自考 概率论与数理统计(经管类) 真题及答案详解分析

合集下载

概率论与数理统计答案详解

概率论与数理统计答案详解

全国2022年10月高等教育自学考试(概率论与数理统计)(经管类)试题及答案详解课程代码:04183一、单项选择题〔本大题共10小题,每题2分,共20分〕1.已知事件A ,B ,B A 的概率分别为5.0,4.0,6.0,则=)(B A P 〔 B 〕 A .1.0B .2.0C .3.0D .5.0A .0)(=-∞F ,0)(=+∞FB .1)(=-∞F ,0)(=+∞FC .0)(=-∞F ,1)(=+∞FD .1)(=-∞F ,1)(=+∞F3.设),(Y X 服从地域1:22≤+y x D 上的均匀分布,则),(Y X 的概率密度为〔 D 〕 A .1),(=y x fB .⎩⎨⎧∈=其他,0),(,1),(Dy x y x fC .π1),(=y x fD .⎪⎩⎪⎨⎧∈=其他,0),(,1),(Dy x y x f π4.设随机变量X 服从参数为2的指数分布,则=-)12(X E 〔 A 〕 A .0B .1C .3D .4A .92 B .2 C .4 D .621n 11=⎭⎬⎫⎩⎨⎧≤∑=→∞0lim 1n i i n X P 〔 C 〕 A .0B .25.0C .5.0D .17.设n x x x ,,,21 为来自总体),(σμN 的样本,,σμ是未知参数,则以下样本函数为统计量的是〔 D 〕 A .μ-∑=ni i x 1B .∑=ni i x 121σC .∑=-ni i x n 12)(1μD .∑=n i i x n 121A .置信度越大,置信区间越长B .置信度越大,置信区间越短C .置信度越小,置信区间越长D .置信度大小与置信区间长度无关01A .1H 成立,拒绝0H B .0H 成立,拒绝H 0 C .1H 成立,拒绝1HD .0H 成立,拒绝1H10.设一元线性回归模型:i i i x y εββ++=10,i ε~),0(σN 〔n i ,,2,1 =〕,且各i ε相互独立.依据样本),(i i y x 〔n i ,,2,1 =〕,得到一元线性回归方程x y 10ˆˆˆββ+=,由此得ix 对 应的回归值为i y ˆ,i y 的平均值∑==ni i y n y 11〔0≠y 〕,则回归平方和回S 为〔 C 〕A .∑=-ni i y y 12)(B .∑=-ni i i yy 12)ˆ( C .∑=-ni i y y12)ˆ( D .∑=ni i y12ˆ21ˆnii y=∑二、填空题〔本大题共15小题,每题2分,共30分〕11.设甲、乙两人独立地向同一目标射击,甲、乙击中目标的概率分别为8.0,5.0,则甲、乙两人同时击中目标的概率为___________.12.设A ,B 为两事件,且)()(==B P A P ,)|(=B A P ,则=)|(B A P ___________.15.设随机变量X ~)2,1(N ,则=≤≤-}31{X P ___________.(附:8413.0)1(=Φ)16.设随机变量X 服从区间],2[θ上的均匀分布,且概率密度⎪⎩⎪⎨⎧≤≤=其他,02,41)(θx x f 则则==}{Y X P ___________.X则=+)(Y X E ___________.有=⎭⎬⎫⎩⎨⎧<-→∞εp n m P n lim ___________.n 21x )xn 21α分位数,则μ的置信度为96.0的置信区间长度是___________.25.设总体X ~),(σμN ,σ未知,n x x x ,,,21 为来自总体的样本,x 和s 分别是样本均值和样本方差,则检验假设00:μμ=H ;01:μμ≠H 采纳的统计量表达式为___________.26.一批零件由两台车床同时加工,第—台车床加工的零件数比第二台多一倍.第—台车床出现不合格品的概率是03.0,第二台出现不合格品的概率是06.0. 〔1〕求任取一个零件是合格品的概率;〔2〕如果取出的零件是不合格品,求它是由第二台车床加工的概率.解:设=A (取出第—台车床加工的零件),=B (取出合格品),则所求概率分别为: 〔1〕96.0252494.03197.032)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P ; 〔2〕3264.01442796.094.031)()|()()|(≈=⨯==B P A B P A P B A P .27.已知二维随机变量),(Y X 的分布律为求:〔1〕X 和Y 的分布律;〔2〕),cov(Y X 解:〔1〕X 和Y 的分布律分别为〔2()(=Y E 1.00113.0011.0)1(11.0102.0003.0)1(0)(-=⨯⨯+⨯⨯+⨯-⨯+⨯⨯+⨯⨯+⨯-⨯=XY E , 02.0)3.0(4.01.0)()()(),cov(=-⨯--=-=Y E X E XY E Y X .四、综合题〔本大题共2小题,每题12分,共24分〕28.某次抽样结果说明,考生的数学成绩〔百分制〕近似地服从正态分布),75(2σN ,已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率. 解:用X 表示考生的数学成绩,由题意可得05.0}85{=>X P ,近似地有05.075851=⎪⎭⎫ ⎝⎛-Φ-σ,05.0101=⎪⎭⎫⎝⎛Φ-σ,95.010=⎪⎭⎫ ⎝⎛Φσ,所求概率为9.0195.021102=-⨯=-⎪⎭⎫⎝⎛Φ=σ.29.设随机变量X 服从区间]1,0[上的均匀分布,Y 服从参数为1的指数分布,且X 与Y 相互独立.求:〔1〕X 及Y 的概率密度;〔2〕),(Y X 的概率密度;〔3〕}{Y X P >.解:〔1〕X 的概率密度为⎩⎨⎧≤≤=其他,010,1)(x x f X ,Y 的概率密度为⎩⎨⎧≤>=-0,00,)(y y e y f y Y ;〔2〕因为X 与Y 相互独立,所以),(Y X 的概率密度为=),(y x f )(x f X ⎪⎩⎪⎨⎧>≤≤=-其他,00,10,)(y x e y f yY ; 〔3〕⎰⎰⎰⎰⎰⎰--->-=-=⎪⎪⎭⎫ ⎝⎛==>10100100)1()(),(}{dx e dx e dx dy e dxdy y x f Y X P x x yx y y x11)(--=+=e e x x .五、应用题〔10分〕30.某种产品用自动包装机包装,每袋重量X ~)2,500(2N 〔单位:g 〕,生产过程中包装机工作是否正常要进行随机检验.某天开工后抽取了9袋产品,测得样本均值g x 502=.问:当方差不变时,这天包装机工作是否正常〔05.0=α〕?〔附:96.1025.0=u 〕 解:0H :500=μ,1H :500≠μ.已知5000=μ,20=σ,9=n ,502=x ,05.0=α,96.1025.02/==u u α,算得2/0096.139/2500502/||ασμu n x u =>=-=-=,拒绝0H ,这天包装机工作不正常.。

自考概率论与数理统计(经管类)真题及答案详解

自考概率论与数理统计(经管类)真题及答案详解

)2012年10月真题讲解一、前言学员朋友们,你们好!现在,对《全国2012年10月高等教育自学考试概率论与数理统计(经管类)试题》进行必要的分析,并详细解答,供学员朋友们学习和应试参考。

三点建议:一是在听取本次串讲前,请对课本内容进行一次较全面的复习,以便取得最佳的听课效果;二是在听取本次串讲前,务必将本套试题独立地做一遍,以便了解试题考察的知识点,与以及个人对课程全部内容的掌握情况,有重点的听取本次串讲;三是,在听取串讲的过程中,对重点、难点的题目,应该反复多听几遍,探求解题规律,提高解题能力。

一点说明:本次串讲所使用的课本是2006年8月第一版。

二、考点分析1.总体印象对本套试题的总体印象是:内容比较常规,有的题目比较新鲜,个别题目难度稍大。

内容比较常规:① 概率分数偏高,共74分;统计分数只占26分,与今年7月的考题基本相同,以往考题的分数分布情况稍有不同;② 除《回归分析》仅占2分外,对课本中其他各章内容都有涉及;③几乎每道题都可以在课本上找到出处。

如果粗略的把题目难度划分为易、中、难三个等级,本套试题容易的题目约占24分,中等题目约占60分,稍偏难题目约占16分,包括计算量比较大额题目。

2.考点分布按照以往的分类方法:事件与概率约18分,一维随机变量(包括数字特征)约22分,二维随机变量(包括数字特征)约30分,大数定律4分,统计量及其分布6分,参数估计6分,假设检验12分,回归分析2分。

考点分布的柱状图如下三、试题详解选择题部分一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.已知事件A,B,A∪B的概率分别为,,,则P(A)=[ 1]【答案】B【解析】因为,所以,而,所以,即;又由集合的加法公式P(AB)=P(A)+P(B)-P(A∪B)=+,所以=-=,故选择B.[快解] 用Venn图可以很快得到答案:【提示】1. 本题涉及集合的运算性质:(i)交换律:A∪B=B∪A,AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C),(AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C),(A∩B)∪C=(A∪C)∩(B∪C);(iv)摩根律(对偶律),.2.本题涉及互不相容事件的概念和性质:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为A∩B=,且P(A∪B)=P(A)+P(B).3.本题略难,如果考试时遇到本试题的情况,可先跳过此题,有剩余时间再考虑。

最新全国07月自学考试04183《概率论与数理统计(经管类)》历年真题参考详解答案

最新全国07月自学考试04183《概率论与数理统计(经管类)》历年真题参考详解答案

2013年7月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)试卷(课程代码04183)一、单选题(本大题共10小题,每小题2分,共20分) 1、若A B ⊂,2.0)(=A P ,3.0)(=B P ,则=)(A B P ( ) A.0.1 B.0.2 C.0.3 D.0.42、设随机变量A 与B 互不相容,且P(A)>0,P(B)>0,则有 ( ) A.P(A)=1-P(B) B.P(AB)=P(A)P(B) C.P(A ∪B)=1 D.P(BA)=13、设随机变量X 的分布律为P(X=k)=k/10(k=1,2,3,4),则P(0.2<X ≤2.5)= ( ) A.0.1 B.0.3 C.0.5 D.0.64、设随机变量X 的概率密度,,10,0,10,)(2⎪⎩⎪⎨⎧≤>=x x x ax f 则常数a= ( )A.-10B. 5001-C. 5001D.10 5、随机变量(X,Y )的分布律如下表所示,当X 与Y 相互独立时,(a ,b )= ( ) A. ⎪⎭⎫ ⎝⎛92,91 B. ⎪⎭⎫ ⎝⎛181,92 C. ⎪⎭⎫ ⎝⎛181,91 D. ⎪⎭⎫ ⎝⎛91,181 6、设连续型随机变量(X,Y )服从区域G:0≤X ≤2,2≤Y ≤5上的均匀发布,则其概率密度函数=),(y x f ( )A.⎩⎨⎧∉∈=G y x G y x y x f )()(,,0,,6),(B. ⎪⎩⎪⎨⎧∉∈=G y x G y x y x f )()(,,0,,61),( C.⎩⎨⎧∉∈=G y x G y x y x f )()(,,0,,4),( D. ⎪⎩⎪⎨⎧∉∈=G y x G y x y x f )()(,,0,,41),(7、设随机变量X 服从参数为3的泊松分布,Y ~B )31,8(,且X,Y 相互独立,则D (X-3Y-4)= ( ) A.0.78 B.4.78 C.19 D.238、设n x x x ,...,21是来自总体X ~N (),(2σμ的一个样本,x 是样本均值,2s 是样本方差,则有 ( )A. 2222)(σμ-=--s xE B. 2222)(σμ+=+-s x E C.22)(σμ+=-s x E D.22)(σμ+=+s x E9、设n x x x ,...,21是来自总体X ~N (),(2σμ的一个样本,要使3216131x ax x ++=∧μ,是未知参数μ 的无偏估计,则常数 =a ( )A. 61B. 31C. 21D. 110、设总数X 服从正态分布,其均值未知,对于需要检验的假设202:0:σσ≤H ,则其拒绝域为 ( )A. )(1-22n x x a >B. )(1-2-12n x x a <C. )(n x x a 22>D. )(n x x a 22< 二、填空题(本大题共15小题,每小题2分,共30分)11、设p )(=A P ,q )(=B P , r )(=B A P ,则=)(B A P12、从一副扑克牌(计52张)中连续抽取2张(不放回抽取),这2张均为红色的概率是13、假设患者从某种心脏外科手术中康复的概率是0.8,现对3位患者施行这种手术,其中恰恰有2人康复的概率是14、设连续型随机变量X 的发布函数,0,00,-1)(3-⎩⎨⎧≤>=x x e x F x 其概率密度为),(x f 则=)1(f 15、设随机变量K ~U (0,5),则关于x 的一元二次方程024X 42=+++K KX 有实根的概率是16、设连续型随机变量X 服从参数为)(0>λλ的泊松分布,且{}{}2210====X P X P ,则参数=λ 17、设二维随机变量(X,Y )服从区域G:0≤X ≤3,0≤Y ≤3上的均匀发布,则概率{}=≤≤=1,1Y X P18、设二维随机变量(X,Y )的概率密度为(),,000,),(2⎩⎨⎧>>=+-其他,y x Ae y x f y x 则常数A=19、设二维随机变量(X,Y )的分布律为 则{}=-==1XY P20、设随机变量X 服从参数为λ的指数分布,已知()82==X E ,则其方差D(X)=21、设随机变量X ~B (10000,0.8),试用切比雪夫不等式计算{}≥<<82007800X P22、设总体X ~N (),(2σμ,4321,,,x x x x 为来自总体X 的样本,i 41i 41x x ∑==,则2i 41i 2)(1x x -∑=σ服从自由度为的2x 分布。

最新高等教育自学考试概率论与数理统计(经管类)04183试题及答案

最新高等教育自学考试概率论与数理统计(经管类)04183试题及答案

2008年7月高等教育自学考试全国统一命题考试、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。

错选、1.设随机事件 A . 0 C . 0.4x ::: 0C .-12 0 0 1/6 5/12 1/3 1/12 0 0 11/36.已知 Y 的联合概率分布如题6表所示概率论与数理统计(经管类)试卷课程代码4183多选或未选均无分。

A 与B 互不相=0.2 , P(B)=0.4,贝U P ( B|A )= B . 0.2 D . 12 .设事件A , B 互不相容,已知(A) =0.4, P(B)=0.5,则 P(A B )=(A . 0.1 C . 0.93 .已知事件 A , B 相互独立,且(A) B . D . >0, 0.4 1P (B )>0,则下列等式成立的是A . P(A B)=P(A)+P(B) P(A B)=1-P( A )P(B )C . P(A B)=P(A)P(B)4.某人射击三次, A . 0.002 C . 0.08 其命中率为 0.8,D . 则三次中至多命中一次的概率为(B . D . P(A B)=10.04 0.1045.已知随机变量X 的分布函数为( F(x)=12 23 10 乞 x :::1x _3 斗=题6表1F ( x,y )为其联合分布函数,则 F ( 0,31 121 47.设二维随机变量(X , Y )的联合概率密度为e _(xdy)x >0, y =0f(x,y)=其它2 3 已知随机变量X 服从参数为1 23 4则随机变量 X 的期望为(所满足的切比雪夫不等式为(I —.丿 \ncr 2~2~2 nc~2二2ns 2p { X —n ^>3 h 零A . Z=X 」0匚/ ■ nC. T=X 」0S/J n二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。

10月概率论与数理统计(经管类)试题及答案

10月概率论与数理统计(经管类)试题及答案

全国2010年10月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设随机事件A 与B 互不相容,且P (A )>0,P (B )>0,则( ) (事件的关系与运算) A.P (B |A )=0 B.P (A |B )>0 C.P (A |B )=P (A ) D.P (AB )=P (A )P (B )解:A 。

因为P (AB )=0.2.设随机变量X ~N (1,4),F (x )为X 的分布函数,Φ(x )为标准正态分布函数,则F (3)=( ) A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3)(正态分布) 解:C 。

因为F(3)=)1()213(Φ=-Φ 3.设随机变量X 的概率密度为f (x )=⎩⎨⎧≤≤,,0,10 ,2其他x x 则P {0≤X ≤}21=( )A.41 B.31C.21D.43 (连续型随机变量概率的计算)解:A。

因为P {0≤X ≤}21412210==⎰xdx4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-+, ,0 ,01,21其他x cx 则常数c =( ) A.-3 B.-1 C.-21D.1解:D.(求连续型随机变量密度函数中的未知数) 由于1)(=⎰+∞∞-dx x f112121212121)(01201=⇒=-=⎥⎦⎤⎢⎣⎡+=+=--∞+∞-⎰⎰c c x cx dx cx dx x f5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是( ) A. f (x )=-e -x B. f (x )=e -x C. f (x )=||-e 21xD. f (x )=||-e x解:选C。

(概率密度函数性质)A .0<--x e 不满足密度函数性质 由于1)(=⎰+∞∞-dx x f ,B 选项∞=-=+∞∞--+∞∞--⎰xx e dx eC选项12122100||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰xx x x e dx e dx e dx eD选项2220||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰x xx x edx e dx e dx e6.设二维随机变量(X ,Y )~N (μ1,μ2,ρσσ,,2221),则Y ~( )(二维正态分布)A.N (211,σμ) B.N (221,σμ) C.N (212,σμ)D.N (222,σμ)解:D 。

学历类《自考》自考专业(国贸)《概率论与数理统计经管类》考试试题及答案解析

学历类《自考》自考专业(国贸)《概率论与数理统计经管类》考试试题及答案解析

学历类《自考》自考专业(国贸)《概率论与数理统计经管类》考试试题及答案解析姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分评卷人得分1、设 x1,x2,xn为样本观测值,经计算知nx 2 =64,正确答案:36答案解析:2、设 x1,x2,, , xn为来自总体X的样本,且 X~N( 0,1 ),则统计量_________.正确答案:答案解析:3、设X1,X2,,,Xn,,是独立同分布的随机变量序列,E(Xn)=μ,D(Xn)=σ2,n=1,2,,,则=_________.正确答案:0.5答案解析:4、设随机变量X~N(0,1),Y~N(0,1),Cov(X,Y)=0.5,则D(X+Y)=_________.正确答案:3答案解析:5、设随机变量X~N(0,4),则E(X2)=_________.正确答案:4答案解析:6、设随机变量X的分布律为则 X 的数学期望 E(X)= _________.正确答案:答案解析:7、设二维随机变量(X,Y)的概率密度为 f (x,y)=则 P{ X+Y≤1} = _________. 正确答案:1/4答案解析:8、若随机变量 X~B(4,1/3),则 P{ X≥1} = _________.正确答案:65/81答案解析:9、设随机变量 X的分布函数为 F(x)=则当 x>0 时,X的概率密度 f (x)=_________.正确答案:答案解析:10、设随机变量X的分布函数为F(x),已知F(2)=0.5,F(-3)=0.1,则P{-3X≤2} = _________.正确答案:0.4答案解析:11、设X是连续型随机变量,则P{X=5}=_________.正确答案:答案解析:12、设随机变量 X的分布律为. 记 Y=X2,则 P{ Y=4} =_________.正确答案:0.5答案解析:13、设A为随机事件,P(A)=0.3,则_________.正确答案:0.7答案解析:暂无解析14、设袋内有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为_________.正确答案:1/4答案解析:暂无解析15、设随机事件A与B相互独立,且P(A)=P(B)=1/3,则=_______.正确答案:7/9答案解析:暂无解析16、设随机事件A与B互不相容,且P(A)0,P(B)0,则( )A、P(B|A)=0B、P(A|B)>0C、P(A|B)=P(A)D、P(AB)=P(A)P(B)正确答案:答案解析:17、设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=( )A、Φ(05)B、Φ(075)C、Φ(1)D、Φ(3)正确答案:答案解析:18、设随机变量X的概率密度为f(x)=则P{0≤X≤}=( )A、1/4B、1/3C、1/2D、3/4正确答案:答案解析:19、设随机变量X的概率密度为f(x)=则常数c=()A、-3B、-1C、-1/2D、1正确答案:答案解析:20、设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是()A、B、C、D、正确答案:答案解析:21、设二维随机变量(X,Y)~N(μ1,μ2,),则Y~()A、B、C、D、正确答案:答案解析:22、已知随机变量X的概率密度为f(x)=则E(X)=()A、6B、3C、1D、1/2正确答案:答案解析:23、设随机变量X与Y相互独立,且X~B(16,0.5),Y服从参数为9的泊松分布,则D(X-2Y+3)=( )A、-14B、-11C、40D、43正确答案:答案解析:24、设随机变量Zn~B(n,p),n=1,2,其中0p1,=( )A、B、C、D、正确答案:答案解析:25、设x1,x2,x3,x4为来自总体X的样本,=()A、B、C、D、正确答案:答案解析:26、设随机事件A与B相互独立,且P(A)=P(B)=1/3,则=_______.正确答案:答案解析:27、设袋内有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为_________.正确答案:答案解析:28、设A为随机事件,P(A)=0.3,则_________.正确答案:答案解析:29、设X是连续型随机变量,则P{X=5}=_________.正确答案:答案解析:30、设随机变量X的分布律为.记Y=X2,则P{Y=4}=_________.正确答案:答案解析:。

自考_概率论与数理统计(经管类)__真题及答案详解分析

自考_概率论与数理统计(经管类)__真题及答案详解分析

1【解析】因为,所以,而,所以,即;又由集合的加法公式P(AB)=P(A)+P(B)-P(A∪B)=0.5+0.4-0.6=0.3,所以=0.5-0.3=0.2,故选择B.[快解] 用Venn图可以很快得到答案:【提示】1. 本题涉及集合的运算性质:(i)交换律:A∪B=B∪A,AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C),(AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C),(A∩B)∪C=(A∪C)∩(B∪C);(iv)摩根律(对偶律),.2.本题涉及互不相容事件的概念和性质:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为A∩B=,且P(A∪B)=P(A)+P(B).2.【答案】C【解析】根据分布函数的性质,选择C。

【提示】分布函数的性质:① 0≤F(x)≤1;② 对任意x1,x2(x1<x2),都有P{x1<X≤x2}=F(x2)-F(x1);③ F(x)是单调非减函数;④ ,;⑤ F(x)右连续;⑥ 设x为f(x)的连续点,则F‘(x)存在,且F’(x)=f(x).3【答案】D【解析】由课本p68,定义3-6:设D为平面上的有界区域,其面积为S且S>0. 如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布.本题x2+y2≤1为圆心在原点、半径为1的圆,包括边界,属于有界区域,其面积S=π,故选择D.【提示】课本介绍了两种二维连续型随机变量的分布:均匀分布和正态分布,注意它们的定义。

若(X,Y)服从二维正态分布,表示为(X,Y)~.4.【答案】A【解析】因为随机变量X服从参数为2的指数分布,即λ=2,所以;又根据数学期望的性质有 E(2X-1)=2E(X)-1=1-1=0,故选择A.【提示】1.常用的六种分布(1)常用离散型随机变量的分布:A. 两点分布① 分布列② 数学期望:E(X)=P③ 方差:D(X)=pq。

2021年4月自考04183概率论与数理统计真题及答案

2021年4月自考04183概率论与数理统计真题及答案

2021年4月高等教育自学考试概率论与数理统计(经管类)试题(课程代码04183)一、单项选择题:本大题共10小题,每小题2分共20分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.某人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是A.“两次都不中靶”B.“两次都中靶”C.“只有一次中靶”D.“至多有一次中靶”2.设事件A与B互不相容,且P(A)=0.5,P(B)=0.3,则P(A-B)=A.0.2B.0.3C.0.5D.0.83.甲、乙两人对弈一局,两人下成和棋的概率是1/2,乙获胜的概率是1/3,则甲获胜的概率是A.1/6B.1/3C.1/2D.2/34.设随机变量X~N(3,2²),且P{X>c}=P{x≤c},则常数c=A.0B.2C.3D.45.对于任意参数,随机变量X均可满足E(X)=D(X),则X服从的分布一定是A.均匀分布B.指数分布C.二项分布D.泊松分布6.设随机变量X~N(1,4²),Y~N(0,2²),X与Y相互独立,则D(X-Y)=A.2B.6C.12D.207.设X1,X2,X3,X4是来自总体X~N(0,4)的样本, Y=a(X1-2X2)²+b(3X3-4X4)²,如果Y~x ²(2),则常数a,b的值分别为A. BC.a=20,b=100D.a=12,b=288.设总体X~N(0,σ²),X1,X2,…,X n (n>1)为来自X的样本, 为样本均值,则未知参数σ²的无偏估计是A. B.C. D.9.设总体已知,μ的置信度为1-α的置信区间长度为l,则当α增大时,l的变化为A.增大B.减小C.不变D.不确定10.在线性回归模型中,总的偏差平方和为SST,剩余平方和为SSE,回归平方和为SSR,三者之间的关系是A. SSE= SST +SSRB. SSR=SST+SSEC. SST=SSE+SSRD. SST+SSE+SSR=0二、填空题:本大题共15小题,每小题2分,共30分。

2020年自考《概率论与数理统计(经管类)》试题及答案

2020年自考《概率论与数理统计(经管类)》试题及答案

2020年自考《概率论与数理统计(经管类)》试题及答案
一、单项选择题(本大题共10小题,每小题2分,共20分。

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

)
1、掷两颗骰子,它们出现的点数之和等于7的概率为()
A、
B、
C、
D、
【参考答案】:A
2、
A、
B、
C、
D、
【参考答案】:D
3、若随机变量X的方差D(X)存在,
≤()
A、D(X)
B、1
C、
D、a2D(X)
【参考答案】:C
4、
A、1
B、
C、
D、
【参考答案】:D
5、
A、
B、
C、
D、
【参考答案】:D
6、
(4P86)设X为随机变量,且E(X)存在,则E(X)是()
A、x的函数
B、确定常数
C、随机变量
D、X的函数
【参考答案】:B
7、(5P119)X服从参数为1的泊松分布,则有() A、
B、
C、
D、
【参考答案】:C
8、
A、
B、
C、
D、
【参考答案】:A
9、
A、
B、
C、
D、5
【参考答案】:D。

历年自学考试概率论和数理统计(经管类)真题和参考答案解析[全套]

历年自学考试概率论和数理统计(经管类)真题和参考答案解析[全套]

2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

04183概率论与数理统计(经管类)(有答案)

04183概率论与数理统计(经管类)(有答案)

04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。

A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。

A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。

A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。

A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。

A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。

A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

A .21)0(=≤+Y X P B .21)1(=≤+Y X PC .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。

自学考试真题:14-10概率论与数理统计(经管类)-含解析

自学考试真题:14-10概率论与数理统计(经管类)-含解析

全国2014年10月高等教育自学考试概率论与数理统计(经管类)试题(课程代码04183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸"的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设随机事件A 与B 相互独立,P(A)=0.2,P(B)=0.4,则P (A|B )= A.0 B.0.2 C.0.4 D.12.设随机变量{}{}c X P X ≤=>c X P 且),~N(3,22,则常数c=A.0B.2C.3D.43.下列函数中可以作为某随机变量概率密度的是A.⎩⎨⎧<<=其他,0,10,3)(2x x x fB.⎩⎨⎧≤<=其他,0,21,3)(2x x x fC.⎩⎨⎧<<=其他,0,32,3)(2x x x fD.⎩⎨⎧<<=其他,0,11-,3)(2x x x f4.设随机变量X 与Y 相互独立,且D(X)=4,D(Y)=3,则D(3X-2Y)= A.6 B.18 C.24D.485.设X,Y 为随机变量,若E(XY)=E(X)E(Y),则下列结论一定成立的是 A.D(XY)=D(X)D(Y) B.D(X+Y)=D(X)+D(Y) C.X 与Y 相互独立D.X 与Y 不相互独立6.设随机变量X 的方差等于1,由切比雪夫不等式可估计{}≤≥-2)(X E X P A.0 B.0.25 C.0.5D.0.757.设总体X 的概率密度为f(x),n x x x ,...,,21为来自该总体的样本,则样本的联合概率密度函数为 A. f(x)B.)(...)()(21n x f x f x f +++C.)(x f '' D.)()...()(21n x f x f x f8.设总体X 的期望n x x x ,...,,),0(1=E(X)21>λλ为来自该总体的样本,∑==nii x nx 11,则λ的 矩估计为 A.x B. x1C.λxD.xλ 9.若假设检验0100:,:μμμμ≠=H H 的显著性水平为a,0<a<1,则a=A.{}为真|接受01H H PB.{}为真|接受00H H PC.{}为真|接受11H H PD.{}为真|接受10H H P10.在一元线性回归方程x y 10ˆˆˆββ+=中,回归系数1ˆβ=A.Lyy L xy B.Lxy L yy C.Lxx L xyD.Lxyx L x二、填空题(本大题共15小题,每小题2分,共30分)11.设随机事件A 与B 互不相容,P(A)=0.2,P(A ∪B)=0.8,则P(B)=________. 12.设A,B 为随机事件,且P (A )=0.6,P(AB)=0.4,则)(B A p =__________.13.某工厂产品的次品率为1%,在正品中有80%为一等品,如果从该厂产品中任取一件进行检验,则检验结果是一等品的概率为__________.14.设)(x Φ为标准正态分布函数,则Φ(2)+Φ(-2)=_________. 15.设)(),(21x F x F 分别为随机变量21,X X 的分布函数,且)()()(21x F x aF x F -=也是某随机变量的分布函数,则常数a=_________.16.设随机变量X 的分布律为F (x )是X 的分布函数,则F(2)=_________.17.设随机变量X 与Y 相互独立,X 的概率密度⎩⎨⎧≤>=-,0,0,0,)(x x e x f x x Y 的概率密度⎩⎨⎧≤>=-,0,0,0,3)(3y y e y f y y 则当x>0,y>0时,二维随机变量(X,Y )的概率密度f(x,y)=________. 18.设随机变量X ~N (1,2),Y ~N (0,1),且X 与Y 相互独立,则2X+3Y ~__________. 19.设随机变量X 服从区间[1,5]上的均匀分布,则)()(X D X E =_________. 20.设随机变量X 服从参数为3的泊松分布,随机变量Y ~N (1,4),则)(22Y X E +=_________.21.设随机变量X ~B(100,0.9),则P {X >85}≈_________.)9525.0)35((=Φ22.设总体X ~N (0,1),n x x x ,...,,21为来自该总体的样本,则∑=nii x 12~__________. 23.设总体X 的概率密度⎩⎨⎧<<=-其他,0,10,)(1x x x f θθn x x x ,...,,21为来自X 的样本,x 为样本均值(x ≠1),则θ的矩估计θˆ=_________.24.设总体X ~N(μ,1),n x x x ,...,,21为来自X 的样本,x 为样本均值,则μ的(1-a )置信区间为_____. 25.设总体X ~N ),(2σμ(σ未知),n x x x ,...,,21为来自该总体的样本,2,s x 分别为样本均值和样本方差,则对于假设检验0100:,:μμμμ≠=H H ,应采用检验统计量的表达式为_________.三、计算题(本大题共2小题,每小题8分,共16分)26.某车间有3台独立工作的同型号机器,假设在任一时刻,每台机器不出现故障的概率为0.9,求在同一时刻至少有一台机器出现故障的概率。

全国10月自考概率论与数理统计(经管类)试题解析

全国10月自考概率论与数理统计(经管类)试题解析

全国2012年10月概率论与数理统计(经管类)真题与解析一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.已知事件A,B,A∪B的概率分别为0.5,0.4,0.6,则P(A)=A.0.1B.0.2C.0.3D.0.5【答案】B【解析】因为,所以,而,所以,即;又由集合的加法公式P(AB)=P(A)+P(B)-P(A∪B)=0.5+0.4-0.6=0.3,所以=0.5-0.3=0.2,故选择B.[快解] 用Venn图可以很快得到答案:【提示】1. 本题涉及集合的运算性质:(i)交换律:A∪B=B∪A,AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C),(AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C),(A∩B)∪C=(A∪C)∩(B∪C);(iv)摩根律(对偶律),.2.本题涉及互不相容事件的概念和性质:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为A∩B=,且P(A∪B)=P(A)+P(B).3.本题略难,如果考试时遇到本试题的情况,可先跳过此题,有剩余时间再考虑。

2.设F(x)为随机变量X的分布函数,则有A.F(-∞)=0,F(+∞)=0B.F(-∞)=1,F(+∞)=0C.F(-∞)=0,F(+∞)=1D.F(-∞)=1,F(+∞)=1【答案】C【解析】根据分布函数的性质,选择C。

【提示】分布函数的性质:① 0≤F(x)≤1;② 对任意x1,x2(x1<x2),都有P{x1<X≤x2}=F(x2)-F(x1);③ F(x)是单调非减函数;④ ,;⑤ F(x)右连续;⑥ 设x为f(x)的连续点,则F‘(x)存在,且F’(x)=f(x).3.设二维随机变量(X,Y)服从区域D:x2+y2≤1上的均匀分布,则(X,Y)的概率密度为A.f(x,y)=1B.C.f(x,y)=D.【答案】D【解析】由课本p68,定义3-6:设D为平面上的有界区域,其面积为S且S>0. 如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布.本题x2+y2≤1为圆心在原点、半径为1的圆,包括边界,属于有界区域,其面积S=π,故选择D.【提示】课本介绍了两种二维连续型随机变量的分布:均匀分布和正态分布,注意它们的定义。

全国4月自考概率论与数理统计(经管类)试题和答案

全国4月自考概率论与数理统计(经管类)试题和答案

全国20XX年4月高等教育自学考试统一命题考试概率论与数理统计(经管类)试题和答案评分标准课程代码:04183本试卷满分100分,考试时间150分钟.考生答题注意事项:1.本卷所有试题必须在答题卡上作答。

答在试卷上无效。

试卷空白处和背面均可作草稿纸。

2.第一部分为选择题。

必须对应试卷上的题号使用28铅笔将“答题卡”的相应代码涂黑。

3.第二部分为非选择题。

必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。

4.合理安排答题空间。

超出答题区域无效。

第一部分选择题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸"的相应代码涂黑。

错涂、多涂或未涂均无分。

1.掷一颗骰子,观察出现的点数。

A表示“出现3点”,B表示“出现偶数点”,则A.A B⊂ B.A B⊂C.A B⊂ D.A B⊂正确答案:B(2分)2.设随机变量x的分布律为,F(x)为X的分布函数,则F(0)=A.0.1B.0.3C.0.4D.0.6正确答案:C(2分)3.设二维随机变量(X,Y)的概率密度为,11,02,(,)0,≤≤≤≤其它,c x yf x y-⎧=⎨⎩则常数c=A.14B.12C.2D.4正确答案:A(2分)4.设随机变量X服从参数为2的泊松分布,则D(9—2X)=A.1B.4C.5D.8正确答案:D(2分)5.设(X,Y)为二维随机变量,则与Cov(X,Y)=0不等价...的是A.X与Y相互独立B.()()()D X Y D X D Y-=+C.E(XY)=E(X)E(Y)D.()()()D X Y D X D Y+=+正确答案:A (2分)6.设X 为随机变量,E(x)=0.1,D(X )=0.01,则由切比雪夫不等式可得A.{}0.110.01≥≤P X -B.{}0.110.99≥≥P X -C.{}0.110.99≤P X -<D.{}0.110.01≤P X -<正确答案:A (2分)7.设x 1,x 2,…,x n 为来自某总体的样本,x 为样本均值,则1()ni i x x =-∑=A.(1)n x -B.0C.xD.nx正确答案:B (2分)8.设总体X 的方差为2σ,x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,则参数2σ的无偏估计为A.2111n i i x n =-∑ B.211n i i x n =∑ C.211()1ni i x x n =--∑ D.11()2ni i x x n =-∑ 正确答案:C (2分)9.设x 1,x 2,…,x n 为来自正态总体N (μ,1)的样本,x 为样本均值,s 2为样本方差.检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则采用的检验统计量应为A./x s nμ- B.0/x s nμ-C.()n x μ-D.0()n x μ-正确答案:D (2分)10.设一元线性回归模型为201,(0,),1,2,,,i i i iy x N i n ββεεσ=++=则E (y i )=A.0βB.1i x βC.01i x ββ+D.01i i x ββε++正确答案:C (2分)非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

自考 概率论与数理统计(经管类) 真题及答案详解分析

自考 概率论与数理统计(经管类) 真题及答案详解分析

2013年04月真题讲解一、前言学员朋友们,你们好!现在,对《全国2013年4月高等教育自学考试概率论与数理统计(经管类)试题》进行必要的分析,并详细解答,供学员朋友们学习和应试参考.三点建议:一是在听取本次串讲前,请对课本内容进行一次较全面的复习,以便取得最佳的听课效果;二是在听取本次串讲前,务必将本套试题独立地做一遍,以便了解试题考察的知识点,以及个人对课程全部内容的掌握情况,有重点的听取本次串讲;三是,在听取串讲的过程中,对重点、难点的题目,应该反复多听几遍,探求解题规律,提高解题能力.一点说明:本次串讲所使用的课本是2006年8月第一版.二、考点分析1.总体印象对本套试题的总体印象是:内容比较常规,个别题目略偏.内容比较常规:① 概率分数偏高,共76分;统计分数只占24分,与以往考题的分数分布情况对比,总的趋势不变,各部分分数稍有变化;② 课本中各章内容都有涉及;③几乎每道题都可以在课本上找到出处.个别题目略偏:与历次试题比较,本套试题有个别题目内容略偏,比如21题、25题等.难度分析:本套试题基本保持了历年试题的难度.如果粗略的把题目难度划分为易、中、难三个等级,本套试题容易的题目约占24分,中等题目约占60分,稍偏难题目约占16分,包括计算量比较大题目.当然,以上观点只是相对于历年试题而言,是在与历年试题对比中产生的看法.如果只看本套试题,应该说是一套不错的试题,只是难度没有降低.2.考点分布按照以往的分类方法:事件与概率约18分,一维随机变量(包括数字特征)约38分,二维随机变量(包括数字特征)约18分,大数定律2分,统计量及其分布4分,参数估计10分,假设检验8分,回归分析2分.考点分布的柱状图如下三、试题详解一、单项选择题(本大题共10小题,每小题2分,共20分)1.甲,乙两人向同一目标射击,A表示“甲命中目标”,B表示“乙命中目标”,C表示“命中目标”,则C=()A.AB.BC.ABD.A∪B[918160101]【答案】D【解析】“命中目标”=“甲命中目标”或“乙命中目标”或“甲、乙同时命中目标”,所以可表示为“A∪B”,故选择D.【提示】注意事件运算的实际意义及性质:(1)事件的和:称事件“A,B至少有一个发生”为事件A与B的和事件,也称为A 与B的并A∪B或A+B.性质:①,;②若,则A∪B=B.(2)事件的积:称事件“A,B同时发生”为事件A与B的积事件,也称为A与B的交,记做F=A∩B 或F=AB.性质:①,;② 若,则AB=A.(3)事件的差:称事件“A发生而事件B不发生”为事件A与B的差事件,记做A-B.性质:①;②若,则;③.(4)事件运算的性质(i)交换律:A∪B=B∪A, AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C), (AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C)(A∩B)∪C=(A∪C)∩(B∪C).(iv)摩根律(对偶律),2.设A,B是随机事件,,P(AB)=0.2,则P(A-B)=()A.0.1B.0.2C.0.3D.0.4[918160102]【答案】A【解析】,,故选择A.【提示】见1题【提示】(3).3.设随机变量X的分布函数为F(X)则()A.F(b-0)-F(a-0)B.F(b-0)-F(a)C.F(b)-F(a-0)D.F(b)-F(a)[918160103]【答案】D【解析】根据分布函数的定义及分布函数的性质,选择D.详见【提示】. 【提示】1.分布函数定义:设X为随机变量,称函数,为的分布函数.2.分布函数的性质:①0≤F(x)≤1;②对任意x1,x2(x1< x2),都有;③F(x)是单调非减函数;④,;⑤F(x)右连续;⑥设x为f(x)的连续点,则f′(x)存在,且F′(x)=f(x).3.已知X的分布函数F(x),可以求出下列三个常用事件的概率:①;②,其中a<b;③.4.设二维随机变量(X,Y)的分布律为0 1 20 1 0 0.1 0.2 0.4 0.3 0则()A.0B.0.1C.0.2D.0.3[918160104]【答案】D【解析】因为事件,所以,= 0 + 0.1 + 0.2 = 0.3故选择D【提示】1.本题考察二维离散型随机变量的边缘分布律的求法;2.要清楚本题的三个事件的概率为什么相加:因为三事件是互不相容事件,而互不相容事件的概率为各事件概率之和.5.设二维随机变量(X,Y)的概率密度为,则()A.0.25B.0.5C.0.75D.1[918160105]【答案】A【解析】积分区域D:0<X≤0.5,0<Y≤1,所以故选择A.【提示】1.二维连续型随机变量的概率密度f(x,y)性质:①f(x,y)≥0;②;③若f(x,y)在(x,y)处连续,则有,因而在f(x,y)的连续点(x,y)处,可由分布函数F(x,y)求出概率密度f(x,y);④(X,Y)在平面区域D内取值的概率为.2.二重积分的计算:本题的二重积分的被积函数为常数,根据二重积分的几何意义可用简单方法计算:积分值=被积函数0.5×积分区域面积0.5.X﹣2 0 2P0.4 0.3 0.3则E(X)=()A.﹣0.8B.﹣0.2C.0D.0.4[918160106]【答案】B【解析】E(X)=(﹣2)×0.4+0×0.3+2×0.3=﹣0.2故选择B.【提示】1.离散型一维随机变量数学期望的定义:设随机变量的分布律为,1,2,….若级数绝对收敛,则定义的数学期望为.2.数学期望的性质:①E(c)=c,c为常数;②E(aX)=aE(x),a为常数;③E(X+b)=E(X+b)=E(X)+b,b为常数;④E(aX+b)=aE(X)+b,a,b为常数.7.设随机变量X的分布函数为,则E(X)=()A. B. C. D.[918160107]【答案】C【解析】根据连续型一维随机变量分布函数与概率密度的关系得,所以,=,故选择C.【提示】1.连续型一维随机变量概率密度的性质①;②;③;④;⑤设x为的连续点,则存在,且.2.一维连续型随机变量数学期望的定义:设连续型随机变量X的密度函数为,如果广义积分绝对收敛,则随机变量的数学期望为.8.设总体X服从区间[,]上的均匀分布(),x1,x2,…,x n为来自X的样本,为样本均值,则A. B. C. D.[918160108]【答案】C【解析】,,而均匀分布的期望为,故选择C.【提示】1.常用的六种分布(1)常用离散型随机变量的分布(三种):X0 1概率q pA.两点分布①分布列②数学期望:E(X)=P③方差:D(X)=pq.B.二项分布:X~B(n,p)①分布列:,k=0,1,2,…,n;②数学期望: E(X)=nP③方差: D(X)=npq.C.泊松分布:X~①分布列:,0,1,2,…②数学期望:③方差:=(2)常用连续型随机变量的分布(三种):A.均匀分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=.B.指数分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=.C.正态分布(A)正态分布:X~①密度函数:,-∞+∞②分布函数:③数学期望:=,④方差:=,⑤标准化代换:若X~,,则~.(B)标准正态分布:X~①密度函数:,-∞+∞②分布函数:,-∞+∞③数学期望:E(X)=0,④方差:D(X)=1.2.注意:“样本”指“简单随机样本”,具有性质:“独立”、“同分布”.9.设x1,x2,x3,x4为来自总体X的样本,且,记,,,,则的无偏估计是()A. B. C. D.[918160109]【答案】A【解析】易知,,故选择A.【提示】点估计的评价标准:(1)相合性(一致性):设为未知参数,是的一个估计量,是样本容量,若对于任意,有,则称为的相合(一致性)估计.(2)无偏性:设是的一个估计,若对任意,有则称为的无偏估计量;否则称为有偏估计.(3)有效性设,是未知参数的两个无偏估计量,若对任意有样本方差,则称为比有效的估计量.若的一切无偏估计量中,的方差最小,则称为的有效估计量.10.设总体~,参数未知,已知.来自总体的一个样本的容量为,其样本均值为,样本方差为,,则的置信度为的置信区间是()A.,B.,C.,D.[918160110]【答案】A【解析】查表得答案.【提示】关于“课本p162,表7-1:正态总体参数的区间估计表”记忆的建议:①表格共5行,前3行是“单正态总体”,后2行是“双正态总体”;②对均值的估计,分“方差已知”和“方差未知”两种情况,对方差的估计“均值未知”;③统计量顺序:, t, x2, t, F.二、填空题(本大题共15小题,每小题2分,共30分)11.设A,B是随机事件,P (A)=0.4,P (B)=0.2,P (A∪B)=0.5,则P (AB)= _____. [918160201]【答案】0.1【解析】由加法公式P (A∪B)= P (A)+ P (B)-P (AB),则P (AB)= P (A)+ P (B)-P (A∪B)=0.1故填写0.1.12.从0,1,2,3,4五个数字中不放回地取3次数,每次任取一个,则第三次取到0的概率为________. [918160202]【答案】【解析】设第三次取到0的概率为,则故填写.【提示】古典概型:(1)特点:①样本空间是有限的;②基本事件发生是等可能的;(2)计算公式.13.设随机事件A与B相互独立,且,则________.[918160203]【答案】0.8【解析】因为随机事件A与B相互独立,所以P (AB)=P (A)P (B)再由条件概率公式有=所以,故填写0.8.【提示】二随机事件的关系(1)包含关系:如果事件A发生必然导致事件B发生,则事件B包含事件A,记做;对任何事件C,都有,且;(2)相等关系:若且,则事件A与B相等,记做A=B,且P (A)=P (B);(3)互不相容关系:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为=,且P (AB)=0;(4)对立事件:称事件“A不发生”为事件A的对立事件或逆事件,记做;满足且.显然:①;②,.(5)二事件的相互独立性:若, 则称事件A, B相互独立;性质1:四对事件A与B,与B,A与,与其一相互独立,则其余三对也相互独立;性质2:若A, B相互独立,且P (A)>0, 则.14.设随机变量服从参数为1的泊松分布,则________.[918160204]【答案】【解析】参数为泊松分布的分布律为,0,1,2,3,…因为,所以,0,1,2,3,…,所以=,故填写.15.设随机变量X的概率密度为,用Y表示对X的3次独立重复观察中事件出现的次数,则________.[918160205]【答案】【解析】因为,则~,所以,故填写.【提示】注意审题,准确判定概率分布的类型.16.设二维随机变量(X,Y)服从圆域D: x2+ y2≤1上的均匀分布,为其概率密度,则=_________.[918160206]【答案】【解析】因为二维随机变量(X,Y)服从圆域D:上的均匀分布,则,所以故填写.【提示】课本介绍了两种重要的二维连续型随机变量的分布:(1)均匀分布:设D为平面上的有界区域,其面积为S且S>0,如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布,记为(X,Y)~.(2)正态分布:若二维随机变量(X,Y)的概率密度为(,),其中,,,,都是常数,且,,,则称(X,Y)服从二维正态分布,记为(X,Y)~.17.设C为常数,则C的方差D (C)=_________.[918160207]【答案】0【解析】根据方差的性质,常数的方差为0.【提示】1.方差的性质①D (c)=0,c为常数;②D (aX)=a2D (X),a为常数;③D (X+b)=D (X),b为常数;④D (aX+b)= a2D (X),a,b为常数.2.方差的计算公式:D (X)=E (X2)-E2(X).18.设随机变量X服从参数为1的指数分布,则E (e-2x)= ________. [918160208]【答案】【解析】因为随机变量X服从参数1的指数分布,则,则故填写.【提示】连续型随机变量函数的数学期望:设X为连续性随机变量,其概率密度为,又随机变量,则当收敛时,有19.设随机变量X~B (100,0.5),则由切比雪夫不等式估计概率________.[918160209]【答案】【解析】由已知得,,所以.【提示】切比雪夫不等式:随机变量具有有限期望和,则对任意给定的,总有或.故填写.20.设总体X~N (0,4),且x1,x2,x3为来自总体X的样本,若~,则常数C=________.[918160210]【答案】1【解析】根据x2定义得C=1,故填写1.【提示】1.应用于“小样本”的三种分布:①x2-分布:设随机变量X1,X2,…,X n相互独立,且均服从标准正态分布,则服从自由度为n的x2-分布,记为x2~x2(n).②F-分布:设X,Y相互独立,分别服从自由度为m和n的x2分布,则服从自由度为m与n 的F-分布,记为F~F(m,n),其中称m为分子自由度,n为分母自由度.③t-分布:设X~N (0,1),Y~x2(n),且X,Y相互独立,则服从自由度为n的t-分布,记为t~t (n).2.对于“大样本”,课本p134,定理6-1:设x1,x2,…,x n为来自总体X的样本,为样本均值,(1)若总体分布为,则的精确分布为;(2)若总体X的分布未知或非正态分布,但,,则的渐近分布为.21.设x1,x2,…,x n为来自总体X的样本,且,为样本均值,则________.[918160211]【答案】【解析】课本P153,例7-14给出结论:,而,所以,故填写.【说明】本题是根据例7-14改编.因为的证明过程比较复杂,在2006年课本改版时将证明过程删掉,即本次串讲所用课本(也是学员朋友们使用的课本)中没有这个结论的证明过程,只给出了结果.感兴趣的学员可查阅旧版课本《高等数学(二)第二分册概率统计》P164,例5.8.22.设总体x服从参数为的泊松分布,为未知参数,为样本均值,则的矩估计________.[918160212]【答案】【解析】由矩估计方法,根据:在参数为的泊松分布中,,且的无偏估计为样本均值,所以填写.【提示】点估计的两种方法(1)矩法(数字特征法)估计:A.基本思想:①用样本矩作为总体矩的估计值;②用样本矩的函数作为总体矩的函数的估计值.B.估计方法:同A.(2)极大似然估计法A.基本思想:把一次试验所出现的结果视为所有可能结果中概率最大的结果,用它来求出参数的最大值作为估计值.B.定义:设总体的概率函数为,,其中为未知参数或未知参数向量,为可能取值的空间,x1,x2,…,x n是来自该总体的一个样本,函数称为样本的似然函数;若某统计量满足,则称为的极大似然估计.C.估计方法①利用偏导数求极大值i)对似然函数求对数ii)对求偏导数并令其等于零,得似然方程或方程组iii)解方程或方程组得即为的极大似然估计.②对于似然方程(组)无解时,利用定义:见教材p150例7-10;(3)间接估计:①理论根据:若是的极大似然估计,则即为的极大似然估计;②方法:用矩法或极大似然估计方法得到的估计,从而求出的估计值.23.设总体X服从参数为的指数分布,x1,x2,…,x n为来自该总体的样本.在对进行极大似然估计时,记…,x n)为似然函数,则当x1,x2,…,x n都大于0时,…,x n=________.[918160213]【答案】【解析】已知总体服从参数为的指数分布,所以,从而…,=,故填写.24.设x1,x2,…,x n为来自总体的样本,为样本方差.检验假设:,:,选取检验统计量,则H0成立时,x2~________.[918160214]【答案】【解析】课本p176,8.3.1.25.在一元线性回归模型中,其中~,1,2,…,n,且,,…,相互独立.令,则________.[918160215]【答案】【解析】由一元线性回归模型中,其中~,1,2,…,,且,,…,相互独立,得一元线性回归方程,所以,,则~由20题【提示】(3)得,故填写.【说明】课本p186,关于本题内容的部分讲述的不够清楚,请朋友们注意.三、计算题(本大题共2小题,每小题8分,共16分)26.甲、乙两人从装有6个白球4个黑球的盒子中取球,甲先从中任取一个球,不放回,而后乙再从盒中任取两个球,求(1)甲取到黑球的概率;(2)乙取到的都是黑球的概率.【分析】本题考察“古典概型”的概率.[918160301]【解析】(1)设甲取到黑球的概率为p,则.(2)设乙取到的都是黑球的概率为p,则.27.某种零件直径X~(单位:mm),未知.现用一种新工艺生产此种零件,随机取出16个零件、测其直径,算得样本均值,样本标准差s=0.8,问用新工艺生产的零件平均直径与以往有无显著差异?()(附:)【分析】本题考察假设检验的操作过程,属于“单正态总体,方差未知,对均值的检验”类型.[918160302]【解析】设欲检验假设H0:,H1:,选择检验统计量,根据显著水平=0.05及n=16,查t分布表,得临界值t0.025(15)=2.1315,从而得到拒绝域,根据已知数据得统计量的观察值因为,拒绝,可以认为用新工艺生产的零件平均直径与以往有显著差异.【提示】1.假设检验的基本步骤:(1)提出统计假设:根据理论或经验对所要检验的量作出原假设(零假设)H0和备择假设H1,要求只有其一为真.如对总体均值检验,原假设为H0:,备择假设为下列三种情况之一::,其中i)为双侧检验,ii),iii)为单侧检验.(2)选择适当的检验统计量,满足:① 必须与假设检验中待检验的“量”有关;② 在原假设成立的条件下,统计量的分布或渐近分布已知.(3)求拒绝域:按问题的要求,根据给定显著水平查表确定对应于的临界值,从而得到对原假设H0的拒绝域W.(4)求统计量的样本值观察值并决策:根据样本值计算统计量的值,若该值落入拒绝域W内,则拒绝H0,接受H1,否则,接受H0.2.关于课本p181,表8-4的记忆的建议:与区间估计对照分类记忆.四、综合题(本大题共2小题,每小题12分,共24分)28.设二维随机变量(X,Y)的概率密度为(1)求(X,Y)关于X,Y的边缘概率密度;(2)记Z=2X+1,求Z的概率密度.[918160303]【分析】本题考察二维连续型随机变量及随机变量函数的概率密度. 【解析】(1)由已知条件及边缘密度的定义得=,()所以;同理可得.(2)使用“直接变换法”求Z=2X+1的概率密度.记随机变量X、Z的分布函数为Fx(x)、Fz(Z),则,由分布函数Fz(Z)与概率密度的关系有由(1)知,所以=.【提示】求随机变量函数的概率密度的“直接变换法”基本步骤:问题:已知随机变量X的概率密度为,求Y=g(X)的概率密度解题步骤:1.;2..29.设随机变量X与Y相互独立,X~N(0,3),Y~N(1,4).记Z=2X+Y,求(1)E(Z),D(Z);(2)E(XZ);(3)P XZ.【分析】本题考察随机变量的数字特征.[918160304]【解析】(1)因为X~N(0,3),Y~N(1,4),Z=2X+Y,所以E(Z)=E(2X+Y)=2E(X)+E(Y)=1D(Z)=D(2X+Y)=4D(X)+D(Y)=16(2)而随机变量与相互独立,所以 E(XZ)=6.(3)因为,所以.五、应用题(10分)30.某次考试成绩X服从正态分布(单位:分),(1)求此次考试的及格率和优秀率;(2)考试分数至少高于多少分能排名前50%?(附:)【分析】本题考察正态分布的概率问题.[918160305]【解析】已知X~N(75,152),设Z~N(0,1),为其分布函数,(1)==即本次考试的及格率为84.13%,优秀率为15.87%.(2)设考试分数至少为x分可排名前50%,即,则=,所以,即,x=75,因此,考试分数至少75分可排名前50%.四、简要总结1.关于本套试题(1)整套考题(共30题)所有题目几乎均可在课本上找到其原型在讲解中,指出了一些题目在课本上的出处.其实,每一道题几乎都可以在课本上找到出处,甚至于原题,这是历年本学科考试题目的共同特点,本套试题当然也不例外.(2)两种考查内容所有的考试,包括中考、高考及考研,试题不外乎考察两个内容:知识和能力.所谓考察知识,其实就是考查对课本内容的理解和记忆,这类题目一般难度不大;所谓考查能力的题目,一般难度就比较大了.本套试题知识型题目约占80分左右,考查能力的部分约占20分左右,其中包括分析能力,推演能力和计算能力,所以,本套试题属于难度适中的类型.2.关于复习的建议(1)认真看书,全面复习在多次串讲中,我一再强调全面复习,本套试题考察的内容再次验证了这一观点的正确性.所谓全面复习,不是仅仅指课本内容,也包括例题和部分习题,它们往往可能成为考试题目的来源.所以,今天再次强调这个观点,希望能够引起学员朋友们足够的重视.当然, 在全面复习的基础上, 也要注意重点复习.从本套试题的考点分布可以看出,前三部分占76%,后三部分占24%,与历年试题比较稍有变化,但变化不大.虽然分数分布并不平均,但是,绝不能因此而否认全面复习的重要性.事实上,概率统计考试的考点分布及所占的分数一直是比较稳定的,不同年月的试题的分数分布只有比较小的调整,试题的覆盖面始终几乎囊括课本的全部主要内容.所以,若想取得理想成绩,必须全面复习!(2)加深理解,强化记忆历年试题都以考察知识为主要内容.众所周知,所谓知识,首先是头脑中记忆的东西,其次才是记忆中的东西的运用.所以,无论从哪个角度来说,准确记忆是非常重要的.本课程的学习也不例外,准确的记忆意味着接近成功.当然,记忆的方法很多,最好的方法是在理解的基础上,总结归纳记忆.在讲解过程中针对某些题目给出“提示”,就是给大家以范例,供大家学习如何做“跨章节”的归纳总结,以便实现“归纳记忆”.3.关于选作习题(1)重视例题和习题每套试题中,几乎都有根据课本的例题和习题改编的题目,本套试题中虽然没有课本原题,但多数也是根据的习题或例题改编的题目.改编例题或选择课本的原题是一种比较稳妥的命题方式,命题人所承担的风险也比较小,因此,我再次提醒学员朋友们注意课本例题和习题,尤其计算比较麻烦(如分部积分等)的题目.(2)正确选作课外题选作课外题有新鲜感,许多朋友在应试复习时都愿意这样做.我的建议首先是,选题范围应该是历年考题的真题,一位自考的成功者说过:“把历年试题做三遍,包你通过.”这也是我多年来在“面授班”教学中一直实践的、而且比较成功的做法.至于是做整套试题还是从中选作,可以根据每个人的具体情况来确定.提醒考生,不要押题,更不要相信某些自称命中率极高的“猜题”,以免上当受骗.4.关于答卷的方法本套试题题目排列不是“从简到难”,比如,有前面的题目略难,后面的题目简单.遇到这种情况,建议考生可跳过难题.只要把比较顺手的题目均正确完成,就可以得到比较理想的分数.以上讲解仅供学员朋友们参考.祝学员朋友们学习进步,在考试中取得理想的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年04月真题讲解一、前言学员朋友们,你们好!现在,对《全国2013年4月高等教育自学考试概率论与数理统计(经管类)试题》进行必要的分析,并详细解答,供学员朋友们学习和应试参考.三点建议:一是在听取本次串讲前,请对课本内容进行一次较全面的复习,以便取得最佳的听课效果;二是在听取本次串讲前,务必将本套试题独立地做一遍,以便了解试题考察的知识点,以及个人对课程全部内容的掌握情况,有重点的听取本次串讲;三是,在听取串讲的过程中,对重点、难点的题目,应该反复多听几遍,探求解题规律,提高解题能力.一点说明:本次串讲所使用的课本是2006年8月第一版.二、考点分析1.总体印象对本套试题的总体印象是:内容比较常规,个别题目略偏.内容比较常规:① 概率分数偏高,共76分;统计分数只占24分,与以往考题的分数分布情况对比,总的趋势不变,各部分分数稍有变化;② 课本中各章内容都有涉及;③几乎每道题都可以在课本上找到出处.个别题目略偏:与历次试题比较,本套试题有个别题目内容略偏,比如21题、25题等.难度分析:本套试题基本保持了历年试题的难度.如果粗略的把题目难度划分为易、中、难三个等级,本套试题容易的题目约占24分,中等题目约占60分,稍偏难题目约占16分,包括计算量比较大题目.当然,以上观点只是相对于历年试题而言,是在与历年试题对比中产生的看法.如果只看本套试题,应该说是一套不错的试题,只是难度没有降低.2.考点分布按照以往的分类方法:事件与概率约18分,一维随机变量(包括数字特征)约38分,二维随机变量(包括数字特征)约18分,大数定律2分,统计量及其分布4分,参数估计10分,假设检验8分,回归分析2分.考点分布的柱状图如下三、试题详解一、单项选择题(本大题共10小题,每小题2分,共20分)1.甲,乙两人向同一目标射击,A表示“甲命中目标”,B表示“乙命中目标”,C表示“命中目标”,则C=()A.AB.BC.ABD.A∪B[918160101]【答案】D【解析】“命中目标”=“甲命中目标”或“乙命中目标”或“甲、乙同时命中目标”,所以可表示为“A∪B”,故选择D.【提示】注意事件运算的实际意义及性质:(1)事件的和:称事件“A,B至少有一个发生”为事件A与B的和事件,也称为A 与B的并A∪B或A+B.性质:①,;②若,则A∪B=B.(2)事件的积:称事件“A,B同时发生”为事件A与B的积事件,也称为A与B的交,记做F=A∩B 或F=AB.性质:①,;② 若,则AB=A.(3)事件的差:称事件“A发生而事件B不发生”为事件A与B的差事件,记做A-B.性质:①;②若,则;③.(4)事件运算的性质(i)交换律:A∪B=B∪A, AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C), (AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C)(A∩B)∪C=(A∪C)∩(B∪C).(iv)摩根律(对偶律),2.设A,B是随机事件,,P(AB)=0.2,则P(A-B)=()A.0.1B.0.2C.0.3D.0.4[918160102]【答案】A【解析】,,故选择A.【提示】见1题【提示】(3).3.设随机变量X的分布函数为F(X)则()A.F(b-0)-F(a-0)B.F(b-0)-F(a)C.F(b)-F(a-0)D.F(b)-F(a)[918160103]【答案】D【解析】根据分布函数的定义及分布函数的性质,选择D.详见【提示】. 【提示】1.分布函数定义:设X为随机变量,称函数,为的分布函数.2.分布函数的性质:①0≤F(x)≤1;②对任意x1,x2(x1< x2),都有;③F(x)是单调非减函数;④,;⑤F(x)右连续;⑥设x为f(x)的连续点,则f′(x)存在,且F′(x)=f(x).3.已知X的分布函数F(x),可以求出下列三个常用事件的概率:①;②,其中a<b;③.4.设二维随机变量(X,Y)的分布律为0 1 20 1 0 0.1 0.2 0.4 0.3 0则()A.0B.0.1C.0.2D.0.3[918160104]【答案】D【解析】因为事件,所以,= 0 + 0.1 + 0.2 = 0.3故选择D【提示】1.本题考察二维离散型随机变量的边缘分布律的求法;2.要清楚本题的三个事件的概率为什么相加:因为三事件是互不相容事件,而互不相容事件的概率为各事件概率之和.5.设二维随机变量(X,Y)的概率密度为,则()A.0.25B.0.5C.0.75D.1[918160105]【答案】A【解析】积分区域D:0<X≤0.5,0<Y≤1,所以故选择A.【提示】1.二维连续型随机变量的概率密度f(x,y)性质:①f(x,y)≥0;②;③若f(x,y)在(x,y)处连续,则有,因而在f(x,y)的连续点(x,y)处,可由分布函数F(x,y)求出概率密度f(x,y);④(X,Y)在平面区域D内取值的概率为.2.二重积分的计算:本题的二重积分的被积函数为常数,根据二重积分的几何意义可用简单方法计算:积分值=被积函数0.5×积分区域面积0.5.X﹣2 0 2P0.4 0.3 0.3则E(X)=()A.﹣0.8B.﹣0.2C.0D.0.4[918160106]【答案】B【解析】E(X)=(﹣2)×0.4+0×0.3+2×0.3=﹣0.2故选择B.【提示】1.离散型一维随机变量数学期望的定义:设随机变量的分布律为,1,2,….若级数绝对收敛,则定义的数学期望为.2.数学期望的性质:①E(c)=c,c为常数;②E(aX)=aE(x),a为常数;③E(X+b)=E(X+b)=E(X)+b,b为常数;④E(aX+b)=aE(X)+b,a,b为常数.7.设随机变量X的分布函数为,则E(X)=()A. B. C. D.[918160107]【答案】C【解析】根据连续型一维随机变量分布函数与概率密度的关系得,所以,=,故选择C.【提示】1.连续型一维随机变量概率密度的性质①;②;③;④;⑤设x为的连续点,则存在,且.2.一维连续型随机变量数学期望的定义:设连续型随机变量X的密度函数为,如果广义积分绝对收敛,则随机变量的数学期望为.8.设总体X服从区间[,]上的均匀分布(),x1,x2,…,x n为来自X的样本,为样本均值,则A. B. C. D.[918160108]【答案】C【解析】,,而均匀分布的期望为,故选择C.【提示】1.常用的六种分布(1)常用离散型随机变量的分布(三种):X0 1概率q pA.两点分布①分布列②数学期望:E(X)=P③方差:D(X)=pq.B.二项分布:X~B(n,p)①分布列:,k=0,1,2,…,n;②数学期望: E(X)=nP③方差: D(X)=npq.C.泊松分布:X~①分布列:,0,1,2,…②数学期望:③方差:=(2)常用连续型随机变量的分布(三种):A.均匀分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=.B.指数分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=.C.正态分布(A)正态分布:X~①密度函数:,-∞+∞②分布函数:③数学期望:=,④方差:=,⑤标准化代换:若X~,,则~.(B)标准正态分布:X~①密度函数:,-∞+∞②分布函数:,-∞+∞③数学期望:E(X)=0,④方差:D(X)=1.2.注意:“样本”指“简单随机样本”,具有性质:“独立”、“同分布”.9.设x1,x2,x3,x4为来自总体X的样本,且,记,,,,则的无偏估计是()A. B. C. D.[918160109]【答案】A【解析】易知,,故选择A.【提示】点估计的评价标准:(1)相合性(一致性):设为未知参数,是的一个估计量,是样本容量,若对于任意,有,则称为的相合(一致性)估计.(2)无偏性:设是的一个估计,若对任意,有则称为的无偏估计量;否则称为有偏估计.(3)有效性设,是未知参数的两个无偏估计量,若对任意有样本方差,则称为比有效的估计量.若的一切无偏估计量中,的方差最小,则称为的有效估计量.10.设总体~,参数未知,已知.来自总体的一个样本的容量为,其样本均值为,样本方差为,,则的置信度为的置信区间是()A.,B.,C.,D.[918160110]【答案】A【解析】查表得答案.【提示】关于“课本p162,表7-1:正态总体参数的区间估计表”记忆的建议:①表格共5行,前3行是“单正态总体”,后2行是“双正态总体”;②对均值的估计,分“方差已知”和“方差未知”两种情况,对方差的估计“均值未知”;③统计量顺序:, t, x2, t, F.二、填空题(本大题共15小题,每小题2分,共30分)11.设A,B是随机事件,P (A)=0.4,P (B)=0.2,P (A∪B)=0.5,则P (AB)= _____. [918160201]【答案】0.1【解析】由加法公式P (A∪B)= P (A)+ P (B)-P (AB),则P (AB)= P (A)+ P (B)-P (A∪B)=0.1故填写0.1.12.从0,1,2,3,4五个数字中不放回地取3次数,每次任取一个,则第三次取到0的概率为________. [918160202]【答案】【解析】设第三次取到0的概率为,则故填写.【提示】古典概型:(1)特点:①样本空间是有限的;②基本事件发生是等可能的;(2)计算公式.13.设随机事件A与B相互独立,且,则________.[918160203]【答案】0.8【解析】因为随机事件A与B相互独立,所以P (AB)=P (A)P (B)再由条件概率公式有=所以,故填写0.8.【提示】二随机事件的关系(1)包含关系:如果事件A发生必然导致事件B发生,则事件B包含事件A,记做;对任何事件C,都有,且;(2)相等关系:若且,则事件A与B相等,记做A=B,且P (A)=P (B);(3)互不相容关系:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为=,且P (AB)=0;(4)对立事件:称事件“A不发生”为事件A的对立事件或逆事件,记做;满足且.显然:①;②,.(5)二事件的相互独立性:若, 则称事件A, B相互独立;性质1:四对事件A与B,与B,A与,与其一相互独立,则其余三对也相互独立;性质2:若A, B相互独立,且P (A)>0, 则.14.设随机变量服从参数为1的泊松分布,则________.[918160204]【答案】【解析】参数为泊松分布的分布律为,0,1,2,3,…因为,所以,0,1,2,3,…,所以=,故填写.15.设随机变量X的概率密度为,用Y表示对X的3次独立重复观察中事件出现的次数,则________.[918160205]【答案】【解析】因为,则~,所以,故填写.【提示】注意审题,准确判定概率分布的类型.16.设二维随机变量(X,Y)服从圆域D: x2+ y2≤1上的均匀分布,为其概率密度,则=_________.[918160206]【答案】【解析】因为二维随机变量(X,Y)服从圆域D:上的均匀分布,则,所以故填写.【提示】课本介绍了两种重要的二维连续型随机变量的分布:(1)均匀分布:设D为平面上的有界区域,其面积为S且S>0,如果二维随机变量(X,Y)的概率密度为,则称(X,Y)服从区域D上的均匀分布,记为(X,Y)~.(2)正态分布:若二维随机变量(X,Y)的概率密度为(,),其中,,,,都是常数,且,,,则称(X,Y)服从二维正态分布,记为(X,Y)~.17.设C为常数,则C的方差D (C)=_________.[918160207]【答案】0【解析】根据方差的性质,常数的方差为0.【提示】1.方差的性质①D (c)=0,c为常数;②D (aX)=a2D (X),a为常数;③D (X+b)=D (X),b为常数;④D (aX+b)= a2D (X),a,b为常数.2.方差的计算公式:D (X)=E (X2)-E2(X).18.设随机变量X服从参数为1的指数分布,则E (e-2x)= ________. [918160208]【答案】【解析】因为随机变量X服从参数1的指数分布,则,则故填写.【提示】连续型随机变量函数的数学期望:设X为连续性随机变量,其概率密度为,又随机变量,则当收敛时,有19.设随机变量X~B (100,0.5),则由切比雪夫不等式估计概率________.[918160209]【答案】【解析】由已知得,,所以.【提示】切比雪夫不等式:随机变量具有有限期望和,则对任意给定的,总有或.故填写.20.设总体X~N (0,4),且x1,x2,x3为来自总体X的样本,若~,则常数C=________.[918160210]【答案】1【解析】根据x2定义得C=1,故填写1.【提示】1.应用于“小样本”的三种分布:①x2-分布:设随机变量X1,X2,…,X n相互独立,且均服从标准正态分布,则服从自由度为n的x2-分布,记为x2~x2(n).②F-分布:设X,Y相互独立,分别服从自由度为m和n的x2分布,则服从自由度为m与n 的F-分布,记为F~F(m,n),其中称m为分子自由度,n为分母自由度.③t-分布:设X~N (0,1),Y~x2(n),且X,Y相互独立,则服从自由度为n的t-分布,记为t~t (n).2.对于“大样本”,课本p134,定理6-1:设x1,x2,…,x n为来自总体X的样本,为样本均值,(1)若总体分布为,则的精确分布为;(2)若总体X的分布未知或非正态分布,但,,则的渐近分布为.21.设x1,x2,…,x n为来自总体X的样本,且,为样本均值,则________.[918160211]【答案】【解析】课本P153,例7-14给出结论:,而,所以,故填写.【说明】本题是根据例7-14改编.因为的证明过程比较复杂,在2006年课本改版时将证明过程删掉,即本次串讲所用课本(也是学员朋友们使用的课本)中没有这个结论的证明过程,只给出了结果.感兴趣的学员可查阅旧版课本《高等数学(二)第二分册概率统计》P164,例5.8.22.设总体x服从参数为的泊松分布,为未知参数,为样本均值,则的矩估计________.[918160212]【答案】【解析】由矩估计方法,根据:在参数为的泊松分布中,,且的无偏估计为样本均值,所以填写.【提示】点估计的两种方法(1)矩法(数字特征法)估计:A.基本思想:①用样本矩作为总体矩的估计值;②用样本矩的函数作为总体矩的函数的估计值.B.估计方法:同A.(2)极大似然估计法A.基本思想:把一次试验所出现的结果视为所有可能结果中概率最大的结果,用它来求出参数的最大值作为估计值.B.定义:设总体的概率函数为,,其中为未知参数或未知参数向量,为可能取值的空间,x1,x2,…,x n是来自该总体的一个样本,函数称为样本的似然函数;若某统计量满足,则称为的极大似然估计.C.估计方法①利用偏导数求极大值i)对似然函数求对数ii)对求偏导数并令其等于零,得似然方程或方程组iii)解方程或方程组得即为的极大似然估计.②对于似然方程(组)无解时,利用定义:见教材p150例7-10;(3)间接估计:①理论根据:若是的极大似然估计,则即为的极大似然估计;②方法:用矩法或极大似然估计方法得到的估计,从而求出的估计值.23.设总体X服从参数为的指数分布,x1,x2,…,x n为来自该总体的样本.在对进行极大似然估计时,记…,x n)为似然函数,则当x1,x2,…,x n都大于0时,…,x n=________.[918160213]【答案】【解析】已知总体服从参数为的指数分布,所以,从而…,=,故填写.24.设x1,x2,…,x n为来自总体的样本,为样本方差.检验假设:,:,选取检验统计量,则H0成立时,x2~________.[918160214]【答案】【解析】课本p176,8.3.1.25.在一元线性回归模型中,其中~,1,2,…,n,且,,…,相互独立.令,则________.[918160215]【答案】【解析】由一元线性回归模型中,其中~,1,2,…,,且,,…,相互独立,得一元线性回归方程,所以,,则~由20题【提示】(3)得,故填写.【说明】课本p186,关于本题内容的部分讲述的不够清楚,请朋友们注意.三、计算题(本大题共2小题,每小题8分,共16分)26.甲、乙两人从装有6个白球4个黑球的盒子中取球,甲先从中任取一个球,不放回,而后乙再从盒中任取两个球,求(1)甲取到黑球的概率;(2)乙取到的都是黑球的概率.【分析】本题考察“古典概型”的概率.[918160301]【解析】(1)设甲取到黑球的概率为p,则.(2)设乙取到的都是黑球的概率为p,则.27.某种零件直径X~(单位:mm),未知.现用一种新工艺生产此种零件,随机取出16个零件、测其直径,算得样本均值,样本标准差s=0.8,问用新工艺生产的零件平均直径与以往有无显著差异?()(附:)【分析】本题考察假设检验的操作过程,属于“单正态总体,方差未知,对均值的检验”类型.[918160302]【解析】设欲检验假设H0:,H1:,选择检验统计量,根据显著水平=0.05及n=16,查t分布表,得临界值t0.025(15)=2.1315,从而得到拒绝域,根据已知数据得统计量的观察值因为,拒绝,可以认为用新工艺生产的零件平均直径与以往有显著差异.【提示】1.假设检验的基本步骤:(1)提出统计假设:根据理论或经验对所要检验的量作出原假设(零假设)H0和备择假设H1,要求只有其一为真.如对总体均值检验,原假设为H0:,备择假设为下列三种情况之一::,其中i)为双侧检验,ii),iii)为单侧检验.(2)选择适当的检验统计量,满足:① 必须与假设检验中待检验的“量”有关;② 在原假设成立的条件下,统计量的分布或渐近分布已知.(3)求拒绝域:按问题的要求,根据给定显著水平查表确定对应于的临界值,从而得到对原假设H0的拒绝域W.(4)求统计量的样本值观察值并决策:根据样本值计算统计量的值,若该值落入拒绝域W内,则拒绝H0,接受H1,否则,接受H0.2.关于课本p181,表8-4的记忆的建议:与区间估计对照分类记忆.四、综合题(本大题共2小题,每小题12分,共24分)28.设二维随机变量(X,Y)的概率密度为(1)求(X,Y)关于X,Y的边缘概率密度;(2)记Z=2X+1,求Z的概率密度.[918160303]【分析】本题考察二维连续型随机变量及随机变量函数的概率密度. 【解析】(1)由已知条件及边缘密度的定义得=,()所以;同理可得.(2)使用“直接变换法”求Z=2X+1的概率密度.记随机变量X、Z的分布函数为Fx(x)、Fz(Z),则,由分布函数Fz(Z)与概率密度的关系有由(1)知,所以=.【提示】求随机变量函数的概率密度的“直接变换法”基本步骤:问题:已知随机变量X的概率密度为,求Y=g(X)的概率密度解题步骤:1.;2..29.设随机变量X与Y相互独立,X~N(0,3),Y~N(1,4).记Z=2X+Y,求(1)E(Z),D(Z);(2)E(XZ);(3)P XZ.【分析】本题考察随机变量的数字特征.[918160304]【解析】(1)因为X~N(0,3),Y~N(1,4),Z=2X+Y,所以E(Z)=E(2X+Y)=2E(X)+E(Y)=1D(Z)=D(2X+Y)=4D(X)+D(Y)=16(2)而随机变量与相互独立,所以 E(XZ)=6.(3)因为,所以.五、应用题(10分)30.某次考试成绩X服从正态分布(单位:分),(1)求此次考试的及格率和优秀率;(2)考试分数至少高于多少分能排名前50%?(附:)【分析】本题考察正态分布的概率问题.[918160305]【解析】已知X~N(75,152),设Z~N(0,1),为其分布函数,(1)==即本次考试的及格率为84.13%,优秀率为15.87%.(2)设考试分数至少为x分可排名前50%,即,则=,所以,即,x=75,因此,考试分数至少75分可排名前50%.四、简要总结1.关于本套试题(1)整套考题(共30题)所有题目几乎均可在课本上找到其原型在讲解中,指出了一些题目在课本上的出处.其实,每一道题几乎都可以在课本上找到出处,甚至于原题,这是历年本学科考试题目的共同特点,本套试题当然也不例外.(2)两种考查内容所有的考试,包括中考、高考及考研,试题不外乎考察两个内容:知识和能力.所谓考察知识,其实就是考查对课本内容的理解和记忆,这类题目一般难度不大;所谓考查能力的题目,一般难度就比较大了.本套试题知识型题目约占80分左右,考查能力的部分约占20分左右,其中包括分析能力,推演能力和计算能力,所以,本套试题属于难度适中的类型.2.关于复习的建议(1)认真看书,全面复习在多次串讲中,我一再强调全面复习,本套试题考察的内容再次验证了这一观点的正确性.所谓全面复习,不是仅仅指课本内容,也包括例题和部分习题,它们往往可能成为考试题目的来源.所以,今天再次强调这个观点,希望能够引起学员朋友们足够的重视.当然, 在全面复习的基础上, 也要注意重点复习.从本套试题的考点分布可以看出,前三部分占76%,后三部分占24%,与历年试题比较稍有变化,但变化不大.虽然分数分布并不平均,但是,绝不能因此而否认全面复习的重要性.事实上,概率统计考试的考点分布及所占的分数一直是比较稳定的,不同年月的试题的分数分布只有比较小的调整,试题的覆盖面始终几乎囊括课本的全部主要内容.所以,若想取得理想成绩,必须全面复习!(2)加深理解,强化记忆历年试题都以考察知识为主要内容.众所周知,所谓知识,首先是头脑中记忆的东西,其次才是记忆中的东西的运用.所以,无论从哪个角度来说,准确记忆是非常重要的.本课程的学习也不例外,准确的记忆意味着接近成功.当然,记忆的方法很多,最好的方法是在理解的基础上,总结归纳记忆.在讲解过程中针对某些题目给出“提示”,就是给大家以范例,供大家学习如何做“跨章节”的归纳总结,以便实现“归纳记忆”.3.关于选作习题(1)重视例题和习题每套试题中,几乎都有根据课本的例题和习题改编的题目,本套试题中虽然没有课本原题,但多数也是根据的习题或例题改编的题目.改编例题或选择课本的原题是一种比较稳妥的命题方式,命题人所承担的风险也比较小,因此,我再次提醒学员朋友们注意课本例题和习题,尤其计算比较麻烦(如分部积分等)的题目.(2)正确选作课外题选作课外题有新鲜感,许多朋友在应试复习时都愿意这样做.我的建议首先是,选题范围应该是历年考题的真题,一位自考的成功者说过:“把历年试题做三遍,包你通过.”这也是我多年来在“面授班”教学中一直实践的、而且比较成功的做法.至于是做整套试题还是从中选作,可以根据每个人的具体情况来确定.提醒考生,不要押题,更不要相信某些自称命中率极高的“猜题”,以免上当受骗.4.关于答卷的方法本套试题题目排列不是“从简到难”,比如,有前面的题目略难,后面的题目简单.遇到这种情况,建议考生可跳过难题.只要把比较顺手的题目均正确完成,就可以得到比较理想的分数.以上讲解仅供学员朋友们参考.祝学员朋友们学习进步,在考试中取得理想的成绩!。

相关文档
最新文档