(完整)新北师大版_八年级数学上册_第四章一次函数知识点总结和典型例题分析(星辰出品),推荐文档
(完整版)北师大版数学八年级上册知识点总结
北师大版《数学》(八年级上册)知识点总结第一章勾股定理第十八章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。
,那么这个三角形是直角三角形。
勾股数:满足222c b a=+的三个正整数,称为勾股数。
3.3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)、直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90° (2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°可表示如下: ⇒BC=21AB ∠C=90° (3)、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD •=2⇒ AB AD AC •=2CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得:AB •CD=AC •BC 7、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
第二章实数一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
北师大版八年级数学上册-第四章-一次函数知识点总结
第四章一次函数知识点总结4.1.1 变量和函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y 是x的函数。
例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。
对于不同的自变量x的取值,y的值可以相同,例如,函数:y=|x|,当x=±1时,y的对应值都是13、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义4.1.2 函数的表示法1、三种表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
公式法:即函数解析式,简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
2、列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值)3、公式法:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
一般情况下,等号右边的变量是自变量,等号左边的变量是因变量。
用函数解析式表示函数关系的方法就是公式法。
4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.5、描点法画函数图形的一般步骤(通常选五点法)第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
(完整)新北师大版八年级上第四章一次函数讲义绝对经典
第四章一次函数1、函数的观点一般地,设在一个变化过程中有两个变量x 和 y,而且关于 x 每一个确立的值,y 都有独一的值与它对应,那么就说x 是自变量, y 是 x 的函数。
对函数观点的理解:(1)有两个变量(2)一个变量的数值跟着另一个变量的变化而变化(3)自变量每确立一个值,函数有一个而且只有一个值与之对应(或多个x 的值能够对应一个 y 值但不可以一个 x 值对应多个 y 值,如 y=x2和 x2 =y)2、自变量的取值范围自变量的取值一定使含自变量的代数式都存心义。
(1)关系式为整式时,自变量的取值为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实质问题中,自变量的取值还要和实质状况相切合,使之存心义。
如: S r 2中,r表示圆的半径时,r>03、一次函数和正比率函数一次函数 y=kx+b特点:k0x 的次数是 1常数项 b 是随意实数正比率函数: y=kx特点:k0x 的次数是 1常数项 b=0正比率函数是一种特别的一次函数。
4、一次函数图像性质一次函数 y=kx+ b 的图象的画法 .依据几何知识:经过两点能画出一条直线,而且只好画出一条直线,即两点确立一条直线,因此画一次函数的图象时,只需先描出两点,再连成直线即可 .一般情况下:是先选取它与两坐标轴的交点:( 0 , b ),.即横坐标或纵坐标为 0的点 .k 表示直线y=kx+b(k 0) 向上的方向与x 轴正方向夹角的大小,即直线倾斜的程度;b 表示直线 y=kx+b(k 0)与 y 轴交点的纵坐标一次函数 Y=kx+b k 0 的图象,当 b>0 时,图象与 y 轴的交点在 x 轴的上方;当b<0 时,图象与 y 轴的交点在 x 轴的下方;2两直线 y= k 1 x+ b 1 (k 0)的图象与 y= k 2 x+ b 2 (k 0)的地点关系:( 1) 当 k 1 = k 2 时,且 b 1 b 2 时,两直线平行( 2) 当 k 1 = k 2 时,且 b 1 =b 2 时,两直线重合( 3) 当 k 1 k 2 时,两直线订交( 4) 当 k 1 k 2 时,且 b 1 =b 2 时,两直线交于 y 轴上一点( 0,b 1 )或( 0,b 2 )【稳固训练】 一、选择题1 、 下 列 各 图 给 出 了 变 量 x 与 y 之 间 的 函 数 是 :( )yyyyo xoxoxo xABCD2、已知油箱中有油 25 升,每小时耗油 5 升,则剩油量 P(升)与耗油时间 t(小时 ) 之间的函数关系式为 ( ) A . P=25+5tB . P=25-5tC .P=25D . P=5t - 255t3、函数 y =3x + 1 的图象必定经过点 ().A .(3,5)B .(-2,3)C .(2,7)D . (4,10)4、以下函数关系式 : ① yx ;② y2x11;③ yx 2x 1; ④ y1 .此中一次函数的个数是 ( )xA. 1 个B.2 个C.3 个D.4个 5、假如 y=x -2a +1 是正比率函数,则 a 的值是( )(A)1(B)0(C)-1(D)- 2226. 一次函数 y=kx+b 图象如图,正确的是()(A )k>0,b >0 ( B ) k>0,b <0 ( C ) k<0,b>0(D )k<0, b <07.已知一次函数的图象与直线 y=-x+1 平行,且过点( 8,2),那么此一次函数 的分析式为( )A .y=-x-2B . y=-x-6C . y=-x+10D .y=-x-1 8、若直线 yx n不经过第四象限,则( )mA.m >0,n <0B.m <0,n <0C.m <0,n > 0D.m >0,n ≤09、函数 y=kx+b(k < 0, b > 0)的图象可能是以下图形中的( )y y yyo xo xo xox[A.B.C.D.10、若函数 y=2x+3 与 y=3x -2b 的图象交 x 轴于同一点,则 b 的值为 ( )A .- 3B .-3C . 9D .-92 411 一次函数 y=kx+6,y 随 x 的增大而减小,则这个一次函数的图象不经过 ()A. 第一象限B. 第二象限C.第三象限D. 第四象限12 如图 , 直线 y kx b 经过 A(0,2) 和 B(3,0) 两点 , 那么这个一次函数关系式是 ( ) A. y 2x 3 B. y2x 2 C. y 3x 2 D. y x 1313.李老师骑自行车上班,最先以某一速度匀速前进, ?半途因为自行车发生故障,停下修车耽搁了几分钟,为了准时到校,李老师加速了速度,仍保持匀速前进,假如准时到校. 在讲堂上,李老师请学生画出他前进的行程 y?(千 米)与前进时间 t (小时)的函数图象的表示图,同学们画出的图象如图所 示,你以为正确的选项是( )14、一次函数 y=ax+b ,若 a+b=1,则它的图象必经过点()A 、(-1,-1)B、(-1, 1)C、(1, -1)D、 (1, 1)115、已知点( -4,y 1),(2,y 2)都在直线 y=- 2 x+2 上,则 y 1 y 2 大小关系是 ()(A )y 1 >y 2 (B ) y 1 =y 2(C ) y 1 <y 216.如图一次函数 y=kx+b 的图象经过点 A 和点 B .(1)写出点 A 和点 B 的坐标并求出 k 、 b 的值; (2)求出当 x= 3时的函数值.217、已知,函数 y 1 3k x 2k 1 ,试回答:(1) k 为什么值时,图象交 x 轴于点(3,0)?4(2)k 为什么值时, y 随 x 增大而增大?18、如图,是某汽车行驶的行程 S(km)与时间 t(min)的函数关系图.察看图中所供给的信息,解答以下问题:( 1)汽车在前 9 分钟内的均匀速度是(2)汽车在半途停了多长时间?S/km(3)当 16≤t≤30 时,求 S 与 t 的函数关系式.40129 1630t/min19、某自来水企业为了鼓舞市民节俭用水,采纳分段收费标准,若某用户居民每个月应交水费y(元)是用户量x(方)的函数,其图象如下图,依据图象回答以下问题:( 1)分别求出 x≤5 和 x>5 时, y 与 x 的函数关系式;( 2)自来水企业的收费标准是什么?y(元)( 3)若某户居民交水费9 元,该月用水多少方6.6320.如图信息, l 1为走私船, l 2为我公安快艇,航行时行程与时间的函数图象,问:( 1)在刚出发时我公安快艇距走私船多少㎞?(2)计算走私船与公安快艇的速度分别是多少?( 3)写出 l 1 , l 2的分析式 .( 4)问 6 分钟时两艇相距几千米。
北师大版八年级上册第四章-一次函数知识点题型总结
第四章一次函数知识点1:函数1.下列图形中的图象不表示y是x的函数的是()A.B.C.D.2. 下列图象中,表示y是x的函数的个数有__________3 在函数y=中,自变量x的取值范围是()A.x>1 B.x<1 C.x≠1 D.x=14. 函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤5x的取值范围是___________.5. 在函数知识点2:正比例函数和一次函数1.下列说法正确的是().A.一次函数是正比例函数B.正比例函数不是一次函数C.不是正比例函数就不是一次函数D.正比例函数是一次函数2. 下列函数中,是一次函数的有()(1)y=πx (2)y=2x﹣1 (3)y=1(4)y=2﹣3x (5)y=x2﹣1.x3 若y=x+2-b是正比例函数,则b的值是()4. 若y=x+2-b 是正比例函数,则b 的值是()A.0B.-2C.2D.-0.55 若函数y =(m +1)x |m |+2是一次函数,则m 的值为( ) A.m =±1 B.m =-1 C.m =1 D.m ≠-16. y=2x |m|+3表示一次函数,则m 等于( ) A .1B .﹣1C .0或﹣1D .1或﹣17. 一个正比例函数的图象经过点(-2,4),它的表达式为 ( ) A .B .C .D .8. 若点(m ,m +3)在函数y=-21x +2的图象上,则m=____9 将一次函数y =2x -3的图象沿y 轴向上平移8个单位长度,所得直线的解析式为( ) A .y =2x -5 B .y =2x +5 C .y =2x +8 D .y =2x -810. 与正比例函数y=x 相同的函数是A.2xy = B.y=()2x C.y=x212D.y=33x知识点3:正比例函数和一次函数的图像性质1. 已知函数y =(m +1)x 是正比例函数,且图象在第二、四象限内,则m 的值是( )A.2B.-2C.±2D.-2. 一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是_____.3. 已知正比例函数y=kx (k <0)的图象上两点A (x 1,y 1)、B (x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( ) A .y 1+y 2>0 B .y 1+y 2<04. 已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+2上,则y1,y2,y3的值的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3>y1>y2D.y1>y2>y35. 函数y=kx+b的图象如图所示,则当y<0时,x的取值范围是____________.6.如图,直线y=x+b与直线y=kx+6交于点P(1,3),则关于x的不等式x+b>kx+6的解集是()A.x<1 B.x>1 C.x>3 D.x<27.如图,直线y=kx和y=ax+4交于A(1,k),则不等式ax+4<kx的解集为____________.8.已知点(2,-4)在正比例函数y=kx的图象上。
北师大版八年级数学上册第四章一次函数知识点汇总
1881-4-1(一次函数知识梳理)一.函数的定义1.变量;常量。
2.函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们称x是自变量,y是x的函数。
3.函数的表示方法及优缺点;描点法画函数图象的步骤;函数值。
3.自变量的取值范围::关系式为整式时,自变量取全体实数;关系式含分式时,分母不为0;关系式含二次根式时,被开方数大于等于0;关系式含指数为0的式子时,底数不等于0.5.函数关系式与函数图象的关系:(1)满足函数解析式的有序实数对为坐标的点一定在函数图象上;(2)函数图象上的点的坐标满足函数解析式。
6.验证一个点是否在函数图象上的方法是:代入法二.一次函数的定义图象及性质:1.一般地,若两个变量x,y的关系可以表示为y=kx+b(k≠0,k,b是常数)的形式,那么y叫做x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)2. k值决定了直线的 b值决定了直线与的交点位置。
3.k>0时,y随x的增大而;k<0时,y随x的增大而。
4.两点确定一条直线,画一次函数图象常取点(0,b)(kb-,0)两点。
画正比例函数图象取(0,0)(1,k)5.在同一平面内,不重合的两条直线)0()0(222111≠+=≠+=kbxkykbxky与的位置关系:当k1=k2,b1≠b2时,两直线平行。
当k1≠k2,b1=b2时,两直线交于y轴上同一点。
6.特殊的直线方程:x轴是直线 ; y轴是直线;与x轴平行的直线是;与y轴平行的直线是;一三象限夹角的平分线是直线;二四象限夹角的平分线是直线7.直线y=kx+b的图象可以看作是y=kx的图象平移得到(b>0向上平移;b<0向下平移)三.求一次函数的关系式1.求一次函数关系式的方法:(1)找规律法(2)找相等关系列方程法(3)待定系数法2.用待定系数法求一次函数的关系式方法:(1)依据两个独立的条件确定k,b的值(2)设一次函数关系式为y=kx+b(3)把条件代入关系式构造方程(组)(4)解方程(组),求k,b(5)确定函数关系式四.一次函数与二元一次方程组的关系1.二元一次方程与一次函数的关系:2.一次函数图象交点坐标就是二元一次方程组的五.建立一次函数模型解决实际问题①借助函数图象理解题意:通过看轴,点,线,把函数图象描绘的变化过程和文字对照起来;②建立一次函数模型解决问题:根据关键点确定一次函数表达式,把所求数据转化为图象信息,然后借助一次函数表达式进行求解;③结合实际意义进行验证.六.函数图象共存问题:选定一个函数图象,根据图象性质判断k,b符号,验证另一个函数图象存在的合理性。
一次函数的图象(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)
专题4.11一次函数的图象(知识梳理与考点分类讲解)【知识点1】一次函数的图象一次函数的图象:一次函数(0)y kx b k =+≠的图象是一条恒经过点(0,)b 和(,0)b k-的直线.【知识点2】一次函数图象和性质y =kx +b 图像经过象限升降趋势增减性k >0,b >0一、二、三从左向右上升y 随着x 的增大而增大k >0,b <0一、三、四k <0,b >0一、二、四从左向右下降y 随着x 的增大而减小k <0,b <0二、三、四【知识点3】一次函数的图象与k、b 之间的联系①b 决定直线与y 轴的交点位置0b >时,直线交y 轴于正半轴;0b <时,直线交y 轴于负半轴;0b =时,直线经过原点.②0k >⇔直线上坡,y 随x 的增大而增大;0k <⇔直线下坡,y 随x 的增大而减小.③k 越大,直线越陡.【知识点4】确定一次函数表达式(1)待定系数法步骤:设:设函数表达式为(0)y kx b k =+≠;代:将已知点的坐标代入函数表达式,解方程或方程组;解:求出k 与b 的值,得到函数表达式.(2)常见类型①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y =2x +b ,再把点(0,1)的坐标代入即可.【知识点5】图象的平移一次函数y kx b =+向左平移m 个单位后的解析式为()y k x m b =++;一次函数y kx b =+向右平移m 个单位后的解析式为()y k x m b =-+;一次函数y kx b =+向上平移m 个单位后的解析式为y kx b m =++;一次函数y kx b =+向上平移m 个单位后的解析式为y kx b m =+-.平移规律:左加右减,上加下减.【知识点6】两条直线间的位置关系设直线111:l y k x b =+,222:l y k x b =+.(1)12k k ≠⇔相交;(2)1212k k b b =⎧⇔⎨≠⎩平行;(3)121k k =-⇔ 垂直.补充:若直线y kx b =+经过11(,)A x y ,22(,)B x y 12()x x ≠两点,则1212y y k x x -=-.【考点一】一次函数的图象及其位置【例1】(2022秋·陕西西安·八年级校考期中)已知一次函数(21)2y a x a =-+-(a 为常数).(1)若这个函数的图象经过原点,求a 的值;(2)若1a =,直接写出这个函数图象经过的象限.【答案】(1)2a =;(2)当1a =时,函数图象经过一、三、四象限【分析】(1)y kx b =+经过原点则0b =,据此求解;(2)把1a =代入(21)2y a x a =-+-,得1y x =-,根据10k =>,10b =-<即可得出结论.(1)解:因为(21)2y a x a =-+-经过原点,所以20a -=,解得2a =.(2)解:当1a =时,则(21)21y a x a x =-+-=-∵10k =>,10b =-<,∴函数图象经过一、三、四象限.【点拨】本题考查了一次函数的图象性质,掌握一次函数的图象性质是解答本题的关键,难度不大.【举一反三】【变式1】(2023春·四川德阳·八年级统考阶段练习)在同一平面直角坐标系中,函数y kx b =-与y bx k =+的图像不可能是()A .B .C .D .【答案】C【分析】分四种情况,根据k 、b 的符号,确定一次函数经过的象限,结合函数图象与选项进行判断即可.解:当0k >,0b >时,对于y kx b =-,图像经过第一,三,四象限,则y bx k =+经过一,二,三象限,则选项D 符合题意;当0k >,0b <时,对于y kx b =-,图像经过第一,二,三象限,则y bx k =+经过一,二,四象限,题目中没有符合的;当0k <,0b >时,对于y kx b =-,图像经过第二,三,四象限,则y bx k =+经过一,三,四象限,则选项B 符合题意;;当0k <,0b <时,对于y kx b =-,图像经过第一,二,四象限,则y bx k =+经过二,三,四象限,则选项A 符合题意;.故选:C .【点拨】此题主要考查了一次函数的性质与图像,正确记忆一次函数图像经过象限与系数关系是解题关键.【变式2】(2023春·山东菏泽·八年级统考期末)已知一次函数2y x b =+的图象经过第一、三、四象限,则函数y bx b =-的图象经过的象限是.【答案】一、二、四【分析】先根据一次函数2y x b =+的图象经过第一、三、四象限判断b 的取值范围,再判断函数y bx b =-的图象经过的象限.解:∵一次函数2y x b =+的图象经过第一、三、四象限,∴0b <,0b ->,∴函数y bx b =-的图象经过一、二、四象限.故答案为:一、二、四.【点拨】本题考查了一次函数的图象与性质,对于一次函数y kx b =+(k 为常数,0k ≠),当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.当0b >,图象与y 轴的正半轴相交,当0b <,图象与y 轴的负半轴相交,当0b =,图象经过原点.【考点二】一次函数与坐标轴交点【例2】(2023春·陕西商洛·八年级校考期末)如图,直线22y x =-+与x 轴交于点A ,与y 轴交于点B .(1)求点A ,B 的坐标.(2)若点C 在x 轴上,且2ABC AOB S S = ,求点C 的坐标.【答案】(1)(0,2)B ,(1,0)A ;(2)(3,0)或(1,0)-【分析】(1)当0x =时求解y 的值及当0y =时求解x 的值即可求解.(2)由(1)得2OB =,1OA =,根据2ABC AOB S S = 可得22AC OA ==,进而可求解.(1)解:当0x =时,2y =,∴点B 的坐标为:(0,2),当0y =时,1x =,∴点A 的坐标为:(1,0).(2)由(1)得:2OB =,1OA =,则:11222OA OB AC OB ⨯⋅=⋅,即:22AC OA ==,∴点C 的坐标为:(3,0)或(1,0)-.【点拨】本题考查了一次函数的图象,熟练掌握一次函数的图象是解题的关键.【举一反三】【变式1】(2022秋·陕西西安·八年级校考期中)如图,在同一平面直角坐标系中,一次函数()11110y k x b k =+≠与()22220y k x b k =+≠的图象分别为直线1l 和直线2l ,下列结论正确的是()A .120k k > B .120k k ->C .120b b +<D .12·0b b >【答案】B 【分析】根据图示,可得110,0k b >>,220,0k b <<,根据不等式的性质即可求解.解:根据图示,可知一次函数()11110y k x b k =+≠中,110,0k b >>;一次函数()22220y k x b k =+≠中,220,0k b <<,∴A 、12·0k k <,故原选项错误,不符合题意;B 、∵120,0k k ><,∴120k k ->,故原选项正确,符合题意;C 、∵120,0b b ><,且12b b >,∴120b b +>,故原选项错误,不符合题意;D 、∵120,0b b ><,∴120b b < ,故原选项错误,不符合题意;故选:B .【点拨】本题主要考查一次函数图象的性质,掌握一次函数图象的性质,不等式的性质是解题的关键.【变式2】(2023秋·四川成都·八年级校考阶段练习)如图,直线24y x =+与x 轴、y 轴交于点A 、B ,M 、N 分别是AB 、OA 的中点,点P 是y 轴上一个动点,当PM PN +的值最小时,点P 的坐标为.【答案】()0,1【分析】先求出,A B 的坐标,根据中点,得到,M N 的坐标,求出点N 关于y 轴的对称点N '的坐标,连接MN ',根据两点之间线段最短,得到MN '与y 轴的交点即为点P ,求出MN '的解析式,即可.解:∵24y x =+,当0x =时,4y =,当0y =时,2x =-,∴()()2,0,0,4A B -,∵M 、N 分别是AB 、OA 的中点,∴()()1,2,1,0M N --,∴点N 关于y 轴的对称点N '为()1,0,连接,MN PN '',∵点P 是y 轴上一个动点,∴PM PN PM PN MN ''+=+≥,∴当,,P M N '三点共线时,PM PN +的值最小,设直线MN '的解析式为y kx b =+,则:20k b k b -+=⎧⎨+=⎩,∴11k b =-⎧⎨=⎩,∴1y x =-+,当0x =时,1y =,∴()0,1P ;故答案为:()0,1.【点拨】本题考查一次函数,坐标与轴对称.解题的关键是掌握将军饮马模型,确定点P 的位置.【考点三】一次函数图象的平移【例3】(2023春·福建福州·八年级校考期末)已知一次函数2y x =-.(1)在平面直角坐标系中,画出该函数图象;(2)把该函数图象向上平移3个单位,判断点()3,2--是否在平移后的函数图象上.【答案】(1)见分析;(2)在【分析】(1)根据函数图象与x ,y 轴的坐标交点坐标,画出图象即可;(2)根据平移的特点得出解析式,进而解答.(1)解:列表:x 20y02-过点()2,0和点()0,2-画出直线2y x =-,;(2)解:把函数2y x =-图象向上平移3个单位,得函数的解析式为1y x =+,当3x =-时,312y =-+=-,∴点()3,2--在平移后的直线上.【点拨】本题考查一次函数与几何变换,关键是根据函数图象与x ,y 轴的坐标交点画出图象.【举一反三】【变式1】(2022·陕西西安·校考模拟预测)将正比例函数y x =向上平移1个单位长度,则平移后的函数图象与一次函数3y x m =-+的图象的交点不可能在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】首先求得平移后的一次函数的解析式为1y x =+,根据函数1y x =+不经过第四象限,即可得出结论.解:将正比例函数y x =向上平移1个单位长度得到1y x =+,一次函数1y x =+经过第一、二、三象限,不经过第四象限,∴平移后的函数图象与一次函数3y x m =-+的图象的交点不可能在第四象限,故选:D .【点拨】本题考查的是一次函数的性质及一次函数的图象与几何变换,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.【变式2】(2023春·八年级课时练习)如图,在平面直角坐标系中,直线12125y x =-+,与y x 、轴分别相交于A B 、两点,将AOB 沿过点B 的直线折叠,使点A 落在x 轴负半轴上的点A '处,,折痕所在直线交y 轴正半轴于点C .把直线AB 向左平移,使之经过点C ,则平移后直线的函数关系式是.【答案】121053y x =-+【分析】先求得A B 、的坐标,然后由勾股定理求出AB ,再由折叠的性质得出13A B AB '==,求得()8,0A '-,在Rt A OC '△中,根据勾股定理222A C OC A O ''=+,列出方程,解方程即可求得点C 的坐标,即可求得平移后的解析式.解:∵直线12125y x =-+,与y x 、轴分别相交于A B 、两点,令0x =,解得12y =,令0y =,解得5x =,∴()0,12A ,()5,0B ,∴125OA OB ==,,∵90AOB A OC '∠=∠=︒,∴13AB =,∴13A B AB '==,∴()8,0A '-,设OC x =,∴12A C AC x '==-,在Rt A OC '△中,222A C OC A O ''=+,即()222128x x -=+,解得103x =,∴100,3C ⎛⎫ ⎪⎝⎭,∴平移后的直线的解析式为121053y x =-+.故答案为:121053y x =-+【点拨】本题考查了勾股定理与折叠的性质,一次函数的平移,一次函数与坐标轴的交点,求得点C 的坐标是解题的关键.【考点四】一次函数图象的增减性➼➻求参数★★判断位置【例4】(2019春·广西贵港·八年级统考期末)已知一次函数(21)2y a x a =-+-.(1)若这个函数的图象经过原点,求a 的值.(2)若这个函数的图象经过一、三、四象限,求a 的取值范围.【答案】(1)2a =;(2)122a <<【分析】(1)y=kx+b 经过原点则b=0,据此求解;(2)y=kx+b 的图象经过一、三、四象限,k >0,b <0,据此列出不等式组求解即可.解:(1)由题意得,20a -=,∴2a =.(2)由题意得21020a a ->⎧⎨-<⎩,,解得122a <<,∴a 的取值范围是122a <<.【点拨】考查了一次函数的性质,了解一次函数的性质是解答本题的关键.【举一反三】【变式1】(2022·四川眉山·中考真题)一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.解:∵一次函数(21)2y m x =-+的值随x 的增大而增大,∴210m ->解得:12m >∴(,)P m m -在第二象限故选:B【点拨】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键.【变式2】(2023春·安徽池州·八年级统考开学考试)如图,平面直角坐标系中,△ABC 的顶点坐标分别是A (1,1),B (3,1),C (2,2),当直线y =12x +b 与△ABC 有交点时,b 的取值范围是.【答案】112b -≤≤【分析】将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x +b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.解:直线y =12x +b 经过点B ,将B (3,1)代入直线y =12x +b 中,可得3+=12b ,解得12b =-;直线y =12x +b 经过点A ,将A (1,1)代入直线y =12x +b 中,可得1+=12b ,解得12b =;直线y =12x +b 经过点C ,C (2,2)代入直线y =12x +b 中,可得1+=2b ,解得1b =;故b 的取值范围是112b -≤≤.故答案为:112b -≤≤【点拨】本题考查一次函数图象上的点的特征,待定系数法等知识,解题的关键是应用数形结合思想,属于中考常考题型.【考点五】一次函数图象的增减性➼➻求最值【例5】(2023春·江苏淮安·八年级统考期末)学习“一次函数”时,我们从“数”和“形”两方面研究一次函数的性质,并积累了一些经验和方法.小聪同学尝试运用积累的经验和方法对函数|1|2y x =--的图像与性质进行探究,下面是小聪同学的探究过程,请你补充完整.(1)列表:x (2)-1-01234…y…10a2-1-b1…则=a _________,b =_________.(2)描点并画出该函数的图像;(3)①请写出一条关于函数|1|2y x =--的性质:__________________;②观察函数图像,当24y <<时,x 的取值范围是_________;③观察图像,直接写出函数|1|2y x =--的最小值_________.【答案】(1)1-,0;(2)见分析;(3)①当1x >时,y 随x 的增大而增大(答案不唯一);②53x -<<-或57x <<;③2-【分析】(1)直接将0x =、3x =分别代入函数|1|2y x =--中求解即可;(2)根据描点法画函数出图像即可;(3)①可根据图像的对称性、增减性等方面得出函数的性质即可;②根据图像的增减性可求解;③根据图像的最低点可求得该函数的最小值.(1)解:由表格知,当0x =时,0121a =--=-,当3x =时,3120b =--=,故答案为:1-,0;(2)解:根据所给表格数据,在平面直角坐标系中描点、连线,则函数|1|2y x =--图像如图所示:(3)解:①根据图像,当1x >时,y 随x 的增大而增大,或函数|1|2y x =--关于直线1x =对称,等,故答案为:当1x >时,y 随x 的增大而增大(答案不唯一);②根据图像,当1x >时,y 随x 的增大而增大,当1x <时,y 随x 的增大而减小,当2y =时,由|1|22x --=得3x =-或5x =,当4y =时,由|1|24x --=得5x =-或7x =,∴当24y <<时,x 的取值范围是53x -<<-或57x <<,故答案为:53x -<<-或57x <<;③由图像知,当1x =时,函数|1|2y x =--取得最小值,最小值为2-,故答案为:2-.【点拨】本题考查一次函数的图像与性质,理解题意,能从函数图像得出所需信息是解答的关键.【举一反三】【变式1】(2021春·全国·八年级专题练习)设0<k <2,关于x 的一次函数y=(k-2)x+2,当1≤x≤2时,y 的最小值是()A .2k-2B .k-1C .kD .k+1【答案】A【分析】先根据0<k <2判断出k-2的符号,进而判断出函数的增减性,根据1≤x≤2即可得出结论.解:∵0<k <2,∴k-2<0,∴此函数是减函数,∵1≤x≤2,∴当x=2时,y 最小=2(k-2)+2=2k-2.故选A .【点拨】本题考查的是一次函数的性质,熟知一次函数y=kx+b (k≠0)中,当k <0,b >0时函数图象经过一、二、四象限是解答此题的关键.【变式2】(2023春·天津滨海新·八年级校考期末)已知一次函数23y x =-+,当05x ≤≤时,函数y 的最大值是.【答案】3【分析】根据20-<知道一次函数23y x =-+是单调递减函数,即y 随x 的增大而减小,代入计算即可得到答案.解:∵20-<,∴一次函数23y x =-+是单调递减函数,即y 随x 的增大而减小,∴当05x ≤≤时,在0x =时y 取得最大值,即:当05x ≤≤时,y 的最大值为:max 0(2)33y =⨯-+=,故答案为:3.【点拨】本题主要考查了一次函数的性质,一次函数y kx b =+,当0k <时y 随x 的增大而减小,0k >时,y 随x 的增大而增大;掌握一次函数的性质是解题的关键.【考点六】一次函数图象的增减性➼➻比较大小【例6】(2023春·全国·八年级专题练习)已知一次函数24y x =-+.(1)在平面直角坐标系中画出该函数的图象;(2)若3n >,点()13C n y +,,()221D n y +,都在一次函数24y x =-+的图象上,试比较1y 与2y 的大小,并说明理由.【答案】(1)见分析;(2)12y y >,理由见分析【分析】(1)求出一次函数24y x =-+图象与坐标轴的交点坐标,过这两点的直线即为该函数的图象;(2)由函数解析式可判断该函数y 随x 的增大而减小,又可判断213n n +>+,即可确定12y y >.解:(1)对于24y x =-+,当0y =时,即240x -+=,∴2x =;当0x =时,即4y =.∴函数24y x =-+的图象经过点(2,0)、(0,4);∴函数24y x =-+的图象如图所示.(2)∵3n >,∴()()21320n n n +-+=->,∴213n n +>+.∵24y x =-+,20k =->,∴y 随x 的增大而减小.∵点()13C n y +,,()221D n y +,都在一次函数24y x =-+的图象上,∴12y y >.【点拨】本题考查画一次函数的图象,一次函数的增减性.熟练掌握一次函数的性质是解题关键.【举一反三】【变式1】(2022春·河北邯郸·八年级校考阶段练习)已知点(-2,1y ),(-1,2y ),(1,3y )都在直线y =-x +7上,则1y ,2y ,3y 的大小关系是()A .1y >2y >3yB .1y <2y <3y C .3y >1y >2y D .3y <1y <2y 【答案】A【分析】判断-2<-1<1,根据一次函数的性质,得到结论.解:∵直线y =-x +7中k =-1<0,∴y 随x 的增大而减小,∵点(-2,1y ),(-1,2y ),(1,3y )都在直线y =-x +7上,且-2<-1<1,∴1y >2y >3y ,故选A .【点拨】本题考查了一次函数的增减性,熟练掌握性质是解题的关键.【变式2】(2023春·广东湛江·八年级校考期中)若()11,A x y ,()22,B x y 分别是一次函数45y x =-+图象上两个不相同的点,记()()1212W x x y y =--,则W0.(请用“>”,“=”或“<”填写)【答案】<【分析】根据一次函数的性质进行判断即可得到答案.解:∵一次函数45y x =-+,y 随x 增大而减小,∴当12x x <时,12y y >,∴12120,0x x y y --<>,∴()()12120W x x y y =--<,当12x x >时,12y y <,∴12120,0x x y y --><,∴()()12120W x x y y =--<,故答案为:<.【点拨】本题考查一次函数的性质,解题的关键是熟知一次函数的图形性质.【考点七】一次函数的图象➼➻一次函数与一元一次方程【例7】(2019春·广东江门·八年级阶段练习)如图,已知直线l 1:y=2x+3,直线l 2:y=﹣x+5,直线l 1、l 2分别交x 轴于B 、C 两点,l 1、l 2相交于点A .(1)求A 、B 、C 三点坐标;(2)求△ABC 的面积.【答案】(1)A (23,133),B (3,02-),C (5,0)(2)16912解:(1)由题意得,令直线l 1、直线l 2中的y 为0,得:x 1=-,x 2=5,由函数图象可知,点B的坐标为(-,0),点C的坐标为(5,0),∵l1、l2相交于点A,∴解y=2x+3及y=-x+5得:x=,y=∴点A的坐标为(,);(2)由(1)题知:|BC|=,又由函数图象可知S△ABC=×|BC|×|y A|=××=【举一反三】【变式1】(2022秋·辽宁丹东·八年级校考期中)如图所示,已知点A(﹣1,2)是一次函数y=kx+b (k≠0)的图象上的一点,则下列判断中正确的是()A.y随x的增大而减小B.k>0,b<0C.当x<0时,y<0D.方程kx+b=2的解是x=﹣1【答案】D【分析】根据一次函数的性质判断即可.解:由图象可得:A、y随x的增大而增大;B、k>0,b>0;C、当x<0时,y>0或y<0;D、方程kx+b=2的解是x=﹣1,故选:D.【点拨】考查了一次函数与一元一次方程的关系,一次函数图象与系数的关系,正确的识别图象是解题的关键.【变式2】(2023秋·全国·八年级专题练习)如图,直线2y x =与=+y kx b 相交于点(,2)p m ,则关于x的方程2kx b +=的解是.【答案】=1x 【分析】首先利用函数解析式2y x =求出m 的值,然后再根据两函数图象的交点横坐标就是关于x 的方程2kx b +=的解可得答案.解: 直线2y x =与=+y kx b 相交于点(),2P m ,22m ∴=,1m ∴=,()1,2P ∴,∴当=1x 时,2y kx b =+=,∴关于x 的方程2kx b +=的解是=1x ,故答案为:=1x .【点拨】此题主要考查了一次函数与一元一次方程,关键是求得两函数图象的交点坐标.。
北师大版八年级数学上册第4章 一次函数小结与复习
(1)分别求出甲、乙两个蓄水池中水的深度 y 与注
水时间 x 之间的函数关系式; 解:(1)设它们的函数关系式为
y=kx+b,根据甲的函数图象可知,
当 x=0,y=2;当 x=3时,y=0,
将它们代入关系式 y=kx+b 中,
水量相同.
见教材章末练习
得 k= 2 ,b=2,
所以甲蓄3水池中水的深度 y 与注水时间 x 之间的函数关
系式为:y=
2 3
x+2.
同理可得乙蓄水池中水的深
度 y 与注水时间 x 之间的函数关系式为:y=x+1;
(2)求注入多长时间后甲、乙两个蓄水池的深度相同;
(2) 由题意得 2 x+2=x+1,
3
解得 x=3 .
x
O
O
C
D
8.一次函数 y = ax + b 与 y = ax + c (a>0)在同 一坐标系中的图象可能是( A )
y
y
yyoxAoxBox
C
ox
D
9.李老师开车从甲地到相距 240 千米的乙地,如果油 箱剩余油量 y (升)与行驶里程 x (千米)之间是一次函 数关系,其图象如图所示,那么 到达乙地时油箱剩余油量是多少升?
3.函数的图象:对于一个函数,如果把自变量与函
数的每对对应值分别作为点的横坐标和纵坐标,那
么坐标平面内由这些点组成的图形,就是这个函数
的图象.
(所用方法:描点法)
4.描点法画图象的步骤:列表、描点、连线 5.函数的三种表示方法:
列表法 关系式法 图象法
一次函数与正比例函数的概念
北师大新版八年级第四章一次函数知识总结
北师大新版八年级第四章?一次函数?知识总结1、函数:假如在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,_______________________________________,那么我们称y是x的函数.2、函数的三种表示方法是:_______________________________。
关系式法的优点是____________________3、函数的图象是如何得到的__________________________________________________________________,对未知函数图象的研究通常用__________法,一般步骤是_______________________________________ 启示:“点在直线上〞如何理解?_______________________________________________________________________4、一次函数:形如_____________________________________的函数。
注意:〔1〕要使y=kx+b是一次函数,必须k≠0。
假如k=0,那么kx=0,y=kx+b就不是一次函数;〔2〕当____________时,y叫x的正比例函数。
〔3〕b的实际意义是____________________,k的实际意义是_______________________5、图象:一次函数的图象是_______________。
画一次函数的图象一般取_______个点,理由是_______________〔1〕两个常用的特殊点:与y轴交于___________________;与x轴交于___________________.〔2〕假设直线y=k1x+b1与直线y=k2x+ b2平行,那么________________________;假设垂直,那么_______________〔3〕___________时,直线y=k1x+b1与直线y=k2x+ b2相交,交点坐标为________________________________ 〔4〕一元一次方程kx+b=0的代数解法是__________________________________________________________________;时,一元一次方程kx+b=0的几何解法是当k0_____________________________________________________〔5〕在同一直角坐标系中,直线y=k1x+b1与直线y=k2x+ b2的交点意义是_________________________________;在交点两侧的意义是__________________________________________________________________ 〔6〕点的平移规律__________________________________;函数图象的平移规律________________________________6、性质:(1)一次函数图象的位置: ① k>0且b>0时___________________ ② k>0且b<0时___________________③ k<0且b>0时___________________ ④ k<0且b<0时___________________(2)正比例函数图象的位置: ① k>0时___________________ ② k>0时___________________(3)一次函数的单调性:____________时,y随x增大而增大;____________时,y随x增大而减小7.求一次函数解析式的方法_________________________;一般需要______个等量关系〔通常是两个点〕假设〔x1 ,y1〕、〔x2,y2〕两点都在直线y=kx+b的图象上,那么k=_________________。
北师大版八年级数学上册知识点归纳:第四章一次函数
第四章 一次函数一、函数:一般地,在某一变化过程中有两个变量x 与y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量。
二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(偶次根式)(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,若两个变量x ,y 间的关系可以表示成b kx y +=(k ,b 为常数,k ≠0)的形式,则称y 是x的一次函数(x 为自变量,y 为因变量)。
特别地,当一次函数b kx y +=中的b=0时(即kx y =)(k 为常数,k ≠0),称y 是x 的正比例函数。
2、一次函数的图像: 所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征:①、一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
②、由于一次函数y kx b =+的图象是一条直线,所以一次函数y kx b =+的图象也称为直线y kx b =+。
③、由于两点确定一条直线,因此在画一次函数y kx b =+的图象时,只要描出:与x 轴的交点(令0y =,求出b x k =-),与y 轴的交点(令0x =,求出y b =),即((0,),(,0)bb k- 两点即可,画正比例函数y kx =的图象时,只要描出点(0,0),(1,k )即可。
八年级上册数学北师大版知识点总结
第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。
2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。
第二章实数1. 无理数:无限不循环小数叫做无理数。
2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。
一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。
3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。
4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。
正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。
第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。
2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。
4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。
北师大版八年级上册第四章-一次函数知识点题型总结
北师大版八年级上册第四章-一次函数知识点题型总结11第四章一次函数知识点1:函数下列图形中的图象不表示y是x的函数的是()A.B.C.D.2.下列图象中表示y是x的函数的个数有__________3在函数y=中自变量x的取值范围是()A.x>1 B.x<1 C.x≠1D.x=14.函数y=中自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5D.x≤55.在函数y=中自变量x的取值范围是___________.知识点2:正比例函数和一次函数下列说法正确的是().A.一次函数是正比例函数B.正比例函数不是一次函数C.不是正比例函数就不是一次函数D.正比例函数是一次函数2.下列函数中是一次函数的有()y=πx(2)y=2x﹣1(3)y=(4)y=2﹣3x(5)y=x2﹣1.3若y=x+2-b是正比例函数则b的值是()A.0B.-2C.2D.-0.54.若y=x+2-b是正比例函数则b的值是()A.0B.-2C.2D.-0.55若函数y=(m+1)x|m|+2是一次函数则m的值为( )A.m=±1?B.m=-1?C.m=1?D.m≠-1y=2x|m|+3表示一次函数则m等于()A.1 B.﹣1C.0或﹣1 D.1或﹣1一个正比例函数的图象经过点(-24)它的表达式为?(?)B.C.D.?8.若点(mm+3)在函数y=-x+2的图象上则m=____9将一次函数y=2x-3的图象沿y轴向上平移8个单位长度所得直线的解析式为()A.y=2x-5B.y=2x+5C.y=2x+8D.y=2x-8与正比例函数y=x相同的函数是A.B.y=C.y=2D.y=知识点3:正比例函数和一次函数的图像性质已知函数y=(m+1)x是正比例函数且图象在第二、四象限内则m的值是()A.2B.-2C.±2D.-一次函数y=(2m﹣6)x+4中y随x的增大而减小则m的取值范围是_____.已知正比例函数y=kx(k<0)的图象上两点A(x1y1)、B (x2y2)且x1<x2则下列不等式中恒成立的是(?)A.y1+y2>0 B.y1+y2<0C.y1﹣y2>0 D.y1﹣y2<04.已知点(﹣2y1)(﹣1y2)(1y3)都在直线y=﹣3x+2上则y1y2y3的值的大小关系是(?)A.y3<y1<y2 B.y1<y2<y3 C.y3>y1>y2 D.y1>y2>y35.函数y=kx+b的图象如图所示则当y<0时x的取值范围是____________.如图直线y=x+b与直线y=kx+6交于点P(13)则关于x的不等式x+b>kx+6的解集是()A.x<1B.x>1C.x>3D.x<2如图直线y=kx和y=ax+4交于A(1k)则不等式ax+4<kx的解集为____________.已知点(2-4)在正比例函数y=kx的图象上。
最新北师大版八年级数学上册知识点总结
最新北师大版八年级数学上册知识点总结第一章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=. 2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法).3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形.满足222a b c +=的三个正整数称为勾股数. 第二章 实数1.平方根和算术平方根的概念及其性质:(1)概念:如果2x a =,那么x 是a的平方根,记作:a.(2)性质:①当a ≥00;当a=aa =.2.立方根的概念及其性质:(1)概念:若3a ,那么x 是a(2a =;②3a == 3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零.无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数.4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的.因此,数轴正好可以被实数填满. 5.算术平方根的运算律:(a ≥0,b ≥0) a ≥0,b >0).第三章 1.平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等.2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.这点定点称为旋转中心,转动的角称为旋转角.旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等. 3.作平移图与旋转图. 第四章 四边形性质的探索 1.多边形的分类:2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:(1)平行四边形:两组对边分别平行的四边形叫做平行四边形.平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分.两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.(2)菱形:一组邻边相等的平行四边形叫做菱形.菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角.四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形.菱形的面积等于两条对角线乘积的一半(面积计算,即S 菱形=L 1*L 2/2). =a b a b =(3)矩形:有一个内角是直角的平行四边形叫做矩形.矩形的对角线相等;四个角都是直角.对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形.直角三角形斜边上的中线等于斜边长的一半; 在直角三角形中30°所对的直角边是斜边的一半.(4)正方形:一组邻边相等的矩形叫做正方形.正方形具有平行四边形、菱形、矩形的一切性质.(5)等腰梯形同一底上的两个内角相等,对角线相等.同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形.(6)三角形中位线:连接三角形相连两边重点的线段.性质:平行且等于第三边的一半 3.多边形的内角和公式:(n-2)*180°;多边形的外角和都等于360.4.中心对称图形:在平面内,一个图形绕某个点旋转180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形. 第五章 位置的确定1.直角坐标系及坐标的相关知识.2.点的坐标间的关系:如果点A 、B 横坐标相同,则AB ∥y 轴;如果点A 、B 纵坐标相同,则AB ∥x 轴. 3.将图形的纵坐标保持不变,横坐标变为原来的1-倍,所得到的图形与原图形关于y 轴对称;将图形的横坐标保持不变,纵坐标变为原来的1-倍,所得到的图形与原图形关于x 轴对称;将图形的横、纵坐标都变为原来的1-倍,所得到的图形与原图形关于原点成中心对称. 第六章 一次函数1.一次函数定义:若两个变量,x y 间的关系可以表示成y kx b =+(,k b 为常数,0k ≠)的形式,则称y 是x 的一次函数.当0b =时称y 是x 的正比例函数.正比例函数是特殊的一次函数. 2.作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式.3.正比例函数图象性质:经过()0,0;k >0时,经过一、三象限;k <0时,经过二、四象限. 4.一次函数图象性质:(1)当k >0时,y 随x 的增大而增大,图象呈上升趋势;当k <0时,y 随x 的增大而减小,图象呈下降趋势.(2)直线y kx b =+与轴的交点为()0,b ,与x 轴的交点为 . (3)在一次函数y kx b =+中:k >0,b >0时函数图象经过一、二、三象限;k >0,b <0时函数图象经过一、三、四象限;k <0,b >0时函数图象经过一、二、四象限;k <0,b <0时函数图象经过二、三、四象限.(4)在两个一次函数中,当它们的k 值相等时,其图象平行;当它们的k 值不等时,其图象相交;当它们的k 值乘积为1-时,其图象垂直.4.已经任意两点求一次函数的表达式、根据图象求一次函数表达式. 5.运用一次函数的图象解决实际问题. 第七章 二元一次方程组1.二元一次方程及二元一次方程组的定义.2. 34.解应用题时,按.5.每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点. 第八章 数据的代表1.算术平均数与加权平均数的区别与联系:算术平均数是加权平均数的一种特殊情况,(它特殊在各项的权相等),当实际问题中,各项的权不相等时,计算平均数时就要采用加权平均数,当各项的权相等时,计算平均数就要采用算术平均数.2.中位数和众数:中位数指的是n 个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中间两个数据的平均数).众数指的是一组数据中出现次数最多的那个数据.应知应会的知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.,0b k⎛⎫- ⎪⎝⎭4.因式分解的公式:(1)平方差公式: a2-b2=(a+ b )(a- b );(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式. 6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项. 7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x2+px+q , 有“ x2+px+q是完全平方式 ⇔ q2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A的形式,如果B 中含有字母,式子B A叫做分式.2.有理式:整式与分式统称有理式;即⎩⎨⎧分式整式有理式. 3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变; 即分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.7.分式的乘除法法则:,bd ac d c b a =⋅ bc ad c d b a d c b a =⋅=÷.8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则:(1)公式: a0=1(a ≠0), a-n=na 1(a ≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:nn a b b a ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-,n mm n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母. 11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂.12.同分母与异分母的分式加减法法则: ;c b a cb c a ±=±bd bc ad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x2=a ,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0.5.三个重要非负数: a2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2.7.立方根的定义:若x3=a ,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方.8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0;(3)负数的立方根是一个负数.9.立方根的特性:33a a -=-. 10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数.11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 .13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题) 一 基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数. 二 常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和. 5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A .8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角. 9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应A BC E DA B CD12边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.12.符合“AAA”“SSA”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.※18.几何重要图形和辅助线:(1)选取和作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图.D CA2、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( )A :26B :18C :20D :24、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C :25 D :55、下列定理中,没有逆定理的是( )A :两直线平行,内错角相等B :直角三角形两锐角互余C :对顶角相等D :同位角相等,两直线平行6、△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,AB =8,BC =15,CA =17,则下列结论不正确的是( )A :△ABC 是直角三角形,且AC 为斜边B :△ABC 是直角三角形,且∠ABC =90° C :△ABC 的面积是60D :△ABC 是直角三角形,且∠A =60° 7、等边三角形的边长为2,则该三角形的面积为( ) A :::39、如图一艘轮船以16海里∕小时的速度从港口A 出发向东北方向航行,另一轮船12海里∕小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距( )A :36 海里B :48 海里C :60海里D :84海里10、若ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( ) A :14 B :4 C :14或4 D :以上都不对 二、填空题(每小题4分,共40分)12、如图所示,以Rt ABC 的三边向 外作正方形,其面积分别 为123,,S S S ,且1234,8,S S S ===则 ; 14、如图,90,4,3,12C ABD AC BC BD ︒∠=∠====,则AD= ;16、已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为 ; 19、如图,已知一根长8m 的竹杆在离地3m 处断裂,竹杆顶部抵着地 面,此时,顶部距底部有 m ; 20、一艘小船早晨8:00出发,它以8海里/时的速度向东航行,1小时后,另一艘小船以12海里/时的速度向南航行,上午10:00,两小相距 海里. 三、解答题(每小题10分,共70分)21、如图,为修通铁路凿通隧道AC ,量出∠A=40°∠B =50°,AB =5公里,BC =4公里,若每天凿隧道0.3公里,问几天才能把隧道AB 凿通?22、如图,每个小方格的边长都为1.求图中格点四边形ABCD 的面积.CB AD C A B D CB AD E F23、如图所示,有一条小路穿过长方形的草地ABCD ,若AB=60m ,BC=84m ,AE=100m ,•则这条小路的面积是多少?24、如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9. (1)求DC 的长. (2)求AB 的长.25、如图9,在海上观察所A ,我边防海警发现正北6km 的B 处有一可疑船只正在向东方向8km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为40km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?26、如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.求小明到达的终止点与原出发点的距离.27、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC •为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•例1 已知一个立方体盒子的容积为216cm 3,问做这样的一个正方体盒子(无盖)需要多少平方厘米的纸板?例2 若某数的立方根等于这个数的算术平方根,求这个数.例 3 下列说法中:①无限小数是无理数;②无理数是无限小数;③无理数的平方一定是无理数;④实数与数轴上的点是一一对应的.正确的个数是( )A 、1 B 、2 C 、3 D 、4 例4 (1) 已知22(4)0,()y x y xz -+++求的平方根。
八年级数学上册 第四章 一次函数知识点 (新版)北师大版
第四章一次函数一、变量:发生变化的量为变量常量:始终不发生变化的量.二、函数满足的三个条件1、两个变量。
2、其中一个变量发生变化另一个变量也随之变化。
3、对于x的每一个确定的值,y都有唯一确定的值与之对应。
三、函数的三种表示法:解析法、列表法、图象法.四、怎样判断一个图像是否为函数图像?从图像上栗说,与x轴垂直的任何直线不可能与图形有2个或2个以上的交点。
五、图象的识别关键抓住横轴和纵轴的意义.比方在行程问题中:如图〔1〕,表示速度v与时间t的函数图象中,①表示物体从0开始加速运动,②表示物体匀速运动,③表示物体减速运动到停止.如图〔2〕,表示路程S与时间t的函数图象中,①表示物体匀速运动,②表示物体停止运动,③表示物体反向运动至回到原出发点.六、正比例函数定义一般的,我们把形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.七、正比例函数图象和性质图像是过原点的一条直线.①当k>0时,图像经过第一、三象限,从左向右上升,即随着x的增大,y也增大.②当k<0时,图像经过第二、四象限,从左向右下降,即随着x的增大,y反而减小.八、一次函数定义一般的,形如y=kx+b〔k≠0〕的函数叫做一次函数,假设b=0,即y=kx,所以说正比例函数是特殊的一次函数.九、一次函数的图象直线经过第一、二、三象限直线经过第一、三、四象限直线经过第一、二、四象限直线经过第二、三、四象限十、一次函数的性质1、当k>0时,y随x的增大而增大.2、当k<0时,y随x的增大而减小.十一、一次函数的特征:因变量随自变量的变化是均匀的十二、一次函数y=kx+b〔k,b为常数,k≠0〕的图像沿y轴向上平移a个单位,得到的对应图像的函数解析式为y=kx+b+a;沿y轴向下平移a个单位,得到的对应图像的函数解析式为y=kx+b-a;十三、用待定系数法求一次函数解析式1、设y=kx+b〔k≠0〕.2、将两点坐标代入y=kx+b,得到以k、b为未知数的方程组.3、解方程组,求出k、b.4、将k、b代回y=kx+b,确定一次函数解析式.十四、做匀速运动〔即速度保持不变〕的物体,走过的路程与时间的函数关系的图象;一般是一条线段。
八年级上册《一次函数》知识点总结
八年级上册《一次函数》知识点总结八年级上册《一次函数》知识点总结初二数学一次函数知识点总结一、知识要点1、函数概念:在一个变化过程中有两个变量x、,如果对于x的每一个值,都有惟一的值与它对应,那么就说x是自变量,是x的函数2、一次函数和正比例函数的概念若两个变量x,间的关系式可以表示成=x+b(,b为常数,0)的形式,则称是x的一次函数(x为自变量),特别地,当b=0时,称是x的正比例函数说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义确定(2)一次函数=x+b(,b为常数,b0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数必须是不为零的常数,b可为任意常数(3)当b=0,0时,=b仍是一次函数(4)当b=0,=0时,它不是一次函数3、一次函数的图象(三步画图象)由于一次函数=x+b(,b为常数,0)的图象是一条直线,所以一次函数=x+b的图象也称为直线=x+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与轴的交点(0,b),直线与x轴的交点(-,0)但也不必一定选取这两个特殊点画正比例函数=x的图象时,只要描出点(0,0),(1,)即可4、一次函数=x+b(,b为常数,0)的性质(正比例函数的性质略)(1)的正负决定直线的倾斜方向;①>0时,的值随x值的增大而增大;②﹤时,的值随x值的增大而减小.(2)||大小决定直线的倾斜程度,即||越大,直线与x轴相交的锐角度数越大(直线陡),||越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与轴交点的位置;①当b>0时,直线与轴交于正半轴上;②当b<0时,直线与轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于,b的符号不同,直线所经过的象限也不同;、确定正比例函数及一次函数表达式的条(1)由于正比例函数=x(0)中只有一个待定系数,故只需一个条(如一对x,的值或一个点)就可求得的值.(2)由于一次函数=x+b(0)中有两个待定系数,b,需要两个独立的条确定两个关于,b的方程,求得,b的值,这两个条通常是两个点或两对x,的值.6、待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数=x+b中,,b就是待定系数.7、用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为=x+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出与b的值,得到函数表达式.8、本思想方法(1)函数方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版 八年级数学上册
第四章 一次函数
一、函数
1、函数的概念(重点)
一般的,如果在一个变化过程中有两个变量和,并且对于变量的每一个值,变量都有一个唯一的x y x y 值与它对应,那么我们就称是的函数,其中是自变量,是因变量。
y x x y 理解函数的关键四点:
(1)有两个变量;(2)一个变量变化,另一个随之变化;(3)对于自变量每一个确定的值,函数x 有且仅有一个值与之对应;(4)函数不是数,是过程中、的变量关系。
y x y 2、函数的三种表示方法(难点)
(1)列表法
(2)关系式法
(3)图像法
3、函数的值及自变量的取值范围(重点)
(1)对于自变量在取值范围内的一个确定的值,函数有唯一确定的对应值,称为自变量等于时的函a a 数值。
(2)使得函数有意义的自变量的全体取值,叫做自变量的取值范围。
确定自变量取值范围两点:一是必须使含有自变量的代数式有意义,二是必须满足实际问题的意义。
二、一次函数与正比例函数
1、一次函数的概念(重点)
若两个变量、间的对应关系可以表示成(、为常数,)的形式,则成是的一x y y kx b =+k b 0k ≠y x 次函数。
2、正比例函数的概念(重点)
对于一次函数(),当时,变为,这是把叫做的正比例函数。
y kx b =+0k ≠0b =y kx =y x 3、根据条件列一次函数的关系式(难点)
认真分析,探究实际问题中的有关信息,再次基础上建立数学模型,从而解决问题。
步骤:
(1)认真分析,理解题意;
(2)找出等量关系;
(3)写出一次函数关系式;
(4)确定自变量的取值范围,实际问题实际分析。
三、一次函数的图像
1、函数的图像(重点)
把一个函数的自变量的值和与之对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系中描出相应的点,所有这些点组成的图形就叫做函数的图象。
注:一次函数的图像是一条直线,所以只需描出两个点即可画出图象。
2、正比例函数的图像和性质(重点)
,(0)y kx k =≠(1)正比例函数的图像是经过、两点的直线。
,(0)y kx k =≠(0,0)(1,)k (2)当时,图象经过一三象限,且随的增大而增大;当时,图象经过二四象限,且随0k >y x 0k <y 的增大而减小。
x 3、一次函数图象的特点及性质(重点)
一次函数的图像和性质:
,(0)y kx b k =+≠
特点:一次函数的图像是一条直线,因此作函数图象时,只需要确定两个点,即可连接,(0)y kx b k =+≠两点做出函数图象,函数图象也成直线。
y kx b =+性质:
(1)图象经过点。
当时,随增大而增大,当时,随增大而减小。
(0,)b 0k >y x 0k <y x (2)当,时,图象经过一二三象限;当,时,图象经过一三四象限;当,0k >0b >0k >0b <0k <时,图象经过一二四象限;当,时,图象经过二三四象限;
0b >0k <0b <(3)两条直线位置关系:当相等,不等时,两直线平行;当相等,相等时,两直线重合;当不k b k b k 等时,两直线相交;当不等,相等时,两直线相交于轴;
k b y 四、一次函数的应用
1、确定正比例函数的表达式(重点)
正比例函数只有一个待定系数,只需要除原点之外的任意一点的坐标,即可求出值,进
y kx =k (0,0)k
而求出函数表达式。
注:一次函数的图像是一条直线,所以只需描出两个点即可画出图象。
2、用待定系数法确定一次函数的表达式(难点)
一次函数有两个待定系数和,所以只需求出二者的值,即可求出函数表达式。
,(0)y kx b k =+≠k b 待定系数法:首先设函数;其次将两个已知点的坐标带人表达式,列出、的方程;最后求y kx b =+k b 解方程。
3、一次函数与一元一次方程的关系(重难点)
(1)从“数”的方面看:一次函数函数值为某一数值时,自变量的值即为方程的解。
y kx b =+x (2)从“形”的方面看:函数与轴的交点的横坐标即为方程的解。
x 0kx b +=4、利用图象信息解决实际问题(重难点)
两方面分析图象:
(1)根据函数图象可判断函数类型,注意特殊的点
(2)从轴、轴的实际意义去理解函数图象上的点的坐标的实际意义
x y 类型一:正比例函数与一次函数定义
1、当m 为何值时,函数是一次函数?28(3)(4)m y m x
m -=++-举一反三:
【变式1】如果函数是正比例函数,那么().3(2)m y x
m -=+-A .m=4或m=2 B .m=4
C .m=1
D .m=2 【变式2】已知y-3与x 成正比例,且x=2时,y=7.(1)写出y 与x 之间的函数关系式;(2)当x=4时,求y 的值;(3)当y=4时,求x 的值.
类型二:待定系数法求函数解析式
2、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.
举一反三:
【变式1】已知弹簧的长度y (cm )在一定的弹性限度内是所挂重物的质量x (kg )的一次函数,现已测得不挂重物时,弹簧的长度为6cm ,挂4kg 的重物时,弹簧的长度是7.2cm ,求这个一次函数的表达式.
【变式2】已知直线y=2x+1.
(1)求已知直线与y 轴交点M 的坐标;
(2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值.
【变式3】判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.
类型三:函数图象的应用
3、图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,回答下列问题:
(1)汽车共行驶了___________km;
(2)汽车在行驶途中停留了___________h;
(3)汽车在整个行驶过程中的平均速度为___________km/h;
(4)汽车自出发后3h至4.5h之间行驶的方向是___________.
举一反三:
【变式1】图中,射线l甲、l乙分别表示甲、乙两运动员在自行车比赛中所走的路程s与时间t的函数关
系,求它们行进的速度关系。
【变式2】小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示。
放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是()
A.14分钟
B.17分钟
C.18分钟
D.20分钟
【变式3】某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如图所示:
根据图象解答下列问题:
(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?
(2)已知洗衣机的排水速度为每分钟19升.①求排水时y 与x 之间的关系式;②如果排水时间为2分钟,
求排水结束时洗衣机中剩下的水量.
类型四:一次函数的性质
4、己知一次函数y=kx 十b 的图象交x 轴于点A (一6,0),交y 轴于点B ,且△AOB 的面积为12,y 随x 的增大而增大,求k ,b 的值.
举一反三:
【变式1】已知关于x 的一次函数.
2
(3)218y m x m =--+(1)m 为何值时,函数的图象经过原点?
(2)m 为何值时,函数的图象经过点(0,-2)?
(3)m 为何值时,函数的图象和直线y=-x 平行?
(4)m 为何值时,y 随x 的增大而减小?
【变式2】函数在直角坐标系中的图象可能是()y kx k =+
类型五:一次函数综合
5、已知:如图,平面直角坐标系中,A (1,0),B (0,1),C (-1,0),过点C 的直线绕C 旋转,交y 轴于点D ,交线段AB 于点E 。
(1)求∠OAB 的度数及直线AB 的解析式;
(2)若△OCD 与△BDE 的面积相等,
①求直线CE 的解析式;②若y 轴上的一点P 满足∠APE=45°,
请直接写出点P 的坐标。
举一反三:
【变式1】在长方形ABCD 中,AB=3cm ,BC=4cm ,点P 沿边按A →B →C →D 的方向向点D 运动(但不与A ,D 两点重合)。
求△APD 的面积y (cm 2)与点P 所行的路程x (cm )之间的函数关系式及自变量的
取值范围。
【变式2】如图,直线与x 轴y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为6y kx =+(-6,0)。
(1)求k 的值;
(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;
(3)探究:在(2)的条件下,当点P 运动到什么位置时,△OPA 的面积为27/8,并说明理由。