2019年高考数学一轮复习学案+训练+课件(北师大版文科): 课时分层训练14 导数与函数的单调性 文 北师大版

合集下载

[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版文科):-第3章-三角函数、解三角形

[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版文科):-第3章-三角函数、解三角形

[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版文科):-第3章-三角函数、解三角形第五节两角和与差及二倍角的三角函数[考纲传真] 1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的三角恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).(对应学生用书第48页)[基础知识填充]1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin_αcos_β±cos_αsin_β;(2)cos(α±β)=cos_αcos_β∓sin_αsin_β;②cos 2α=12(1+cos 2α).(3)公式的逆用:①1±sin 2α=(sin α±cos α)2;②sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4.2.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝⎛⎭⎪⎫其中tan φ=b a .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(2)在锐角△ABC 中,sin A sin B 和cos A cosB 大小不确定.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)公式a sin x+b cos x=a2+b2sin(x+φ)中φ的取值与a,b的值无关.( )[答案](1)√(2)×(3)×(4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=( )A.-32B.32C.-12D.12D[sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.]3.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29C .29D .79A [∵sin α-cos α=43,∴(sin α-cos α)2=1-2sin αcos α=1-sin 2α=169,∴sin 2α=-79.故选A .]4.(2017·云南二次统一检测)函数 f (x )=3sin x +cos x 的最小值为________.【导学号:00090103】-2 [函数f (x )=2sin ⎝⎛⎭⎪⎫x +π6的最小值是-2.]5.若锐角α,β满足(1+3tan α)(1+3tanβ)=4,则α+β=________.π3[由(1+3tan α)(1+3tan β)=4,可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3.又α+β∈(0,π),∴α+β=π3.](对应学生用书第49页)三角函数式的化简(1)化简:sin 2-2cossin⎝⎛⎭⎪⎫α-π4=________.(2)化简:2cos4x-2cos2x+122tan⎝⎛⎭⎪⎫π4-x sin2⎝⎛⎭⎪⎫π4+x.(1)22cos α[原式=2sin αcos α-2cos2α2 2sin α-cos α=22cos α.](2)原式=-2sin2x cos2x+122sin⎝⎛⎭⎪⎫π4-x cos2⎝⎛⎭⎪⎫π4-xcos⎝⎛⎭⎪⎫π4-x=121-sin22x2sin⎝⎛⎭⎪⎫π4-x cos⎝⎛⎭⎪⎫π4-x=12cos22xsin⎝⎛⎭⎪⎫π2-2x=12cos 2x.[规律方法] 1.三角函数式的化简要遵循“三看”原则一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,最常见的是“切化弦”.三看“结构特征”,分析结构特征,找到变形的方向. 2.三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.[变式训练1] 化简sin 2⎝⎛⎭⎪⎫α-π6+sin 2⎝⎛⎭⎪⎫α+π6-sin 2α=________.【导学号:00090104】12[法一:原式=1-cos ⎝⎛⎭⎪⎫2α-π32+1-cos ⎝⎛⎭⎪⎫2α+π32-sin 2α=1-12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2α-π3+cos ⎝⎛⎭⎪⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.法二:令α=0,则原式=14+14=12.]三角函数式的求值角度1 给角求值(1)2cos 10°-sin 20°sin 70°=( )A.12B.32C. 3 D. 2(2)sin 50°(1+3tan 10°)=________.(1)C(2)1[(1)原式=2cos30°-20°-sin 20°sin 70°=错误!=3cos 20°cos 20°= 3.(2)sin 50°(1+3tan 10°)=sin 50°⎝⎛⎭⎪⎫1+3·sin 10°cos 10°=sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.]角度2 给值求值(1)(2016·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( ) A .725 B .15C .-15D .-725(2)(2018·安徽十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝⎛⎭⎪⎫α+π3=( )A .1+358B .1+538C .1-358D .1-538(1)D (2)A [(1)∵cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos 2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725.(2)由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14.∵α为锐角,∴cos α=154,∴sin ⎝⎛⎭⎪⎫α+π3=14×12+154×32=1+358,故选A .] 角度3 给值求角(2018·长春模拟)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )【导学号:00090105】A .5π12B .π3C .π4D .π6C [∵α,β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=310 10.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎪⎫-1010=22.∴β=π4.][规律方法] 1.“给角求值”中一般所给出的角都是非特殊角,应仔细观察非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数求解.2.“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.3.“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,最后确定角.三角变换的简单应用(1)(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6的最大值为( )A .65B .1C .35D .15(2)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎪⎫x -π6,x∈R.①求f (x )的最小正周期;②求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.(1)A [法一:∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6=15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x =110sin x +310cos x +32cos x +12sin x =35sin x +335cos x =65sin ⎝⎛⎭⎪⎫x +π3,∴当x =π6+2k π(k ∈Z)时,f (x )取得最大值65. 故选A .法二:∵⎝ ⎛⎭⎪⎫x +π3+⎝ ⎛⎭⎪⎫π6-x =π2,∴f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝⎛⎭⎪⎫x +π3≤65.∴f (x )max =65.故选A .](2)①由已知,有f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎪⎫2x -π6.所以f (x )的最小正周期T =2π2=π.②因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数, 在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,且f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34,所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12.[规律方法] 1.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.2.把形如y =a sin x +b cos x 的函数化为y=a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中tan φ=b a 的形式,可进一步研究函数的周期、单调性、最值与对称性.[变式训练2] (2017·北京高考)已知函数f (x )=3cos ⎝⎛⎭⎪⎫2x -π3-2sin x cos x .(1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.[解] (1)f (x )=32cos 2x +32sin 2x -sin2x=12sin 2x +32cos 2x =sin ⎝⎛⎭⎪⎫2x +π3,所以f (x )的最小正周期T =2π2=π.(2)证明:因为-π4≤x ≤π4,所以-π6≤2x+π3≤5π6,所以sin ⎝ ⎛⎭⎪⎫2x +π3≥sin ⎝ ⎛⎭⎪⎫-π6=-12,所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.。

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 第5章 数列 第3节 等比数列及其前n项和学案 文

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 第5章 数列 第3节 等比数列及其前n项和学案 文

第三节 等比数列及其前n 项和[考纲传真] 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.4.了解等比数列与指数函数的关系.(对应学生用书第72页) [基础知识填充]1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为=q(n∈N *,q 为非零常数).an +1an (2)等比中项:如果在a 与b 中插入一个数G ,使得a ,G ,b 成等比数列,那么根据等比数列的定义,=,G 2=ab ,G =±,那么G 叫作a 与b 的等比中项.即:G 是aG a bG ab 与b 的等比中项⇔a ,G ,b 成等比数列⇔G 2=aB .2.等比数列的通项公式与前n 项和公式(1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =Error!3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和.(1)若k +l =m +n (k ,l ,m ,n ∈N +),则有a k ·a l =a m ·a n .(2)等比数列{a n }的单调性:当q >1,a 1>0或0<q <1,a 1<0时,数列{a n }是递增数列;当q >1,a 1<0或0<q <1,a 1>0时,数列{a n }是递减数列;当q =1时,数列{a n }是常数列.(3)相隔等距离的项组成的数列仍是等比数列,即a k ,a k +m ,a k +2m ,…仍是等比数列,公比为q m .(4)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .[知识拓展]1.“G 2=ab ”是“a ,G ,b 成等比数列”的必要不充分条件.2.若q ≠0,q ≠1,则S n =k -kq n (k ≠0)是数列{a n }成等比数列的充要条件,此时k =.a 11-q [基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( )(2)G 为a ,b 的等比中项⇔G 2=aB .( )(3)若{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( )(4)数列{a n }的通项公式是a n =a n ,则其前n 项和为S n =.( )a 1-an1-a [答案] (1)× (2)× (3)× (4)×2.(2018·广州模拟)已知等比数列{a n }的公比为-,则的值是( )12a 1+a 3+a 5a 2+a 4+a 6A .-2 B .- 12C . D .212A [==-2.]a 1+a 3+a 5a 2+a 4+a 6a 1+a 3+a 5-12 a 1+a 3+a 53.(2017·东北三省四市一联)等比数列{a n }中,a n >0,a 1+a 2=6,a 3=8,则a 6=( ) 【导学号:00090168】A .64B .128C .256D .512A [设等比数列的首项为a 1,公比为q ,则由Error!解得Error!或Error!(舍去),所以a 6=a 1q 5=64,故选A .]4.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为__________.27,81 [设该数列的公比为q ,由题意知,243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.]5.(2018·长春模拟)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =__________.6 [∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列.又∵S n =126,∴=126,解得n =6.]2 1-2n 1-2(对应学生用书第72页)等比数列的基本运算 (1)(2018·合肥模拟)已知S n 是各项为正数的等比数列{a n }的前n 项和,a 2·a 4=16,S 3=7,则a 8=( )A .32B .64C .128D .256(2)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于__________.(1)C (2)2n -1 [(1)∵{a n }为等比数列,a 2·a 4=16,∴a 3=4.∵a 3=a 1q 2=4,S 3=7,∴S 2==3,∴(1-q 2)a 1 1-q 2 1-q 4q 2=3(1-q ),即3q 2-4q -4=0,∴q =-或q =2.∵a n >0,∴q =2,23则a 1=1,∴a 8=27=128.(2)设等比数列的公比为q ,则有Error!解得Error!或Error!又{a n }为递增数列,∴Error!∴S n ==2n -1.]1-2n1-2[规律方法] 1.等比数列的通项公式与前n 项和公式共涉及五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,体现了方程思想的应用.2.在使用等比数列的前n 项和公式时,应根据公比q 的情况进行分类讨论,在运算过程中,应善于运用整体代换思想简化运算.[变式训练1] (1)在等比数列{a n }中,a 3=7,前3项和S 3=21,则公比q 的值为( )A .1B .- 12C .1或-D .-1或1212(2)设等比数列{a n }的前n 项和为S n ,若27a 3-a 6=0,则=________.S 6S 3【导学号:00090169】(1)C (2)28 [(1)根据已知条件得Error!②÷①得=3.1+q +q 2q 2整理得2q 2-q -1=0,解得q =1或q =-.12(2)由题可知{a n }为等比数列,设首项为a 1,公比为q ,所以a 3=a 1q 2,a 6=a 1q 5,所以27a 1q 2=a 1q 5,所以q =3,由S n =,得a 1 1-qn1-q S 6=,S 3=,所以=·=28.]a 1 1-36 1-3a 1 1-331-3S 6S 3a 1 1-36 1-31-3a 1 1-33 等比数列的判定与证明 (2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0.(1)证明{a n }是等比数列,并求其通项公式;(2)若S 5=,求λ.3132[解] (1)证明:由题意得a 1=S 1=1+λa 1,2分故λ≠1,a 1=,故a 1≠0.3分11-λ由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .5分由a 1≠0,λ≠0得a n ≠0,所以=.an +1an λλ-1因此{a n }是首项为,公比为的等比数列,11-λλλ-1于是a n =n -1.7分11-λ(λλ-1)(2)由(1)得S n =1-n .9分(λλ-1)由S 5=得1-5=,即5=.10分3132(λλ-1)3132(λλ-1)132解得λ=-1.12分[规律方法] 等比数列的判定方法(1)定义法:若=q (q 为非零常数,n ∈N *),则{a n }是等比数列.an +1an (2)等比中项法:若数列{a n }中,a n ≠0,且a =a n ·a n +2(n ∈N *),则数列{a n }是等比2n +1数列.(3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.说明:前两种方法是证明等比数列的常用方法,后者常用于选择题、填空题中的判定.[变式训练2] 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n .(1)设c n =a n -1,求证:{c n }是等比数列;(2)求数列{b n }的通项公式.[解] (1)证明:∵a n +S n =n ,①∴a n +1+S n +1=n +1,②②-①得a n +1-a n +a n +1=1,即2a n +1=a n +1,∴2(a n +1-1)=a n -1,即2c n +1=c n .3分由a 1+S 1=1得a 1=,∴c 1=a 1-1=-,1212从而c n ≠0,∴=.cn +1cn 12∴数列{c n }是以-为首项,为公比的等比数列.6分1212(2)由(1)知c n =-×n -1=-n ,7分12(12)(12)又c n=a n-1,∴a n=c n+1=1-n,9分(12)∴当n ≥2时,b n =a n -a n -1=1-n -=n .(12)[1-(12)n -1](12)又b 1=a 1=,适合上式,故b n=n.12分12(12)等比数列的性质及应用 (1)(2016·安徽六安一中综合训练)在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( )A .4B .5C .6D .7(2)设等比数列{a n }的前n 项和为S n ,若=3,则=( ) 【导学号:00090170】S 6S 3S 9S 6A .2B .73C .D .383(1)B (2)B [(1)由等比数列的性质可知a m +1·a m -1=a =2a m (m ≥2),所以a m =2,即2m 数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5,故选B .(2)法一:由等比数列的性质及题意,得S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3,∴=,即S 9-S 6=4S 3,S 9=7S 3,∴=.S 6-S 3S 3S 9-S 6S 6-S 3S 9S 673法二:=1+=1+q 3=3,所以q 3=2.S 6S 3a 4+a 5+a 6a 1+a 2+a 3则===.]S 9S 61-q 91-q 61-231-2273[规律方法] 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.2.等比数列的性质可以分为三类:一是通项公式的变形;二是等比中项的变形,三是前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.[变式训练3] (1)(2017·合肥三次质检)在正项等比数列{a n }中,a 1 008·a 1 009=,则1100lg a 1+lg a 2+…+lg a 2 016=( )A .2 015B .2 016C .-2 015D .-2 016(2)(2018·湖北六校联考)在数列{a n }中,a 1=1,a n +1=2a n ,则S n =a -a +a -a +…+a -a 等于( )212232422n -122n A .(2n -1) B .(1-24n )1315C .(4n -1)D .(1-2n )1313(1)D (2)B [(1)lg a 1+lg a 2+…+lg a 2 016=lg a 1a 2…a 2 016=lg(a 1 008·a 1 009)1 008=lg 1 008=lg 1 008=-2 016,故选D .(1100)(10-2)(2)在数列{a n }中,由a 1=1,a n +1=2a n ,可得a n =2n -1,则S n =a -a +a -a +…+a -a 212232422n -122n =1-4+16-64+…+42n -2-42n -1==(1-42n )=(1-24n ).]1- -4 2n 1- -4 1515。

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 课时分层训练21 正弦定理和余弦定理 文 北师大版

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 课时分层训练21 正弦定理和余弦定理 文 北师大版

课时分层训练(二十一)正弦定理和余弦定理A 组基础达标 (建议用时:30分钟)一、选择题1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为() A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定B [由正弦定理得sin B cosC +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A .∵A ∈(0,π),∴sin A >0,∴sin A =1,即A =π2.]2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是()A .有一解B .有两解C .无解D .有解但解的个数不确定C [由正弦定理得b sin B =csin C,∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.]3.在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =() A .1 B .2 C .3D .4A [由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos C ,即13=AC 2+9-2AC ×3×cos120°,化简得AC 2+3AC -4=0,解得AC =1或AC =-4(舍去).故选A .] 4.△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积等于()A .32 B .34 C .32或 3 D .32或34D [由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B , 即1=3+BC 2-3BC ,解得BC =1或BC =2,当BC =1时,△ABC 的面积S =12AB ·BC sin B =12×3×1×12=34.当BC =2时,△ABC 的面积S =12AB ·BC sin B =12×3×2×12=32.总上之,△ABC 的面积等于34或32.] 5.在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =()A .310 B .1010C .55D .31010D [过A 作AD ⊥BC 于D ,设BC =a ,由已知得AD =a 3.∵B =π4,∴AD =BD ,∴BD =AD =a3,DC =23a ,∴AC =⎝ ⎛⎭⎪⎫a 32+⎝ ⎛⎭⎪⎫23a 2=53a,在△ABC 中,由正弦定理得a sin ∠BAC =53a sin 45°,∴sin ∠BAC =31010,故选D .]二、填空题6.如图3­6­1所示,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.图3­6­13[∵sin ∠BAC =sin(90°+∠BAD )=cos ∠BAD =223,∴在△ABD 中,有BD 2=AB 2+AD -2AB ·AD cos ∠BAD , ∴BD 2=18+9-2×32×3×223=3,∴BD = 3.]7.已知△ABC 中,AB =3,BC =1,sin C =3cos C ,则△ABC 的面积为________.32[由sin C =3cos C 得tan C =3>0,所以C =π3. 根据正弦定理可得BCsin A =ABsin C,即1sin A =332=2, 所以sin A =12.因为AB >BC ,所以A <C ,所以A =π6,所以B =π2,即三角形为直角三角形,故S △ABC =12×3×1=32.]8.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.π3[由2b cos B =a cos C +c cos A 及正弦定理, 得2sin B cos B =sin A cos C +sin C cos A . ∴2sin B cos B =sin(A +C ). 又A +B +C =π,∴A +C =π-B . ∴2sin B cos B =sin(π-B )=sin B . 又sin B ≠0,∴cos B =12.∴B =π3.]三、解答题9.已知△ABC 内接于单位圆,角A ,B ,C 的对边分别为a ,b ,c ,且2a cos A =c cos B +b cos C .(1)求cos A 的值;(2)若b 2+c 2=4,求△ABC 的面积. [解](1)∵2a cos A =c cos B +b cos C , ∴2sin A ·cos A =sin C cos B +sin B cos C , 即2sin A ·cos A =sin(B +C )=sin A . 4分又0<A <π,∴sin A ≠0. ∴2cos A =1,cos A =12.6分(2)由(1)知cos A =12,∴sin A =32.∵△ABC 内接于单位圆,asin A =2R =2,∴a =2sin A = 3.8分 由a 2=b 2+c 2-2bc cos A ,得bc =b 2+c 2-a 2=4-3=1, 10分 ∴S △ABC =12bc sin A =12×1×32=34.12分10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,m =(sin B,5sin A +5sin C )与n =(5sin B-6sin C ,sin C -sin A )垂直. (1)求sin A 的值;(2)若a =22,求△ABC 的面积S 的最大值.[解](1)∵m =(sin B,5sin A +5sin C )与n =(5sin B -6sin C ,sin C -sin A )垂直,∴m ·n =5sin 2B -6sin B sinC +5sin 2C -5sin 2A =0, 即sin 2B +sin 2C -sin 2A =6sinB sinC 5.3分根据正弦定理得b 2+c 2-a 2=6bc 5, 由余弦定理得cos A =b 2+c 2-a 22bc =35.∵A 是△ABC 的内角, ∴sin A =1-cos 2A =45.6分(2)由(1)知b 2+c 2-a 2=6bc 5,∴6bc 5=b 2+c 2-a 2≥2bc -a 2.8分又∵a =22,∴bc ≤10.∵△ABC 的面积S =12bc sin A =2bc5≤4,∴△ABC 的面积S 的最大值为4.12分B 组能力提升 (建议用时:15分钟)1.△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 已知b =c ,a 2=2b 2(1-sin A ),则A =()A .3π4B .π3C .π4D .π6C [∵b =c ,∴B =C .又由A +B +C =π得B =π2-A2.由正弦定理及a 2=2b 2(1-sin A )得 sin 2A =2sin 2B (1-sin A ),即sin 2A =2sin 2⎝ ⎛⎭⎪⎫π2-A 2(1-sin A ),即sin 2A =2cos 2A2(1-sin A ),即4sin 2A2cos 2A2=2cos 2A2(1-sin A ),整理得cos 2A 2⎝ ⎛⎭⎪⎫1-sin A -2sin 2A 2=0,即cos 2A2(cos A -sin A )=0.∵0<A <π,∴0<A 2<π2,∴cos A2≠0,∴cos A =sin A .又0<A <π,∴A =π4.]2.如图3­6­2,在△ABC 中,∠B =45°,D 是BC 边上的点,AD =5,AC =7,DC =3,则AB 的长为________.图3­6­2562[在△ADC 中,AD =5,AC =7,DC =3, 由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =-12,所以∠ADC =120°,∠ADB =60°.在△ABD 中,AD =5,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B ,所以AB =562.]3.如图3­6­3,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .图3­6­3(1)求sin ∠ABD 的值; (2)若∠BCD =2π3,求CD 的长.[解](1)∵AD ∶AB =2∶3,∴可设AD =2k ,AB =3k . 又BD =7,∠DAB =π3,∴由余弦定理,得(7)2=(3k )2+(2k )2-2×3k ×2k cos π3,解得k =1,∴AD =2,AB =3, sin ∠ABD =AD sin ∠DAB BD =2×327=217.(2)∵AB ⊥BC ,∴cos ∠DBC =sin ∠ABD =217, ∴sin ∠DBC =277,∴BD sin ∠BCD =CDsin ∠DBC,∴CD =7×27732=433.。

2019年高考数学一轮复习学案 训练 课件(北师大版文科) 第2章 函数、导数及其应用 第2节 函数的单调性与最

2019年高考数学一轮复习学案 训练 课件(北师大版文科) 第2章 函数、导数及其应用 第2节 函数的单调性与最

第二节 函数的单调性与最大(小)值[考纲传真] .理解函数的单调性、最大(小)值及其几何意义.会运用基本初等函数的图像分析函数的性质.(对应学生用书第页)[基础知识填充].函数的单调性()单调函数的定义如果函数=()在区间上是增加的或是减少的,那么就称为单调区间..函数的最大(小)值函数单调性的常用结论()对任意,∈(≠),>⇔()在上是增函数,<⇔()在上是减函数.()对勾函数=+(>)的增区间为(-∞,-]和[,+∞),减区间为[-,)和(,].()在区间上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.()函数(())的单调性与函数=()和=()的单调性的关系是“同增异减”.[基本能力自测].(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()对于函数(),∈,若对任意,∈,≠且(-)·[()-()]>,则函数()在区间上是增加的.( )()函数=的单调递减区间是(-∞,)∪(,+∞).( )()函数=在上是增加的.( )()函数=-在区间[,+∞)上是增加的,则函数=-的单调递增区间为[,+∞).( ) [答案]()√()×()×()×.(·深圳二次调研)下列四个函数中,在定义域上不是单调函数的是( ).=.=.=.=[选项,中函数在定义域内均为单调递增函数,选项为在定义域内为单调递减函数,选项中,设<(,≠),则-=-=,因为-<,当,同号时>,-<,当,异号时<,->,所以函数=在定义域上不是单调函数,故选.].(教材改编)已知函数()=,∈[],则()的最大值为,最小值为.[可判断函数()=在[]上为减函数,所以()=()=,()=()=.].函数=(+)+在上是减函数,则的取值范围是.[由题意知+<,得<-.].()=-,∈[-]的单调增区间为,()=.[][()=(-)-,故()的单调增区间为[],()=(-)=.](对应学生用书第页).(-∞,-) .(-∞,).(,+∞).(,+∞)()试讨论函数()=+(>)的单调性.【导学号:】() [由-->,得>或<-.设=--,则=在∈(,+∞)上为增函数.欲求函数()的单调递增区间,即求函数=--的单调递增区间.∵函数=--的单调递增区间为(,+∞),∴函数()的单调递增区间为(,+∞).故选.]()法一:由解析式可知,函数的定义域是(-∞,)∪(,+∞).在(,+∞)内任取,,令<<,那么()-()=-=(-)+=(-)·.因为<<,所以->,>.故当,∈(,+∞)时,()<(),即函数在(,+∞)上是增加的.。

2019高考数学一轮复习学案+训练+课件(北师大版文科): 第2章 函数、导数及其应用 第7节 函数的图像课件

2019高考数学一轮复习学案+训练+课件(北师大版文科): 第2章 函数、导数及其应用 第7节 函数的图像课件

[规律方法] 函数图像的识辨可从以下方面入手: (1)从函数的定义域,判断图像的左右位置;从函数的值域,判断图像的上下 位置; (2)从函数的单调性,判断图像的变化趋势; (3)从函数的奇偶性,判断图像的对称性; (4)从函数的周期性,判断图像的循环往复; (5)从函数的特征点,排除不合要求的图像.
)
【导学号:00090038】
C
[令
f(x)=1-sinco2sx
, x
∵f(1)=1-sinco2s 1>0,f(π)=1-sinco2sππ=0,
∴排除选项 A,D.
由 1-cos x≠0 得 x≠2kπ(k∈Z),
故函数 f(x)的定义域关于原点对称.
又∵f(-x)=1-sinco-s2-xx=-1-sinco2sx x=-f(x),
[变式训练 1] 分别画出下列函数的图像: (1)y=|lg x|;(2)y=sin|x|. [解] (1)∵y=|lg x|=l-g lxg,xx,≥01<,x<1. ∴函数 y=|lg x|的图像,如图①.
(2)当 x≥0 时,y=sin|x|与 y=sin x 的图像完全相同,又 y=sin|x|为偶函数,图 像关于 y 轴对称,其图像如图②.

A.甲是图①,乙是图② C.甲是图③,乙是图②



图 2-7-1
B.甲是图①,乙是图④
D.甲是图③,乙是图④
B [设甲骑车速度为 V 甲骑,甲跑步速度为 V 甲跑,乙骑车速度为 V 乙骑,乙跑 步速度为 V 乙跑,依题意 V 甲骑>V 乙骑>V 乙跑>V 甲跑,故选 B.]
3.函数 f(x)的图像向右平移 1 个单位长度,所得图像与曲线 y=ex 关于 y 轴对称,
[知识拓展] 1.一个函数图像的对称关系

2019年高考数学1轮复习学案 训练(北师大版文科): 第1节 函数及其表示学案

2019年高考数学1轮复习学案 训练(北师大版文科):  第1节 函数及其表示学案

第一节函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(对应学生用书第7页)[基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫作自变量,集合A叫作函数的定义域;与x的值相对应的y值叫作函数值,函数值的集合{f(x)|x∈A}叫作函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图像法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[知识拓展]求函数定义域的依据(1)整式函数的定义域为R ; (2)分式的分母不为零;(3)偶次根式的被开方数不小于零; (4)对数函数的真数必须大于零;(5)正切函数y =tan x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z; (6)x 0中x ≠0;(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)× 2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A .⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C .⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知 ⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.(2018·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤1log 12x ,x >1则f [f (4)]=________.【导学号:00090012】14 [f (4)=log 124=-2,所以f [f (4)]=f (-2)=2-2=14.] 4.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________. -2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.] 5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数;③函数y =2x (x ∈N )的图像是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________. ① [由函数的定义知①正确.∵满足⎩⎪⎨⎪⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.∵y =2x (x ∈N )的图像是位于直线y =2x 上的一群孤立的点, ∴③不正确.∵f (x )与g (x )的定义域不同,∴④也不正确.](对应学生用书第8页)A .(-2,1)B .[-2,1]C .(0,1)D .(0,1](2)(2017·郑州模拟)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)C (2)[0,1) [(1)由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0ln x ≠0x >0,解得0<x <1,故选C .(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1, 所以0≤x <1,即g (x )的定义域为[0,1).][规律方法] 1.求给出解析式的函数的定义域,可构造使解析式有意义的不等式(组)求解.2.(1)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出; (2)若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. [变式训练1] (1)函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式.(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式.[解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.联立方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).[规律方法] 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x );(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x替代g (x ),即得f (x )的表达式.[变式训练2] (1)已知f (x +1)=x +2x ,则f (x )=________. 【导学号:00090013】 (2)已知f (x )是一次函数,且2f (x -1)+f (x +1)=6x ,则f (x )=________. (3)已知函数f (x )满足f (-x )+2f (x )=2x,则f (x )=________. (1)x 2-1(x ≥1) (2)2x +23(3)2x +1-2-x3[(1)(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1). (配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1). (2)∵f (x )是一次函数, ∴设f (x )=kx +b (k ≠0), 由2f (x -1)+f (x +1)=6x ,得2[k (x -1)+b ]+k (x +1)+b =6x ,即3kx -k +3b =6x ,∴⎩⎪⎨⎪⎧3k =-k +3b =0,∴k =2,b =23,即f (x )=2x +23.(3)由f (-x )+2f (x )=2x①, 得f (x )+2f (-x )=2-x②, ①×2-②,得3f (x )=2x +1-2-x.即f (x )=2x +1-2-x3. ∴f (x )的解析式为f (x )=2x +1-2-x3.]角度1(1)(2017·湖南衡阳八中一模)若f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( ) A .-2 B .-3 C .9D .-9(2)(2017·东北三省四市一联)已知函数f (x )的定义域为(-∞,+∞),如果f (x +2 016)=⎩⎨⎧2sin x ,x ≥0,-x ,x <0,那么f 2 016+π4·f (-7 984)=( )A .2 016B .14C .4D .12 016(1)C (2)C [(1)∵f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,∴f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.故选C .(2)当x ≥0时,有f (x +2 016)=2sin x ,∴f ⎝⎛⎭⎪⎫2 016+π4=2sin π4=1;当x <0时,f (x +2 016)=lg(-x ),∴f (-7 984)=f (-10 000+2 016)=lg 10 000=4,∴f ⎝⎛⎭⎪⎫2 016+π4·f (-7 984)=1×4=4,故选C .]角度2 已知分段函数的函数值求参数(1)(2017·成都二诊)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x 2+m 2,x <1,若f (f (-1))=2,则实数m 的值为( ) A .1 B .1或-1 C . 3 D .3或- 3(2)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A .1B .78C .34D .12(1)D (2)D [(1)f (f (-1))=f (1+m 2)=log 2(1+m 2)=2,m 2=3,解得m =±3,故选D .(2)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.]角度3 解与分段函数有关的方程或不等式(1)(2017·石家庄一模)已知函数f (x )=⎩⎪⎨⎪⎧sin πx 2,-1<x ≤0,log 2x +,0<x <1,且f (x )=-12,则x 的值为________. 【导学号:00090014】(2)(2014·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(1)-13 (2)(-∞,8] [(1)当-1<x ≤0时,f (x )=sin πx 2=-12,解得x =-13;当0<x <1时,f (x )=log 2(x +1)∈(0,1),此时f (x )=-12无解,故x 的值为-13.(2)当x <1时,x -1<0,ex -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,x 13≤2,x ≤23=8,∴1≤x ≤8.综上可知x ∈(-∞,8].][规律方法] 1.求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值. 2.已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.易错警示:当分段函数自变量的范围不确定时,应分类讨论.。

[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版文科): 第1章 集合与常用逻辑用语

[推荐学习]2019年高考数学一轮复习学案+训练+课件(北师大版文科): 第1章 集合与常用逻辑用语

第三节全称量词与存在量词、逻辑联结词“且”“或”“非” [考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(对应学生用书第5页)[基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫做逻辑联结词.(2)2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定为:綈p且綈q;p且q的否定为:綈p或綈q.[知识拓展]1.含有逻辑联结词的命题真假的判断规律(1)p或q:p、q中有一个为真,则p或q为真,即有真为真;(2)p且q:p、q中有一个为假,则p且q为假,即有假即假;(3)綈p:与p的真假相反,即一真一假,真假相反.2.含一个量词的命题的否定的规律是“改量词,否结论”.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题綈(p且q)是假命题,则命题p,q中至少有一个是假命题.( )(3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题.(4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题綈p ,綈q ,p 或q ,p 且q 中真命题的个数为( ) A .1 B .2 C .3D .4B [p 和q 显然都是真命题,所以綈p ,綈q 都是假命题,p 或q ,p 且q 都是真命题.] 3.(2015·全国卷Ⅰ)设命题p :存在n ∈N ,n 2>2n,则綈p 为( )A .任意n ∈N ,n 2>2nB .存在n ∈N ,n 2≤2nC .任意n ∈N ,n 2≤2nD .存在n ∈N ,n 2=2nC [因为“存在x ∈M ,p (x )”的否定是“任意x ∈M ,綈p (x )”,所以命题“存在n ∈N ,n 2>2n ”的否定是“任意n ∈N ,n 2≤2n ”.故选C .]4.(2018·韶关模拟)下列命题中的假命题是( )A .任意x ∈R,2x -1>0B .任意x ∈N *,(x -1)2>0 C .存在x ∈R ,lg x <1 D .存在x ∈R ,tan x =2B [当x =1时,(x -1)2=0,故B 是假命题.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0. 综上可知-8≤a ≤0.](对应学生用书第5页)q :若a∥b ,b∥c ,则a∥C.则下列命题中真命题是( ) A .p 或q B .p 且q C .(綈p )且(綈q )D .p 且(綈q )A [取a =c =(1,0),b =(0,1),显然a·b =0,b·c =0,但a·c =1≠0,∴p 是假命题.a ,b ,c 是非零向量,由a∥b 知a =x b ,由b∥c 知b =y c , ∴a =xy c ,∴a∥c ,∴q 是真命题. 综上知p 或q 是真命题,p 且q 是假命题.又∵綈p 为真命题,綈q 为假命题,∴(綈p )且(綈q ),p 且(綈q )都是假命题.][规律方法] 1.“p 或q ”“p 且q ”“綈p ”形式的命题真假判断的关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:(1)明确其构成 形式;(2)判断其中命题p ,q 的真假;(3)确定“p 或q ”“p 且q ”“綈p ” 形式的命题的真假.2.p 且q 形式是“一假必假,全真才真”,p 或q 形式是“一真必真,全假才假”,非p 则是“与p 的真假相反”.[变式训练1] (2017·石家庄一模)命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是( ) A .p 或q B .p 且q C .qD .綈pB [取x =π3,y =5π6,可知命题p 不正确;由(x -y )2≥0恒成立,可知命题q 正确.故綈p角度1 (2015·湖北高考)命题“存在x0∈(0,+∞),ln x 0=x 0-1”的否定是( )【导学号:00090009】A .任意x ∈(0,+∞),ln x ≠x -1B .任意x ∉(0,+∞),ln x =x -1C .存在x 0∈(0,+∞),ln x 0≠x 0-1D .存在x 0∉(0,+∞),ln x 0=x 0-1A [改变原命题中的三个地方即可得其否定,存在改为任意,x 0改为x ,否定结论,即ln x ≠x -1,故选A .]角度2 全称命题、特称命题的真假判断(2018·青岛模拟)已知a >0,函数f (x )=ax 2+bx +c ,若x1满足关于x 的方程2ax +b =0,则下列选项中的命题为假命题的是( ) A .存在x ∈R ,使得f (x )≤f (x 1) B .存在x ∈R ,使得f (x )≥f (x 1) C .对任意x ∈R ,都有f (x )≤f (x 1) D .对任意x ∈R ,都有f (x )≥f (x 1) C [由题意知2ax 1+b =0,即x 1=-b2a,又f (x )=a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a ,故f (x )min =f (x 1).因此,A ,B ,D 正确,C 错误.][规律方法] 1.否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论.2.要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.3.要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p (x )成立.只要找到一个反例,则该命题为假命题.(1)已知命题“存在x 0∈R ,使2x 20+(a -1)x 0+2≤0”是假命题,则实数a 的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)B (2)A [(1)原命题的否定为任意x ∈R,2x 2+(a -1)x +12>0,由题意知,为真命题,则Δ=(a -1)2-4×2×12<0,则-2<a -1<2,则-1<a <3.(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.][规律方法] 1.根据含逻辑联结词命题的真假求参数的方法步骤: (1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况). (2)求出每个命题是真命题时参数的取值范围. (3)根据每个命题的真假情况,求出参数的取值范围. 2.全称命题可转化为恒成立问题.[变式训练2] (2018·泰安模拟)若“任意x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.1 [∵0≤x ≤π4,∴0≤tan x ≤1,由“任意x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,得m ≥1.故实数m 的最小值为1.]。

教育最新K122019年高考数学一轮复习学案 训练 课件(北师大版文科): 第4章 平面向量、数系的扩充与复数的

教育最新K122019年高考数学一轮复习学案 训练 课件(北师大版文科): 第4章 平面向量、数系的扩充与复数的

第三节 平面向量的数量积及其应用[考纲传真] 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.(对应学生用书第61页)[基础知识填充]1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图4­3­1,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作a 与b 的夹角.图4­3­1(2)当θ=0°时,a 与b 共线同向. 当θ=180°时,a 与b 共线反向. 当θ=90°时,a 与b 互相垂直. 2.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |·cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积或b 的长度|b |与a 在b 方向上射影|a |cos θ的乘积. 3.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·C .4.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.[1.两个向量a ,b 的夹角为锐角⇔a·b >0且a ,b 不共线; 两个向量a ,b 的夹角为钝角⇔a·b <0且a ,b 不共线. 2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2. 3.当a 与b 同向时,a·b =|a||b |; 当a 与b 反向时,a·b =-|a||b |.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)两个向量的数量积是一个实数,向量的数乘运算的运算结果是向量.( ) (2)由a ·b =0,可得a =0或b =0.( ) (3)由a ·b =a ·c 及a ≠0不能推出b =C .( )(4)在四边形ABCD 中,AB →=DC →且AC →·BD →=0,则四边形ABCD 为矩形. ( ) [答案] (1)√ (2)× (3)√ (4)×2.(2016·全国卷Ⅲ)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°A [因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA→||BC →|cos ∠ABC =1×1×cos∠ABC ,所以cos ∠ABC =32.又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A .]3.(2015·全国卷Ⅱ)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1D .2C [法一:∵a =(1,-1),b =(-1,2),∴a 2=2,a ·b =-3, 从而(2a +b )·a =2a 2+a ·b =4-3=1. 法二:∵a =(1,-1),b =(-1,2), ∴2a +b =(2,-2)+(-1,2)=(1,0),从而(2a +b )·a =(1,0)·(1,-1)=1,故选C .]4.(教材改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________.-2 [由数量积的定义知,b 在a 方向上的投影为|b |cos θ=4×cos 120°=-2.] 5.(2017·全国卷Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________.7 [∵a =(-1,2),b =(m,1), ∴a +b =(-1+m,2+1)=(m -1,3). 又a +b 与a 垂直,∴(a +b )·a =0, 即(m -1)×(-1)+3×2=0, 解得m =7.](对应学生用书第62页)E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A .-58B .18 C .14D .118(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________. 【导学号:00090135】 (1)B (2)1 1 [(1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →,所以AF →=12AB →+34AC →.又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →.又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B .(2)法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.][规律方法] 1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.(1)要有“基底”意识,关键用基向量表示题目中所求相关向量.(2)注意向量夹角的大小,以及夹角θ=0°,90°,180°三种特殊情形.[变式训练1] (1)已知AB →=(2,1),点C (-1,0),D (4,5),则向量AB →在CD →方向上的投影为 ( ) A .-322B .-3 5C .322D .3 5(2)(2018·榆林模拟)已知在矩形ABCD 中,AB =3,BC =3,BE →=2EC →,点F 在边CD 上.若AB →·AF →=3,则AE →·BF →的值为( ) 【导学号:00090136】A .0B .833C .-4D .4(1)C (2)C [(1)因为点C (-1,0),D (4,5),所以CD =(5,5),又AB →=(2,1),所以向量AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322.(2)由AB →·AF →=3得AB →·(AD →+DF →)=AB →·DF →=3, 所以|DF →|=1,|CF →|=2,所以AE →·BF →=(AB →+BE →)·(BC →+CF →)=AB →·BC →+AB →·CF →+BE →·BC →+BE →·CF →=AB →·CF →+BE →·BC →=-6+2=-4.]角度1 (1)(2017·合肥二次质检)已知不共线的两个向量a ,b 满足|a -b |=2且a ⊥(a-2b ),则|b |=( ) A . 2 B .2 C .2 2D .4(2)(2018·西安模拟)已知平面向量a ,b 的夹角为π6,且|a |=3,|b |=2,在△ABC 中,AB →=2a +2b ,AC →=2a -6b ,D 为BC 的中点,则|AD →|=________.(1)B (2)2 [(1)由a ⊥(a -2b )得a ·(a -2b )=|a |2-2a ·b =0.又∵|a -b |=2,∴|a -b |2=|a |2-2a ·b +|b |2=4,则|b |2=4,|b |=2,故选B .(2)因为AD →=12(AB →+AC →)=12(2a +2b +2a -6b )=2a -2b ,所以|AD →|2=4(a -b )2=4(a 2-2b·a +b 2) =4×(3-2×2×3×cos π6+4)=4,所以|AD →|=2.]角度2 平面向量的夹角(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.(1)223 (2)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3 [(1)因为a 2=(3e 1-2e 2)2=9-2×3×2×12×cos α+4=9, 所以|a |=3,因为b 2=(3e 1-e 2)2=9-2×3×1×12×cos α+1=8, 所以|b |=22,a·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8,所以cos β=a·b |a||b |=83×22=223.(2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0, ∴4k -6-6<0, ∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.] 角度3 平面向量的垂直(2016·山东高考)已知向量a =(1,-1),b =(6,-4).若a ⊥(t a +b ),则实数t 的值为________.-5 [∵a =(1,-1),b =(6,-4),∴t a +b =(t +6,-t -4). 又a ⊥(t a +b ),则a ·(t a +b )=0,即t +6+t +4=0,解得t =-5.][规律方法] 1.求两向量的夹角:cos θ=a ·b|a |·|b |,要注意θ∈[0,π].2.两向量垂直的应用:两非零向量垂直的充要条件是:a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |. 3.求向量的模:利用数量积求解长度问题的处理方法有: (1)a 2=a ·a =|a |2或|a |=a ·a . (2)|a ±b |=a ±b2=a 2±2a ·b +b 2.(3)若a =(x ,y ),则|a |=x 2+y 2.,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.【导学号:00090137】[解] (1)因为m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m⊥n .所以m·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m·n =cos π3=12,即22sin x -22cos x =12, 所以sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.[规律方法] 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数的定义域内的有界性,求得值域等. [变式训练2] (2018·郴州模拟)已知向量a =⎝ ⎛⎭⎪⎫sin x ,32,b =(cos x ,-1).(1)当a∥b 时,求tan 2x 的值;(2)求函数f (x )=(a +b )·b 在⎣⎢⎡⎦⎥⎤-π2,0上的值域.[解] (1)∵a∥b ,a =⎝ ⎛⎭⎪⎫sin x ,32,b =(cos x ,-1) ∴sin x ·(-1)-32·cos x =0,即sin x +32cos x =0,得sin x =-32cos x ,∴tan x =sin x cos x =-32,∴tan 2x =2tan x 1-tan 2x =125. (2)∵a =⎝⎛⎭⎪⎫sin x ,32,b =(cos x ,-1), ∴a·b =sin x cos x -32,b 2=cos 2x +(-1)2=cos 2x +1,∴f (x )=(a +b )·b =a·b +b 2=sin x cos x -32+cos 2x +1=12sin 2x +12(1+cos 2x )-12=22sin ⎝⎛⎭⎪⎫2x +π4.∵x ∈⎣⎢⎡⎦⎥⎤-π2,0,∴2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,π4,∴sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-1,22,∴f (x )=22sin ⎝⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,12.故函数f (x )=(a +b )·b 在⎣⎢⎡⎦⎥⎤-π2,0上的值域为⎣⎢⎡⎦⎥⎤-22,12.。

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 课时分层训练11 函数与方程 文 北师大版

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 课时分层训练11 函数与方程 文 北师大版

课时分层训练(十一) 函数与方程A 组 基础达标 (建议用时:30分钟)一、选择题1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( )A .0,2B .0,12C .0,-12D .2,-12C [由题意知2a +b =0,即b =-2a .令g (x )=bx 2-ax =0,得x =0或x =a b =-12.]2.函数f (x )=e x+x -2的零点所在的区间为( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)C [因为f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,故f (0)·f (1)<0,故选C.]3.函数f (x )=⎩⎪⎨⎪⎧x 2-2, x ≤0,2x -6+ln x , x >0的零点个数是( )【导学号:00090048】A .1B .2C .3D .4B [当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍)或x =-2, 即在区间(-∞,0]上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x , 令2x -6+ln x =0,得ln x =6-2x .作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图像(图略),易得两函数图像只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点. 综上知,函数f (x )的零点个数是2.]4.(2018·太原模拟)已知函数f (x )=⎩⎪⎨⎪⎧|2x-1|,x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围是( )A.(1,3) B.(0,3)C.(0,2) D.(0,1)D[画出函数f(x)的图像如图所示,观察图像可知,若方程f(x)-a=0有三个不同的实数根,则函数y=f(x)的图像与直线y=a有3个不同的交点,此时需满足0<a<1.故选D.]5.(2018·南昌模拟)已知函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是( )A.9 B.10C.11 D.18B[在坐标平面内画出y=f(x)与y=|lg x|的大致图像如图,由图像可知,它们共有10个不同的交点,因此函数F(x)=f(x)-|lg x|的零点个数是10.]二、填空题6.已知关于x的方程x2+mx-6=0的一个根比2大,另一个根比2小,则实数m的取值范围是________.(-∞,1) [设函数f(x)=x2+mx-6,则根据条件有f(2)<0,即4+2m-6<0,解得m<1.]7.方程2x+3x=k的解在[1,2)内,则k的取值范围为________.[5,10) [令函数f(x)=2x+3x-k,则f(x)在R上是增函数.当方程2x+3x=k的解在(1,2)内时,f(1)·f(2)<0,即(5-k)(10-k)<0,解得5<k<10.当f(1)=0时,k=5.]8.(2015·湖南高考)若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是__________.(0,2) [由f(x)=|2x-2|-b=0得|2x-2|=b.在同一平面直角坐标系中画出y=|2x-2|与y=b的图像,如图所示,则当0<b <2时,两函数图像有两个交点,从而函数f (x )=|2x-2|-b 有两个零点.] 三、解答题9.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f (x 0)=x 0.[证明] 令g (x )=f (x )-x . 2分∵g (0)=14,g ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12-12=-18,∴g (0)·g ⎝ ⎛⎭⎪⎫12<0. 7分又函数g (x )在⎣⎢⎡⎦⎥⎤0,12上连续, ∴存在x 0∈⎝ ⎛⎭⎪⎫0,12,使g (x 0)=0, 即f (x 0)=x 0.12分10.已知二次函数f (x )=x 2+(2a -1)x +1-2a ,(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,求实数a 的取值范围. 【导学号:00090049】[解] (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题. 依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根.3分因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根. 5分(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点, 只需⎩⎪⎨⎪⎧f -,f ,f ⎝ ⎛⎭⎪⎫12>0, 7分即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.10分故实数a 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪12<a <34. 12分B 组 能力提升 (建议用时:15分钟)1.(2017·郑州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0,2x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是( ) A .(-∞,-1) B .(-∞,-1] C .[-1,0)D .(0,1]D [因为当x >0时,f (x )=2x -1, 由f (x )=0得x =12.所以要使f (x )在R 上有两个零点,则必须2x-a =0在(-∞,0]上有唯一实数解. 又当x ∈(-∞,0]时,2x∈(0,1],且y =2x 在(-∞,0]上单调递增, 故所求a 的取值范围是(0,1].]2.函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )]+1的所有零点所构成的集合为________.⎩⎨⎧⎭⎬⎫-3,-12,14,2 [由题意知f [f (x )]=-1,由f (x )=-1得x =-2或x =12,则函数y =f [f (x )]+1的零点就是使f (x )=-2或f (x )=12的x 的值.解f (x )=-2得x =-3或x =14,解f (x )=12得x =-12或x =2,从而函数y =f [f (x )]+1的零点构成的集合为⎩⎨⎧⎭⎬⎫-3,-12,14,2.]3.若关于x 的方程22x +2xa +a +1=0有实根,求实数a 的取值范围.[解] 法一(换元法):设t =2x(t >0),则原方程可变为t 2+at +a +1=0,(*)原方程有实根,即方程(*)有正根. 令f (t )=t 2+at +a +1.3分①若方程(*)有两个正实根t 1,t 2, 则⎩⎪⎨⎪⎧Δ=a 2-a +,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22; 6分②若方程(*)有一个正实根和一个负实根(负实根不合题意,舍去),则f (0)=a +1<0,解得a <-1;9分③若方程(*)有一个正实根和一个零根,则f (0)=0且-a2>0,解得a =-1.综上,a 的取值范围是(-∞,2-22]. 12分 法二(分离变量法):由方程,解得a =-22x+12x +1,3分设t =2x(t >0),则a =-t 2+1t +1=-⎝ ⎛⎭⎪⎫t +2t +1-1=2-⎣⎢⎡⎦⎥⎤t ++2t +1,其中t +1>1, 9分由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2.12分。

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 不等式选讲 第1节 绝对值不等式学案 文 北师大版

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 不等式选讲 第1节 绝对值不等式学案 文 北师大版

第一节 绝对值不等式[考纲传真] 1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R),|a-c|≤|a-b|+|b-c|(a,b,c∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥C.(对应学生用书第164页)[基础知识填充]1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解法:不等式a>0a=0a<0|x|<a{x|-a<x<a}∅∅|x|>a{x|x>a或x<-a}{x∈R|x≠0}R(2)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-C.(3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解;②利用零点分段法求解;③构造函数,利用函数的图像求解.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)|x-a|+|x-b|的几何意义是表示数轴上的点x到点a,b的距离之和.( )(2)不等式|a|-|b|≤|a+b|等号成立的条件是ab≤0.( )(3)不等式|a-b|≤|a|+|b|等号成立的条件是ab≤0.( )(4)当ab≥0时,|a+b|=|a|+|b|成立.( )[答案] (1)√ (2)× (3)√ (4)√2.(教材改编)若关于x的不等式|ax-2|<3的解集为Error!,则实数a=________.-3 [依题意,知a≠0.又|ax-2|<3⇔-3<ax-2<3,∴-1<ax <5.由于|ax -2|<3的解集为Error!,∴a <0,=-且-=,则a =-3.]5a 531a 133.(教材改编)若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是________.(-∞,-3]∪[3,+∞) [由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴|x +1|+|x -2|的最小值为3,要使|a |≥|x +1|+|x -2|有解,只需|a |≥3,∴a ≥3或a ≤-3.]4.解不等式x +|2x +3|≥2.[解] 当x ≥-时,原不等式化为3x +3≥2,3分32解得x ≥-.6分13当x <-时,原不等式化为-x -3≥2,32解得x ≤-5.8分综上,原不等式的解集是Error!.10分5.(2016·江苏高考)设a >0,|x -1|<,|y -2|<,求证:|2x +y -4|<A .a 3a3【导学号:00090376】[证明] 因为|x -1|<,|y -2|<,a 3a3所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<+=A .2a 3a3故原不等式得证.(对应学生用书第165页)绝对值不等式的解法 (2016·全国卷Ⅰ)已知函数f (x )=|x +1|-|2x -3|.(1)画出y =f (x )的图像;(2)求不等式|f (x )|>1的解集.【导学号:00090377】图1[解] (1)由题意得f (x )=Error!3分故y =f (x )的图像如图所示.6分(2)由f (x )的函数表达式及图像可知,当f (x )=1时,可得x =1或x =3;当f (x )=-1时,可得x =或x =5.8分13故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为Error!.所以|f (x )|>1的解集为Error!.10分[规律方法] 1.本题用零点分段法画出分段函数的图像,结合图像的直观性求出不等式的解集,体现数形结合思想的应用.2.解绝对值不等式的关键是去绝对值符号,零点分段法操作程序是:找零点,分区间,分段讨论.此外还常利用绝对值的几何意义求解.[变式训练1] (2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.[解] (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤.-1+172所以f (x )≥g (x )的解集为Error!.(2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].含绝对值的不等式的应用 对于任意的实数a (a ≠0)和b ,不等式|a +b |+|a -b |≥M ·|a |恒成立,记实数M 的最大值是m .(1)求m 的值;(2)解不等式|x -1|+|x -2|≤m .[解] (1)不等式|a +b |+|a -b |≥M ·|a |恒成立,即M ≤对于任意的实数a (a ≠0)和b 恒成立,只要左边恒小于或等于右边|a +b |+|a -b ||a |的最小值.2分因为|a +b |+|a -b |≥|(a +b )+(a -b )|=2|a |,当且仅当(a -b )(a +b )≥0时等号成立,|a |≥|b |时,≥2成立,|a +b |+|a -b ||a |也就是的最小值是2,|a +b |+|a -b ||a |即m =2.5分(2)|x -1|+|x -2|≤2.法一:利用绝对值的意义得:≤x ≤.10分1252法二:①当x <1时,不等式为-(x -1)-(x -2)≤2,解得x ≥,所以x 的取值范围是≤x <1.1212②当1≤x ≤2时,不等式为(x -1)-(x -2)≤2,得x 的取值范围是1≤x ≤2.8分③当x >2时,原不等式为(x -1)+(x -2)≤2,2<x ≤.52综上可知,不等式的解集是Error!.10分[规律方法] 1.(1)利用绝对值不等式性质定理要注意等号成立的条件:当ab ≥0时,|a +b |=|a |+|b |;当ab ≤0时,|a -b |=|a |+|b |;当(a -b )(b -c )≥0时,|a -c |=|a -b |+|b -c |.(2)对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用含绝对值不等式更方便.2.第(2)问易出现解集不全或错误.对于含绝对值的不等式,不论是分段去绝对值符号还是利用几何意义,都要不重不漏.[变式训练2] 对于任意实数a ,b ,已知|a -b |≤1,|2a -1|≤1,且恒有|4a -3b +2|≤m ,求实数m 的取值范围.[解] 因为|a -b |≤1,|2a -1|≤1,所以|3a -3b |≤3,≤,4分|a -12|12所以|4a -3b +2|=| 3a -3b +(a -12)+52|≤|3a -3b |++≤3++=6,8分|a -12|521252则|4a -3b +2|的最大值为6,所以m ≥|4a -3b +2|max =6,m 的取值范围是[6,+∞).10分绝对值不等式的综合应用 (2018·哈尔滨模拟)已知函数f (x )=|x +1|-2|x -a |,a >0.(1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【导学号:00090378】[解] (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得<x <1;23当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为Error!.4分(2)由题设可得f (x )=Error!所以函数f (x )的图像与x 轴围成的三角形的三个顶点分别为A ,B (2a +1,0),(2a -13,0)C (a ,a +1).因此△ABC 的面积S =|AB |·(a +1)=(a +1)2.8分1223由题设得(a +1)2>6,故a >2.23所以a 的取值范围为(2,+∞).10分[规律方法] 1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.第(2)问求解要抓住三点:(1)分段讨论,去绝对值符号,化f (x )为分段函数;(2)数形结合求△ABC 的三个顶点坐标,进而得出△ABC 的面积;(3)解不等式求a 的取值范围.[变式训练3] (2016·全国卷Ⅲ)已知函数f (x )=|2x -a |+A .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,恒有f (x )+g (x )≥3,求实数a 的取值范围.[解] (1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.4分(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|(2x -a )+(1-2x )|+a =|1-a |+a ,6分当x =时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3. ①128分当a ≤1时,①等价于1-a +a ≥3,无解.当a >1时,①等价于a -1+a ≥3,解得a ≥2.所以a 的取值范围是[2,+∞).10分。

2019年高考数学一轮复习学案 训练 课件(北师大版文科) 坐标系与参数方程 第2节 参数方程学案 文 北师大版

2019年高考数学一轮复习学案 训练 课件(北师大版文科) 坐标系与参数方程 第2节 参数方程学案 文 北师大版

第二节参数方程[考纲传真] .了解参数方程,了解参数的意义.能选择适当的参数写出直线、圆和椭圆曲线的参数方程.(对应学生用书第页)[基础知识填充].曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,都是某个变数的函数(\\(=,=))并且对于的每一个允许值,由这个方程组所确定的点(,)都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数,的变数叫做参变数,简称参数..参数方程和普通方程的互化()曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.()如果知道变数,中的一个与参数的关系,例如=(),把它代入普通方程,求出另一个变数与参数的关系=(),那么(\\(=,=))就是曲线的参数方程..常见曲线的参数方程和普通方程是直线上任一点(,)到(,)的距离.[基本能力自测].(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()参数方程(\\(=,=))中的,都是参数的函数.( )()过(,),倾斜角为α的直线的参数方程为(\\(=+α,=+α))(为参数).参数的几何意义表示:直线上以定点为起点,任一点(,)为终点的有向线段的数量.( ) ()方程(\\(=θ,=+θ))表示以点()为圆心,以为半径的圆.( )()已知椭圆的参数方程(\\(=,= ))(为参数),点在椭圆上,对应参数=,点为原点,则直线的斜率为.( )[答案]()√()√()√()×.(教材改编)曲线(\\(=-+θ,=+θ))(θ为参数)的对称中心( ).在直线=上.在直线=-上.在直线=-上.在直线=+上[由(\\(=-+θ,=+θ,))得(\\( θ=+,θ=-,))所以(+)+(-)=.曲线是以(-)为圆心,为半径的圆,所以对称中心为(-),在直线=-上.].(教材改编)在平面直角坐标系中,曲线:(\\(=+(()),=+(())))(为参数)的普通方程为.--=[由=+,且=+,消去,得-=,即--=.].在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.曲线的极坐标方程为ρ( θ+θ)=-,曲线的参数方程为(\\(=,=()))(为参数),则与交点的直角坐标为.(,-)[由ρ( θ+θ)=-,得+=-.①由(\\(=,=(),))消去得=.②联立①②得(\\(=,=-,))即交点坐标为(,-).].(·江苏高考)在平面直角坐标系中,已知直线的参数方程为(\\(=+(),=(())))(为参数),椭圆的参数方程为(\\(=θ,=θ))(θ为参数).设直线与椭圆相交于,两点,求线段的长. 【导学号:】[解]椭圆的普通方程为+=分将直线的参数方程(\\(=+(),=(())))代入+=,得+=,即+=,分解得=,=-,所以=-=分(对应学生用书第页)(\\(=θ,=θ))(θ为参数).()求直线和圆的普通方程;。

2019年高考数学一轮复习学案+训练+课件(北师大版文科):重点强化训练1函数的图像与性质文北师大版_35

2019年高考数学一轮复习学案+训练+课件(北师大版文科):重点强化训练1函数的图像与性质文北师大版_35

重点强化训练(一) 函数的图像与性质A 组 基础达标(建议用时:30分钟)一、选择题1.设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-)=( )2A .- B.1212C .2D .-2B [因为函数f (x )是偶函数,所以f (-)=f ()=log 2=.]222122.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( )A .-3B .-1C .1D .3C [用“-x ”代替“x ”,得f (-x )-g (-x )=(-x )3+(-x )2+1,化简得f (x )+g (x )=-x 3+x 2+1,令x =1,得f (1)+g (1)=1,故选C.]3.函数f (x )=3x +x -2的零点所在的一个区间是( ) 【导学号:00090050】12A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)C [因为函数f (x )在定义域上单调递增,又f (-2)=3-2-1-2=-<0,269f (-1)=3-1--2=-<0,12136f (0)=30+0-2=-1<0,f (1)=3+-2=>0,所以f (0)f (1)<0,1232所以函数f (x )的零点所在区间是(0,1).]4.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log a )≤2f (1),则a 的取值范围是( )12A .[1,2] B.(0,12]C.D .(0,2][12,2]C [∵f (log a )=f (-log 2a )=f (log 2a ),∴原不等式可化为f (log 2a )≤f (1).又12∵f (x )在区间[0,+∞)上是增加的,∴0≤log 2a ≤1,即1≤a ≤2.∵f (x )是偶函数,∴f (log 2a )≤f (-1).又f (x )在区间(-∞,0]上是减少的,∴-1≤log 2a ≤0,∴≤a ≤1.综上可知≤a ≤2.]12125.(2017·陕西质检(二))若f (x )是定义在(-∞,+∞)上的偶函数,任意x 1,x 2∈[0,+∞)(x 1≠x 2),有<0,则( )f x 2 -f x 1x 2-x 1A .f (3)<f (1)<f (-2)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (-2)<f (1)D [由对任意的x 1,x 2∈[0,+∞),<0得函数f (x )为[0,+∞)f x 2 -f x 1x 2-x 1上的减函数,又因为函数f (x )为偶函数,所以f (3)<f (2)=f (-2)<f (1),故选D.]二、填空题6.函数y =f (x )在x ∈[-2,2]上的图像如图2所示,则当x ∈[-2,2]时,f (x )+f (-x )=________.图20 [由题图可知,函数f (x )为奇函数,所以f (x )+f (-x )=0.]7.若函数y =log 2(ax 2+2x +1)的值域为R ,则a 的取值范围为______________.【导学号:00090051】[0,1] [设f (x )=ax 2+2x +1,由题意知,f (x )取遍所有的正实数.当a =0时,f (x )=2x +1符合条件;当a ≠0时,则Error!解得0<a ≤1,所以0≤a ≤1.]8.(2017·银川质检)已知y =f (x )是定义在R 上的奇函数,在(0,+∞)上是增函数,且f (2)=0,则满足f (x -1)<0的x 的取值范围是________.(-∞,-1)∪(1,3) [依题意当x ∈(1,+∞)时,f (x -1)<0=f (2)的解集为x <3,即1<x <3;当x ∈(-∞,1)时,f (x -1)<0=f (-2)的解集为x <-1,即x <-1.综上所述,满足f (x -1)<0的x 的取值范围是(-∞,-1)∪(1,3).]三、解答题9.已知函数f (x )=2x ,当m 取何值时方程|f (x )-2|=m 有一个解,两个解?[解] 令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图像如图所示.由图像看出,当m =0或m ≥2时,函数F (x )与G (x )的图像只有一个交点,原方程有一个解;当0<m <2时,函数F (x )与G (x )的图像有两个交点,原方程有两个解.10.函数f (x )=m +log a x (a >0且a ≠1)的图像过点(8,2)和(1,-1).(1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值.【导学号:00090052】[解] (1)由Error!得Error!3分解得m =-1,a =2,故函数解析式为f (x )=-1+log 2x .5分(2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)]=log 2-1(x >1).7分x 2x -1∵==(x -1)++2≥2+2=4.x 2x -1 x -1 2+2 x -1 +1x -11x -1 x -1 ·1x -19分当且仅当x -1=,即x =2时,等号成立.1x -1而函数y =log 2x 在(0,+∞)上单调递增,则log 2-1≥log 24-1=1,x 2x -1故当x =2时,函数g (x )取得最小值1.12分B 组 能力提升(建议用时:15分钟)1.(2017·东北三省四市二联)已知函数f (x )是定义在R 上的奇函数,且在[0,+∞)上是增函数,则不等式<f (1)的解集为( )|f ln x -f (ln1x )|2A.B .(0,e)(0,1e)C.D .(e ,+∞)(1e,e )C [f (x )为R 上的奇函数,则f=f (-lnx )=-f (ln x ),所以(ln 1x )==|f (ln x )|,即原不等式可化为|f (ln|f ln x -f (ln1x )|2|f ln x +f ln x |2x )|<f (1),所以-f (1)<f (ln x )<f (1),即f (-1)<f (ln x )<f (1).又由已知可得f (x )在R 上单调递增,所以-1<ln x <1,解得<x <e ,故选C.] 1e 2.已知函数f (x ),g (x )分别是定义在R 上的偶函数与奇函数,且g (x )=f (x -1),则f (2 019)的值为________.0 [g (-x )=f (-x -1),由f (x ),g (x )分别是偶函数与奇函数,得g (x )=-f (x +1),∴f (x -1)=-f (x +1),即f (x +2)=-f (x ),∴f (x +4)=f (x ),故函数f (x )是以4为周期的周期函数,则f (2 019)=f (505×4-1)=f (-1)=g (0)=0.]3.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.【导学号:00090053】[解] (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.3分(2)f (x )为偶函数.4分证明如下:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=f (1)=0.12令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.7分(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).9分又f(x)在(0,+∞)上是增加的,∴0<|x-1|<16,解得-15<x<17且x≠1,11分∴x的取值范围是{x|-15<x<17且x≠1}.12分。

【小初高学习】2019年高考数学一轮复习学案+训练+课件(北师大版文科): 第2章 函数、导数及其应

【小初高学习】2019年高考数学一轮复习学案+训练+课件(北师大版文科): 第2章 函数、导数及其应

第九节 实际问题的函数建模[考纲传真] 1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(对应学生用书第27页) [基础知识填充]1.常见的几种函数模型(1)一次函数模型:y =kx +b (k ≠0).(2)反比例函数模型:y =k x+b (k ,b 为常数且k ≠0). (3)二次函数模型:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(4)指数函数模型:y =a ·b x +c (a ,b ,c 为常数,b >0,b ≠1,a ≠0). (5)对数函数模型:y =m log a x +n (m ,n ,a 为常数,a >0,a ≠1,m ≠0). (6)幂函数模型:y =a ·x n+b (a ≠0). 2.三种函数模型之间增长速度的比较3. (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:[知识拓展] “对勾”函数形如f (x )=x +ax(a >0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.(2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =2x 的函数值比y =x 2的函数值大.( ) (2)幂函数增长比直线增长更快.( ) (3)不存在x 0,使ax 0<x n0<log a x 0.( )(4)f (x )=x 2,g (x )=2x,h (x )=log 2x ,当x ∈(4,+∞)时,恒有h (x )<f (x )<g (x ).( ) [答案] (1)× (2)× (3)× (4)√2.已知某种动物繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,到第8年它们发展到( ) A .100只 B .200只 C .300只D .400只B [由题意知100=a log 3(2+1),∴a =100,∴y =100log 3(x +1),当x =8时,y =100log 3 9=200.]3.(教材改编)在某种新型材料的研制中,试验人员获得了下列一组试验数据.现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A 2 C .y =12(x 2-1)D .y =2.61cos xB [由表格知当x =3时,y =1.59,而A 中y =23=8,不合要求,B 中y =log 23∈(1,2),C 中y =12(32-1)=4,不合要求,D 中y =2.61cos 3<0,不合要求,故选B .]4.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h (cm)与燃烧时间t (h)的函数关系用图像表示为( )B [由题意h =20-5t,0≤t ≤4.结合图像知应选B .]5.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为________. 【导学号:00090054】+p +q-1 [设年平均增长率为x ,则(1+x )2=(1+p )·(1+q ),∴x =+p+q -1.](对应学生用书第28页)(1)3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图像正确的是( )A B C D(2)已知正方形ABCD 的边长为4,动点P 从B 点开始沿折线BCDA 向A 点运动.设点P 运动的路程为x ,△ABP 的面积为S ,则函数S =f (x )的图像是( )A B C D(1)A (2)D [(1)前3年年产量的增长速度越来越快,说明呈高速增长,只有A 、C 图像符合要求,而后3年年产量保持不变,产品的总产量应呈直线上升,故选A .(2)依题意知当0≤x ≤4时,f (x )=2x ;当4<x ≤8时,f (x )=8;当8<x ≤12时,f (x )=24-2x ,观察四个选项知,选D .][规律方法] 判断函数图像与实际问题中两变量变化过程相吻合的两种方法:(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.[变式训练1] 设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为( )D[y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.]关系如图2­9­1①;B产品的利润与投资的算术平方根成正比,其关系如图2­9­1②.(注:利润和投资单位:万元)①②图2­9­1(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?【导学号:00090055】[解](1)f(x)=0.25x(x≥0),g(x)=2x(x≥0).3分(2)①由(1)得f(9)=2.25,g(9)=29=6,所以总利润y=8.25万元. 5分②设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元.则y =14(18-x )+2x ,0≤x ≤18.7分令x =t ,t ∈[0,32],则y =14(-t 2+8t +18)=-14(t -4)2+172.所以当t =4时,y max =172=8.5,9分此时x =16,18-x =2.所以当A ,B 两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.12分[规律方法] 求解所给函数模型解决实际问题的关注点: (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.易错警示:解决实际问题时要注意自变量的取值范围.[变式训练2] (2018·德州模拟)某实验员在培养皿中滴入了含有10个某种真菌的实验液,约1小时后培养真菌数目繁殖为原来的2倍.经测量知该真菌的繁殖规律为y =10e λt,其中λ为常数,t 表示时间(单位:小时),y 表示真菌个数.经过8小时培养,真菌能达到的个数为( ) A .640 B .1 280 C .2 560D .5 120C [原来的细菌数为10,由题意可得,在函数y =10e λt中,当t =1时,y =20, ∴20=10e λ,即e λ=2,y =10e λt =10·2t.若t =8,则可得此时的细菌数为y =10×28=2 560,故选C .]2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A .2018年 B .2019年 C .2020年D .2021年(2)某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价收费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另外每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.(1)B (2)9 [(1)设2015年后的第n 年该公司投入的研发资金开始超过200万元.由130(1+12%)n >200,得1.12n >2013,两边取常用对数,得n >lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n ≥4,∴从2019年开始,该公司投入的研发资金开始超过200万元. (2)设出租车行驶了x km ,付费y 元, 由题意得y =⎩⎪⎨⎪⎧9,0<x ≤3,8+x -+1,3<x ≤8,8+2.15×5+x -+1,x >8.当x =8时,y =19.75<22.6,因此由8+2.15×5+2.85×(x -8)+1=22.6, 得x =9.][规律方法] 构建函数模型解决实际问题的常见类型与求解方法: (1)构建二次函数模型,常用配方法、数形结合、分类讨论思想求解. (2)构建分段函数模型,应用分段函数分段求解的方法.(3)构建f (x )=x +ax(a >0)模型,常用基本不等式、导数等知识求解. 易错警示:求解过程中不要忽视实际问题是对自变量的限制.[变式训练3] (2016·宁波模拟)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K 是单位产品数Q 的函数,K (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元 2 500 [L (Q )=40Q -120Q 2-10Q -2 000=-120Q 2+30Q -2 000=-120(Q -300)2+2 500.当Q =300时,L (Q )的最大值为2 500万元.]。

2019年高考数学一轮复习学案 训练 课件(北师大版文科) 坐标系与参数方程 第1节 坐标系学案 文 北师大版

2019年高考数学一轮复习学案 训练 课件(北师大版文科) 坐标系与参数方程 第1节 坐标系学案 文 北师大版

第一节坐标系[考纲传真] .理解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.能在极坐标系中给出简单图形表示的极坐标方程.(对应学生用书第页)[基础知识填充].平面直角坐标系中的坐标伸缩变换设点(,)是平面直角坐标系中的任意一点,在变换φ:(\\(′=λ,λ>,′=μ,μ>))的作用下,点(,)对应到点′(′,′),称φ为平面直角坐标系中的坐标伸缩变换..极坐标系()极坐标与极坐标系的概念在平面内取一个定点,叫作极点,从点引一条射线,叫作极轴,选定一个单位长度和角的正方向(通常取逆时针方向).这样就确定了一个平面极坐标系,简称为极坐标系.对于平面内任意一点,用ρ表示线段的长,θ表示以为始边、为终边的角度,ρ叫作点的极径,θ叫作点的极角,有序实数对(ρ,θ)叫做点的极坐标,记作(ρ,θ).当点在极点时,它的极径ρ=,极角θ可以取任意值.图­­()极坐标与直角坐标的互化设为平面内的一点,它的直角坐标为(,),极坐标为(ρ,θ).由图可知下面关系式成立:(\\(=ρθ=ρθ))或(\\(ρ=+θ=()))图­­.常用简单曲线的极坐标方程.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)()平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )()若点的直角坐标为(,-),则点的一个极坐标是.( )()在极坐标系中,曲线的极坐标方程不是唯一的.( )()极坐标方程θ=π(ρ≥)表示的曲线是一条直线.( )[答案]()×()√()√()×.(教材改编)若以直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,则线段=-(≤≤)的极坐标方程为( ).ρ=θ+θ),≤θ≤.ρ=θ+θ),≤θ≤.ρ=θ+θ,≤θ≤.ρ=θ+θ,≤θ≤[∵=-(≤≤),∴ρθ=-ρθ(≤ρθ≤),∴ρ=θ+θ).].(教材改编)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.若曲线的极坐标方程为ρ=θ,则曲线的直角坐标方程为.+-=[由ρ=θ,得ρ=ρθ.所以曲线的直角坐标方程为+-=.].已知直线的极坐标方程为ρ=,点的极坐标为,则点到直线的距离为.。

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 课时分层训练23 平面向量的概念及线性运算 文

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 课时分层训练23 平面向量的概念及线性运算 文

课时分层训练(二十三) 平面向量的概念及线性运算A 组 基础达标(建议用时:30分钟)一、选择题1.在△ABC 中,已知M 是BC 中点,设=a ,=b ,则=( )CB → CA → AM→ A .a -b B .a +b 1212C .a -bD .a +b1212A [=+=-+=-b +a ,故选A .]AM → AC → CM → CA → 12CB→122.已知=a +2b ,=-5a +6b ,=7a -2b ,则下列一定共线的三点是( ) 【导学AB → BC → CD→ 号:00090126】A .A ,B ,C B .A ,B ,D C .B ,C ,DD .A ,C ,DB [因为=++=3a +6b =3(a +2b )=3,又,有公共点A ,所以AD → AB → BC → CD → AB → AB → AD→ A ,B ,D 三点共线.]3.在△ABC 中,已知D 是AB 边上的一点,若=2,=+λ,则λ等于( )AD → DB → CD → 13CA → CB→ A . B .2313C .-D .-1323A [∵=2,即-=2(-),AD → DB → CD → CA → CB → CD → ∴=+,∴λ=.]CD → 13CA → 23CB→234.设a ,b 都是非零向量,下列四个条件中,使=成立的充分条件是( )a |a |b|b |A .a =-b B .a ∥bC .a =2bD .a ∥b 且|a |=|b |C [=⇔a =⇔a 与b 共线且同向⇔a =λb 且λ>0.B ,D 选项中a 和b 可能a |a |b |b ||a |b|b |反向.A 选项中λ<0,不符合λ>0.]5.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且=2,=2,=2,DC → BD → CE → EA → AF → FB→则++与( ) 【导学号:00090127】AD → BE → CF → BC→ A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直A [由题意得=+=+,AD → AB → BD → AB → 13BC→ =+=+,BE → BA → AE → BA → 13AC → =+=+,CF → CB → BF → CB → 13BA → 因此++=+(+-)AD → BE → CF → CB → 13BC → AC → AB → =+=-,CB → 23BC →13BC → 故++与反向平行.]AD → BE → CF → BC→ 二、填空题6.已知O 为四边形ABCD 所在平面内一点,且向量,,,满足等式OA → OB → OC → OD → +=+,则四边形ABCD 的形状为________.OA → OC → OB → OD →平行四边形 [由+=+得-=-,OA → OC → OB → OD → OA → OB → OD → OC→所以=,所以四边形ABCD 为平行四边形.]BA → CD→ 7.在矩形ABCD 中,O 是对角线的交点,若=5e 1,=3e 2,则=________.(用e 1,e 2BC → DC → OC→ 表示)e 1+e 2 [在矩形ABCD 中,因为O 是对角线的交点,所以==(+)5232OC → 12AC → 12AB → AD →=(+)=(5e 1+3e 2).]12DC → BC→ 128.(2018·郑州模拟)在△ABC 中,=3,=x +y ,则=________.CM → MB → AM → AB → AC→x y 3 [由=3得=,CM → MB → CM → 34CB → 所以=+=+=+(-)=+,AM → AC → CM → AC → 34CB → AC → 34AB → AC →34AB → 14AC → 所以x =,y =,因此=3.]3414xy 三、解答题9.在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设=a ,AB→=b ,试用a ,b 表示,.AC → AD → AG →图4­1­1[解] =(+)=a +B .AD → 12AB → AC→1212=+=+=+(+)AG → AB → BG → AB → 23BE → AB → 13BA → BC → =+(-)=+=a +B .23AB → 13AC → AB → 13AB → 13AC→ 131310.设两个非零向量e 1和e 2不共线.(1)如果=e 1-e 2,=3e 1+2e 2,=-8e 1-2e 2,AB → BC → CD→ 求证:A ,C ,D 三点共线;(2)如果=e 1+e 2,=2e 1-3e 2,=2e 1-k e 2,且A ,C ,D 三点共线,求k 的值. AB → BC → CD→ 【导学号:00090128】[解] (1)证明:∵=e 1-e 2,=3e 1+2e 2,=-8e 1-2e 2,AB → BC → CD→ ∴=+=4e 1+e 2=-(-8e 1-2e 2)=-,AC → AB → BC →1212CD → ∴与共线.3分AC → CD→ 又∵与有公共点C ,∴A ,C ,D 三点共线.5分AC → CD→ (2)=+=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2.7分AC → AB → BC→ ∵A ,C ,D 三点共线,∴与共线,从而存在实数λ使得=λ,9分AC → CD → AC → CD → 即3e 1-2e 2=λ(2e 1-k e 2),得Error!解得λ=,k =.12分3243B 组 能力提升(建议用时:15分钟)1.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足:=+λOP → OA→,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( )(AB → |AB → |+AC → |AC → |)A .外心B .内心C .重心D .垂心B [作∠BAC 的平分线AD (图略).∵=+λ,OP → OA → (AB → |AB →|+AC →|AC → |)∴=λAP → (AB → |AB →|+AC →|AC → |)=λ′·(λ′∈[0,+∞)),AD →|AD → |∴=·,AP → λ′|AD → |AD → ∴∥.∴P 的轨迹一定通过△ABC 的内心.]AP → AD→ 2.(2017·辽宁大连高三双基测试)如图4­1­2,在△ABC 中,AB =2,BC =3,∠ABC =60°,AH ⊥BC 于点H ,M 为AH 的中点.若=λ+μ,则λ+μ=________.AM → AB → BC→图4­1­2 [因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1.23因为点M 为AH 的中点,所以==(+)==+,又=λAM → 12AH → 12AB → BH → 12(AB → +13BC → )12AB → 16BC → AM → +μ,所以λ=,μ=,所以λ+μ=.]AB → BC →1216233.已知a ,b 不共线,=a ,=b ,=c ,=d ,=e ,设t ∈R ,如果OA → OB → OC → OD → OE→3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由. 【导学号:00090129】[解] 由题设知,=d -c =2b -3a ,=e -c =(t -3)a +t b ,C ,D ,E 三点在一条CD → CE→ 直线上的充要条件是存在实数k ,使得=k ,即(t -3)a +t b =-3k a +2k b ,CE → CD→ 整理得(t -3+3k )a =(2k -t )B .因为a ,b 不共线,所以有Error!解之得t =.故存在实数t =使C ,D ,E 三点在一条直线上.6565。

【小初高学习】2019年高考数学一轮复习学案+训练+课件(北师大版文科): 第6章 不等式、推理与证

【小初高学习】2019年高考数学一轮复习学案+训练+课件(北师大版文科): 第6章 不等式、推理与证

第五节综合法与分析法、反证法[考纲传真] 1.了解直接证明的两种基本方法:综合法和分析法;了解综合法和分析法的思考过程和特点.2.了解反证法的思考过程和特点.(对应学生用书第89页)[基础知识填充]1.直接证明Q⇐P1→P1⇐P2→…→得到一个明显成立的条件2间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法.(1)反证法的定义:在假定命题结论反面成立的前提下,经过推理,若推出的结果与定义、公理、定理矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题结论成立的方法叫反证法.(2)用反证法证明的一般步骤:①反设——假设命题的结论不成立;②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断言假设不成立,从而肯定原命题的结论成立.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.( )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )(3)用反证法证明时,推出的矛盾不能与假设矛盾.( )(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( )[答案] (1)√ (2)× (3)× (4)√ 2.要证a 2+b 2-1-a 2b 2≤0 ,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C .a +b22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0D [a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.]3.用反证法证明命题:“已知a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根 B .方程x 2+ax +b =0至多有一个实根 C .方程x 2+ax +b =0至多有两个实根 D .方程x 2+ax +b =0恰好有两个实根A [“方程x 2+ax +b =0至少有一个实根”的反面是“方程x 2+ax +b =0没有实根”,故选A .]4.已知a ,b ,x 均为正数,且a >b ,则b a 与b +xa +x的大小关系是__________.b +x a +x >b a [∵b +x a +x -b a =x a -b a +x a >0,∴b +x a +x >ba.] 5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________三角形.【导学号:00090218】等边 [由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c , ∴A =C ,∴A =B =C =π3,∴△ABC 为等边三角形.](对应学生用书第90页)对于定义域为 ①对任意的x ∈[0,1],总有f (x )≥0; ②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为理想函数.(1)若函数f (x )为理想函数,证明:f (0)=0;(2)试判断函数f (x )=2x (x ∈[0,1]),f (x )=x 2(x ∈[0,1]),f (x )=x (x ∈[0,1])是否是理想函数.【导学号:00090219】[解] (1)证明:取x 1=x 2=0,则x 1+x 2=0≤1,∴f (0+0)≥f (0)+f (0),∴f (0)≤0. 又对任意的x ∈[0,1],总有f (x )≥0,∴f (0)≥0.于是f (0)=0.5分(2)对于f (x )=2x ,x ∈[0,1],f (1)=2不满足新定义中的条件②,∴f (x )=2x (x ∈[0,1])不是理想函数.7分对于f (x )=x 2,x ∈[0,1],显然f (x )≥0,且f (1)=1.对任意的x 1,x 2∈[0,1],x 1+x 2≤1,f (x 1+x 2)-f (x 1)-f (x 2)=(x 1+x 2)2-x 21-x 22=2x 1x 2≥0,即f (x 1)+f (x 2)≤f (x 1+x 2).∴f (x )=x 2(x ∈[0,1])是理想函数.9分对于f (x )=x ,x ∈[0,1],显然满足条件①②.对任意的x 1,x 2∈[0,1],x 1+x 2≤1, 有[f (x 1+x 2)]2-[f (x 1)+f (x 2)]2=(x 1+x 2)-(x 1+2x 1x 2+x 2)=-2x 1x 2≤0,即[f (x 1+x 2)]2≤[f (x 1)+f (x 2)]2,∴f (x 1+x 2)≤f (x 1)+f (x 2),不满足条件③. ∴f (x )=x (x ∈[0,1])不是理想函数.11分综上,f (x )=x 2(x ∈[0,1])是理想函数,f (x )=2x (x ∈[0,1])与f (x )=x (x ∈[0,1])不是理想函数.12分[规律方法] 综合法是“由因导果”的证明方法,其逻辑依据是三段论式的演绎推理方法,常与分析法结合使用,用分析法探路,综合法书写,但要注意有关定理、性质、结论题设条件的正确运用.[变式训练1] 已知函数f (x )=ln(1+x ),g (x )=a +bx -12x 2+13x 3,函数y =f (x )与函数y=g (x )的图像在交点(0,0)处有公共切线. (1)求a ,b 的值; (2)证明:f (x )≤g (x ).[解] (1)f ′(x )=11+x ,g ′(x )=b -x +x 2,2分由题意得⎩⎪⎨⎪⎧g=f ,f =g,解得a =0,b =1.5分(2)证明:令h (x )=f (x )-g (x ) =ln(x +1)-13x 3+12x 2-x (x >-1).h ′(x )=1x +1-x 2+x -1=-x 3x +1.8分所以h (x )在(-1,0)上为增函数,在(0,+∞)上为减函数.h (x )max =h (0)=0,h (x )≤h (0)=0,即f (x )≤g (x ).12分已知a >0 [证明] 要证a 2+1a 2-2≥a +1a-2,只需要证a 2+1a 2+2≥a +1a+ 2. 2分因为a >0,故只需要证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2,8分从而只需要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a , 只需要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.12分[规律方法] 1.当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法.2.分析法的特点和思路是“执果索因”,逐步寻找结论成立的充分条件,即从“未知”看“需知”,逐步靠拢“已知”或本身已经成立的定理、性质或已经证明成立的结论等,通常采用“欲证—只需证—已知”的格式,在表达中要注意叙述形式的规范性. [变式训练2] 已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,C . 求证:1a +b +1b +c =3a +b +c. 【导学号:00090220】[证明] 要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +ab +c=1, 3分只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,5分又△ABC 三内角A ,B ,C 成等差数列, 故B =60°, 由余弦定理,得b 2=c 2+a 2-2ac cos 60°,10分即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立. 于是原等式成立.12分设{an }是公比为q (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. [解] (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 1-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n1-q,q ≠1. 5分(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1. 8分 ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 12分 [规律方法] 用反证法证明问题的步骤:(1)反设:假定所要证的结论不成立,而设结论的反面成立;(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)(3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)[变式训练3] 已知a ≥-1,求证三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根. [证明] 假设三个方程都没有实数根,则⎩⎪⎨⎪⎧a 2--4a +,a -2-4a 2<0,a 2--2a ⇒⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,6分∴-32<a <-1.10分 这与已知a ≥-1矛盾,所以假设不成立,故原结论成立.12分。

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 课时分层训练24 平面向量基本定理及坐标表示

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 课时分层训练24 平面向量基本定理及坐标表示

课时分层训练(二十四) 平面向量基本定理及坐标表示A 组 基础达标 (建议用时:30分钟)一、选择题1.如图4­2­2,设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:图4­2­2①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →.其中可作为该平面内其他向量的基底的是( ) A .①② B .①③ C .①④D .③④B [①中AD →,AB →不共线;③中CA →,DC →不共线.]2.已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( ) 【导学号:00090132】 A .-12a +32bB .12a -32bC .-32a -12bD .-32a +12bB [设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ,2=λ-μ,∴⎩⎪⎨⎪⎧λ=12,μ=-32,∴c =12a -32B .]3.已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( ) A .k =1且c 与d 同向 B .k =1且c 与d 反向 C .k =-1且c 与d 同向 D .k =-1且c 与d 反向 D [由题意可得c 与d共线,则存在实数λ,使得c =λd ,即⎩⎪⎨⎪⎧k =λ,1=-λ,解得k =-1.c =-a +b =-(a -b )=-d ,故c 与d 反向.]4.如图4­2­3,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则 ( )图4­2­3A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14A [由题意知OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13.]5.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( ) A .(-2,7) B .(-6,21) C .(2,-7)D .(6,-21)B [AQ →=PQ →-PA →=(-3,2),∵点Q 是AC 的中点,∴AC →=2AQ →=(-6,4),PC →=PA →+AC →=(-2,7),∵BP →=2PC →,∴BC →=3PC →=(-6,21).] 二、填空题6.(2017·陕西质检(二))若向量a =(3,1),b =(7,-2),则与向量a -b 同方向单位向量的坐标是________.⎝ ⎛⎭⎪⎫-45,35 [由题意得a -b =(-4,3),则|a -b |=-2+32=5,则a -b 的单位向量的坐标为⎝ ⎛⎭⎪⎫-45,35.] 7.已知O 为坐标原点,点C 是线段AB 上一点,且A (1,1),C (2,3),|BC →|=2|AC →|,则向量OB →的坐标是________.(4,7) [由点C 是线段AB 上一点,|BC →|=2|AC →|,得BC →=-2AC →.设点B 为(x ,y ),则(2-x,3-y )=-2(1,2),即⎩⎪⎨⎪⎧2-x =-2,3-y =-4,解得⎩⎪⎨⎪⎧x =4,y =7.所以向量OB →的坐标是(4,7).]8.已知向量OA →=(3,-4),OB →=(0,-3),OC →=(5-m ,-3-m ),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________.m ≠54[由题意得AB →=(-3,1),AC →=(2-m,1-m ),若A ,B ,C 能构成三角形,则AB →,AC→不共线,则-3×(1-m )≠1×(2-m ),解得m ≠54.]三、解答题9.已知A (1,1),B (3,-1),C (a ,b ). (1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC →=2AB →,求点C 的坐标. 【导学号:00090133】 [解] (1)由已知得AB →=(2,-2),AC →=(a -1,b -1). 2分∵A ,B ,C 三点共线,∴AB →∥AC →.∵2(b -1)+2(a -1)=0,即a +b =2. 5分 (2)∵AC →=2AB →,∴(a -1,b -1)=2(2,-2). 7分∴⎩⎪⎨⎪⎧a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3,∴点C 的坐标为(5,-3).12分10.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k .[解] (1)由题意得(3,2)=m (-1,2)+n (4,1),2分所以⎩⎪⎨⎪⎧-m +4n =3,2m +n =2,解得⎩⎪⎨⎪⎧m =59,n =89.5分(2)a +k c =(3+4k,2+k ),2b -a =(-5,2),7分 由题意得2×(3+4k )-(-5)×(2+k )=0,解得k =-1613.12分B 组 能力提升 (建议用时:15分钟)1.(2018·宁波模拟)已知O ,A ,B 是平面上不共线的三个点,直线AB 上有一点C 满足2AC →+CB →=0,则OC →=( ) A .2OA →-OB → B .-OA →+2OB →C .23OA →-13OB → D .-13OA →+23OB →A [由2AC →+CB →=0得AC →+AB →=0,即AC →=-AB →,则OC →=OA →+AC →=OA →-AB →=OA →-(OB →-OA →)=2OA →-OB →.]2.向量a ,b ,c 在正方形网格中的位置如图4­2­4所示,若c =λa +μb (λ,μ∈R ),则λμ=________.图4­2­44 [以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO →=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3). ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2), 即-λ+6μ=-1,λ+2μ=-3, 解得λ=-2,μ=-12,∴λμ=4.]3.已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. 【导学号:00090134】 [解] (1)OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4) =(4t 2,2t 1+4t 2).2分当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.5分 (2)证明:当t 1=1时,由(1)知OM →=(4t 2,4t 2+2). 7分∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, 10分∴AM →与AB →共线,又有公共点A ,∴A ,B ,M 三点共线. 12分。

2019年高考数学一轮复习(北师大版文科): 课时分层训练1 集合 文 北师大版

2019年高考数学一轮复习(北师大版文科): 课时分层训练1 集合 文 北师大版

课时分层训练(一) 集合A组基础达标(建议用时:30分钟)一、选择题1.(2017·天津高考)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=( ) A.{2} B.{1,2,4}C.{1,2,4,6} D.{1,2,3,4,6}B[∵A∪B={1,2,6}∪{2,4}={1,2,4,6},∴(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.故选B.]2.(2017·山东高考)设集合M={x||x-1|<1},N={x|x<2},则M∩N=( ) A.(-1,1) B.(-1,2)C.(0,2) D.(1,2)C[∵M={x|0<x<2},N={x|x<2},∴M∩N={x|0<x<2}∩{x|x<2}={x|0<x<2}.故选C.]3.(2017·潍坊模拟)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1 B.2C.3 D.4D[由x2-3x+2=0,得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.]4.(2016·山东高考)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( ) A.(-1,1) B.(0,1)C.(-1,+∞)D.(0,+∞)C[由已知得A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1}.] 5.(2017·衡水模拟)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩∁U B=( ) 【导学号:00090002】A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}A[由题意得∁U B={2,5,8},∴A∩∁U B={2,3,5,6}∩{2,5,8}={2,5}.]6.(2018·西安模拟)已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M 与集合N 的关系是( )A .M =NB .M ∩N =NC .M ∪N =ND .M ∩N =∅B [由题意知N ={-1,0},则M ∩N =N ,故选B.]7.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是( )A .1B .3C .7D .31B [具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2.] 二、填空题8.已知集合A ={x |x 2-2 017x +2 016<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是________.[2 016,+∞) [由x 2-2 017x +2 016<0,解得1<x <2 016,故A ={x |1<x <2 016},又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 016.]9.(2016·天津高考)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =________. {1,4} [因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1;当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7;当x =4时,y =3×4-2=10.即B ={1,4,7,10}.又因为A ={1,2,3,4},所以A ∩B ={1,4}.]10.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.[-1,0) [由x (x +1)>0,得x <-1或x >0,∴B =(-∞,-1)∪(0,+∞),∴A -B =[-1,0).]B 组 能力提升(建议用时:15分钟)1.(2018·石家庄模拟)已知集合A={x|x∈Z,且32-x∈Z},则集合A中的元素个数为( ) A.2 B.3C.4 D.5C[∵32-x∈Z,∴2-x的取值有-3,-1,1,3,又∵x∈Z,∴x值分别为5,3,1,-1,故集合A中的元素个数为4.]2.(2017·郑州调研)设全集U=R,A={x|x2-2x≤0},B={y|y=cos x,x∈R},则图1­1­2中阴影部分表示的区间是( )图1­1­2A.[0,1]B.(-∞,-1]∪[2,+∞)C.[-1,2]D.(-∞,-1)∪(2,+∞)D[A={x|x2-2x≤0}=[0,2],B={y|y=cos x,x∈R}=[-1,1].图中阴影部分表示∁U(A∪B)=(-∞,-1)∪(2,+∞).]3.(2018·信阳模拟)已知集合A={(x,y)|y-x=0},B={(x,y)|x2+y2=1},C=A∩B,则C的子集的个数是________. 【导学号:00090003】2[曲线y=x与圆x2+y2=1只有一个交点,从而集合C中只有一个元素,则C的子集的个数有2个.]4.设集合A={x|x2-x-6<0},B={x|x-a≥0}.若存在实数a,使得A∩B={x|0≤x<3},则A∪B=________.{x|x>-2} [A={x|-2<x<3},B={x|x≥a}.如图,由A∩B={x|0≤x<3},得a=0,A∪B={x|x>-2}.]。

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 课时分层训练13 导数的概念及运算 文 北师大版

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 课时分层训练13 导数的概念及运算 文 北师大版

课时分层训练(十三) 导数的概念及运算A 组 基础达标 (建议用时:30分钟)一、选择题1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( )【导学号:00090060】A .2B .0C .-2D .-4D [f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.]2.已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于( ) A .4 B .5 C .254D .132C [∵f (x )=x 3-2x 2+x +6,∴f ′(x )=3x 2-4x +1,∴f ′(-1)=8, 故切线方程为y -2=8(x +1),即8x -y +10=0, 令x =0,得y =10,令y =0,得x =-54,∴所求面积S =12×54×10=254.]3.(2018·武汉模拟)已知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( ) A .1 B .-1 C .2 D .-2A [f (x +1)=x +-1x +1,故f (x )=2x -1x ,即f (x )=2-1x,对f (x )求导得f ′(x )=1x2,则f ′(1)=1,故所求切线的斜率为1,故选A .]4.(2018·成都模拟)已知函数f (x )的图像如图2­10­1,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )图2­10­1A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3) C [如图:f ′(3)、f (3)-f (2)⎝⎛⎭⎪⎫f -f 3-2、f ′(2)分别表示直线n ,m ,l 的斜率,故0<f ′(3)<f (3)-f (2)<f ′(2),故选C .]5.(2018·福州模拟)已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图像是( )A [∵f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,∴f ′(x )=12x -sin x ,它是一个奇函数,其图像关于原点对称,故排除B 、D .又f ′⎝ ⎛⎭⎪⎫π6=π12-12<0,故排除C ,选A .]二、填空题6.(2017·郑州二次质量预测)曲线f (x )=x 3-x +3在点P (1,3)处的切线方程是________. 【导学号:00090061】2x -y +1=0 [由题意得f ′(x )=3x 2-1,则f ′(1)=3×12-1=2,即函数f (x )的图像在点P (1,3)处的切线的斜率为2,则切线方程为y -3=2(x -1),即2x -y +1=0.] 7.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.12 [因为y ′=2ax -1x ,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12.]8.如图2­10­2,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.图2­10­20 [由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.]三、解答题9.求下列函数的导数:(1)y =x nlg x ; (2)y =1x +2x 2+1x3;(3)y =sin x xn . [解] (1)y ′=nx n -1lg x +x n·1x ln 10=xn -1⎝ ⎛⎭⎪⎫n lg x +1ln 10. (2)y ′=⎝ ⎛⎭⎪⎫1x ′+⎝ ⎛⎭⎪⎫2x 2′+⎝ ⎛⎭⎪⎫1x 3′=(x -1)′+(2x -2)′+(x -3)′ =-x -2-4x -3-3x -4=-1x 2-4x 3-3x4.(3)y ′=⎝⎛⎭⎪⎫sin x x n ′ =x n sin x ′-x n ′sin x x 2n=x n cos x -nx n -1sin x x 2n=x cos x -n sin xx n +1.10.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围. 【导学号:00090062】 [解] (1)y ′=x 2-4x +3=(x -2)2-1≥-1, 2分所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53, 4分斜率k =-1,所以切线方程为x +y -113=0.6分(2)由(1)得k ≥-1,9分所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.12分B 组 能力提升 (建议用时:15分钟)1.(2016·山东高考)若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3A [若y =f (x )的图像上存在两点(x 1,f (x 1)),(x 2,f (x 2)), 使得函数图像在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于A :y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;对于B :y ′=1x ,若有1x 1·1x 2=-1,即x 1x 2=-1,∵x >0,∴不存在x 1,x 2,使得x 1x 2=-1;对于C :y ′=e x,若有e x 1·e x 2=-1,即e x 1+x 2=-1.显然不存在这样的x 1,x 2; 对于D :y ′=3x 2,若有3x 21·3x 22=-1,即9x 21x 22=-1,显然不存在这样的x 1,x 2. 综上所述,选A .]2.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.2x -y =0 [设x >0,则-x <0,f (-x )=ex -1+x .∵f (x )为偶函数,∴f (-x )=f (x ),∴f (x )=e x -1+x .∵当x >0时,f ′(x )=e x -1+1,∴f ′(1)=e1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1), 即2x -y =0.]3.已知函数f (x )=x -2x,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x=1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线. [解] 根据题意有f ′(x )=1+2x 2,g ′(x )=-ax.2分曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a , 所以f ′(1)=g ′(1),即a =-3.6分曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1),所以y +1=3(x -1),即切线方程为3x -y -4=0. 9分曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1),所以y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12分。

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 第4章 第2节 平面向量基本定理及坐标表示学案

2019年高考数学一轮复习学案+训练+课件(北师大版文科): 第4章  第2节 平面向量基本定理及坐标表示学案

第二节 平面向量基本定理及坐标表示[考纲传真] 1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.(对应学生用书第59页)[基础知识填充]1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,该平面内的任一向量a 可表示成a =x i +y j ,由于a 与数对(x ,y )是一一对应的,把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ). 3.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1), |AB →|=x 2-x 12+y 2-y 12.4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线⇔x 1y 2-x 2y 1=0.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内的任何两个向量都可以作为一组基底.( ) (2)同一向量在不同基底下的表示是相同的.( )(3)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( ) [答案] (1)× (2)× (3)√ (4)×2.已知平面向量a =(2,-1),b =(1,3),那么|a +b |等于 ( ) A .5 B .13 C .17D .13B [因为a +b =(2,-1)+(1,3)=(3,2),所以|a +b |=32+22=13.]3.(2018·洛阳模拟)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A .(-7,-4) B .(7,4) C .(-1,4)D .(1,4)A [AB →=(3,2)-(0,1)=(3,1),BC →=AC →-AB →=(-4,-3)-(3,1)=(-7,-4). 故选A .]4.(2016·全国卷Ⅱ)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m =________. -6 [∵a =(m,4),b =(3,-2),a ∥b , ∴-2m -4×3=0,∴m =-6.]5.(教材改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________. (1,5) [设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ), 即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.](对应学生用书第60页)(1)12面内所有向量的一组基底的是 ( ) A .e 1与e 1+e 2 B .e 1-2e 2与e 1+2e 2 C .e 1+e 2与e 1-e 2 D .e 1+3e 2与6e 2+2e 1(2)(2018·太原模拟)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________. 【导学号:00090130】(1)D (2)43 [(1)选项A 中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧1=λ,1=0无解;选项B 中,设e 1-2e 2=λ(e 1+2e 2),则⎩⎪⎨⎪⎧λ=1,-2=2λ无解;选项C 中,设e 1+e 2=λ(e 1-e 2),则⎩⎪⎨⎪⎧λ=1,1=-λ无解;选项D 中,e 1+3e 2=12(6e 2+2e 1),所以两向量是共线向量.(2)选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫12λ+μAB →+⎝ ⎛⎭⎪⎫λ+12μAD →, 于是得⎩⎪⎨⎪⎧12λ+μ=1,λ+12μ=1,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以λ+μ=43.][规律方法] 1.利用平面向量基本定理表示向量时,要选择一组恰当的基底来表示其他向量,即用特殊向量表示一般向量.2.利用已知向量表示未知向量,实质就是利用三角形法则进行向量的加减运算,在解题时,注意方程思想的运用.如解答本题(2)的关键是根据平面向量基本定理列出关于λ,μ的方程组.[变式训练1] 如图4­2­1,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD与BC 的中点.设BA →=a ,BC →=b ,则EF →=________,DF →=________,CD →=________(用向量a ,b 表示).图4­2­113b -a 16b -a a -23b [EF →=EA →+AB →+BF →=-16b -a +12b =13b -a ,DF →=DE →+EF →=-16b +⎝ ⎛⎭⎪⎫13b -a =16b -a ,CD →=CF →+FD →=-12b -⎝ ⎛⎭⎪⎫16b -a =a -23B .]已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA =c ,且CM →=3c ,CN →=-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点.∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN →=(9,-18).[规律方法] 1. 向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.常利用向量相等则其坐标相同列方程(组)求解.2.平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.[变式训练2] (2017·合肥三次质检)已知a =(1,t ),b =(t ,-6),则|2a +b |的最小值为________.25 [由条件得2a +b =(2+t,2t -6),所以|2a +b |=+t2+t -2=t -2+20,当t =2时,|2a +b |的最小值为2 5.]已知a(1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A 、B 、C 三点共线,求m 的值.【导学号:00090131】[解] (1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,即2k -4+5=0,得k =-12.(2)法一:∵A 、B 、C 三点共线,∴AB →=λBC →,即2a +3b =λ(a +m b ),∴⎩⎪⎨⎪⎧2=λ3=m λ,解得m =32.法二:AB →=2a +3b =2(1,0)+3(2,1)=(8,3), BC →=a +m b =(1,0)+m (2,1)=(2m +1,m ). ∵A 、B 、C 三点共线,∴AB →∥BC →. ∴8m -3(2m +1)=0,即2m -3=0, ∴m =32.[规律方法] 1.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;(2)若a ∥b (a ≠0),则b =λA .2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例求解.[变式训练3] (1)(2017·郑州模拟)已知向量a =(1-sin θ,1),b =⎝ ⎛⎭⎪⎫12,1+sin θ,若a ∥b ,则锐角θ=________.(2)已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________.(1)π4 (2)k ≠1 [(1)由a ∥b ,得(1-sin θ)(1+sin θ)=12,所以cos 2θ=12,所以cos θ=22或-22,又θ为锐角,所以θ=π4. (2)若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.因为AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), 所以1×(k +1)-2k ≠0, 解得k ≠1.]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时分层训练(十四)导数与函数的单调性A 组基础达标 (建议用时:30分钟)一、选择题1.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1)B .(0,1)C .(1,+∞)D .(0,+∞)B [y =12x 2-ln x ,y ′=x -1x =x 2-1x=x -x +x(x >0).令y ′<0,得0<x <1,∴单调递减区间为(0,1).]2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图像如图2­11­3所示,则下列叙述正确的是()图2­11­3A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )C [依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增加的,由a <b <c ,所以f (c )>f (b )>f (a ).因此C 正确.]3.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为()A .(-∞,2)B .(-∞,2] C.⎝⎛⎭⎪⎫-∞,52D.⎝⎛⎦⎥⎤-∞,52 D [∵f ′(x )=6x 2-6mx +6,当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52,故选D.]4.若函数e xf (x )(e =2.71828…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是()A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos xA [若f (x )具有性质M ,则[e xf (x )]′=e x[f (x )+f ′(x )]>0在f (x )的定义域上恒成立,即f (x )+f ′(x )>0在f (x )的定义域上恒成立.对于选项A ,f (x )+f ′(x )=2-x-2-xln2=2-x(1-ln2)>0,符合题意. 经验证,选项B ,C ,D 均不符合题意. 故选A .]5.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为() A .(-1,1) B .(-1,+∞) C .(-∞,-1)D .(-∞,+∞)B [由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上是增加的,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B.] 二、填空题6.函数f (x )=ln x x的单调递增区间是________.(0,e)[由f ′(x )=⎝⎛⎭⎪⎫ln x x ′=1-ln x x >0(x >0),可得⎩⎪⎨⎪⎧1-ln x >0,x >0,解得x ∈(0,e).]7.若函数y =ax +sin x 在R 上是增加的,则a 的最小值为________.1[函数y =ax +sin x 在R 上单调递增等价于y ′=a +cos x ≥0在R 上恒成立,即a ≥-cos x 在R 上恒成立,因为-1≤-cos x ≤1,所以a ≥1,即a 的最小值为1.]8.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.⎣⎢⎡⎦⎥⎤-1,12[因为f (-x )=(-x )3-2(-x )+e -x -1e -x=-x 3+2x -e x+1e x =-f (x ),所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ).因为f ′(x )=3x 2-2+e x +e -x ≥3x 2-2+2e x ·e -x =3x 2≥0, 所以f (x )在R 上是增加的, 所以2a 2≤1-a ,即2a 2+a -1≤0, 所以-1≤a ≤12.]三、解答题9.已知函数f (x )=ln x +ke x(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间.[解](1)由题意得f ′(x )=1x-ln x -kex, 又f ′(1)=1-ke =0,故k =1.5分(2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x-ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减少的. 8分由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0. 综上可知,f (x )的单调递增区间是(0,1), 单调递减区间是(1,+∞).12分10.已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调性. [解](1)对f (x )求导得f ′(x )=3ax 2+2x , 2分因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.5分(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x.8分令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.12分B 组能力提升 (建议用时:15分钟)1.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是()A .1<a ≤2B .a ≥4C .a ≤2D .0<a ≤3A [易知函数f (x )的定义域为(0,+∞),f ′(x )=x -9x ,由f ′(x )=x -9x<0,解得0<x <3.因为函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上是减少的,所以⎩⎪⎨⎪⎧a -1>0,a +1≤3,解得1<a ≤2,选A]2.)设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________. (-2,0)∪(2,+∞)[令g (x )=f x x ,则g ′(x )=xfx -f xx 2>0,x ∈(0,+∞),所以函数g (x )在(0,+∞)上单调递增.又g (-x )=f -x -x =-f x -x =f xx=g (x ),则g (x )是偶函数,g (-2)=0=g (2),则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧x >0,gx >0或⎩⎪⎨⎪⎧x <0,g x <0,解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞).]3.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -x +1-f (x )在[1,+∞)上是减少的,求实数m 的取值范围.[解](1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2.又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1.5分(2)∵φ(x )=m x -x +1-f (x )=m x -x +1-ln x 在[1,+∞)上是减少的,∴φ′(x )=-x 2+m -x -1x x +2≤0在[1,+∞)上恒成立,即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x,x ∈[1,+∞).9分∵x +1x∈[2,+∞),∴2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2]. 12分。

相关文档
最新文档