.5=4.6kg/h;
消耗的 摩尔流量为:
5.55/64x2/3x1.5=0.087kmol/h;
烟囱高度取45m。
烟囱底部直径:
式中:i--------烟囱堆度,通常取0.02-0.03,本设计取0.02;
H------烟囱高度,m;
Q= =0.26g/s;
烟囱高度:
按照我国标准GB/T13201-91中规定的气态污染物和电站烟尘排放源的允许排放量计算公式,即可得到按点源排放控制系数P计算烟囱高度的计算公式:
式中: -----烟气抬升高度,m;
Q-------污染物排放浓度,g/s;
P-------点源排放控制系数,根据制定地方大气污染物排放标准的技术方法GB/T3840-91中规定四川地区取50-100,这里取100。
设1立方米发生炉煤气完全燃烧,空气系数ɑ=1.5
经计算,理论空气需要量
Qv=1.11 m3
实际空气量=1.11x1.5=1.67 m3
理论需氧量=0.234 m3
烟气中过剩氧气量=(a-1)x理论需氧量=0.5x0.234=0.117 m3
过剩氮气量=过剩氧气量x78/21=0.117X78/21=0.435 m3
由于生石灰和氢氧化钙的摩尔比为1:1,所以消耗石灰的摩尔流量也为0.087kmol/h。换算为质量流量为:
0.087x56=4.86kg/h;
化灰器的设计
密度为2240 ,由于含固率为13%,所以根据下式
计算可得石灰浆液的密度
化灰器的体积为
解得a=0.95m。
尺寸为2000mmx1000mmx1000mm。
沉淀池
沉淀池是用来利用沉淀作用去除水中悬浮物。石灰浆液和部分脱硫液在沉灰池经过一定的时间后,取上清液。沉淀时间取30min,所以沉淀池的容积为0.297*30=8.91m3为。
尺寸为:3.5mX1.5mX2m。
纯碱搅拌罐
纯碱搅拌罐可储存三天的碱液量,设罐的半径为R,其高为2.4R,已知纯碱的质量流量为3.4kg/h,查得纯碱在20摄氏度下的溶解度为21.8g/100g水,纯碱的密度为2532 ,所以:
+32x0.2%=24.553
则所选煤气24.553kg/kmol÷22.4Nm3/kmol=1.096kg/ m3
低位发热值
Qd=10805x13.33%+12650x27.40%=4906.4kJ/N m3=4906.4/4.1868=1171.88kcal/N m3=4906.4/1.3053=3758.83kcal/kg
设计参数
耗煤量:27t/d,全硫含量:0.8%-1%, 烟气温度:150
煤气硫含量:450mg/ m3, 发生炉煤气产量:4000m3/t
转化成二氧化硫的硫含量:847 mg/ m3
设计计算
1.烟气量计算
单日产气总量=27x4000=108000m3
则所选煤气的分子量M=2x13.33%+28x27.40%+16x1.5%+44x3.8%+28x49.6%+18x4.17%
石灰浆液的体积为:
所以再生池的体积为:0.342+0.43=0.772 ,假设池子的长为2a,宽为a,高也为a,则池的体积为:
解得:a=0.728m
所以再生池的大小为:1.5mX0.8mX0.8m.
再生池
再生池为连续循环,脱硫液和石灰浆液在清水池的反应时间一般为5-10分钟,停留时间取8min,。根据脱硫塔的液气比可以算出所需液体流量为17797.5L/h,即 ,所以清水池的体积为0.297X8=2.38 ,可计算得其尺寸为:2mX1.2mX1.2m。
取 。
核算u=15.7m/s,小于16-18m/s,符合要求。
管道10-11:烟气经过脱硫塔后,温度有所降低,设 。烟气量为:
取流速为16m/s,计算公式同上:
取 。
核算的流速为13.7m/s,符合要求。
管道11-12,12-13:管道11-12为水平管道,管道12-13为垂直管道。烟气量为 ,取流速为15m/s。计算如下:
理论烟气量=1.03 m3
实际烟气量=理论生成物总量+过剩氧气量+过剩氮气量
=1.03+0.117+0.435=1.582 m3
则烟气量
Q=108000x1.582/24=7119m3/h(150度)
进行温度修正后的烟气量Q’=7119*(273.15+20)/(273.15+150)=4908.7m3/h(20度)
烟囱设计计算
在烟囱设计准则中,为防止烟囱本身对烟流的下洗现象,烟囱出口烟气流速不得低于该高度处平均风速的1.5倍;为了利于烟气抬升,烟囱出口烟气流速不宜过低,一般在20-30m/s;假设当地的风速为2m/s,所以 为28m/s。烟气量原本为7119m3/h,经过除尘脱硫处理后温度有所降低,假定烟气温度为95 ,则此时的烟气量根据理想气体状态方程计算得:
H=1.5+1.8+5.5=8.8m。最终脱硫塔高度取8m。
液气比取2.5 L/ m3,液体流量
L=Vx2.5=7119x2.5=17797.5L/h=17.8 ;
计算循环浆液区的高度
烟气管道设计计算
1.烟气输送管道管径的计算
本设计不安装电除尘设备。
管道1-7:Q=7119 , ,含尘气体在管道内的最大流速不应超过16-18m/s以防止管道的磨损;最低速度为8-10m/s,以防止粉尘沉积而阻塞管道。本次设计流速取15m/s。
所以烟气流量为 ,大气温度为20 。
烟囱出口直径计算:
烟气抬升高度:
霍兰德公式
有烟气抬升高度:
式中: ------烟囱出口烟气流速,m/s;
u ------烟囱出口风速,m/s;
D------烟囱出口直径,m;
-----烟囱出口出的烟气温度,K;
----环境大气温度,K。
污染物排放浓度:(50和100mg/ 达标排放的二氧化硫浓度与粉尘浓度值)
计算可得纯碱搅拌罐的尺寸为:RxH=340mmx1000mm。
浆液输送管道的设计
1、循环池到旋流板塔。管径为d1,液体的流量为 ,即 取流速为0.8m/s,计算如下:
取100mm管径,计算流速0.63m/s,在0.5-3.0m/s之内,符合要求。
2、从脱硫塔到再生池。管径为d2,液体流量为 ,即 取流速为0.8m/s,计算如下:
取 。
核算的流速为13.7m/s,符合要求。
2.烟气输送管道压力降估计
由于燃煤气所产烟气无论是含硫还是含尘都比燃煤烟气低得多,所以,以燃煤烟气脱硫实例为依据,估计压力降 。
烟气脱硫系统总压力降
本设计脱硫塔压降取700Pa,则脱硫系统总压力降为
1500Pa
引风机的风压计算:
根据风量和压力,选择Y4-68-NO4.5A型引风机,性能参数如下:
全压:1834-2658Pa,流量:5790-10485 ,电动机型号:Y132S2-2
电动机功率:7.5kW。
已知氧气中二氧化硫流量为
Qs=847/1000/1000x7119=6.03kg/h;
设计脱硫效率为92%(最小脱硫效率=(847-100)/847=89%)),
锅炉烟尘最高允许排放浓度及黑度限值
锅炉二氧化硫和氮氧化物最高允许排放浓度限值
本设计中燃气锅炉属于二时段(2001年1月1日),即烟尘最高允许排放浓度为50mg/m3,二氧化硫最高允许排放浓度为100mg/ m3。
2.工艺流程
见设计方案
3.二氧化硫排放量
Qs=847/1000/1000x7119=6.03kg/h;
石灰浆液和塔底部溢流分出一部分脱硫液进入到再生池。要维持系统的稳定运行,保持再生池pH值在6.8~7左右。虽然脱硫液为Na2SO3和NaHSO3 的混合液。由于pH值控制在7左右,所以脱硫液主要成分为Na2SO3。按脱硫液种全是Na2SO3来进行计算,这样算的面积最大。根据前面的反应方程式可算出脱硫液中Na2SO3的量为0.043Kmol/h。查得Na2SO3的密度为2630 kg/m3,溶解度为20g/100g水。其溶液的密度为:
相关文档
最新文档