[精品]2019届高考数学专题十七圆锥曲线的几何性质精准培优专练理
专题17 圆锥曲线-2019年高考数学考纲解读与题型示例含答案
专题17 圆锥曲线【2019年高考考纲解读】1.以选择题、填空题形式考查圆锥曲线的方程、几何性质(特别是离心率).2.以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等). 【重点、难点剖析】一、圆锥曲线的定义与标准方程 1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|). (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于点M . 2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值. (2)待定系数法.①顶点在原点,对称轴为坐标轴的抛物线,可设为y 2=2ax 或x 2=2ay (a ≠0),避开对焦点在哪个半轴上的分类讨论,此时a 不具有p 的几何意义. ②中心在坐标原点,焦点在坐标轴上,椭圆方程可设为x 2m +y 2n =1(m >0,n >0).双曲线方程可设为x 2m -y 2n=1(mn >0).这样可以避免讨论和烦琐的计算.对于x 2a 2+y 2b 2=1和x 2a 2-y 2b2=1来说,抓住a 、b 、c 间的关系是关键.【变式探究】(2017·北京)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.答案 2解析 由双曲线的标准方程知,a =1,b 2=m ,c =1+m ,故双曲线的离心率e =c a=1+m =3, ∴1+m =3,解得m =2.【变式探究】(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1 答案 B 解析 由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.【变式探究】(1)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,左、右顶点为M ,N ,过F 2的直线l交C 于A ,B 两点(异于M ,N ),△AF 1B 的周长为43,且直线AM 与AN 的斜率之积为-23,则C 的方程为( )A.x 212+y 28=1 B.x 212+y 24=1 C.x 23+y 22=1 D.x 23+y 2=1 答案 C解析 由△AF 1B 的周长为43,可知|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43, 解得a =3,则M ()-3,0,N (3,0). 设点A (x 0,y 0)(x 0≠±3), 由直线AM 与AN 的斜率之积为-23,可得y 0x 0+3·y 0x 0-3=-23,即y 20=-23(x 20-3),①又x 203+y 20b 2=1,所以y 20=b 2⎝ ⎛⎭⎪⎫1-x 203,②由①②解得b 2=2.所以C 的方程为x 23+y 22=1.(2)已知以圆C :(x -1)2+y 2=4的圆心为焦点的抛物线C 1与圆C 在第一象限交于A 点,B 点是抛物线C 2:x 2=8y 上任意一点,BM 与直线y =-2垂直,垂足为M ,则|BM |-|AB |的最大值为( ) A .1 B .2 C .-1 D .8 答案 A【感悟提升】(1)准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意当焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.(2)求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定.【变式探究】(1)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1,F 2为直径的圆与双曲线渐近线的一个交点为()3,4,则双曲线的方程为( ) A.x 216-y 29=1 B.x 23-y 24=1 C.x 24-y 23=1 D.x 29-y 216=1 答案 D解析 ∵点(3,4)在以|F 1F 2|为直径的圆上, ∴c =5,可得a 2+b 2=25.①又∵点(3,4)在双曲线的渐近线y =b ax 上,∴b a =43.② ①②联立,解得a =3且b =4, 可得双曲线的方程为x 29-y 216=1.(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x 答案 C解析 如图分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设准线交x 轴于点G .设||BF =a ,则由已知得||BC =2a ,由抛物线定义,得||BD =a ,故∠BCD =30°, 在Rt△ACE 中,∵||AE =|AF |=3,||AC =3+3a ,|AC |=2|AE |, ∴3+3a =6,从而得a =1,||FC =3a =3. ∴p =||FG =12||FC =32,因此抛物线方程为y 2=3x ,故选C. 题型二 圆锥曲线的几何性质例2、 (2018·北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________. 答案3-1 2解析 方法一 双曲线N 的渐近线方程为y =±nm x ,则n m=tan 60°=3,∴双曲线N 的离心率e 1满足e 21=1+n 2m2=4,∴e 1=2. 由⎩⎪⎨⎪⎧y =3x ,x 2a 2+y 2b2=1,得x 2=a 2b 23a 2+b2.如图,设D 点的横坐标为x ,由正六边形的性质得|ED |=2x =c ,∴4x 2=c 2. ∴4a 2b 23a 2+b2=a 2-b 2,得3a 4-6a 2b 2-b 4=0, ∴3-6b 2a2-⎝ ⎛⎭⎪⎫b 2a 22=0,解得b2a2=23-3.∴椭圆M 的离心率e 2满足e 22=1-b 2a2=4-2 3.∴e 2=3-1.方法二 双曲线N 的渐近线方程为y =±n mx , 则n m=tan 60°= 3.又c 1=m 2+n 2=2m ,∴双曲线N 的离心率为c 1m=2. 如图,连接EC ,由题意知,F ,C 为椭圆M 的两焦点, 设正六边形的边长为1,则|FC |=2c 2=2,即c 2=1. 又E 为椭圆M 上一点,则|EF |+|EC |=2a ,即1+3=2a , ∴a =1+32.∴椭圆M 的离心率为c 2a =21+3=3-1.【变式探究】(2018·全国Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N两点,则FM →·FN →等于( ) A .5 B .6 C .7 D .8 答案 D【变式探究】(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A.32 B .3 C .2 3 D .4 答案 B解析 由已知得双曲线的两条渐近线方程为y =±13 x .设两渐近线的夹角为2α,则有tan α=13=33, 所以α=30°. 所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt△ONF 中,|OF |=2,则|ON |= 3.则在Rt△OMN 中,|MN |=|ON |·tan 2α=3·tan 60°=3. 故选B.【方法技巧】圆锥曲线几何性质的应用技巧1.求解与椭圆曲线几何性质有关的问题时要结合图形进行分析,即使不画出图形,思考时也要联想到图形.当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.2.解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程(组)或不等式(组),再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.【变式探究】(2017·全国Ⅱ)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则双曲线C 的离心率为________. 答案 2解析 设双曲线的一条渐近线方程为y =b ax , 圆的圆心为(2,0),半径为2,由弦长为2,得圆心到渐近线的距离为22-12= 3.由点到直线的距离公式,得|2b |a 2+b2=3,解得b 2=3a 2.所以双曲线C 的离心率e =ca =c 2a 2=1+b 2a2=2. 【变式探究】(1)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B两点,若△AF 1F 2的面积是△BF 1F 2面积的三倍,cos∠AF 2B =35,则椭圆E 的离心率为( )A.12B.23C.32D.22 答案 D解析 设|F 1B |=k ()k >0, 依题意可得|AF 1|=3k ,|AB |=4k , ∴|AF 2|=2a -3k ,|BF 2|=2a -k . ∵cos∠AF 2B =35,在△ABF 2中,由余弦定理可得|AB |2=|AF 2|2+|BF 2|2-2|AF 2||BF 2|cos∠AF 2B , ∴(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a -3k =0,a =3k , ∴|AF 2|=|AF 1|=3k ,|BF 2|=5k , ∴|BF 2|2=|AF 2|2+|AB |2,∴AF 1⊥AF 2,∴△AF 1F 2是等腰直角三角形. ∴c =22a ,椭圆的离心率e =c a =22. (2)已知双曲线M :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,||F 1F 2=2c .若双曲线M 的右支上存在点P ,使a sin∠PF 1F 2=3csin∠PF 2F 1,则双曲线M 的离心率的取值范围为( )A.⎝ ⎛⎭⎪⎫1,2+73B.⎝⎛⎦⎥⎤1,2+73C .(1,2) D.(]1,2 答案 A解析 根据正弦定理可知sin∠PF 1F 2sin∠PF 2F 1=|PF 2||PF 1|,所以|PF 2||PF 1|=a 3c ,即|PF 2|=a 3c|PF 1|,||PF 1||-PF 2=2a ,所以⎝ ⎛⎭⎪⎫1-a 3c ||PF 1=2a ,解得||PF 1=6ac 3c -a ,而||PF 1>a +c ,即6ac3c -a>a +c ,整理得3e 2-4e -1<0,解得2-73<e <2+73.又因为离心率e >1,所以1<e <2+73,故选A.【感悟提升】(1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.【变式探究】(1)(2018·全国Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12 C.13 D.14 答案 D解析 如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1, 由∠F 1F 2P =120°, 可得|PB |=3,|BF 2|=1, 故|AB |=a +1+1=a +2, tan∠PAB =|PB ||AB |=3a +2=36,解得a =4,所以e =c a =14.故选D.(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为2c ,直线l 过点⎝ ⎛⎭⎪⎫23a ,0且与双曲线C 的一条渐近线垂直,以双曲线C 的右焦点为圆心,半焦距为半径的圆与直线l 交于M ,N 两点,若|MN |=423c ,则双曲线C 的渐近线方程为( )A .y =±2xB .y =±3xC .y =±2xD .y =±4x答案 B解析 方法一 由题意可设渐近线方程为y =b ax , 则直线l 的斜率k l =-a b,直线l 的方程为y =-a b ⎝ ⎛⎭⎪⎫x -23a ,整理可得ax +by -23a 2=0.焦点(c,0)到直线l 的距离d =⎪⎪⎪⎪⎪⎪ac -23a 2a 2+b 2=⎪⎪⎪⎪⎪⎪ac -23a 2c,则弦长为2c 2-d 2=2c 2-⎝ ⎛⎭⎪⎫ac -23a 22c 2=423c ,整理可得c 4-9a 2c 2+12a 3c -4a 4=0, 即e 4-9e 2+12e -4=0,分解因式得()e -1()e -2()e 2+3e -2=0.又双曲线的离心率e >1,则e =c a=2,所以b a =c 2-a 2a 2= ⎝ ⎛⎭⎪⎫c a 2-1=3, 所以双曲线C 的渐近线方程为y =±3x . 方法二 圆心到直线l 的距离为c 2-⎝⎛⎭⎪⎫223c 2=c3, ∴⎪⎪⎪⎪⎪⎪ac -23a 2c=c3,∴c 2-3ac +2a 2=0, ∴c =2a ,b =3a , ∴渐近线方程为y =±3x . 题型三 直线与圆锥曲线例3、(2018·全国Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧ y 0=-x 0+5,(x 0+1)2=(x 0-y 0-1)22+16, 解得⎩⎪⎨⎪⎧ x 0=3,y 0=2或⎩⎪⎨⎪⎧ x 0=11,y 0=-6. 因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144. 【变式探究】(2018·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为53,点A 的坐标为(b,0),且|FB |·|AB |=6 2.(1)求椭圆的方程;(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若|AQ ||PQ |=524sin∠AOQ (O 为原点),求k 的值.解 (1)设椭圆的焦距为2c ,由已知有 c 2a 2=59, 又由a 2=b 2+c 2,可得2a =3b .由已知可得|FB |=a ,|AB |=2b ,由|FB |·|AB |=62,可得ab =6,从而a =3,b =2.所以椭圆的方程为x 29+y 24=1. (2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故|PQ |sin∠AOQ =y 1-y 2. 又因为|AQ |=y 2sin∠OAB ,而∠OAB =π4, 所以|AQ |=2y 2.由|AQ ||PQ |=524sin∠AOQ ,可得5y 1=9y 2. 由方程组⎩⎪⎨⎪⎧ y =kx ,x 29+y 24=1,消去x ,可得y 1=6k9k 2+4 . 由题意求得直线AB 的方程为x +y -2=0,由方程组⎩⎪⎨⎪⎧ y =kx ,x +y -2=0,消去x ,可得y 2=2k k +1.由5y 1=9y 2,可得5(k +1)=39k 2+4,两边平方,整理得56k 2-50k +11=0,解得k =12或k =1128. 所以k 的值为12或1128. 【变式探究】[2018·全国卷Ⅰ]设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=( )A .5B .6C .7D .8【解析】由题意知直线MN 的方程为y =23(x +2), 联立直线与抛物线的方程,得⎩⎪⎨⎪⎧ y =23x +,y 2=4x ,解得⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧ x =4,y =4.不妨设M 为(1,2),N 为(4,4).又∵抛物线焦点为F (1,0),∴FM →=(0,2),FN →=(3,4).∴FM →·FN →=0×3+2×4=8.故选D.【答案】D【方法技巧】解决直线与圆锥曲线位置关系问题的方法1.通法:将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入双曲线E 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元二次方程.解此方程或利用根与系数的关系整体代入的思想解题.2.点差法:在涉及直线与圆锥曲线相交弦的中点与斜率问题时,常把直线与圆锥曲线的交点坐标代入圆锥曲线方程,作差后结合已知条件进行转化求解.提醒:利用点差法,对求出的结果要验证其是否满足相交的要求,即Δ>0.【变式探究】(2017·天津)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-c,0),右顶点为A ,点E 的坐标为(0,c ),△EFA 的面积为b 22. (1)求椭圆的离心率;学_科网(2)设点Q 在线段AE 上,|FQ |=3c 2,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM ∥QN ,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .①求直线FP 的斜率;②求椭圆的方程.解 (1)设椭圆的离心率为e .由已知可得12(c +a )c =b 22. 又由b 2=a 2-c 2,可得2c 2+ac -a 2=0,即2e 2+e -1=0,解得e =-1或e =12. 又因为0<e <1,所以e =12.所以椭圆的离心率为12. (2)①依题意,设直线FP 的方程为x =my -c (m >0),则直线FP 的斜率为1m. 由(1)知a =2c ,可得直线AE 的方程为x 2c +y c=1, 即x +2y -2c =0,与直线FP 的方程联立,可得x =(2m -2)c m +2,y =3c m +2, 即点Q 的坐标为⎝ ⎛⎭⎪⎫(2m -2)c m +2,3c m +2. 由已知|FQ |=3c 2, 有⎣⎢⎡⎦⎥⎤(2m -2)c m +2+c 2+⎝ ⎛⎭⎪⎫3c m +22=⎝ ⎛⎭⎪⎫3c 22, 整理得3m 2-4m =0,所以m =43(m =0舍去), 即直线FP 的斜率为34. ②由a =2c ,可得b =3c ,故椭圆方程可以表示为x 24c 2+y 23c 2=1. 由①得直线FP 的方程为3x -4y +3c =0,与椭圆方程联立得⎩⎪⎨⎪⎧ 3x -4y +3c =0,x 24c 2+y 23c 2=1,消去y ,整理得7x 2+6cx -13c 2=0,解得x =-13c 7(舍去)或x =c .因此可得点P ⎝ ⎛⎭⎪⎫c ,3c 2,进而可得|FP |= (c +c )2+⎝ ⎛⎭⎪⎫3c 22=5c 2, 所以|PQ |=|FP |-|FQ |=5c 2-3c 2=c . 由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP . 因为QN ⊥FP , 所以|QN |=|FQ |·tan∠QFN =3c 2×34=9c 8, 所以△FQN 的面积为12|FQ ||QN |=27c 232. 同理△FPM 的面积等于75c 232. 由四边形PQNM 的面积为3c ,得75c 232-27c 232=3c , 整理得c 2=2c .又由c >0,得c =2. 所以椭圆的方程为x 216+y 212=1. 【变式探究】已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点. (1)若直线AB 与椭圆的长轴垂直,|AB |=12a ,求椭圆的离心率; (2)若直线AB 的斜率为1,|AB |=2a 3a 2+b2,求椭圆的短轴与长轴的比值. 解 (1)由题意可知,直线AB 的方程为x =-c ,∴|AB |=2b 2a =12a , 即a 2=4b 2, 故e =c a =a 2-b 2a 2=1-b 2a 2=32. (2)设F 1(-c,0),则直线AB 的方程为y =x +c , 联立⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y2b2=1,消去y , 得(a 2+b 2)x 2+2a 2cx +a 2c 2-a 2b 2=0, Δ=4a 4c 2-4a 2(a 2+b 2)(c 2-b 2)=8a 2b 4.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2, ∴|AB |=1+1|x 1-x 2| =2·(x 1+x 2)2-4x 1x 2=2·8a 2b 4a 2+b 2 =4ab 2a 2+b 2=2a 3a 2+b 2, ∴a 2=2b 2,∴b 2a 2=12, ∴2b 2a =22,即椭圆的短轴与长轴之比为22. 【感悟提升】解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.【变式探究】如图,过抛物线M :y =x 2上一点A (点A 不与原点O 重合)作抛物线M 的切线AB 交y 轴于点B ,点C 是抛物线M 上异于点A 的点,设G 为△ABC 的重心(三条中线的交点),直线CG 交y 轴于点D .设点A (x 0,x 20)(x 0≠0).(1)求直线AB 的方程;(2)求|OB ||OD |的值. 解 (1)因为y ′=2x ,所以直线AB 的斜率k =y ′=2x 0.所以直线AB 的方程y -x 20=2x 0(x -x 0),即y =2x 0x -x 20,即直线AB 的方程为2x 0x -y -x 20=0.因为G 为△ABC 的重心,所以y 1=3y 2.由根与系数的关系,得y 1+y 2=4y 2=1-mx 0m 2, y 1y 2=3y 22=x 204m 2. 所以(1-mx 0)216m 4=x 2012m 2, 解得mx 0=-3±23,满足Δ>0. 所以点D 的纵坐标y D =-x 02m =x 206±43, 故|OB ||OD |=|y B ||y D |=43±6.。
2019年高考数学理试题分类汇编:圆锥曲线(含答案)
2019年高考数学理试题分类汇编:圆锥曲线(含答案)2019年高考数学理试题分类汇编——圆锥曲线一、选择题1.(2019年四川高考)设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,则直线OM的斜率的最大值为2/3.(答案:C)2.(2019年天津高考)已知双曲线x^2/4 - y^2/9 = 1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,则双曲线的方程为x^2/4 - y^2/9 = 1.(答案:D)3.(2019年全国I高考)已知方程x^2/n^2 - y^2/m^2 = 1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(-1,3)。
(答案:A)4.(2019年全国I高考)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点。
已知|AB|=42,|DE|=25,则C的焦点到准线的距离为4.(答案:B)5.(2019年全国II高考)圆(x-1)^2 + (y-4)^2 = 13的圆心到直线ax+y-1=0的距离为1,则a=-2/3.(答案:A)6.(2019年全国II高考)已知F1,F2是双曲线E:x^2/4 -y^2/2 = 1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=1/3,则E的离心率为2/3.(答案:A)7.(2019年全国III高考)已知O为坐标原点,F是椭圆C:x^2/a^2 + y^2/b^2 = 1(a>b>0)的左焦点,A、B分别为C的左、右顶点。
P为C上一点,且PF⊥x轴。
过点A的直线l与线段PF交于点M,与y轴交于点E。
若直线BM经过OE的中点,则C的离心率为1/3.(答案:A)8.(2019年浙江高考)已知椭圆 + y^2/(m^2-1) = 1(m>1)与双曲线- y^2/(n^2-1) = 1(n>0)的焦点重合,e1,e2分别为m,n,则e1+e2=3.(答案:C)解析】Ⅰ)由题意可知,椭圆C的离心率为$\frac{\sqrt{3}}{2}$,根据离心率的定义可得:$\frac{c}{a}=\frac{\sqrt{3}}{2}$,其中$c$为椭圆的焦距之一,即$2c$为椭圆的长轴长度,$a$为椭圆的半长轴长度,$b$为椭圆的半短轴长度,则有:$$\frac{2c}{2a}=\frac{\sqrt{3}}{2}$$ 即:$$\frac{c}{a}=\frac{\sqrt{3}}{4}$$ 又因为焦点$F$在椭圆的一个顶点上,所以该顶点的坐标为$(a,0)$,即$2c=2a$,代入上式可得:$$\frac{b}{a}=\frac{1}{2}$$ 又因为椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,代入$\frac{b}{a}=\frac{1}{2}$可得:$$\frac{x^2}{a^2}+\frac{4y^2}{a^2}=1$$ 即:$$x^2+4y^2=a^2$$ (Ⅱ)(i)设椭圆C的另一个顶点为$V$,则$OV$为椭圆的长轴,$OF$为椭圆的短轴,且$OV=2a$,$OF=\sqrt{3}a$。
2019届高考数学圆锥曲线专题复习:圆锥曲线的几何性质习题
圆锥曲线的几何性质一、选择题(''6636⨯=)1..设22221(0)x y a b a b +=>>为黄金椭圆,F 、A 分别是它的左焦点和右端点,B 是它的短轴的一个端点,则ABF ∠=( ) A ,60 B ,75 C ,90 D ,1202.已知双曲线22221(0,0)x y a b a b-=>>右焦点为F ,右准线为l ,一直线交双曲线于P ,Q 两点,交l 于R点,则( )A ,PFR QFR ∠>∠B ,PFR QFR ∠=∠C ,PFR QFR ∠<∠D ,PFR ∠与QFR ∠的大小不确定3.已知点A(0,2)和抛物线24y x =+上两点B 、C ,使得AB BC ⊥,当点B 在抛物线上移动时,点C 的纵坐标的取值范围是 ( )A ,(,0][4,)-∞+∞B ,(,0]-∞C ,[4,)+∞D ,[0,4,]4.设椭圆方程2213x y +=,(0,1)A -为短轴的一个端点,M ,N 为椭圆上相异两点。
若总存在以MN 为底边的等腰AMN ∆,则直线MN 的斜率k 的取值范围是 ( )A ,(1,1)-B ,[1,1]-C ,(1,0]-D ,[0,1]5.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线右支上的任意一点,若212PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是 ( )A ,(1,)+∞B ,(1,2] C, D ,(1,3] 6.已知P 为抛物线24y x =上一点,记P 到此抛物线的准线的距离为1d ,P 到直线 2120x y +-=的距离为2d ,则12d d +的最小值为 ( ) A, BC1+ D ,不存在 二、填空题(''9654⨯=)图27.设双曲线226x y -=的左、右顶点分别为1A 、2A ,P 为双曲线右支上一点,且2PA x ∠ =1310PA x ∠+,则1PAx ∠的度数是。
2020届高三数学培优专练十七 圆锥曲线的几何性质(理) 考试版(内含答案))
2020届高三数学培优专练例1:已知点P是椭圆22154x y+=上y轴右侧的一点,且以点P及焦点1F,2F为顶点的三角形的面积等于1,则点P的坐标为________.例2:如图,已知抛物线24y x=的焦点为F,过点F且斜率为1的直线依次交抛物线及圆()22114x y-+=于点A,B,C,D四点,则AB CD+的值是()A.6B.7C.8D.9例3:过双曲线22115yx-=的右支上一点P,分别向圆221:(4)4C x y++=和圆222:(4)1C x y-+=作切线,切点分别为M,N,则22PM PN-的最小值为.培优点十七圆锥曲线的几何性质一、椭圆的几何性质二、抛物线的几何性质三、双曲线的几何性质一、选择题1.抛物线的焦点为,点是上一点,,则( )A .B .C .D .2.设椭圆的左焦点为,直线()与椭圆交于,两点, 则的值是( ) A .B .C .D .3.已知双曲线22:12x C y -=上任意一点为G ,则G 到双曲线C 的两条渐近线距离之积为( ) A .13B .23C .1D .434.已知抛物线的准线与圆相切,则的值为( )A .B .C .18D .或 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线,当其离心率时,对应双曲线的渐近线的夹角的取值范围为( )A .B .C .D . 6.已知直线l 过点(3,2)P -且与椭圆22:12016x y C +=相交于A ,B 两点,则使得点P 为弦AB 中点的 直线斜率为( )2:2(0)C y px p =>F 0(6,)A y C ||2AF p =p =432122:14x C y +=F :l y kx =0k ≠C A B ||| |AF BF +2234432y ax =22670x y y +--=a 14128-14128-90︒2222:1(0,0)x y E a b a b-=>>[2,2]e ∈[0,]6π[,]63ππ[,]43ππ[,]32ππ对点增分集训A .35-B .65-C .65D .357.设,是抛物线上的两个不同的点,是坐标原点,若直线与的斜率之积为,则( ) A .B .以为直径的圆的面积大于C .直线过抛物线的焦点D .到直线的距离不大于8.椭圆与双曲线焦点相同,为左焦点,曲线与在第一象限,第三象限的交点分别为,,且,则当这两条曲线的离心率之积最小时,双曲线有一条渐近线方程是( )A .B .C .D二、填空题9.已知抛物线24x y =的焦点为F ,点A 在x 轴的正半轴上,过AF 的直线与抛物线在第一象限交于点B ,与抛物线的准线l 交于点C ,若2AB BF =u u u r u u u r,则FC =u u u r .10.已知椭圆()的离心率,为椭圆上的一个动点,则与定点连线距离的最大值为 .三、解答题11.已知抛物线C 的方程22(0)px p y =>,焦点为F ,已知点P 在C 上,且点P 到点F 的距离比它到y 轴的距离大1.(1)试求出抛物线C 的方程;M N 2y x =O OM ON 12-||||OM ON +≥MN 4πMN 2y x =O MN 22222:1(0)x y a b a b Γ+=>>2222:1(0,0)x y m n m nΩ-=>>F ΓΩA B 23AFB π∠=20x y -=20x y +=0x =0y +=2221y x a+=1a >e =P P (1,0)B -(2)若抛物线C 上存在两动点,M N (,M N 在对称轴两侧),满足OM ON ⊥(O 为坐标原点),过点F 作直线交C 于,A B 两点,若AB MN ∥,线段MN 上是否存在定点E ,使得||||4||EM EN AB ⋅=恒成立?若存在,请求出E 的坐标,若不存在,请说明理由.12.设椭圆的左、右焦点分别为,,下顶点为,为坐标原点,2222:1(0)x y C a b a b+=>>1F 2F A O点到直线的距离为,为等腰直角三角形. (1)求椭圆的标准方程;(2)直线与椭圆交于,两点,若直线与直线的斜率之和为,证明:直线恒过定点,并求出该定点的坐标.O 2AF 212AF F C l C M N AM AN 2l例1:【答案】(15,12)或(15,2)1- 【解析】1F ,2F 是椭圆22154x y +=的左、右焦点,541c =-=, 则1(1,0)F -,2(1,0)F ,设(,)(0)P x y x >是椭圆上的一点,由三角形的面积公式可知1212S c y =⋅⋅=,即1y =, 将1y =代入椭圆方程得21154x +=,解得15x =,∴点P 的坐标为(15,1),(15,)1-. 例2:【答案】B【解析】设()11,A x y ,()22,D x y ,代入抛物线方程消去y , 得2610x x -+=,∴126x x +=,则121212222117AB CD AF r DF r x x r x x x x +=-+-=++-=++-=++=. 例3:【答案】13【解析】圆221:(4)4C x y ++=的圆心为(4,0)-,半径为12r =;圆222:(4)1C x y -+=的圆心为(4,0),半径为21r =,设双曲线22115y x -=的左右焦点为1(4,0)F -,2(4,0)F ,培优点十七 圆锥曲线的几何性质 答案连接1PF ,2PF ,1F M ,2F N ,可得2222221122|(())|||PM PN PF r PF r -=---2212(4)(1)PF PF =---22123PF PF =--1212(())3PF PF PF PF =-+-122()322313a PF PF c =+-≥⋅-=.当且仅当P 为右顶点时,取得等号,即最小值13.一、选择题 1.【答案】A【解析】根据抛物线焦半径公式可得:,所以. 2.【答案】C【解析】设椭圆的右焦点为,连接,,因为,,所以四边形是平行四边形, 所以,所以.||622pAF p =+=4p =2F 2AF 2BF OA OB =2OF OF =2AFBF 2||||BF AF =2||||||||4AF BF AF AF +=+=3.【答案】B【解析】渐近线方程为y x =, 设点(,)G x y,则1d =,2d =,∴2212|2|233x y d d -==. 4.【答案】D【解析】抛物线,即,准线方程为, 因为抛物线的准线与圆相切, 当时,,解得; 当时,,解得. 5.【答案】D【解析】由题意可得:,∴,设双曲线的渐近线与轴的夹角为,双曲线的渐近线为,则. 结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为.6.【答案】C【解析】设11(,)A x y ,22(,)B x y ,则221112016x y +=,222212016x y +=, 两式相减12121212()()()()02016x x x x y y y y -+-++=.2y ax =21x y a =14y a=-21x y a=22(3)16x y +-=0a >1344a +=14a =0a <1344a --=128a =-222221[2,4]c b e a a ==+∈22[1,3]b a∈x θb y x a =±[,]43ππθ∈[,]32ππ又由点(3,2)P -为弦AB 的中点,∴126x x +=,124y y +=-,∴121265y y k x x -==-.7.【答案】D【解析】当直线的斜率不存在时,设,,由斜率之积为,可得,即, ∴的直线方程为,当直线的斜率存在时,设直线方程为,联立,可得,此时设,,则,,∴,即, ∴直线方程为,则直线过定点,则到直线的距离不大于.MN 20(),M y y 200(,)N y y -12-20112y -=-202y =MN 2x =y kx m =+2y kx my x =+⎧⎨=⎩20ky y m -+=11(,)M x y 22(,)N x y 12m y y k =2122mx x k=121212OM ON y y k k k x x m ⋅===-2m k =-2(2)y kx k k x =-=-MN (2,0)O MN 28.【答案】C【解析】设双曲线的右焦点为,由题意点与点关于原点对称,因此, 又,所以, 由椭圆与双曲线定义可得,,所以,, 根据余弦定理可得,即,化简得,所以离心率乘积为,当且仅当①时,取等号,由,所以,所以②, 再将①②代入可得, 所以双曲线的渐近线方程为或.二、填空题1F A B 1||||AF BF =23AFB π∠=13FAF π∠=1||||2AF AF a +=1||||2AF AF m -=||AF a m =+1||AF a m =-2221111||||||2||||cos FF AF AF AF AF F AF =+-∠2224()()2()()cos3c a m a m a m a m π=++--+-22243cm a =+≥=22c c c a m am ⋅=≥223m a =2222a b m n -=+2222243c m b m n --=+223b n =2222a b m n -=+222m n=0x=0x +=9.【答案】10【解析】由题可知(0,1)F ,设点(,0)A a ,00(,)B x y ,则0000(,)2(,1)x a y x y -=--, 解得03a x =,023y =, 代入抛物线24x y =,得2893a =,解得a =故A ,可得5AF =u u u r ,根据对称性得,5AC =u u u r ,所以10FC FA AC =+=.10.【答案】 【解析】椭圆()的离心率解得,椭圆方程为, 设,则与定点, 当时,取得最大值.三、解答题11.【答案】(1)24y x =;(2)存在,(4,0)E .【解析】(1)因为P 到点F 的距离比它到y 轴的距离大1,由题意和抛物线定义,12p =,所以抛物线C 的方程为24y x =, 522221y x a+=1a >5e ==a =2215y x +=(cos )P θθP (1,0)B -=52==1cos 4θ=52(2)由题意,0MN k ≠, 设211(,)4y M y ,22221(,)()4y N y y y >,由OM ON ⊥,得1216y y =-, ①若直线MN 斜率存在,设斜率为k ,直线124:M k y y N =+, 112124()4y y y x y y -=-+,整理可得124(4)y x y y =-+, 直线:AB (1)y k x =-,与C 联立得2440ky y k --=,故可得21||4(1)AB k =+, 若点E 存在,设点E 坐标为00(,)x y ,))0120||||y EM E y N y y ⋅=--200214(1)(16)y y k k =+-+,||||4||EM EN AB ⋅=时,20041616y y k -+=,解得00y =或04y k=(不是定点,舍去), 则点E 为(4,0),经检验,此点满足24y x <,所以在线段MN 上,②若斜率不存在,则||4AB =,||||4416EM EN ⋅=⋅=,此时点(4,0)E 满足题意, 综上所述,定点E 为(4,0).12.【答案】(1);(2)见解析. 【解析】(1)由题意可知:直线的方程为,即, 2212x y +=2AF 1x y c b+=-0bx cy bc -++=, 因为为等腰直角三角形,所以, 又,可解得,,所以椭圆的标准方程为. (2)证明:由(1)知, 当直线的斜率存在时,设直线的方程为,代入,得. 所以,即, 设,,则,, 因为直线与直线的斜率之和为, 所以 ,整理得, 所以直线的方程为, 显然直线经过定点,当直线的斜率不存在时,设直线的方程为, 因为直线与直线的斜率之和为, 2bc a ==12AF F ∆b c =222a b c =+a =1b =1c =C 2212x y +=(0,1)A -l l (1)y kx t t =+≠±2212x y +=222(12)4220k x ktx t +++-=2222164(12)(22)0k t k t ∆=-+->2221t k -<11(,)M x y 22(,)N x y 122412kt x x k+=-+21222212t x x k -=+AM AN 2121212121111AM AN y y kx t kx t k k x x x x +++++++=+=+()12212(1)(1)422222t x x t kt k k x x t +++⋅=+=-=-1t k =-l 1(1)1y kx t kx k k x =+=+-=-+(1)1y k x =-+(1,1)l l x m =AM AN 2设,则, 所以,解得, 此时直线的方程为,显然直线也经过该定点, 综上,直线恒过点. (,)M m n (,)N m n -1122AM AN n n k k m m m +-++=+==1m =l 1x =1x =(1,1)l (1,1)。
2019年高考理数——圆锥曲线(解答)
2019年高考理数——圆锥曲线1.(19全国一理19.(12分))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB u u u r u u u r,求|AB |.2.(19全国二理21.(12分))已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.3.(19全国三理21.)已知曲线C:y=22x,D为直线y=12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.4.(19北京理(18)(本小题14分))已知抛物线C:x2=−2py经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.设椭圆22 221(0)x ya ba b+=>>的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为55.(Ⅰ)求椭圆的方程;(Ⅱ)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与x轴的交点,点N在y轴的负半轴上.若||||ON OF=(O为原点),且OP MN⊥,求直线PB的斜率.6.(19浙江21.(本小题满分15分))如图,已知点(10)F,为抛物线22(0)y px p=>的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得ABC△的重心G在x轴上,直线AC交x轴于点Q,且Q 在点F的右侧.记,AFG CQG△△的面积分别为12,S S.(1)求p的值及抛物线的准线方程;(2)求12SS的最小值及此时点G的坐标.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.参考答案:1.解:设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-.所以l 的方程为3728y x =-. (2)由3AP PB =u u u r u u u r 可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||3AB =.2.解:(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-.由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+. 所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =22||2PG k=+,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812tS t=+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.3.解:(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- . 整理得112 2 +1=0. tx y - 设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥u u u u r u u u r ,而()2,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,S =因此,四边形ADBE的面积为3或4.解:(Ⅰ)由抛物线2:2C x py =-经过点(2,1)-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =.(Ⅱ)抛物线C 的焦点为(0,1)F -.设直线l 的方程为1(0)y kx k =-≠.由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=.设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =.令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-.设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r ,21212(1)x x DA DB n y y ⋅=++u u u r u u u r 2122212(1)44x x n x x =++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭21216(1)n x x =++24(1)n =-++ 令0DA DB ⋅=u u u r u u u r ,即24(1)0n -++=,则1n =或3n =-.综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.5. (Ⅰ)解:设椭圆的半焦距为c ,依题意,24,5c b a ==,又222a b c =+,可得a =, 2,b =1c =.所以,椭圆的方程为22154x y +=. (Ⅱ)解:由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P kx k=-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P p y k x k -=-.在2y kx =+中,令0y =,得2M x k =-.由题意得()0,1N -,所以直线MN 的斜率为2k-.由OP MN ⊥,得2451102k k k -⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而k =所以,直线PB或.6.(1)由题意得12p=,即p =2.所以,抛物线的准线方程为x =−1. (2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得 ()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故 220c t y t -+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t -=-,得()21,0Q t -. 由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A c t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-. 令22m t =-,则m >0,1221222134324S m S m m m m =-=-=+++++….当m =12S S取得最小值1+,此时G (2,0).7.解:(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B ,所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E是线段BF2与椭圆的交点,所以32 y=-.因此3(1,)2E--.11。
2019全国高考,圆锥曲线部分汇编(2021年整理精品文档)
(完整版)2019全国高考,圆锥曲线部分汇编编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2019全国高考,圆锥曲线部分汇编)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2019全国高考,圆锥曲线部分汇编的全部内容。
2019全国高考 - 圆锥曲线部分汇编(2019北京理数) (4)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则(A)a 2=2b 2(B )3a 2=4b2(C )a =2b (D )3a =4b(2019北京理数) (18)(本小题14分)已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.(2019北京文数) (5)已知双曲线2221x y a-=(a >0)a =( (B)4(C )2(D)12(2019北京文数) (11)设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.(2019北京文数) (19)(本小题14分)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.(2019江苏) 7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .(2019江苏) 17.(本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程; (2)求点E 的坐标.(2019全国Ⅰ理数) 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2019全国Ⅰ理数) 16.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120FB F B ⋅=,则C 的离心率为____________.(2019全国Ⅰ理数) 19.(12分)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.(2019全国Ⅰ文数) 10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒(2019全国Ⅰ文数) 12.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2019全国Ⅰ文数) 21.(12分)已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.(2019全国Ⅱ理数)1. 若抛物线13)0(2222=+>=py p x p px y 的焦点是椭圆的一个焦点,则p=________A 。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
2019年高考试题汇编理科数学--圆锥曲线.doc
(2019全国1)10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =,||||1BF AB =,则C 的方程为( )A.1222=+y x B. 12322=+y x C.13422=+y x D.14522=+y x答案: B解答:由椭圆C 的焦点为)0,1(1-F ,)0,1(2F 可知1=c ,又Θ||2||22B F AF =,||||1BF AB =,可设m BF =||2,则m AF 2||2=,m AB BF 3||||1==,根据椭圆的定义可知a m m BF BF 23||||21=+=+,得a m 21=,所以a BF 21||2=,a AF =||2,可知),0(b A -,根据相似可得)21,23(b B 代入椭圆的标准方程12222=+by a x ,得32=a ,2222=-=c a b ,∴椭圆C 的方程为12322=+yx . (2019全国1)16.已知双曲线C:22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =⋅=u u u r u u u r u u u r u u u r,则C 的离心率为 .答案: 2解答:由112,0F A AB F B F B =⋅=u u u r u u u r u u u r u u u r 知A 是1BF 的中点,12F B F B⊥uuu r uuu r,又O 是12,F F 的中点,所以OA 为中位线且1OA BF ⊥,所以1OB OF =,因此1FOA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=︒,221()1tan 602b e a=+=+︒=.(2019全国1) 19.已知抛物线x y C 3:2=的焦点为F ,斜率为23的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4||||=+BF AF ,求l 的方程; (2)若3=,求||AB . 答案:(1)07128=+-x y ;(2)3134. 解答:(1)设直线l 的方程为b x y +=23,设),(11y x A ,),(22y x B , 联立直线l 与抛物线的方程:⎪⎩⎪⎨⎧=+=xy b x y 3232消去y 化简整理得0)33(4922=+-+b x b x ,0494)33(22>⨯--=∆b b ,21<∴b ,9)33(421b x x -⨯=+,依题意4||||=+BF AF 可知42321=++x x ,即2521=+x x ,故259)33(4=-⨯b ,得87-=b ,满足0>∆,故直线l 的方程为8723-=x y ,即07128=+-x y .(2)联立方程组⎪⎩⎪⎨⎧=+=xy b x y 3232消去x 化简整理得0222=+-b y y ,084>-=∆b ,21<∴b ,221=+y y ,b y y 221=,Θ3=,可知213y y -=,则222=-y ,得12-=y ,31=y ,故可知23-=b 满足0>∆, ∴3134|13|941||11||212=+⨯+=-⋅+=y y k AB . (2019全国2)8. 若抛物线)0(22>=p px y 的焦点是椭圆1322=+py p x 的一个焦点,则=p ( ) A.2 B.3 C.4 D.8 答案:D 解答:抛物线)0(22>=p px y 的焦点是)0,2(p,椭圆1322=+p y p x 的焦点是)0,2(p ±, ∴p p22=,∴8=p .(2019全国2)11. 设F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于,P Q 两点,若||||PQ OF = ,则C 的离心率为( )C.2答案:A解答:∵||||PQ OF c ==,∴90POQ ∠=o, 又||||OP OQ a ==,∴222a a c +=解得ca=e =(2019全国2)21. 已知点(2,0),(2,0)A B -,动点(,)M x y 满足直线AM 和BM 的斜率之积为12-,记M 的轨迹为曲线C .(1)求C 的方程,并说明C 什么曲线;(2)过坐标原点的直线交C 于,P Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G .①证明:PQG ∆是直角三角形; ②求PQG ∆的面积的最大值. 答案: 见解析 解答:(1)由题意得:1222y y x x ⋅=-+-,化简得: 221(2)42x y x +=≠±,表示焦点在x 轴上的椭圆(不含与轴的交点).(2) ①依题意设111100(,),(,),(,)P x y Q x y G x y --,直线PQ 的斜率为k (0)k > ,则101010101010,PG GQ y y y y y y k k x x x x x x ---+===---+,x∴2210221012PG GQy y k k x x -⋅==--, 又1111122GQ EQ y y kk k x x x -====--,∴1PG k k=-, ∴PG PQ ⊥,即是直角三角形.②直线的方程为(0)y kx x =>,联立22142y kx x y=⎧⎪⎨+=⎪⎩,得11x y ⎧=⎪⎪⎨⎪=⎪⎩ , 则直线21111111111:()k PG y x x y x x kx x x k k k k k +=--+=-++=-+, 联立直线PG 和椭圆C ,可得222221122224(1)2(1)(1)40x k x k x x k k k+++-+-=, 则211024(1)2x k x x k ++=+,∴2111012114(1)()222PQGx k S y x x kx k ∆+=+=⋅+ 2222422218()8(1)8(1)1(2)(21)2522()5k k k k k k k k k k k k +++===++++++, 令1t k k=+,则2t ≥, ∴2288812(2)5212PQG t t S t t t t∆===-+++, ∵min 19(2)2t t+=, PQG∆PQ∴max 16()9PQG S ∆=. (2019全国3)10.双曲线C :22142x y -=的右焦点为F ,点P 为C 的一条渐近线的点,O 为坐标原点.若||||PO PF =则PFO ∆的面积为( )A: 4B:2C:D:答案: A 解析:由双曲线的方程22042x y -=可得一条渐近线方程为2y x =;在PFO ∆中||||PO PF =过点P 做PH 垂直OF因为tan POF=2∠得到2PO =;所以1224S PFO ∆=⨯=;故选A;(2019全国3)15.设1F、2F 为椭圆1203622=+y x C :的两个焦点,M 为C 上一点且在第一象限,若21F MF ∆为等腰三角形,则M 的坐标为________. 答案:)15,3(解析:已知椭圆1203622=+y x C :可知,6=a ,4=c ,由M 为C 上一点且在第一象限,故等腰三角形21F MF ∆中8211==F F MF ,4212=-=MF a MF ,415828sin 2221=-=∠M F F ,15sin 212=∠=M F F MF y M ,代入1203622=+y x C :可得3=M x .故M 的坐标为)15,3(. (2019全国3)21.已知曲线2:2x C y =,D 为直线12y =-上的动点.过D 作C 的两条切线,切点分别是A ,B ,(1)证明:直线AB 过定点;(2)若以5(0,)2E 为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 答案:见解析; 解答:(1)当点D 在1(0,)2-时,设过D 的直线方程为012y k x =-,与曲线C 联立化简得 20210x k x -+=,由于直线与曲线相切,则有20440k ∆=-=,解得01k =±,并求得,A B 坐标分别为11(1,),(1,)22-,所以直线AB 的方程为12y =; 当点D 横坐标不为0时,设直线AB 的方程为y kx m =+(0k ≠),由已知可得直线AB 不过坐标原点即0m ≠,联立直线AB 方程与曲线C 的方程可得,22y kx mx y =+⎧⎪⎨=⎪⎩,消y 并化简得2220x kx m --=,∵有两个交点∴2480k m ∆=+>, 设11(,)A x y ,22(,)B x y ,根据韦达定理有,122x x k +=,122x x m =-,由已知可得曲线C 为抛物线等价于函数2()2x f x =的图像,则有()f x x '=,则抛物线在11(,)A x y 上的切线方程为111()y y x x x -=-①, 同理,抛物线在22(,)B x y 上的切线方程为222()y y x x x -=-②, 联立①,②并消去x 可得122112y y y y x x x x ---=-, 由已知可得两条切线的交点在直线12y =-上,则有 22122112112222x x x x x x -----=-,化简得,12212112(1)()2x x x x x x x x --=-,∵0k ≠,∴12x x ≠,即1212112x x x x -=,即为2114m m --=-,解得12m =,经检验12m =满足条件,所以直线AB 的方程为12y kx =+过定点1(0,)2, 综上所述,直线AB 过定点1(0,)2得证.(2)由(1)得直线AB 的方程为12y kx =+,当0k =时,即直线AB 方程为12y =,此时点D 的坐标为1(0,)2-, 以5(0,)2E 为圆心的圆与直线AB 相切于1(0,)2F 恰为AB 中点,此时1123322ADBE S AB ED =⋅=⨯⨯=;当0k ≠时,直线AB 方程与曲线方程联立化简得2210x kx --=,122x x k +=,121x x =-,21221y y k +=+,则AB 中点坐标为21(,)2H k k +,由已知可得EH AB ⊥,即2152210EH k k k k k +-⋅=⋅=--, 解得,1k =±,由对称性不妨取1k =,则直线方程为12y x =+, 求得D 的坐标为1(1,)2-,4AB =,E 到直线AB距离1d ==D 到直线AB距离2d ==则121122ADBE S AB d AB d =⋅+⋅=, 综上所述,四边形ADBE 的面积为3或(2019北京)4.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A. a 2=2b 2B. 3a 2=4b 2C. a =2bD. 3a =4b【答案】B 【解析】【分析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式. 【详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.(2019北京)18.已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点. 【答案】(Ⅰ) 24x y =-,1y =; (Ⅱ)见解析. 【解析】【分析】(Ⅰ)由题意结合点的坐标可得抛物线方程,进一步可得准线方程;(Ⅱ)联立准线方程和抛物线方程,结合韦达定理可得圆心坐标和圆的半径,从而确定圆的方程,最后令x =0即可证得题中的结论.【详解】(Ⅰ)将点()2,1-代入抛物线方程:()2221p =⨯-可得:2p =,故抛物线方程:24x y =-,其准线方程为:1y =.(Ⅱ)很明显直线l 的斜率存在,焦点坐标为()0,1-,设直线方程为1y kx =-,与抛物线方程24x y =-联立可得:2440x kx +-=. 故:12124,4x x k x x +=-=-.设221212,,,44x x M x N x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则12,44OM ON x x k k =-=-, 直线OM 的方程为14x y x =-,与1y =-联立可得:14,1A x ⎛⎫- ⎪⎝⎭,同理可得24,1B x ⎛⎫- ⎪⎝⎭,易知以AB 为直径的圆的圆心坐标为:1222,1x x ⎛⎫+-⎪⎝⎭,圆的半径为:1222x x -,且:()1212122222x x k x x x x ++==,12222x x -==则圆的方程为:()()()2222141x k y k -++=+,令0x =整理可得:2230y y +-=,解得:123,1y y =-=,即以AB 为直径的圆经过y 轴上的两个定点()()0,3,0,1-.【点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的方程的求解及其应用等知识,意在考查学生的转化能力和计算求解能力.(2019天津)5.已知抛物线24y x =的焦点为F ,准线为l .若与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A.B.C. 2D.【答案】D 【解析】 【分析】只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率。
精品高考数学专题十七圆锥曲线的几何性质精准培优专练理
【最新】2019年高考数学专题十七圆锥曲线的几何性质精准
培优专练理
1.椭圆的几何性质
例1:如图,椭圆的上顶点、左顶点、左焦点分别为、、,中心为,其
离心率为,则(
A.B.C.
D
【答案】B
【解析】由,得
而,所以,故选B
2.抛物线的几何性质
例2:已知抛物线的焦点为,准线,点在抛物线上,点在直线上的射影为,且直线的斜率为,则的面积为()
A.B.C.D
【答案】C
【解析】
设准线与轴交于点,所以,因为直线的斜率为,所以,所以,
由抛物线定义知,,且,所以是以4为边长的正三角形,其面积
为.故选C
3.双曲线的几何性质
例3:已知点是双曲线的右支上一点,,分别是圆和上的点,则的最大
值为_________
【答案】15
M
≤
P P
一、单选题
1.抛物线上的动点到其焦点的距离的最小值为1,则()
A.B.1 C.2 D.
【答案】C
【解析】抛物线上的动点到其焦点的距离的最小值即到准线的最小
很明显满足最小值的点为抛物线的顶点,据此可知:,.本题选择C。
(全国通用版)2019版高考数学总复习专题七解析几何7.2圆锥曲线的标准方程与性质课件理
+
������2 ������
2 =1(a>b>0),若长轴长为
6,
且两焦点恰好将长轴三等分,则此椭圆的标准方程为(
)
答案 B 解析∵椭圆长轴长为 6,焦点恰好将长轴三等分, ∴2a=6,a=3, ∴6c=6,c=1,b2=a2-1=8,
������2 ∴椭圆方程为 9 ������2 + 8 =1,故选 B.
2������2 +4
2 ������2 2
2������1 +4 ������1
2
2
.同理,直线 l2 与抛物线的交点满足
.
2������1 +4
2 ������1 2
由抛物线定义可知|AB|+|DE|=x1+x2+x3+x4+2p=
2������2 +4
2 ������2 2
+
+4=
4
������1
������ ∴������=1,即 a=b.又|OB|=2
2,
∴c=2 2.∴a2+b2=c2,即 a2+a2=(2 2)2,可得 a=2.
新题演练提能· 刷高分
������2 1.(2018 山东济南一模)已知椭圆 C:������2 ������2 ������2 A. + =1 36 32 ������2 ������2 C. 9 + 5 =1 ������2 ������2 B. + =1 9 8 2 ������ ������2 D.16 + 12=1
2 4 4 同理可得|BF|=1+cos������,所以|AB|=1-cos2 ������ = sin2 ������.又 DE 与 π 4 4 直,即 DE 的倾斜角为2+θ,则|DE|= 2 π = cos2 ������, sin 2+������ 4 4 4 4 所以|AB|+|DE|=sin2 ������ + cos2 ������ = sin2 ������cos2 ������ = 1 = 2 sin 2������ 16 ≥16,当 sin2 2������ π θ= 时取等号,即|AB|+|DE|最小值为 16,故选 A. 4
2019届高考数学圆锥曲线专题复习:圆锥曲线常用解法、常规题型与性质
a2 xA 4 1 3 c
例 3、动圆 M 与圆 C1:(x+1) 2+y2=36 内切 ,与圆 C2:(x-1) 2+y切时的“图形特征” :两个圆心与切点这三点共线(如图中的 A 、M 、C 共线,
B 、 D、 M 共线)。列式的主要途径是动圆的“半径等于半径” (如图中的 MC MD )。
在椭圆上,同样 C 在椭圆上, D 在准线上,可见直接求解较繁,将这些线段“投影”到
x 轴上,立即可得
防
6
f (m) ( xB x A ) 2 ( xD xC ) 2 2 (xB xA ) ( xD X C )
2 ( xB xC ) (x A xD ) 2 ( xB X C )
此时问题已明朗化,只需用韦达定理即可。
舍去)
2 ),它为直线 AF 与抛物线的另一交点,
( 2)( 1 ,1) 4
过 Q 作 QR⊥l 交于 R,当 B、Q、R 三点共线时, BQ QF BQ QR 最小, 此时 Q 点的纵坐标为 1,
3
代入
y
2
=4x
得 x=
1
,∴ Q(
1 ,1)
4
4
点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。
1
题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是 弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称
为“设而不求法” 。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用
如“ 2x+y ”,令 2x+y=b,则 b 表示斜率为 -2 的直线在 y 轴上的截距;如“ x 2+y2” , 令 x 2 y 2 d ,
湖南高考数学圆锥曲线专项练习及答案
2019年湖南高考数学圆锥曲线专项练习及答案圆锥曲线包括圆,椭圆,双曲线,抛物线,下面是查字典数学网整理的圆锥曲线专项练习及答案,请考生及时练习。
1.已知M(-2,0),N(2,0),|PM|-|PN|=3,则动点P的轨迹是()A.双曲线B.双曲线左边一支C.双曲线右边一支D.一条射线2.若双曲线方程为x2-2y2=1,则它的右焦点坐标为()3.(2019大纲全国,文11)双曲线C:=1(a0,b0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.44.过双曲线=1(a0,b0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是()A.3B. 8C.2D.55.已知双曲线的两个焦点为F1(-,0),F2(,0),M是此双曲线上的一点,且满足=0,||||=2,则该双曲线的方程是()A.-y2=1B.x2-=1C.=1D.=16.已知双曲线C的离心率为2,焦点为F1,F2,点A在C上。
若|F1A|=2|F2A|,则cosAF2F1=()A.2B. 3C.1D.07.在平面直角坐标系xOy中,双曲线=1上一点M的横坐标为3,则点M到此双曲线的右焦点的距离为( )。
8.A,B是双曲线C的两个顶点,直线l与双曲线C交于不同的两点P,Q,且与实轴所在直线垂直。
若=0,则双曲线C的离心率e=( ) 。
9.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-)。
(1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:=0;(3)在(2)的条件下求F1MF2的面积。
10.已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=2,记动点P的轨迹为W。
(1)求W的方程;(2)若A和B是W上的不同两点,O是坐标原点,求的最小值。
11.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x 的准线交于A,B两点,|AB|=4,则C的实轴长为()A. B.2 C.4 D.812.已知点P是双曲线=1(a0,b0)右支上一点,F1,F2分别为双曲线的左、右焦点,点I为PF1F2的内心,若+成立,则的值为()A.1B. -1C. 0D.213.若点O和点F(-2,0)分别为双曲线-y2=1(a0)的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为()A.[3-2,+)B.[3+2,+)C.D.14.(2019浙江,文17)设直线x-3y+m=0(m0)与双曲线=1(a0,b0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培优点十七 圆锥曲线的几何性质1.椭圆的几何性质例1:如图,椭圆()2222+10x y a b a b =>>的上顶点、左顶点、左焦点分别为B 、A 、F ,中心为O ,则:ABF BFO S S =△△( )A .(2:3B .()3:3C .(2:2-D .()3:2【答案】B【解析】由ABF ABO BFO S S S =-△△△,得()():::ABF BFO ABO BFO BFO S S S S S ab bc bc =-=-△△△△△而c a =,所以():3:3ABF BFO S S =△△,故选B .2.抛物线的几何性质例2:已知抛物线()2:20C y px p =>的焦点为F ,准线:1l x =-,点M 在抛物线C 上,点M 在直线:1l x =-上的射影为A ,且直线AF 的斜率为MAF △的面积为( )A B .C .D .【答案】C 【解析】设准线l 与x 轴交于点N ,所以2FN =,因为直线AF 的斜率为60AFN ∠=︒,所以4AF =,由抛物线定义知,MA MF =,且60MAF AFN ∠=∠=︒,所以MAF △是以4为边长的正三角形,其面积为24=.故选C .3.双曲线的几何性质例3:已知点P 是双曲线2213664x y -=的右支上一点,M ,N 分别是圆()22104x y ++=和()22101x y -+=上的点,则PM PN -的最大值为_________. 【答案】15【解析】在双曲线2213664x y -=中,6a =,8b =,10c =,()110,0F ∴-,()210,0F ,12212PF PF a -==,11MP PF MF ≤+,22PN PF NF ≥-,112215PM PN PF MF PF NF ∴-≤+-+=.一、单选题1.抛物线()220y px p =>上的动点Q 到其焦点的距离的最小值为1,则p =( )A .12B .1C .2D .4【答案】C【解析】抛物线()220y px p =>上的动点Q 到其焦点的距离的最小值即到准线的最小值, 很明显满足最小值的点为抛物线的顶点,据此可知:12p=,2p ∴=.本题选择C 选项. 2.设点1F ,2F 是双曲线2213y x -=的两个焦点,点P 是双曲线上一点,若1234PF PF =,则12PF F △的面积等于( )A .B .C .D .【答案】B【解析】据题意,1243PF PF =,且122PF PF -=,解得18PF =,26PF =. 对点增分集训又124F F =,在12PF F △中由余弦定理,得222121212127cos 28PF PF F F F PF PF PF +-∠==.从而12sin F PF ∠=121682PF F S =⨯⨯=△B . 3.经过椭圆2222x y +=的一个焦点作倾斜角为45︒的直线l ,交椭圆于M ,N 两点,设O 为坐标原点,则OM ON ⋅等于( ) A .3- B .13±C .13-D .12-【答案】C【解析】椭圆方程为2212x y +=,a 1b =,1c =,取一个焦点()1,0F ,则直线方程为1y x =-,代入椭圆方程得2340x x -=,()0,1M -,41,33N ⎛⎫⎪⎝⎭,所以13OM ON =⋅-,故选C .4.过抛物线()20y mx m =>的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,54PQ m =,则m =( ) A .4 B .6C .8D .10【答案】B【解析】设PQ 的坐标分别为()11,x y ,()22,x y ,线段PQ 中点的横坐标为3,则1232x x +=,125644m PQ x x p m =++=+=,由此解得6m =.故选B . 5.已知双曲线()222210,0x y a b a b -=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A .2213x y -=B .2213y x -=C .221412x y -=D .221124x y -=【答案】B【解析】双曲线()222210,0x y a b a b -=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),可得2c =,ba ,即223b a =,2223c a a-=,解得1a =,b双曲线的焦点坐标在x 轴,所得双曲线的方程为2213y x -=,故选B .6.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行.已知椭圆轨道I 和Ⅱ的中心与F 在同一直线上,设椭圆轨道I 和Ⅱ的长半轴长分别为1a ,2a ,半焦距分别为1c ,2c ,则有( )A .1212c c a a =B .1122a c a c -<-C .1212c c a a >D .1122a c a c ->-【答案】C【解析】设圆形轨道Ⅲ的半径为R ,1122a c a c R -=-=,111111c a R Ra a a -==-,222221c a R R a a a -==-, 由12a a >知1212c c a a >,故选C . 7.已知双曲线221:14x C y -=,双曲线()22222:10x y C a b a b -=>>的左、右焦点分别为1F ,2F ,M 是双曲线2C 的一条渐近线上的点,且2OM MF ⊥,O 为坐标原点,若216OMF S =△,且双曲线1C ,2C 的离心率相同,则双曲线2C 的实轴长是( ) A .32 B .4 C .8 D .16【答案】D【解析】双曲线221:14x C y -=,设()2,0F c ,双曲线2C 一条渐近线方程为by x a=,可得2F M b ==,即有OM a =,由216OMF S =△,可得1162ab =,即32ab =,又222a b c +=,且c a =,解得8a =,4b =,c =16.故选D .8.已知F 是抛物线2:2C y x =的焦点,N 是x 轴上一点,线段FN 与抛物线C 相交于点M , 若2FM MN =,则FN =( ) A .1 B .12C .52D .58【答案】D【解析】由题意得点F 的坐标为10,8⎛⎫⎪⎝⎭,设点M 的坐标()00,x y ,点N 的坐标(),0a ,所以向量:00,18FM x y ⎛⎫=- ⎪⎝⎭,()00,MN a x y =--,由向量线性关系可得:03x a =,00124y y -=-,解得:0112y =,代入抛物线方程可得:0x =,则a =, 由两点之间的距离公式可得:58FN =.故选D .9.已知椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0x y C a b a b -=>>有相同的焦点1F ,2F ,点P 是曲线1C 与2C 的一个公共点,1e ,2e 分别是1C 和2C 的离心率,若12PF PF ⊥,则22124e e +的最小值为( )A .92B .4C .52D .9【答案】A【解析】由题意设焦距为2c ,椭圆长轴长为12a ,双曲线实轴为22a , 令P 在双曲线的右支上,由双曲线的定义1222PF PF a =-,① 由椭圆定义1212PF PF a +=,②又∵12PF PF ⊥,∴222124PF PF c +=,③ 22+①②,得2222121244PF PF a a +=+,④将④代入③,得222122a a c +=, ∴22222221122222121224559422222a a c c e e a a a a +=+=++≥+=,故选A .10.已知F 为抛物线2:4C y x =的焦点,A ,B ,C 为抛物线C 上三点,当FA FB FC ++=0时,称ABC △为“和谐三角形”,则“和谐三角形”有( ) A .0个 B .1个C .3个D .无数个【答案】D【解析】抛物线方程为24y x =,A ,B ,C 为曲线C 上三点, 当FA FB FC ++=0时,F 为ABC △的重心,用如下办法构造ABC △,连接AF 并延长至D ,使12FD AF =, 当D 在抛物线内部时,设()00,D x y ,若存在以D 为中点的弦BC , 设()11,B m n ,()22,C m n , 则1202m m x +=,1202n n y +=,1212BC n n k m m -=-,则21122244n m n m ⎧==⎪⎨⎪⎩,两式相减化为()1212124n n n n m m -+=-,121202BC n n k m m y -==-,所以总存在以D 为中点的弦BC ,所以这样的三角形有无数个,故选D .11.已知双曲线()22122:10,0x y a b a b Γ-=>>的左右焦点分别为1F ,2F ,椭圆222:134x y Γ+=的离心率为e ,直线MN 过点2F 与双曲线交于M ,N 两点,若112cos cos F MN F F M ∠=∠,且11F M e F N=,则双曲线1Γ的两条渐近线的倾斜角分别为( ) A .30︒,150︒ B .45︒,135︒C .60︒,120︒D .15︒,165︒ 【答案】C 【解析】由题112cos cos F MN F F M ∠=∠,112F MN F F M ∴∠=∠,1122MF F F c ∴==,由双曲线的定义可得| 21|222MF MF a c a =-=-,∵椭圆222:134x y Γ+=的离心率为:12e =,∴1112F M e F N ==,14NF c ∴=,242NF c a =-, 在12MF F △中,由余弦定理的()()222124224cos 22222c c a c c aF F M c c a c+---∠==⋅⋅-, 在12NF F △中,由余弦定理可得:()()()2222212442164cos 224222c c a c a c acF F N c c a c c a +--+-∠==⋅⋅--, ∵1212πF F M F F N ∠+∠=,1212cos cos 0F F M F F N ∴∠+∠=,即()2240222c a a c acc c c a -+-+=-, 整理得,设双曲线的离心率为1e ,2113720e e ∴-+=,解得12e =或13(舍).∴2224a b a +=,223a b ∴=,即ba.∴双曲线的渐近线方程为y =, ∴渐近线的倾斜角为60︒,120︒.故选C .12.已知P 为椭圆22143x y +=上一个动点,过点P 作圆()2211x y ++=的两条切线,切点分别是A ,B ,则PA PB⋅的取值范围为( )A .3,2⎡⎫+∞⎪⎢⎣⎭B .356,29⎡⎤⎢⎥⎣⎦C.563,9⎡⎤⎢⎥⎣⎦D.)3,⎡+∞⎣ 【答案】C【解析】如图,由题意设2APB θ∠=,则1tan PA PB θ==,∴211cos2cos2cos2cos21cos2tan PA PB PA PB θθθθθθ+⋅==⋅=⋅-, 设cos2t θ=,则()()12133311t t PA PB t tt +⋅==-+-≥=--,当且仅当211t t-=-,即1t =-cos 21θ=- 又当点P 在椭圆的右顶点时,1sin 3θ=,∴27cos212sin 9θθ=-=,此时PA PB ⋅最大,且最大值71756979919+⨯=-. ∴PA PB ⋅的取值范围是563,9⎡⎤⎢⎥⎣⎦,故选C .二、填空题13.已知过抛物线22y x =-的焦点F A 、B 两点,则AF BF AB⋅=__________.【答案】12【解析】由22y x =-知1p =,由焦点弦性质112+2AF BF p==, 而1111+22+AF BF AF BF p ABAF BFAF BF⋅⋅====. 14.已知椭圆2221x y a +=的左、右焦点为1F 、2F ,点1F 关于直线y x =-的对称点P 仍在椭圆上,则12PF F △的周长为__________. 【答案】2【解析】设()1,0F c -,()()2,00F c c >,1F 关于直线y x =-的对称点P 坐标为()0,c ,点P 在椭圆上,则:2201c a +=,则1c b ==,2222a b c =+=,则a = 故12PF F △的周长为:1212222PF PF F F a c ++=+=.15.P 为双曲线22149x y -=右支上一点,1F ,2F 分别为双曲线的左、右焦点,且120PF PF ⋅=,直线2PF 交y 轴于点A ,则1AF P △的内切圆半径为__________. 【答案】2【解析】∵12PF PF ⊥,1APF △的内切圆半径为r ,∴112PF PA AF r -+=,∴2122PF a PA AF r -++=, ∴2124AF AF r =--,∵由图形的对称性知:21AF AF =,∴2r =.故答案为2.16.已知直线l 与椭圆()222210,0x y a b a b+=>>相切于第一象限的点()00,P x y ,且直线l 与x 轴、y 轴分别交于点A 、B ,当AOB △(O 为坐标原点)的面积最小时,1260F PF ∠=︒(1F 、2F 是椭圆的两个焦点),若此时在12PF F △中,12F PF ∠,则实数m 的值是__________. 【答案】52【解析】由题意,切线方程为00221x y x y ab+=,直线l 与x 轴分别相交于点A ,B ,20,0a A x ⎛⎫∴ ⎪⎝⎭,20,b B y ⎛⎫ ⎪⎝⎭,220012AOB a b S x y ∴=⋅△, 2200002221x y x y ab a b +=≥,0012xy ab ∴≥,AOB S ab ∴≥△,当且仅当00x y a b =AOB △(O 为坐标原点)的面积最小, 设1PF x =,2PF y =,由余弦定理可得2222443c x y xy a xy =+-=-,243xy b ∴=,120y ∴,c ∴=,a ∴=,12F PF ∠,211112222x y ∴⨯⨯+⨯⨯=,)212x y ∴+=,22115229a b ∴==, 52m ∴=,故答案为52.三、解答题17.设常数2t >.在平面直角坐标系xOy 中,已知点()2,0F ,直线l :x t =,曲线Γ:()280,0y x x t y =≤≤≥.l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 距离;(2)设3t =,2FQ =,线段OQ 的中点在直线FP ,求AQP △的面积;(3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标; 若不存在,说明理由.【答案】(1)2t +;(2(3)存在,25P ⎛ ⎝⎭.【解析】(1)方法一:由题意可知:设()B t ,则2BF t ==+,∴2BFt =+;方法二:由题意可知:设()B t ,由抛物线的性质可知:22p BF t t =+=+,∴2BF t =+; (2)()2,0F ,2FQ =,3t =,则1FA =,∴AQ =(Q ,设OQ 的中点D,32D ⎛ ⎝⎭,02322QF k -==-PF方程:)2y x =-,联立)228y x y x=-=⎧⎪⎨⎪⎩,整理得:2320120x x -+=, 解得:23x =,6x =(舍去),∴AQP △的面积1723S ==; (3)存在,设2,8y P y ⎛⎫ ⎪⎝⎭,2,8m E m ⎛⎫ ⎪⎝⎭,则2281628PF y y k y y ==--,2168FQ y k y -=, 直线QF 方程为()21628y y x y -=-,∴()22164838284Q y y y y y --=-=,248384y Q y ⎛⎫- ⎪⎝⎭,, 根据FP FQ FE +=,则22486,84y y E y ⎛⎫++ ⎪⎝⎭, ∴222488648y y y ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,解得:2165y =,∴存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上,且25P ⎛ ⎝⎭.18.与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 在椭圆上.斜率为1-的直线2l 与线段AB 相交于点P ,与椭圆相交于C 、D 两点.(1)求椭圆的标准方程;(2)求四边形ACBD 面积的取值范围.【答案】(1)22184x y +=;(2)3232,93⎛⎤ ⎥⎝⎦. 【解析】(1)由椭圆焦距为4,设()12,0F -,()22,0F ,连结1EF ,设12EF F α∠=, 则tan b c α=,又222a b c =+,得sin b a α=,cos c a α=, ()12122sin9012||sin sin 90F F c a c e b c a EF EF b c aa aαα︒∴======++︒-++, 解得222a bc c b c =+⇒==,28a =,所以椭圆方程为22184x y +=. (2)设直线2l 方程:y x m =-+,()11,C x y 、()22,D x y , 由22184x y y x m +==-+⎧⎪⎨⎪⎩,得2234280x mx m -+-=,所以1221243283x x m m x x +=-=⎧⎪⎪⎨⎪⎪⎩,由(1)知直线1l :y x =,代入椭圆得A ⎛ ⎝,B,得AB =, 由直线2l 与线段AB 相交于点P,得m ⎛∈ ⎝,12CD x - 而21l k =-与11l k =,知21l l ⊥,12ACBD S AB CD ∴=⨯=由m ⎛∈ ⎝,得232,03m ⎛⎤-∈- ⎥⎝⎦3232,93⎛⎤ ⎥⎝⎦,四边形ACBD 面积的取值范围3232,93⎛⎤ ⎥⎝⎦.。