A land cover classification system for use in global change modeling and based on BISE algorithm
多种土地覆被产品一致性分析与精度评价——以淮河流域为例
多种土地覆被产品一致性分析与精度评价——以淮河流域为例邵正艳1李南南2尤慧1李鑫川2(1淮安市气象局,江苏淮安223003;2淮阴师范学院,江苏淮安223300)摘要本文以淮河流域为研究区域,基于5种土地覆被分类产品(CLCD、ESACCI-LC、GLC_FCS30、Globe-Land30、MCD12Q1),将各土地覆被类型重分类为农用地、建设用地、未利用地三大类,从面积和空间两方面进行了一致性分析与精度评价。
结果表明,5种产品对于淮河流域土地覆被的类型特征具有较强的一致性,面积估算的相关性系数均大于0.9。
在3种30m分辨率土地覆被分类产品中,CLCD的识别精度最高,以此作为参考数据;其他4种产品总体精度在92.37%~95.53%之间,Kappa系数在0.523~0.695之间,GlobeLand30产品与GLC_FCS30产品精度较高且各有优势,ESACCI-LC产品和MCD12Q1产品精度较低。
该研究成果可以为不同时空尺度上的土地覆被研究提供参考。
关键词土地覆被产品;一致性;精度评价;淮河流域中图分类号F301.2;TP79文献标识码A文章编号1007-5739(2024)07-0170-06DOI:10.3969/j.issn.1007-5739.2024.07.040开放科学(资源服务)标识码(OSID):Consistency Analysis and Accuracy Evaluation of Multiple Land Cover Products:Taking the Huai River Basin as an ExampleSHAO Zhengyan1LI Nannan2YOU Hui1LI Xinchuan2(1Huai'an Meteorological Bureau,Huai'an Jiangsu223003;2Huaiyin Normal University,Huai'an Jiangsu223300)Abstract In this paper,the Huaihe River Basin was taken as the research area.Based on five land cover classifi-cation products(CLCD,ESACCI-LC,GLC-FCS30,GlobeLand30,MCD12Q1),each land cover type was reclassified into three categories(agricultural land,construction land and unused land).Consistency analysis and accuracy evalu-ation were carried out from two aspects of area and space.The results showed that the five products had strong consistency in the type characteristics of land cover in the Huaihe River Basin,and the correlation coefficients for area estimation were all greater than0.9.Among the three land cover classification products with30m resolution,CLCD had the highest recognition accuracy and served as a reference data.The overall accuracy of the other four products ranged from92.37% to95.53%,with Kappa coefficients ranging from0.523to0.695.GlobeLand30products and GLC_FCS30products had high accuracy and each had its own advantages,while ESACCI-LC products and MCD12Q1products had lower accu-racy.This research result could provide reference for land cover research at different temporal and spatial scales.Keywords land cover product;consistency;accuracy evaluation;Huaihe River Basin土地覆被信息是理解人类活动与全球变化复杂的交互作用的重要途径,同时也是众多生态系统模型、陆面过程模型和大气耦合模型的基础输入,它影响生态系统,包括生物多样性,调节温室气体排放以及收获和再生产[1]。
北大考研-地球与空间科学学院研究生导师简介-李培军
爱考机构 中国高端考研第一品牌(保过 保录 限额)
爱考机构-北大考研பைடு நூலகம்地球与空间科学学院研究生导师简
科研成果与主要论著 国内外学术刊物(2003 年以来): HuiranJin,PeijunLi,TaoChengandBenqinSong,2012,LandcoverclassificationusingCHRIS/PROBAi magesandmultitemporaltexture.InternationalJournalofRemoteSensing,33(1),101–119. Jin,H.,Mountrakis,G.andLi,P.,2012,Asuper-resolutionmappingmethodusinglocalindicatorvariogra ms.InternationalJournalofRemoteSensing,33(24),7747–7773. PeijunLi,HaiqingXu,BenqinSong,2011,Anovelmethodofurbanroaddamagedetectionusingveryhighr esolutionsatelliteimageryandroadmap,PhotogrammetricEngineeringandRemoteSensing.77(10),105 7-1066. PeijunLi,JiancongGuo,BenqinSongandXiaobaiXiao,2011,Amultilevelhierarchicalimagesegmentati onmethodforurbanimpervioussurfacemappingusingveryhighresolutionimagery.IEEEJournalofSele ctedTopicsinAppliedEarthObservationsandRemoteSensing,4(1),103-116. Sánchez-Azofeifa,Arturo;Rivard,Benoit;Wright,Joseph;Feng,Ji-Lu;Li,Peijun;Chong,MeiMei;Bohl man,StephanieA.,2011.EstimationoftheDistributionofTabebuiaguayacan(Bignoniaceae)UsingHigh -ResolutionRemoteSensingImagery.Sensors,11(4),3831-3851. HaiqingXuandPeijunLi,2010,Urbanlandcoverclassificationfromveryhighresolutionimageryusingsp ectralandinvariantmomentshapeinformation.CanadianJournalofRemoteSensing,36(3),248-260. PeijunLi,HaiqingXuandJiancongGuo,2010,Urbanbuildingdamagedetectionfromveryhighresolution imageryusingOne-ClassSVMandspatialfeatures.InternationalJournalofRemoteSensing,31(13),339 3-3409. PeijunLiandHaiqingXu,2010,Land-CoverChangeDetectionUsingOne-ClassSupportVectorMachine, PhotogrammetricEngineeringandRemoteSensing,76(3),255-263. PeijunLi,TaoCheng,andJiancongGuo,2009,Multivariateimagetexturebymultivariatevariogramform ultispectralimageclassification.PhotogrammetricEngineeringandRemoteSensing,75(2),147-157. PeijunLiandHaikuoYuandTaoCheng,2009,LithologicmappingusingASTERimageryandmultivariate texture.CanadianJournalofRemoteSensing,V.35,Suppl.1(SupplementS1),S117-S125. PeijunLi,XiaobaiXiao,2007,Multispectralimagesegmentationbyamultichannelwatershed-basedappr oach.InternationalJournalofRemoteSensing.28(19),4429-4452. PeijunLi,YingduanHuang,2005,Landcoverclassificationofremotelysensedimagewithhierarchicalite rativemethod.ProgressinNaturalScience.15(5),442-447. PeijunLiandWooilM.Moon,2004,LandcoverclassificationusingMODIS/ASTERairbornesimulator( MASTER)dataandNDVI:acasestudyoftheKochangarea,Korea.CanadianJournalofRemoteSensing , 30(2),123-136. PeijunLi,XiaobaiXiao,2004,Anunsupervisedmarkerimagegenerationmethodforwatershedsegmenta tionofmultispectralimagery.GeosciencesJournal,8(3),325-331. PeijunLi,ZhengwuZhou,JinaghaiLi,ChenZhang,WenyuanHeandMancheolSuh,2003,Structuralfram eworkanditsformationoftheKalpinthrustbelt,TarimBasin,NorthwestChina,fromLandsatTMdata.Inte rnationalJournalofRemoteSensing.24(18),3535-3546. 张西雅、徐海卿、李培军,2012,运用 EO-1Hyperion 数据和单类支持向量机方法提取岩性 信息,北京大学学报(自然科学版),48(3),411-418。
esri 10m land cover和modis土地利用分类
esri 10m land cover和modis土地利用分类Esri 10m Land Cover ClassificationEsri 10m Land Cover Classification is a dataset that provides detailed information about the land cover classes present in a geographic area. This dataset is widely used in various fields including urban planning, environmental management, and natural resource analysis. The classification scheme used in Esri 10m Land Cover Classification includes the following classes:1.Water:–Category: Water bodies such as oceans, lakes,rivers, and reservoirs.–Purpose: Identifying and analyzing water resources, hydrology, and aquatic ecosystem management.2.Forest:–Category: Areas covered with trees and densevegetation.–Purpose: Studying forest ecosystems, biodiversity, and monitoring deforestation.3.Agricultural land:–Category: Land used for cultivating crops, raising livestock, and other agricultural purposes.–Purpose: Analyzing agricultural practices, crop yield estimation, and land management strategies. 4.Grassland:–Category: Areas dominated by grass or herbaceous vegetation.–Purpose: Monitoring changes in grassland ecosystems, grazing patterns, and wildlife habitat analysis.5.Urban areas:–Category: Areas characterized by human-madestructures and infrastructure.–Purpose: Urban planning, land use change analysis, and understanding the impacts of urbanization.6.Wetland:–Category: Land that is permanently or temporarily covered with water.–Purpose: Wetland conservation, studying waterresource management, and habitat assessment.7.Barren land:–Category: Areas devoid of vegetation or with sparse vegetation cover.–Purpose: Studying desertification, land degradation, and identifying areas suitable for afforestation. 8.Snow and ice:–Category: Areas covered with snow, glaciers, or ice.–Purpose: Monitoring changes in snow cover, glacial retreat, and analyzing the impacts of climatechange.MODIS Land Use ClassificationMODIS (Moderate Resolution Imaging Spectroradiometer) Land Use Classification is another widely used dataset that provides information about the various land use classes in a specific region. This dataset has a coarser resolution compared to Esri 10m Land Cover Classification but covers a larger area. The land use classes in MODIS Land Use Classification include the following:1.Cropland:–Category: Land used for agricultural purposes, including cultivation of crops.–Purpose: Monitoring agricultural practices,analyzing crop patterns, and estimating cropproductivity.2.Grassland:–Category: Land predominantly covered with grasses or herbaceous vegetation.–Purpose: Evaluating grazing practices, studying grassland dynamics, and wildlife habitat analysis.3.Urban and built-up:–Category: Areas characterized by human-madestructures, urban development, and infrastructure.–Purpose: Urban planning, understanding urban expansion patterns, and analyzing the impacts ofurbanization.4.Forest and woodland:–Category: Areas covered with trees and forests.–Purpose: Studying forest ecosystems, monitoring deforestation, and assessing biodiversity.5.Water bodies:–Category: Lakes, rivers, oceans, and other water bodies.–Purpose: Analyzing water resources, hydrological processes, and aquatic ecosystem management.6.Shrubland:–Category: Land covered with shrubs or low-lying vegetation.–Purpose: Studying shrubland ecology, wildlifehabitat analysis, and land management strategies. 7.Desert:–Category: Barren land or areas with sparsevegetation cover.–Purpose: Understanding desertification, landdegradation, and identifying suitable areas forvegetation restoration.8.Snow and ice:–Category: Areas covered with snow, glaciers, or ice.–Purpose: Monitoring changes in snow cover,analyzing glacial retreat, and studying the impactsof climate change.These are just a few examples of the land cover and land use classifications provided by Esri 10m Land Cover and MODIS datasets. Both datasets offer valuable insights into the composition and distribution of land cover classes, allowing researchers, policymakers, and planners to make informed decisions for sustainable land management.Sure, here are more classifications from Esri 10m Land Cover and MODIS Land Use datasets:Esri 10m Land Cover Classification9.Shrubland:–Category: Land covered with shrubs or low-lying vegetation.–Purpose: Studying shrubland ecology, wildlifehabitat analysis, and land management strategies.10.Mangroves:–Category: Coastal wetlands dominated by salt-tolerant trees or shrubs.–Purpose: Monitoring and conservation of mangrove ecosystems, coastal management.11.Swamp/Marshes:–Category: Wetlands characterized by saturated soil and emergent vegetation.–Purpose: Studying wetland biodiversity, water quality, and carbon storage.12.Bare Ground:–Category: Areas devoid of vegetation or withminimal vegetation cover.–Purpose: Monitoring land degradation, erosion, and assessing soil health.13.Rock and Scree:–Category: Areas predominantly covered by rocks, stones, or loose debris.–Purpose: Studying geomorphology, landscapeevolution, and land stability analysis.MODIS Land Use Classification9.Wetland:–Category: Areas of marsh, peatland, or other wetland environments.–Purpose: Wetland conservation, water resource management, and habitat assessment.10.Plantations:–Category: Extensively managed areas with single-species plantations, such as tree plantations.–Purpose: Monitoring and managing plantation resources, evaluating land use change.11.Open Space:–Category: Land used for recreational purposes, public parks, or open areas.–Purpose: Urban planning, urban green spaces analysis, and promoting outdoor activities.12.Mining:–Category: Areas used for extraction of minerals, including open-pit mines and quarries.–Purpose: Monitoring mining activities, assessing environmental impacts, and land reclamation. 13.Built-up/Paved:–Category: Areas covered with impervious surfaces, such as buildings, roads, and parking lots.–Purpose: Urban planning, analyzing urban heatisland effect, and assessing land use changes.These additional classifications provide a more comprehensive understanding of the land cover and land use patterns in a given area. Detailed analysis of these datasets enables researchers and decision-makers to address various environmental, social, and economic challenges.。
灰色-马尔科夫改进的土地利用变化模型研究
灰色-马尔科夫改进的土地利用变化模型研究吕利娜1,王璐瑶1,崔慧珍2,李方舟3,叶欣1∗㊀(1.黑龙江科技大学矿业工程学院,黑龙江哈尔滨150022;2.中国矿业大学(北京)地球科学与测绘工程学院,北京100083;3.自然资源部测绘发展研究中心,北京100000)摘要㊀土地利用演变具有复杂性㊁非线性特征,其模拟预测的精度受到空间转换规则及数量预测约束的影响㊂针对经典数量预测马尔科夫模型存在忽视社会发展阶段性速率不同及灰色模型对随机波动性大的数据拟合效果较弱等不足,构建了基于灰色-马尔科夫改进的土地利用变化预测模型,以双鸭山市为案例区进行实例验证,结果显示,考虑社会因素影响的灰色-马尔科夫改进模型,能够反映社会发展等因素对土地变化的综合作用,预测趋势更加符合不同发展阶段用地规律,同时解决了社会经济类指标在土地利用变化模拟中难以空间化表达的问题;改进的灰色-马尔科夫模型能够发挥马尔科夫链处理数据波动的优点,降低传统灰色模型将土地随机变动数据视为干扰数据剔除进而产生的误差,有效提高数量预测模型的精度㊂进一步通过模拟验证表明,相比于传统马尔科夫模型,灰色-马尔科夫改进模型2020年模拟结果FoM精度提高了20.07%,证实通过数量预测方面的改进对于提升模拟精度有较为明显的正向推动㊂关键词㊀灰色预测模型;马尔科夫模型;土地利用变化;模型改进中图分类号㊀P208㊀㊀文献标识码㊀A㊀㊀文章编号㊀0517-6611(2023)12-0001-08doi:10.3969/j.issn.0517-6611.2023.12.001㊀㊀㊀㊀㊀开放科学(资源服务)标识码(OSID):StudyofanImprovedLandUseChangeModelBasedonGrey⁃MarkovLÜLi⁃na1,WANGLu⁃yao1,CUIHui⁃zhen2etal㊀(1.SchoolofMiningEngineering,HeilongjiangUniversityofScienceandTechnology,Harbin,Heilongjiang150022;2.SchoolofGeoscienceandSurveyingEngineering,ChinaUniversityofMiningandTechnology(Beijing),Bei⁃jing100083)Abstract㊀Theevolutionoflandusehascomplexandnonlinearcharacteristics,andtheaccuracyofitssimulationandpredictionisinfluencedbyspatialtransformationrulesandquantitativepredictionconstraints.InresponsetotheshortcomingsoftheclassicalquantitypredictionMarkovmodel,suchasneglectingthedifferentstagesofsocialdevelopmentandtheweakfittingeffectofthegreymodelondatawithhighrandomvola⁃tility,alandusechangepredictionmodelbasedontheimprovedgrey⁃Markovmodelwasconstructed.TakingShuangyashanCityasacasestudyareaforexampleverification,theresultsshowedthattheimprovedgrey⁃Markovmodelconsideringsocialfactorscouldreflectthecompre⁃hensiveeffectofsocialdevelopmentandotherfactorsonlandchange,andthepredictedtrendwasmoreinlinewiththelanduselawsofdiffer⁃entdevelopmentstages.Atthesametime,itsolvedtheproblemofdifficultspatialexpressionofsocialandeconomicindicatorsinlandusechangesimulation.Theimprovedgrey⁃MarkovmodelcouldleveragetheadvantagesofMarkovchaininhandlingdatafluctuations,reducedtheerrorscausedbytraditionalgreymodelstreatinglandrandomchangedataasinterferencedata,andeffectivelyimprovedtheaccuracyofquanti⁃typredictionmodels.FurthersimulationverificationshowedthatcomparedtotraditionalMarkovmodels,theimprovedgrey⁃Markovmodelim⁃provedtheFoMaccuracyofthesimulationresultsby20.07%in2020,confirmingthatimprovementsinquantitypredictionhadasignificantpositiveimpactonimprovingsimulationaccuracy.Keywords㊀Greyforecastingmodel;Markovmodel;Landusechange;Modelrefinement基金项目㊀黑龙江省哲学社会科学研究规划项目(19JYC126)㊂作者简介㊀吕利娜(1985 ),女,河南洛阳人,讲师,博士,从事地理信息系统应用与土地信息技术研究㊂∗通信作者,讲师,博士,从事地理信息系统应用研究㊂收稿日期㊀2023-01-28㊀㊀人类在利用土地资源发展经济社会的同时,也改变了土地利用的格局,在一定程度上对生态环境产生了影响,全球生态环境㊁资源短缺等问题层出不穷[1]㊂通过构建模型来分析土地利用变化及其影响因素,对城市发展现状综合评价并进行未来变化趋势预测,可合理优化和利用有限的土地资源,保障良好的生态环境,促进社会的可持续发展[2]㊂计算机技术及地理信息技术的成熟发展,为土地利用/土地覆盖变化(LUCC)研究提供了更多的资料和技术支持㊂土地利用/土地覆盖模拟作为LUCC研究的主要方向之一,得到了极大的关注㊂随着研究的深入,涌现出了众多优秀的模拟模型,如元胞自动机(cellularautomata,CA)模型㊁系统动力学(systemdynamics,SD)模型㊁多智能体(multi-Agentsys⁃tem,MAS)模型㊁小尺度土地利用变化及其空间效应(conver⁃sionoflanduseanditseffectsatsmallregionextent,CLUE-S)模型[3-7]㊂这些模型在引入社会㊁自然等因素的基础上,预测土地利用/土地覆盖变化未来空间分布[8-10]㊂然而,因土地影响因素的复杂性及模型的局限性,现有模型大多数在空间和数量层面上都是独立的模拟预测,空间转换规则及数量约束对模型的整体精度均有直接影响㊂目前的研究多关注于空间数据表达㊁空间转换模型挖掘和规则设定㊁驱动因素的筛选等,对数量约束的研究相对较少,其中Markov数量预测模型备受众多学者青睐㊂但是,Markov模型理想化认为社会是阶段性匀速发展的,即过去的土地利用变化模式㊁概率与未来趋势大体一致,而土地作为人类进行自然生产和社会经济再生产的载体,必然会受到城市发展过程中人类生产㊁生活及经济发展状态的影响及自然生态系统结构的约束,故直接采用Markov模型作为土地利用变化模型中的数量预测模型,一定程度上忽略了科技㊁信息化发展等因素对社会发展速度的影响㊂综上所述,为使土地利用变化模拟预测结果贴近社会发展趋势,该研究构建了灰色-马尔科夫改进预测模型㊂该模型在考虑社会经济对土地利用影响的基础上,综合灰色模型处理不确定性系统数据及马尔可夫链处理数据波动的优势,获取能够反映整体变动趋势和随机变动的预测序列,以期提高土地利用变化数量模拟预测精度;最后,该研究以黑龙江省双鸭山市为例,结合城市特色,选取自然㊁社会㊁安徽农业科学,J.AnhuiAgric.Sci.2023,51(12):1-8㊀㊀㊀经济㊁交通㊁矿点分布等因素对其进行案例精度验证㊂1㊀资料与方法1.1㊀研究区概况㊀双鸭山市位于黑龙江省东北部,与俄罗斯乌苏里江隔江相望,毗邻佳木斯㊁七台河等城市㊂双鸭山地势呈现为由完达山山脉向东北逐渐降低;市域土地中以山地和平原为主㊂作为黑龙江省重要的煤炭资源型城市,双鸭山市含有集贤煤田㊁双鸭山煤田㊁宝密煤田㊁挠力河煤田㊁宝清煤田,五大煤田首尾相接,煤炭储量丰富㊂2013年,双鸭山市被列为第3批资源枯竭型城市,并响应国家政策,积极进行资源型城市转型㊂全市共辖4区4县,其中4区分别是宝山㊁岭东㊁尖山和四方台,4县分别是饶河㊁宝清㊁集贤和友谊县㊂该研究所涉及的研究区域为双鸭山市4辖区,如图1所示㊂图1㊀研究区地理位置Fig.1㊀Geographicallocationofthestudyarea1.2㊀数据来源1.2.1㊀土地利用数据㊂该研究采用的土地利用数据为欧空局气候变化启动计划(climatechangeinitiative,CCI)发布最新的土地覆盖分类(ESA-landcoverclassificationsystem,ESA-LCCS)数据集,涵盖2000 2020年,ESA-LCCS包括22种主要的土地覆盖类型,其空间分辨率为300m[11]㊂该研究结合研究区实际情况,利用ArcGIS10.6将其进行裁剪㊁坐标系转换等预处理,并重分类为耕地㊁林地㊁草地㊁水域㊁建设用地㊁未利用地6类㊂双鸭山市行政界线来源于国家基础地理信息中心㊂1.2.2㊀社会经济数据㊂依据数据代表性与可得性原则,选取双鸭山市2000 2020年总人口数据㊁农业人口㊁非农业人口㊁人口自然增长率㊁经济密度等数据作为社会影响因素数据(表1),来源为2001 2021年双鸭山市社会经济统计年鉴及黑龙江省统计年鉴,部分缺失数据通过其他年份数据插值获得㊂表1㊀社会经济影响因素Table1㊀Socio⁃economicinfluencingfactors序号No.因子Factor序号No.因子Factor1第一产业生产总值占比(%)7农业人口(人)2第二产业生产总值占比(%)8非农业人口(人)3第三产业生产总值占比(%)9非农人口与总人口比值(%)4GDP(万元)10人口自然增长率(%)5经济密度(万元/m2)11固定资产投资总额(万元)6总人口(人)12第一产业从业人员(人)1.2.3㊀空间驱动因子数据㊂通过参考相关文献[12-13],结合研究区的实际情况,以及数据的可得性㊁一致性与空间差异性㊁显著相关性等原则,选取自然㊁区位2个方面的空间影响因素,共6个驱动因子(表2㊁图2)㊂地形地貌对土地利用的分布有决定性的作用,将高程㊁坡度作为驱动因子;高程数据来源于地理空间数据云(http://www.gscloud.cn/),空间分辨率为30m;坡度因子根据高程数据处理得到㊂土地利用分布与其周围的城市环境密切相关,因此选择距道路距离㊁距河流距离㊁距矿点距离㊁距城镇距离作为距离驱动因子;相关矢量数据是通过影像目视解译获得,借助ArcMap10.6中欧氏距离工具对各个驱动因子的矢量数据进行处理,生成栅格数据㊂表2㊀空间驱动因子Table2㊀Spatialdrivingfactors因素类型Factortype驱动因子名称Drivingfactorname含义Meaning自然因素高程(m)各栅格单元中心的高程值Naturalcauses坡度(%)各栅格单元中心点的坡度值区位因素距城镇距离(m)各栅格单元到城镇的欧氏距离Locational距矿点距离(m)各栅格单元到矿点的欧氏距离factor距河流距离(m)各栅格单元到河流的欧氏距离距道路距离(m)各栅格单元到最近道路的欧氏距离1.3㊀灰色-马尔科夫改进模型1.3.1㊀多因素灰色模型㊂灰色系统介于白色和黑色之间,即2㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年图2㊀驱动因子空间分布Fig.2㊀Spatialdistributionofdrivingfactor系统内部分信息已知,部分信息未知,各因素间的关系不确定[14]㊂影响土地利用变化的既包含人为可控因素,也有大量不可忽视的未知因素,数据特征符合灰色预测模型㊂因此,可以利用灰色预测鉴别土地系统因素之间发展趋势的相异程度,寻找系统变动的规律,建立相应的微分方程模型,生成有较强规律性的数据序列,从而预测土地的未来发展趋势㊂具体模型如下[15]:设原始数列为X(0)=[x(0)(1),x(0)(2), ,x(0)(M)],式中,X(0)表示基期年某一类型土地利用数量,M表示预测年份㊂(1)对X(0)进行一次累加得到数据序列X(1),即:X(1)=[x(1)(1),x(1)(2), ,x(1)(M)]其中,x(1)(k)=km=1x(0)(m),k=1,2, ,M㊂(2)GM(1,1)的微分方程为:dX(1)dt+aX(1)=u式中,a与u为灰参数㊂(3)求解灰参数:Y=[x(0)(2),x(0)(3), ,x(0)(M)]TX=-12[x(1)(1)+x(1)(2)]1-12[x(1)(2)+x(1)(3)]1︙︙-12[x(1)(M-1)+x(1)(M)]1éëêêêêêêêêùûúúúúúúúú运用最小二乘法求解^b,有^b=(XTX)-1XTY(4)求解时间函数:^x(1)(k+1)=x(0)(1)-uaéëêùûúe-ak+ua㊀(k=1,2, ,M)(5)原始数据序列x(0)的还原值^x(0)为:^x(0)k+1=^x(1)k+1-^x(1)k(6)求残差e(0)和相对误差q:e(0)(k)=x(0)(k)-^x(0)(k)q(k)=e(0)(k)x(0)(k)ˑ100%模型预测精度等级[16]参照表3㊂表3㊀预测精度等级参照Table3㊀Predictionaccuracygradereference等级Level相对误差Relativeerrorʊ%模型精度ModelaccuracyⅠ<1优秀Ⅱ<5合格Ⅲ<10基本合格Ⅳ<20不合格㊀㊀为了能够将影响土地利用变化的众多因素综合融入预测中,同时在不使模型复杂的前提下,研究在将所选取的社会经济因素进行主成分分析后,提取前k个成分与灰色预测模型所获取的时间序列进行多元线性回归,形成多因素灰色预测模型㊂该多因素灰色预测模型具体数学形式如下:y=β0+β1x1+ +βkxk+δ式中,y为多因素灰色预测值;xi为影响因素主成分;βi为回归系数;δ为随机误差项㊂利用最小二乘法求得回归系数的估计值㊂1.3.2㊀灰色-马尔科夫预测模型㊂马尔科夫模型是1960年由俄国马尔科夫提出实现的㊂该模型认为一个n阶马尔科夫链由n个状态的集合和一组转移概率所确定㊂若随机过程满足马尔科夫性,则称为马尔科夫过程[17];在该过程中,任意时刻数据都只能处于一个状态,如果在t时刻过程处于Et状态,则在t+1时刻,它将以Pij的概率处于状态Et+1,与t时刻之前所处的状态无关㊂近年来,随着研究的深入,该模型常应用于土地利用模拟预测过程㊂运用马尔科夫预测的关键在于确定系统状态之间相互转化的转移概率,其表达式如下:P11 P1n︙︙Pn1Pnnæèçççöø÷÷÷式中,Pij表示某一时段内系统状态的转换概率,且满足0ɤ351卷12期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀吕利娜等㊀灰色-马尔科夫改进的土地利用变化模型研究Pijɤ1, ni=1Pij=1(i,j=1,2, ,n),n代表状态数㊂转换概率Pij反映了各类因素对其的影响程度,因而马尔科夫适用于随机波动性较大的数据预测㊂利用此概率建立模型,获取t+1时刻的状态为:Et+1=PijˑEt式中,Et+1㊁Et为系统在t+1时刻㊁t时刻的状态,Pij为转换概率㊂灰色预测模型主要反映预测数据的整体趋势,忽略了数据的随机波动性,马尔科夫性质恰好弥补了该模型的不足,二者组合能够降低预测误差,提高模型精度㊂马尔科夫修正是指运用马尔科夫链相关理论,获取转移矩阵与转换概率,预测误差数据所处状态,从而修正灰色预测模型得出预测结果[18]㊂修正过程如下:(1)马尔科夫状态划分㊂将多因素灰色预测模型得到的预测值与实际数据之间的误差浮动率作为修正模型的样本数据,并将其划分为不同状态㊂该研究选用K均值聚类法对数据进行状态划分,该方法将样本数据按照自身数据特征进行自动划分,在基于初始聚类中心的基础上,依据距离规则反复迭代最终确定分组,该方法简单易行,且相比人为主观分类更具说服力,分类结果科学准确[19]㊂误差浮动率公式如下:γ(k)=x(0)(k)-^x(0)(k)^x(0)(k)(k=1,2, ,n)式中,γ(k)为误差浮动率,x(0)(k)为原始数据,^x(0)(k)为预测数据㊂分类好的状态表示为Ei:Ei=[ai,bi](i=1,2, ,r)式中,ai㊁bi为状态区间端点值㊂(2)初始概率计算㊂在预测过程中,将n个观测值的误差浮动率γ(k)作为一个序列,每个误差浮动率γ(k)都有其对应的状态值Ei,该状态出现Mi次的概率计算公式如下:fi=Min式中,令pi=fi作为Ei出现的概率,即该状态在系统中的初始概率㊂(3)状态转换概率矩阵计算㊂将序列中的所有观测值状态进行转移分析,即Mi个观测值从状态Ei转为状态Ej的过程记为pij,计算公式如下:pij=fij=MijMi从而确定转换概率矩阵㊂(4)预测状态转换矩阵建立㊂根据前述状态转换概率矩阵进一步得到r步预测状态转换概率矩阵p(r),记为:p(r)=prij=p11 p1n︙︙pn1 pnnæèçççöø÷÷÷r其中i=1,2, ,n;j=1,2, ,n㊂结合公式Et+1=PijˑEt获得系统在t+1时刻的状态概率分布,取矩阵最大值,代表预测数据的状态转移最大概率,即可能性最高㊂(5)马尔科夫修正㊂对状态区间的修正公式如下:E1ң xi=xi-xiˑ|ai|+|bi|2E2ң xi=xi+xiˑ|ai|+|bi|2E3ң xi=xi其中,xi为多因素灰色预测值;ai㊁bi为状态区间端点值;E1㊁E2㊁E3分别为负向修正㊁正向修正和无需修正状态㊂将马尔科夫链修正之后的灰色预测数据记为 x(k)㊂2㊀土地利用数量模拟分析2.1㊀多因素灰色预测模型数量预测㊀该研究参照表1所选取的社会影响因素,利用主成分分析法对影响因子进行降维处理,再与灰色预测所得各土地利用类型数据进行多元线性回归,得到回归后的综合预测数据㊂因水域2000 2020年变化趋势极其微小,且在整个市区占比较小,故不进行预测与修正㊂首先,在对2000 2014年社会影响因素数据进行标准化的基础上,确定主成分个数(表4)及各土地利用类型的回归模型(表5)㊂表4㊀各因子总方差解释Table4㊀Totalvarianceexplanationofeachfactor成分Element初始Initial特征值Eigenvalue方差Varianceʊ%累计方差Cumulativevarianceʊ%提取载荷平方和Extractingsumofsquaresofloads特征值Eigenvalue方差Varianceʊ%累计方差Cumulativevarianceʊ%旋转载荷平方和Sumofsquaresofrotatingload特征值Eigenvalue方差Varianceʊ%累计方差Cumulativevarianceʊ%110.27485.61485.61410.27485.61485.6145.97649.80249.80221.27310.60696.2201.27310.60596.2205.57046.41796.22030.2412.00998.22940.0970.80799.03650.0580.48599.52160.0250.20699.72770.0210.17899.90580.0070.05699.96190.0030.02799.988100.0010.01099.998110.0000.00199.999120.0000.0011004㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年表5㊀各地类回归模型信息汇总Table5㊀Summaryofregressionmodelsforeachland⁃usetype土地利用类型Land⁃usetype项目Item未标准化系数Non⁃standardizedcoefficientP值Pvalue模型精度ModelaccuracyR2调整后R2AdjustedR2耕地Arableland常量197494.9180.000Y1-1396.8020.0000.9930.992Y2-1175.8860.000林地Woodland常量110573.6000.000Y1881.3570.0000.9920.992Y2754.8690.000草地Grassland常量1068.3360.000Y1-951.0400.0000.9770.975Y2-322.5020.000建设用地Constructionland常量6209.8840.000Y1980.0130.0000.9930.992Y21013.4920.000未利用地Unusedland常量40.3590.000Y1-13.1680.0000.9930.992Y2-7.9470.000㊀㊀根据各地类回归模型结果可以看出2个主成分因子与各地类之间均在0.01水平显著相关,回归模型拟合度达到精度要求㊂进一步将2015年灰色预测所得土地利用数量及社会影响因素数据相结合,依据表5中的回归模型系数进行多元线性回归,得到2015年考虑社会经济因素的灰色预测序列,所得结果的相对误差见表6㊂㊀㊀从表6可以看出,单一灰色预测模型对于耕地和林地的模拟精度较高,但是建设用地㊁草地㊁未利用地的模拟精度较低,其原因主要是因为这3类用地的像元数相对较少,同时自2008年后草地和未利用数量骤减且持续保持低数量规模的状态,其变化趋势出现断崖式的改变,而建设用地的增长速度非匀速快速增长,因此相对误差较大㊂通过社会经济因素等的融合,多因素灰色模型对于各地类的预测精度有了明显的提升,相较于单一灰色模型,多因素灰色模型对于土地利用数量模拟具有更好的适宜性,模拟精度较为理想,其中耕地㊁林地达到了优秀的水平㊂表6㊀2015年多因素灰色模型下各地类面积预测相对误差Table6㊀Relativeerrorofareapredictionforeachlandusetypeunderthemultifactorgreymodelin2015模型Model耕地Arableland林地Woodland草地Grassland建设用地Constructionland未利用地Unusedland单一灰色预测模型Singlegreypredictionmodel0.00560.00330.26470.24130.5419多因素灰色模型Multifactorgreymodel0.00230.00210.19190.13820.0920精度提高程度Accuracyimprovementdegreeʊ%58.9336.3627.5042.7383.022.2㊀马尔科夫修正㊀根据多因素灰色预测结果精度评定(表6),耕地与林地的精度高达99%以上,因此不进行二次修正,草地㊁建设用地与未利用地修正过程如下:(1)状态划分㊂以2000 2014年各地类原始面积数据与多因素灰色预测数据的误差浮动率为样本序列(表7),该研究采用K均值聚类法对该序列进行排序并划分状态区间为Ei=(E1,E2,E3),各地类状态区域分界具体划分如下:草地,E1=[-13.57,-9.09],E2=[5.26,11.94],E3=[-5.03,2.09]㊂建设用地,E1=[-16.10,-7.82],E2=[8.30,10.09],E3=[-6.01,3.71]㊂未利用地,E1=[-10.77,-3.61],E2=[9.81,15.31],E3=[2.64,7.59]㊂其中,E1表示预测数据偏高,需要负向修正;E2表示预测数据偏低,需要正向修正;E3表示误差允许范围,无需修正㊂依据前述草地㊁建设用地㊁未利用地的区间,划定2000 2015年各地类多因素灰色模型预测值所处的状态,如表7所示㊂㊀㊀(2)序列修正㊂为验证马尔科夫预测的可行性,以2014年为初始模拟年份,设其状态为R0,模拟2015年状态㊂根据转换概率矩阵公式结合表7可知,2015年各地类的状态转换概率分别为草地[0.67,0,0.33]㊁建设用地[1,0,0]㊁未利用地[0.88,0,0.12],3个地类的状态均为E1的概率最高,与表7中的实际情况相符,说明马尔科夫能够实现灰色模型误差浮动状态预测㊂进一步根据2015年预测状态对各类用地进行修正,具体修正结果见表8㊂草地㊁建设用地㊁未利用地3类用地的平均相对误差分别提高74.26%㊁68.74%㊁85.33%㊂由此可见,采用马尔科夫模型能够有效地对多因素灰色模型数据误差浮动率进行预测,且通过修正能显著提升精度㊂551卷12期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀吕利娜等㊀灰色-马尔科夫改进的土地利用变化模型研究表7㊀2000—2015年多因素灰色模型下各地类面积预测误差浮动率和状态划分Table7㊀Floatingrateandstatusdivisionofareapredictionerrorsforeachlandusetypeunderthemultifactorgreymodelfrom2000to2015年份Year草地Grassland误差浮动率Errorfloatingrate状态Condition建设用地Constructionland误差浮动率Errorfloatingrate状态Condition未利用地Unusedland误差浮动率Errorfloatingrate状态Condition20000.0209E3-0.0438E30.0981E220010.0526E2-0.0406E3-0.0920E12002-0.1392E10.0371E3-0.1077E12003-0.0909E10.0830E20.0759E32004-0.0457E30.1009E20.0738E32005-0.1013E10.0239E30.0264E32006-0.1366E1-0.0121E30.0661E32007-0.1366E1-0.0098E30.1531E22008-0.1326E10.0230E3-0.0799E12009-0.0503E3-0.0405E3-0.0897E120100.0675E2-0.0601E3-0.0884E120110.1194E2-0.0782E1-0.0587E120120.0604E2-0.0991E1-0.0908E120130.0073E3-0.1207E1-0.0361E12014-0.1357E1-0.1412E1-0.0642E12015-0.1214E1-0.1610E1-0.0843E1表8㊀2015年马尔科夫修正模型下各地类面积预测相对误差Table8㊀Relativeerrorofareapredictionforeachland⁃usetypein2015ofMarkovmodifiedmodel模型Model耕地Arableland林地Woodland草地Grassland建设用地Constructionland未利用地Unusedland多因素灰色预测模型Multi⁃factorgreypredictionmethod0.00230.00220.19190.13820.0920灰色-马尔科夫改进模型Improvedgrey⁃Markovmodel0.00230.00220.04940.04320.0135精度提高程度Accuracyimprovementdegreeʊ%0.000.0074.2668.7485.333㊀土地利用空间模拟预测对于土地利用变化时空模拟而言,其模型精度不仅受到空间转换规则的制约,同时也受到预测数量规模的影响㊂为了进一步验证该研究所构建数量预测模型的精度及有效性,利用未来土地利用变化情景模拟模型(GeoSOS-FLUS)对研究区土地利用变化进行时空模拟,采用Kappa系数㊁混淆矩阵(OA)和品质因数(FoM)作为土地利用模拟精度评价指标,反映数量预测准确性对于土地利用变化模拟整体精度的影响㊂GeoSOS-FLUS模型是在传统元胞自动机(CA)的基础改进而来的,广泛应用于模拟土地利用格局研究㊂该模型采用神经网络算法(ANN)基于初期土地利用数据以及各种驱动因素获取各种用地类型的适宜性概率[20],同时结合表示扩张能力强弱的邻域密度㊁惯性公式㊁转换成本矩阵以及土地之间竞争的影响,最终确定土地利用类型转换的总概率[21]㊂因其采用采样方式抽取土地利用样本数据,可以很好地避免误差传递;基于轮盘赌的自适应惯性竞争机制能够处理自然与人类活动影响下的各地类相互转换过程中存在的不确定性和复杂性的问题,进而获得较高的精度[22]㊂该研究以2015年土地利用数据及对应的驱动因子(表2㊁图2)为基础,模拟2020年的土地利用分布格局㊂模拟过程中的参数设置如下:(1)适宜性概率图集制作㊂将表2驱动因素进行标准化处理,设置神经网络的采样比例70%用于训练,神经网络的隐藏层数设置为12,生成2015年土地利用适宜性图集(图3),其中均方根误差(RMSE)为0.0004,说明数据训练结果可信㊂㊀㊀(2)约束用地规则确定㊂约束规则表示是否允许地类间进行转换,当一种土地类型可以向另一种类型转化时,将相应的矩阵值设为1;不允许转化时,设为0㊂根据研究区概况,转换规则设置如表9所示㊂㊀㊀(3)邻域因子权重设置㊂借鉴相关研究[23],结合转移矩阵以及研究区的实际情况,对邻域因子的权重设置不断调试,比较不同权重设置下的模拟精度,得到精度较高的因子参数表,参数范围为0 1,表示土地的扩张能力强弱㊂参数具体设置如下:耕地0.4㊁林地0.6㊁草地0.5㊁水域0.2㊁建设用地1.0㊁未利用地0.1㊂(4)时空模拟结果㊂在完成适宜性概率图集制作及转换规则设定的基础上,分别利用传统Markov和该研究改进的数量预测模型获取的2020年数量预测结果,并采用控制变量法对空间模拟部分设置相同的空间约束参数,完成研究区2020年的土地利用分布格局的模拟,模拟结果及精度如图4和表10所示㊂6㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年图3㊀双鸭山市各地类土地适宜性图集Fig.3㊀ThesuitabilitymapforeachlandusetypeinShuangyashanCity表9㊀土地利用变化转换规则Table9㊀Landusechangeconversionrules土地利用类型Landusetype耕地Arableland林地Woodland草地Grassland水域Waters建设用地Constructionland未利用地Unusedland耕地Arableland111110林地Woodland111111草地Grassland111111水域Waters000100建设用地Constructionland000011未利用地Unusedland111111图4㊀Markov模型(a)和灰色-马尔科夫改进模型(b)2020年土地利用模拟结果对比Fig.4㊀ComparisonoflandusesimulationresultsbetweenMarkovmodel(a)andimprovedgreyMarkovmodel(b)in2020表10㊀2020年土地利用模拟精度Table10㊀Simulationaccuracyoflandusein2020模型ModelKappaOAFoM单一马尔科夫模型SingleMarkovmodel0.85300.91630.0882灰色-马尔科夫改进模型GreyMarkovimprovedmodel0.92030.95200.1059精度提高程度Accuracyimprovementdegreeʊ%7.893.9020.07㊀㊀经过与实际数据进行对比,模拟结果在10%随机采样时,研究所设计的改进灰色-马尔科夫修正模型的Kappa系数㊁总体精度(OA)均较单一利用Markov模型进行数量预测的精度有所提高㊂但是,在土地利用变化模拟中,未发生变化的区域在整个研究区中的占比往往较高,尤其是双鸭山市区多以农㊁林地为主,发生转变数量比例较小㊂而混淆矩阵OA和Kappa系数在计算时并没有剔除未发生变化的部分,且部分采样参与计算,导致计算值存在偏差[24]㊂为了有效751卷12期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀吕利娜等㊀灰色-马尔科夫改进的土地利用变化模型研究避免这种情况,进一步确定发生变化处的模拟精度,该研究同时采用品质因数(FoM)进行精度评定㊂从表10可以看出,数量预测的精度对于发生变化区域的时空模拟结果影响更为明显,对于提升模拟精度有较为明显的正向推动㊂4 结语土地利用变化受城市发展的多方面影响,各土地利用类型在时间序列上呈无规律㊁无序变化㊂该研究利用构建的灰色-马尔科夫改进模型对土地利用数量进行预测,克服了Markov模型存在忽视社会发展的随机性及灰色模型对于随机波动性较大的数据拟合效果较差的问题,各展所长,实现了土地利用数量长时间序列预测㊂研究结果证实改进的灰色-马尔科夫模型对于土地利用数量模拟具有更好的适宜性,能够显著提高土地利用数量预测精度和提升土地利用时空模拟的精度;另一方面,该研究将社会发展进程中的多种影响因素融入土地利用变化时空模拟中,使得科技㊁信息化发展等因素对社会发展速度的影响在数量模拟中得到体现,在一定程度上解决社会经济类时间序列数据在土地利用变化模型中难以作为空间化约束指标的问题,对土地利用的模拟及预测具有很强的实用性,能科学地为城市未来发展提供更为符合社会发展趋势的数据支持㊂参考文献[1]邵幸均.基于ANN-CA-MAS的延安市宝塔区土地利用时空变化模拟及预测研究[D].西安:长安大学,2020:1.[2]吴振林.基于CLUE-S模型的土地利用变化模拟与多情景预测研究:以山西省河津市为例[D].太谷:山西农业大学,2016:3.[3]SAMARDŽIC'⁃PETROVIC'M,KOVAC㊅EVIC'M,BAJATB,etal.Machinelearningtechniquesformodellingshorttermland⁃usechange[J].Isprsin⁃ternationaljournalofgeo⁃information,2017,6(12):1-15.[4]XUQL,YANGK,WANGGL,etal.Agent⁃basedmodelingandsimula⁃tionsofland⁃useandland⁃coverchangeaccordingtoantcolonyoptimiza⁃tion:AcasestudyoftheErhaiLakeBasin,China[J].Naturalhazards,2015,75(1):95-118.[5]胡烨婷,李天宏.基于SD-CA模型的快速城市化地区土地利用空间格局变化预测[J].北京大学学报(自然科学版),2022,58(2):372-382.[6]顾茉莉,叶长盛,李鑫,等.基于SD模型的江西省土地利用变化情景模拟[J].地理与地理信息科学,2022,38(4):95-103.[7]KUCSICSAG,POPOVICIEA,BǍLTEANUD,etal.Futurelanduse/coverchangesinRomania:RegionalsimulationsbasedonCLUE⁃SmodelandCORINElandcoverdatabase[J].Landscapeandecologicalengineering,2019,15(1):75-90.[8]吕利娜,崔慧珍,叶欣.基于MCE-CA-Markov的土地利用预测及生境质量评价[J].黑龙江科技大学学报,2021,31(6):697-703.[9]于文慧,徐兆阳,陈春森,等.逻辑回归元胞自动机模型的鸡西市城市扩张分析及预测[J].测绘与空间地理信息,2022,45(1):45-49,54.[10]朱晓萌.基于CLUE-S模型的哈尔滨市生态用地格局时空演变与情景模拟研究[D].长春:东北师范大学,2019:9.[11]ESACCIlandcoverproject.GlobalESACCIlandcoverclassificationmap[DB/OL].[2022-09-25].http://maps.elie.ucl.ac.be/CCI/viewer/.[12]RADFORDKG,JAMESP.Changesinthevalueofecosystemservicesa⁃longarural⁃urbangradient:AcasestudyofGreaterManchester,UK[J].Landscape&urbanplanning,2013,109(1):117-127.[13]ZENGJ,LIJF,YAOXW.Spatio⁃temporaldynamicsofecosystemservicevalueinWuhanUrbanAgglomeration[J].Chinesejournalofappliedecol⁃ogy,2014,25(3):883-891.[14]朱志香.油气田产量递减灰色系统模型的建立及预测[J].科技创新导报,2010,7(24):62.[15]李雪.基于GIS的土地利用时空变化模拟及预测研究:以延安市安塞区为例[D].西安:长安大学,2019:9-11.[16]蔡祯.京津冀城市群土地利用变化研究[D].北京:北京林业大学,2019:13.[17]常小燕,刁海亭,邓琦,等.基于灰色马尔可夫模型的耕地需求量预测[J].黑龙江农业科学,2020(2):107-112.[18]贾俊霞.基于改进灰色马尔可夫链的伊犁州GDP实证分析与预测[D].伊宁:伊犁师范大学,2021:20-21.[19]仝德,周心灿,龚咏喜.基于大数据的上海市共享汽车出行模式研究[J].地理科学进展,2021,40(12):2035-2047.[20]陈兵飞.基于FLUS模型的万州区土地利用变化模拟及土地利用结构优化研究[D].重庆:西南大学,2020.[21]王雪然,潘佩佩,王晓旭,等.基于GeoSOS-FLUS模型的河北省土地利用景观格局模拟[J].江苏农业学报,2021,37(3):667-675.[22]LIUXP,LIANGX,LIX,etal.Afuturelandusesimulationmodel(FLUS)forsimulatingmultiplelandusescenariosbycouplinghumanandnaturaleffects[J].Landscapeandurbanplanning,2017,168:94-116.[23]王保盛,廖江福,祝薇,等.基于历史情景的FLUS模型邻域权重设置:以闽三角城市群2030年土地利用模拟为例[J].生态学报,2019,39(12):4284-4298.[24]叶欣.基于改进案例推理模型的矿业城市空间格局演变驱动力分析与模拟[D].哈尔滨:哈尔滨师范大学,2021:66.8㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀安徽农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年。
如何进行土地利用变化监测和分析
如何进行土地利用变化监测和分析土地利用变化是指土地在不同时间段内由一种利用类型转变为另一种利用类型的过程。
土地利用变化监测和分析有助于理解土地利用变化的原因和趋势,为土地资源的合理管理、保护和可持续利用提供科学依据。
本文将介绍如何进行土地利用变化监测和分析。
一、数据获取土地利用变化监测和分析需要大量的空间数据和时间序列数据。
常用的方法包括遥感影像解译、地理信息系统 (Geographic Information System, GIS) 数据提取以及野外调查等。
其中,遥感影像在土地利用变化监测和分析中起着关键作用。
通过获取不同年份的高分辨率遥感影像,可以获得土地利用类型的时空变化信息。
此外,还可以结合GIS数据,如土地利用分类系统、行政区划等,对土地利用类型进行统计与分析。
二、土地利用变化分类为了进行土地利用变化分析,首先需要对土地利用类型进行分类。
土地利用分类的精细程度会直接影响到分析结果的准确性和可靠性。
常用的土地利用分类系统包括CORINE (Coordination of Information on the Environment)、USGS (United States Geological Survey) 和LCCS (Land Cover Classification System)等。
选择适合研究区域的土地利用分类系统,并按照其分类标准对不同年份的遥感影像进行分类解译。
三、土地利用变化检测土地利用变化检测是指对不同年份的土地利用遥感影像进行对比,识别和定量化土地利用变化的过程。
常用的土地利用变化检测方法有像元级变化检测和对象级变化检测。
像元级变化检测是指通过比较两幅遥感影像的像元值差异来判断土地利用变化情况,例如NDVI (Normalized Difference Vegetation Index)、NDBI (Normalized Difference Built-up Index)等。
土地覆盖土地利用简介及数据集
⼟地覆盖⼟地利⽤简介及数据集1 简介⼟地覆盖:地球表⾯当前所具有的⾃然和⼈为影响所形成的覆盖物,是地球表⾯的⾃然状态,如森林、草场、农⽥、⼟壤、冰川、湖泊、沼泽湿地及道路等。
⼟地利⽤:是⼈类在⽣产活动中为达到⼀定的经济效益、社会效益和⽣态效益,对⼟地资源的开发、经营、使⽤⽅式的总称。
两者的区别:• ⼟地利⽤表⽰与⼟地相结合的⼈类活动⽽产⽣的不同利⽤⽅式,反映⼟地的社会和经济属性。
• ⼟地覆盖表⽰地球表⾯存在的不同类型的覆盖特征,强调的是⼟地的表⾯形状,反映⼟地的⾃然属性。
⼟地利⽤/⼟地覆盖分类系统LULC分类系统是根据⼈类⼟地利⽤⾏为的⽬的、⽅式等不同,将⼀定时期的⼟地利⽤⾏为分为若⼲种类型,由这些类型组成的有⼀定结构关系的系统框架(包括类型名称、识别标准、类型之间的联系等)。
⼀般采⽤分级结构。
可参考⽂献:可⽤来进⾏⼟地利⽤/⼟地覆盖分类的遥感信息源选取:主要使⽤空间分辨率为⽶级⾄1公⾥的可见光及近红外波段遥感数据.如GF-1、GF-2、HJ-1A/B、ZY-1 02C、IKONOS、Landsat-TM 、MSS、CEBERS、SPOT–HRV、NOAA-AVHRR及MODIS等。
分类⽅法• ⽬视解译定性分析⽅法• 计算机⾃动分类⽅法 1)⼟地覆盖⾮监督分类 2)⼟地覆盖监督分类⼟地覆盖分类结果精度检验(混淆矩阵)总体精度: 分类结果与地⾯实际类型相⼀致的概率.⽤户精度(第i类): 从分类结果中任取⼀个随机样本,其所具有的类型与地⾯实际类型相同的条件概率.制图精度(第j类): 相对于地⾯获得的实际资料中的任取⼀个随机样本,分类图上同⼀地点的分类结果与其相⼀致的条件概率.漏分误差(omission): 对于地⾯观测的某种类型, 在分类图上任取⼀样本, 其被错划分为其他不同类型的概率(实际的某类地物被误分到其他类型的概率).错分误差(comission): 对于所分出的某⼀类型上任取⼀样本, 它与实际地⾯观测类型不同的概率.(图像上被划分为某⼀类地物实际上有多少应该是别的类别).Kappa系数(可⽤来测定两幅图间的吻合度或精度):2 数据集10m 超⽅便⽆需注册直接点击下载!Esri对外公布了全球10⽶⼟地覆盖数据,该数据利⽤欧洲航天局(ESA)的Sentinel-2卫星影像绘制⽽成。
classification翻译
classification翻译classification翻译:分类;归类;分级;类别;等级;门类;(动植物等的)分类学,分类法。
1、For the convenience of our classification,any over eighteen years old counts as an adult.为了我们分类的方便,凡年满18岁者均算成年人。
2、Montesquieu's awareness of the relation of the social to the political effectively yielded a classification of governments and societies.孟德斯鸠对社会与政治的关系的认识,实际上产生一种对各种政体与社会的分类法。
3、Its tariffs cater for four basic classifications of customer.它的价目表适合4个基本类别的顾客。
4、Land economic coefficient is an important corrective coefficient in farmland classification.土地经济系数是农用地分等中重要的修正参数。
5、These things belong in a different classification.这些东西属于不同的类别。
6、The importance of units of the plant cover broader than the phytocoenose for classification is acknowledged by Soviet geobotanists.苏联地球植物学家认识到,比植物群落较广泛的植被单位对于分类的重要性。
7、This is a good system for classification.这是一个很好的分类法。
DB33∕T 1136-2017 建筑地基基础设计规范
5
地基计算 ....................................................................................................................... 14 5.1 承载力计算......................................................................................................... 14 5.2 变形计算 ............................................................................................................ 17 5.3 稳定性计算......................................................................................................... 21
主要起草人: 施祖元 刘兴旺 潘秋元 陈云敏 王立忠 李冰河 (以下按姓氏拼音排列) 蔡袁强 陈青佳 陈仁朋 陈威文 陈 舟 樊良本 胡凌华 胡敏云 蒋建良 李建宏 王华俊 刘世明 楼元仓 陆伟国 倪士坎 单玉川 申屠团兵 陶 琨 叶 军 徐和财 许国平 杨 桦 杨学林 袁 静 主要审查人: 益德清 龚晓南 顾国荣 钱力航 黄茂松 朱炳寅 朱兆晴 赵竹占 姜天鹤 赵宇宏 童建国浙江大学 参编单位: (排名不分先后) 浙江工业大学 温州大学 华东勘测设计研究院有限公司 浙江大学建筑设计研究院有限公司 杭州市建筑设计研究院有限公司 浙江省建筑科学设计研究院 汉嘉设计集团股份有限公司 杭州市勘测设计研究院 宁波市建筑设计研究院有限公司 温州市建筑设计研究院 温州市勘察测绘院 中国联合工程公司 浙江省电力设计院 浙江省省直建筑设计院 浙江省水利水电勘测设计院 浙江省工程勘察院 大象建筑设计有限公司 浙江东南建筑设计有限公司 湖州市城市规划设计研究院 浙江省工业设计研究院 浙江工业大学工程设计集团有限公司 中国美术学院风景建筑设计研究院 华汇工程设计集团股份有限公司
地物判绘样例 英文
地物判绘样例英文English:In geographical information systems (GIS), land cover classification plays a crucial role in mapping and analyzing the Earth's surface. Land cover classification refers to the process of categorizing the different types of land surfaces such as forests, water bodies, urban areas, agricultural fields, etc., based on their spectral, spatial, and temporal characteristics. This classification is typically done using remotely sensed data acquired from satellites or aerial imagery. The process involves various steps including image preprocessing, feature extraction, and classification algorithm application. Image preprocessing involves tasks like radiometric and geometric correction to enhance the quality of the images. Feature extraction aims to identify relevant information from the images, such as texture, color, and shape, which are then used as input variables for the classification algorithm. Classification algorithms include supervised, unsupervised, and hybrid techniques, each with its strengths and weaknesses. Supervised classification requires training samples for each land cover class, while unsupervised classification clusters pixels based on their spectral properties without priorknowledge. Hybrid techniques combine aspects of both supervised and unsupervised methods for improved accuracy. Once classified, the results are validated using ground truth data to assess the accuracy of the classification. This process helps in generating land cover maps that are valuable for various applications including environmental monitoring, urban planning, natural resource management, and disaster response.中文翻译:在地理信息系统(GIS)中,地物覆盖分类在地表地图制作和分析中起着至关重要的作用。
面向自然资源统一管理的国土空间规划用地分类体系及用途管制探索
42面向自然资源统一管理的国土空间规划用地分类体系及用途管制探索□ 龚 健,李靖业,韦兆荣,王向东[摘 要]文章立足自然资源体制改革的时代背景,针对我国现行土地利用分类体系存在的问题,剖析了自然资源统一管理背景下的国土空间规划用地分类功能导向,并构建了新时代背景下国土空间规划分类体系及其用途管控制度。
我国现行土地利用分类体系存在部门主导、缺乏统筹,标准制定独立封闭、弱化协同,用地内涵不清、交叉重叠,逻辑混乱、归类失序等问题,已无法适应国家机构改革、部门分割管理瓶颈破除后自然资源集中统一管理的新要求。
国土空间规划用地分类应当以健全自然资源空间管制、优化国土空间格局、推动城乡统筹发展和深化规划体制改革为功能导向,构建“3+15+68”的国土空间规划分类框架体系;以融合多部门规划特色、构建国土空间规划体系、健全国土空间用途管控制度为契机,建立全域覆盖、层级有序的国土空间用途管制分区体系,制定差别化用途管制机制。
[关键词]自然资源管理;国土空间规划;规划用地分类;用途管制[文章编号]1006-0022(2020)10-0042-08 [中图分类号]TU981 [文献标识码]A[引文格式]龚健,李靖业,韦兆荣,等.面向自然资源统一管理的国土空间规划用地分类体系及用途管制探索[J].规划师,2020(10):42-49.Land Use Classification System and Governance for Unified Management of Natural Resources/Gong Jian, Li Jingye, Wei Zhaorong, Wang Xiangdong[Abstract] Based on the natural resource governance institutional reform and existing problems of land use classification, the paperanalyzes the orientation of land use classification for unified management of natural resources, and establishes a new system of land use classification and governance. The existing problems include: departmental dominance without integration, exclusive system of standard formulation without coordination, land use disorder and overlapped boundaries etc. Land use classification shall integrate natural resource governance, improve land-space layout, promote urban-rural integrated development, and deepen planning reform. A “3+15+68” land use classification system is established to integrate multiple plans, realize whole area coverage, and achieve hierarchical land use governance.[Key words] Natural resource governance, National land use and spatial plan, Land use classification, Land use governance划用地分类体系是实现自然资源统一管理的客观要求。
esri lulc类别英文定义
esri lulc类别英文定义Esri Land Use Land Cover (LULC) classification system aims to categorize and standardize various land use and land cover patterns into a consistent format. This system provides a common language and framework for analyzing and interpreting spatial data related to landscape characteristics. In this document, we will explore the definitions of different Esri LULC categories in more detail.1. Urban and Built-Up Land: This category includes areas covered by buildings, roads, parking lots, and other man-made structures. It signifies human habitation and infrastructure development.2. Agricultural Land: This category encompasses areas used for cultivation of crops, grazing of livestock, and other agricultural practices. It includes farmland, orchards, and pasture lands.3. Rangeland: This category refers to grasslands and barren lands used for livestock grazing. It includes natural vegetation such as grasses and shrubs.4. Forest Land: This category includes areas covered by trees and forests. It signifies dense vegetation and wooded areas.5. Water Bodies: This category includes rivers, lakes, ponds, and other water bodies. It signifies water resources and aquatic habitats.6. Wetlands: This category includes marshes, swamps, and other waterlogged areas. It signifies areas with high moisture content and specialized plant species.7. Barren Land: This category encompasses deserts, sand dunes, and other arid landscapes. It signifies areas with minimal vegetation cover.8. Tundra: This category includes cold and treeless landscapes in polar regions. It signifies areas with permafrost and limited vegetation.9. Perennial Snow and Ice: This category includes glaciers, ice caps, and snow-covered areas. It signifies areas with permanent ice cover.10. Unclassified Land: This category includes areas that do not fit into any of the defined classifications. It signifies areas with unique land use or land cover patterns.By utilizing the Esri LULC classification system, researchers, planners, and policymakers can analyze land use patterns, monitor changes over time, and make informed decisions onland management and conservation. This standardized system provides a valuable tool for spatial analysis and land resource assessment.。
新中国成立以来我国土地管理的演变历程
新中国成立以来我国土地管理的演变历程1.1949一1978年,重要法律《农村人民公社工作条例》1949年7月,全国人民政治协商会议制定了《中央人民政府组织法》,在中央人民政府政务院下设内务部。
内务部下设地政司,作为全国土地管理机关,主要负责地籍测量、地籍管理、城市房地产管理、土地征用和房地产交易管理、土地租税、城市管理规划及考核等。
之后,土地管理逐步向各部门分散。
1952年,城市营建规划及考核移交新成立的建筑工程部;|考试大|1954年,撤销了地政司,在农业部设土地利用总局;1956年,在土地利用总局的基础上成立农垦部,主管全国所有荒地和国营农场建设工作;城市房地产管理下作移交新成立的城市服务部,内务部仅保留土地遗留问题处理和部分征地划拨等于作。
1962年颁发了《农村人民公社工作条例修正案草案》,明确了农村集体土地的范围,基本形成了适应计划经济需要的土地管理体制。
2.1979一1986年,重要法律《土地管理法》文革时期,许多地方的土地管理机构被解散,土地管理工作基本处于瘫痪状态。
1979年,国务院设立全国农业区划委员会,下设土地资源组,由农业部牵头起草土地利用分类标准、调查规程,并开展土地详查试点,在试点实践基础上修改并颁布土地调查的技术标准,提出进一步加强土地资源调查的报告。
1984年,国务院批准部署在全国开展土地调查工作。
1982年修订了《国家建设征用土地条例》、《村镇建房用地管理条例》。
同年,改革土地管理体制,1982—1986年国家实行所谓城乡分管的体制,地方的农业部门建立了土地管理部门,而城市内部则保留了房地产管理局,部分恢复了地政管理职能。
1986年,发布了《中共中央、国务院关于加强土地管理、制止乱占耕地的通知》,要求强化土地管理,刹住乱占耕地之风。
同年,六届全国人大常委会通过并发布《中华人民共和国土地管理法》,明确了全国地政和城乡地政统一管理的原则。
3.1987一1990年,重要法律《城镇国有土地使用权出让和转让暂行条例》根据《土地管理法》的规定,直属国务院的国家土地管理局正式成立,接着地方各级政府的土地管理部门也相继成立。
土地类型分类
MAP GUIDEGlobal Land Cover Characteristics Maps (USGS EROS)Global EcosystemsIGBP Land CoverUSGS Land Use/Land Cover Simple Biosphere Model Simple Biosphere 2 ModelVegetation LifeformsBiosphere Atmosphere Transfer Scheme Matthews Land CoverSummaryWhat are they?TerraViva!® provides a series of eight thematic maps representing land cover of the earth from different scientific perspectives. These maps comprise the Global Land Characteristics database (GLCC) and illustrate the distribution of earth surface materials or "land cover" over the entire globe. By exploring each map, you can identify at a glance the location and expanse of major ecological systems – forests, grasslands, tundra, agricultural regions and deserts – and examine their inter-relationships.As you move your cursor around on a map a small text box near the cursor displays the land cover classification at the cursor position. The gray status bars located just below the map display the name of the administrative unit, the land cover classification at the cursor position, and the geographic coordinates at the cursor position.Source of the TerraViva!®Maps. The Global Land Cover Characteristics Data Base Version 2.0 (GLCC) is the most comprehensive representation of land cover for the entire globe. A primary data set identifying 96 land classes - Global Ecosystems – forms the basis for seven additional GLCC data products: IGBP Land Cover, USGS Land Use/Land Cover, Simple Biosphere Model, Simple Biosphere 2 Model, Biosphere Atmosphere Transfer Scheme, Matthews Land Cover, and Vegetation Lifeform. Each product emphasizes different land cover features or inter-relates landforms to support specific scientific analyses. GLCC data sets are available from the NASA Land Distributed Active Archive Center at the USGS Eros Data Center in Sioux Falls, South Dakota. Each version is available in Goode Interrupted Homolosine at one kilometer and Geographic projection at thirty arc-seconds resolution.Why was GLCC created? The GLCC database was an international project undertaken by a number of organizations under the auspices of the International Geosphere-Biosphere Programme (IGBP) and NASA. The US Geological Survey EROS Data Center performed the technical task of creating the land cover map by interpreting space remote sensing data. GLCC was developed at the request of scientists interested in the study of global environmental change. These scientists believed that existing maps of land cover were inadequate to represent current conditions, and they sought an improved, updated map in order to properly model effects of climate change and other global environmental processes. Scientists continue to pursue improved representations of the Earth’s biosphere and are now actively employing advanced sensors like Modis and Landsat.How was GLCC constructed? The GLCC data set was derived from the National Oceanic and Space Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data collected daily over a 12-month period from April 1992 through March 1993. AVHRR is carried on NOAA's Polar Orbiting Environmental Satellite (POES) and its daily measurements reflect energy at each 1-km2 location on the earth's surface. This daily data creates a time-series that reveals plant development patterns, called phenology, and other features such as onset, peak, and seasonal duration of vegetation greenness. These features relate to the amount of plant material, or biomass, produced. The accumulated vegetative material is referred to as "net primary productivity." Such features allow discrimination of various types of vegetation and other land covers. Scientists used statistical techniques to process the AVHRR signals, determining ninety-six land cover patterns based on a taxonomy established by J. Olson (1994). These 96 classes for the most part formed the basis for each of the eight GLCC map products. Each map is an interpretation suited to a specific scientific purpose as described later. How were the TerraViva!®maps derived from the source data?The entire collection of eight GLCC products are available at full resolution. Since all versions are derived from the Global Ecosystems map, lossless compressions of greater than 100:1 were achieved, enabling instantaneous renderings when switching from one GLCC map to another.What do the Colors Mean?The color codes of each map are described in the map legend and an explanation of the unique value of the map presented.1. Global EcosystemsGlobal ecosystem categories were derived from those developed by J. Olson (1994) to represent global land cover patterns derived from coarse resolution remote sensing data for use in carbon cycle studies. The ninety six categories provide as broad a range of land cover types.2. Land Cover (IGBP)Definitions of land cover classes are reproduced below from original IGBP working plans (from Belward, A. S., 1996). The legend employed was developed to meet the needs of IGBP projects, providing for a consistent and objective representation of significant landforms for all projects.Unclassified: Land cover unknownEvergreen Needleleaf Forest: Lands dominated by trees with a percent canopy cover >60% and height exceeding 2 meters. Almost all trees remain green all year. Canopy is never without green foliage.Evergreen Broadleaf Forest: Lands dominated by trees with a percent canopy cover >60% and height exceeding 2 meters. Almost all trees remain green all year. Canopy is never without green foliage.Deciduous Needleleaf Forest: Lands dominated by trees with a percent canopy cover >60% and height exceeding 2 meters. Consists of seasonal needleleaf tree communities with an annual cycle of leaf-on and leaf-off periods.Deciduous Broadleaf Forest: Lands dominated by trees with a percent canopy cover >60% and height exceeding 2 meters. Consists of seasonal broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods.Mixed Forest: Lands dominated by trees with a percent canopy cover >60% and height exceeding 2 meters. Consists of tree communities with interspersed mixtures or mosaics of the other four forest cover types. None of the forest types exceeds 60% of landscape. Closed Shrubland: Lands with woody vegetation less than 2 meters tall and with shrub canopy cover >60%. The shrub foliage can be either evergreen or deciduous.Open Shrubland: Lands with woody vegetation less than 2 meters tall and with shrub canopy cover between 10-60%. The shrub foliage can be either evergreen or deciduous. Woody Savanna: Lands with herbaceous and other understory systems, and with forest canopy cover between 30-60%. The forest cover height exceeds 2 meters.Savannas: Lands with herbaceous and other understory systems, and with forest canopy cover between 10-30%. The forest cover height exceeds 2 meters.Grassland: Lands with herbaceous types of cover. Tree and shrub cover is less than 10%.Permanent Wetland: Lands with a permanent mixture of water and herbaceous or woody vegetation that cover extensive areas. The vegetation can be present in salt, brackish, or fresh water.Cropland: Lands covered with temporary crops followed by harvest and a bare soil period (e.g., single and multiple cropping systems). Note that perennial woody crops will be classified as the appropriate forest or shrub land cover type.Urban and Built-up: Land covered by buildings and other man-made structures. Note that this class will not be mapped from the AVHRR imagery but will be developed from the populated places layer that is part of the Digital Chart of the World (Danko, 1992) Cropland/Natural Vegetation Mosaic: Lands with a mosaic of croplands, forests, shrublands, and grasslands in which no one component comprises more than 60% of the landscape.Snow and Ice: Lands under snow and/or ice cover throughout the year.Barren: Lands with exposed soil, sand, rocks, or snow and never more than 10% vegetated cover during any time of the year.Water: Oceans, seas, lakes, reservoirs, and rivers, either fresh or saltwater.3. Land Use/Land Cover (USGS)Definitions of land cover classes are reproduced below from original USGS working plans (from Anderson, James R., et al, 1976). The USGS Anderson system is a hierarchical system derived to support analysis from remote sensing, each level providing increasing levels of specificity. The colors categories used in this legend generally correspond to Anderson level 2.Note: For comprehensive definitions see Anderson, James R. et all “A Land Use and Land Cover Classification System For Use With Remote Sensor Data,” Geological Survey Professional Paper 964, US Government Printing Office; and Global Land Cover Characteristics Data Base Version 2.0 Global Documentation, Appendix 3: USGS Land Use/Land Cover System Legend (Modified Level 2).Urban and Built-Up Land: Land areas of intensive use with much of the land covered by structures. Included in this category are cities, towns, villages, strip developments along highways, transportation, power, and communications facilities, and areas such as those occupied by mills, shopping centers, industrial and commercial complexes, and institutions that may, in some instances, be isolated from urban areas.Dryland Cropland and Pasture: The several components of Cropland and Pasture now used for agricultural statistics include: cropland harvested, including bush fruits; cultivated summer fallow and idle cropland; land on which crop failure occurs; cropland in soil-improvement grasses and legumes; cropland used only for pasture in rotation with crops; and pasture on land more or less permanently used for that purpose.Irrigated Cropland and Pasture: The several components of Cropland and Pasture now used for agricultural statistics include: cropland harvested, including bush fruits; cultivated summer fallow and idle cropland; land on which crop failure occurs; cropland in soil-improvement grasses and legumes; cropland used only for pasture in rotation with crops; and pasture on land more or less permanently used for that purpose.Mixed Dryland/Irrigated Cropland and Pasture: Land areas consisting of a mixture or mosaic of Dryland and Irrigated Cropland and Pasture.Cropland/Grassland Mosaic: Land areas consisting of a mixture or mosaic of Croplands and Grasslands.Cropland/Woodland Mosaic: Land areas consisting of a mixture or mosaic of Croplands and Woodlands.Grassland: Lands dominated by naturally occurring grasses and forbs as well as those areas of actual rangeland which have been modified to include grasses and forbs as their principal cover, when the land is managed for rangeland purposes and not managed using practices typical of pastureland.Shrubland: Lands characterized by such xerophytic vegetative types with woody stems as big sagebrush, shadscale, greasewood, or creosotebush and also by the typical desert succulent xerophytes, such as the various forms of Cactus.Mixed Shrubland/Grassland: Areas with more than one-third intermixture of either herbaceous or shrub and brush rangeland species.Savanna: Further classification of Level II Rangeland.Deciduous Broadleaf Forest: Forested areas that have a predominance of deciduous broadleaf trees.Deciduous Needleleaf Forest: Forested areas that have a predominance of deciduous needleleaf trees.Evergreen Broadleaf Forest: Forested areas that have a predominance of broadleaved evergreens.Evergreen Needleleaf Forest: Forested areas that have a predominance of coniferous evergreens, commonly referred to or classified as softwoods.Mixed Forest: Forested areas where both evergreen and deciduous trees are growing and neither predominates.Water Bodies: Areas within the land mass that are persistently water covered, provided that, if linear, they are at least 1/8 mile (200m) wide and, if extended, cover at least 40 acres (16 hectares) including streams and canals, lakes, reservoirs, bays, and estuaries. Herbaceous Wetland: Lands that are dominated by wetland herbaceous vegetation or are non-vegetated. These wetlands include tidal and nontidal fresh, brackish, and salt marshes and non-vegetated flats and also freshwater meadows, wet prairies, and open bogs.Wooded Wetland: Lands dominated by woody vegetation; seasonally flooded bottomland hardwoods, mangrove swamps, shrub swamps, and wooded swamps including those around bogs.Barren or Sparsely Vegetated: Land with limited ability to support life.Herbaceous Tundra: Lands composed of various sedges, grasses, forbs, lichens, and mosses, all of which lack woody stems.Wooded Tundra: Lands consisting of the various woody shrubs and brushy thickets found in the tundra environments.Mixed Tundra: Lands where a mixture of the Level II Tundra occurrences exist where any particular type occupies less than two-thirds of the area of the mapping unit.Bare Ground Tundra: The Bare Ground Tundra category is intended for those Tundra occurrences which are less than one third vegetated. It usually consists of sites visually dominated by considerable areas of exposed bare rock, sand, or gravel interspersed with low herbaceous and shrubby plants.Snow or Ice: Lands with a perennial cover of either snow or ice, because of a combination of environmental factors that cause these features to survive the summer melting season. Includes Perennial Snowfields and Glaciers.4. Simple Biosphere (SiB)SiB was developed by Sellers (1996) specifically to support land-atmosphere interactions in climate models. SiB land cover categories attempt to capture the range of such interactions assumed to be important in determining various energy, momentum and mass balance terms in climate models. Other uses beyond such modeling are not recommended.5. Simple Biosphere 2SiB 2 is a refinement of SiB using fewer classes to simplify modeling of land-atmosphere interactions. SiB2 is not intended for uses other than in such models.6. Vegetation LifeformsVegetation Lifeforms is a legend developed by Running (1994a) for parametization of biogeocemical and net primary productivity models and presents the simplest categorixzation of the earth’s surface in terms of basic vegetation types. The Running strategy is based on definitions of three canopy components: vegetation structure (termed above ground biomass by Running), leaf longevity, and leaf type. Vegetation structure defines whether the vegetation retains perennial or annual above ground biomass, an issue for seasonal climate and carbon-balance modeling. It is also a determinant of the surface roughness length parameter that climate models require for energy and momentum transfer equations. Leaf longevity (evergreen versus deciduous canopy) is a critical variable in carbon cycle dynamics of vegetation, and affects seasonal albedo and energy transfer characteristics of the land surface. Leaf longevity indicates whether a plant annually must completely regrow its canopy, or a portion of it, with inferred consequences to carbon partitioning, leaf litterfall dynamics, and soil carbon. Leaf type (needleleaf, broadleaf, and grass) affects gas exchange characteristics.7. Biosphere Atmosphere Transfer Scheme (BATS)The BATS landform categories was created by Dickenson (1986) and modified by Olson (1994) to support land-atmosphere modeling. It is used as a land surface parameterization scheme forgeneral circulation models or mesoscale meteorological models. The Olson revision provided for better representation of mixed interrupted woodlands.8. Matthews Land CoverThe Matthews Land Cover legend is modeled after a taxonomy developed by E. Matthews (1983). This legend was developed for use in parameterizing land-atmosphere interactions within early generations of global climate models and attempts to describe potential vegetation.Information ModeInformation Mode enables access to Profiles. A left click on the map will display the Profile window for the country located at the cursor position, using the default database. Sources and AcknowledgementsISCIENCES obtained the GLCC from the USGS EROS Data Center Earth Observation System database. The efforts of the IGBP, NASA, the USGS EDC and many others resulted in the creation of this valuable global database. ISCIENCES presents it to users of our products in a viewable and easy to interpret format.ReferencesAnderson, James R., Hardy, Ernest E., Roach, John T., and Witmer, Richard E. 1976. A Land Use and Land Cover Classification System For Use With Remote Sensor Data. Geological Survey Professional Paper 964, US Government Printing Office. /pdf/anderson.pdfBelward, A. S. 1996. (editor). The IGBP-DIS Global 1 km Land Cover Data Set (DISCover): Proposal and Implementation Plans. IGBP-DIS Working Paper No. 13, IGBP-DIS Office. Toulouse, France.Global Land Cover Characteristics Data Base Version 2.0. Land Processes Distributed Active Archive Center. /glcc/tabgeo_globe.htmlDanko, D. M. 1992. The digital chart of the world. Geoinfosystems 2:29-36.Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J., and Wilson, M.F. 1986. Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-275+STR, Boulder, CO.Loveland, T. R., Merchant, J. W., Ohlen, D. O. and Brown, J. F. 1991. Development of a Land-cover Characteristics Database for the Conterminous US: Photogrammetric Engineering and Remote Sensing 57(11):1453-1463.Loveland, T. R., Zhu, Z., Ohlen, D. O., Brown, J. F., Reed, B. C., and Yang, L. 1999. An Analysis of the IGBP Global Land Cover Characterization Process. Photogrammetric Engineering and Remote Sensing (in press).Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, J, Yang, L., and Merchant, J. W. 1999. Development of a Global Land Cover Characteristics Database and IGBP DIS Cover from 1-km AVHRR Data. International Journal of Remote Sensing. Loveland, T. R., Brown, J. F. 2001. Impacts of Land Cover Legends on Global Land Cover Patterns, ASRS Pecora Symposium Proceedings.Matthews, E. 1983. Global Vegetation and Land Use: New High Resolution Data Bases for Limited Studies. Journal of Climatology and Applied Meteorology 22:474-487. Olson, J.S. 1994. Global Ecosystems Framework: Definitions. USGS EROS Data Center Internal Report, Sioux Falls, SD, 37 p.Olson, J.S. and Watts, J.A. 1982. Major World Ecosystem Complex Map. Oak Ridge, TN: Oak Ridge National Laboratory.Sellers, P.J., Mintz, Y., Sud, Y.C., and Dalcher, A. 1986. A simple biosphere model (SiB) for use within general circulation models. Journal of Atmospheric Science 43: 505-31. Sellers, P.J., Los, S.O., Tucker, C.J., Justice, C.O., Dazlich, D.A., Collatz, G.J., and Randall, D.A. 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs - part II: the generation of global fields of terrestrial biophysical parameters from satellite data. Journal of Climate 9: 706-737.。
Stewart, I.D.,& Oke,T.R.Local Climate Zones for Urban Temperature Studies
LOCAL CLIMATE ZONES FOR URBAN TEMPERATURE STUDIESby I. D. S tewart anD t. r. O keThe new “local climate zone” (LCZ) classification system provides a research framework for urban heat island studies and standardizes the worldwide exchange of urban temperature observations.The study of urban heat islands (UHIs) implicates two of the most serious environmental issues of the twentieth century: population growth and climate change. This partly explains why the worldwide stock of heat island studies has grown so remarkably in recent decades. From Cairo to Tokyo, London to Dallas, and Delhi to Nairobi, cit-ies of every cultural and physical description have been the focus of a formal heat island investigation. The global reach of this literature reflects both the widespread repercussions of the heat island effect in all urban areas, and the scientific curiosity about a phenomenon so seemingly simple.“Urban heat island,” a term first coined in the 1940s (e.g., Balchin and Pye 1947), refers to the atmospheric warmth of a city compared to its countryside. Heat islands occur in almost all urban areas, large or small, in warm climates or cold. The traditionally described heat island is that which is measured at standard screen height (1–2 m above ground), below the city’s mean roof height in a thin section of the boundary layer atmosphere called the urban canopy layer. Air in this layer is typically warmer than that at screen height in the countryside. The physical explanation for this is more com-plex than generally acknowledged in the literature (Table 1). The main causes of the heat island relate to structural and land cover differences of urban and rural areas. Cities are rough with buildings extending above ground level, and are dry and impervious with construction materials extending across natural soils and vegetation. Also important is theView of LCZ 1 in Seattle, Washington. Photo: I. D. Stewartheat and moisture release from people and their activities. These urban characteristics alter the natural surface energy and radiation balances such that cities are relatively warm places (Oke 1982; Lowry and Lowry 2001).The extra warmth in cities has several practical implications. Whether these are considered to be positive or negative depends upon the macroclimate of the city. In cities with a relatively cold climate, or with a cold season, the heat island can convey benefits such as cheaper house heating costs, improved outdoor comfort, fewer road weather hazards such as surface icing or fog, and more benign conditions for plant growth and animal habitat. On the other hand, heat islands in relatively hot climates or seasons can increase discomfort and potentially raise the threat of heat stress and mortality, and heighten the cost of air conditioning and the demand for energy.Heat islands also have climatological implications. The fact that temperatures are elevated at urban stations means that their use in databases to assess historical climate series may have “contaminated” the global air temperature record. The concern is whether the presence of urban data has created a warm bias in the time series. Bias could occur if urban stations are used in the temperature record in greater numbers than is warranted by their representation as a land cover type on Earth.To fully understand these and other issues, it has been the preoccupation of researchers for many decades to measure the heat island effect through simple comparisons of “urban” and “rural” air tem-peratures. The conventional approach is to gather temperatures at screen height for two or more fixed sites and/or from mobile temperature surveys. Sites are classified as either urban or rural, and their tem-perature differences are taken to indicate the heat island magnitude. Classifying measurement sites into urban and rural categories has given researchers a simple framework to separate the effects of city and country on local climate (e.g., Lowry 1977). However, recent research shows that through this popular use of urban–rural classification, the methods and communication in heat island literature have suffered critically. In a review of many such studies, Stewart (2011a,b) found that more than three-quarters of the observational heat island literature fails to give quantitative metadata of site exposure or land cover. Most investigators simply rely on the so-called urban and rural qualifiers to describe the local land-scapes of their measurement sites. Here we develop a climate-based classification of urban and rural sites that applies universally and relatively easily to local temperature studies using screen-level observations. Our aim in this classification is twofold: 1) to facilitate consistent documentation of site metadata and thereby improve the basis of intersite comparisons, and 2) to provide an objective protocol for measuring the magnitude of the urban heat island effect in any city. We do not aim to supplant the terms urban and rural from heat island discourse, but instead to encourage a more constrained use of these terms when describing the local physical conditions of a field site. The terms urban and rural alone cannot sufficiently describe a field site or its local surroundings. INADEQUACIES OF SIMPL E URBAN–RURAL DIVISION.Urban is defined in standard dictionaries as “constituting, forming, or including a city, town…or part of such,” with town being a “densely populated area…opposed to the country or suburbs,” and characterized physically as a “cluster of dwellings or buildings.” Rural, in contrast, is an “agricultural or pastoral area . . . characteristic of the country or country life,” with country being “the parts of a region distant from cities.” From these definitions, we interpret rural landscapes to be less populated than cities, with fewer built structures and more abundant natural space for agricultural use, whereas urban landscapes have significantly more built structures and larger populations. By extension, suburban landscapes are those lying immediately outside or adjacent to a town or city, and that have natural and built-up spaces with population densities lower than cities but higher than the country. While such definitions of urban and rural may be evocative of the landscape, they are vague as objects of scientific analysis (Stewart and Oke 2006). In the heat island literature, for example, the term urban evokes an eclectic mix of local settings from which its observations have originated: the wooden quartersAFFILIATIONS:S tewart anD O ke—Department of Geography, University of British Columbia, Vancouver, British Columbia, CanadaCORRESPONDING AUTHOR: I. D. Stewart, Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, BC V6T 1Z2, CanadaE-mail: stewarti@interchange.ubc.caThe abstract for this article can be found in this issue, following the table of contents.DOI:10.1175/BAMS-D-11-00019.1A supplement to this article is available online (10.1175/BAMS-D-11-00019.2) In final form 1 May 2012©2012 American Meteorological Society1880december 2012|of old Hiroshima, Japan(Shitara 1957); the parks and playing fields ofPretoria, South Africa(L o u w a n d M e y e r1965); the courtyardsand stonework streetsof London, England(Chandler 1965); theskyscraper canyons ofDallas, Texas (Ludwig1970); the industrialplants and refineries of Ashdod, Israel (Sharonand Koplowitz 1972);the shaded avenuesa nd l aw n s of Ne w Delhi, India (Bahl andPad ma nabha mu r t y 1979); the school and col lege g rou nd s of Nairobi, Kenya (Okoola 1980); the factories andworkshops of Cairo, Egypt (Robaa 2003); the brick and tin shanties of Sao Paulo, Brazil (Nunes da Silva and Ribeiro 2006); and the high-rise housing estates of Singapore (Chow and Roth 2006). A significant problem in this literature, and in heat island method-ology, is that the term urban has no single, objective meaning, and thus no climatological relevance. What is described as urban in one city or region differs from that of another city (Fig. 1). The term urban is there-fore impossible to define universally for its physical structure, its surface properties, or its thermal climate.Equally problematic is that urban and rural are becoming outmoded constructs in landscape classi-fication, for the developing world and especially Asia (Lin 1994; McGee and Robinson 1995; Lo and Yeung 1998). In these and other densely populated regions, thesocial, political, and economic space that separates cities and countrysides is no longer distinguished by a clear urban–rural divide. Urban form is becoming increas-ingly dispersed and decentralized as traditional and nontraditional land uses coexist, and as people, capital, commodities, and information flow continuously be-tween city and countryside. Urban theorists now con-tend that the spatial demarcation between urban and rural is artificial, and that the relation between city and country is more accurately described as a continuum, or a dynamic, rather than as a dichotomy (Gugler 1996).The densely populated Kanto Plain surrounding Tokyo is a perfect case in point. In a study of the Tokyo heat island, Yamashita (1990) paired an urban site in the city center with a rural site 60 km to the north. He defined UHI magnitude for Tokyo as the temperature difference between the urban and rural sites. Despite being located 60 km from the city center, the so-called rural site was still within the mixed urban–rural surroundings of metropolitan Tokyo, in the small city of Kumagaya. This gave a curious portrayal of the rural landscape to some urban climatologists (Fig. 2), but one that is, nonetheless, understandable given the dense settlement patterns of the Kanto Plain. Yamashita’s remark that “the whole area of the Kanto Plain is more or less urban-ized” correctly speaks to the difficulty of classifying urban and rural landscapes in highly dispersed and decentralized cities.EXISTING URBAN AND RURAL L AND-SCAPE CLASSIFICATIONS. We recognize that all classifications are limited in scope and function, and further that none of the systems we review in this section was designed to classify heat island field sites, and none makes that claim. Therefore what we iden-tify as advantageous, or restrictive, with these systems relates only to the aims of the new classification.Chandler (1965) was perhaps the first heat island investigator to develop a climate-based clas-sification of the city. He divided Greater London into four local regions, each distinguished by its climate, physiography, and built form. FollowingChandler’s lead, Auer (1978) proposed an urban–1. Greater absorption of solar radiation due to multiple reflection and radiation trapping by building walls and vertical surfaces in the city.Greater absorption is not, as often assumed, due solely to lower albedo of urban materials.2. Greater retention of infrared radiation in street canyons due to restricted view of the radiatively “cold” sky hemisphere.Sky view becomes increasingly restricted with taller and more compact buildings.3. Greater uptake and delayed release of heat by buildings and paved surfaces in the city. Often incorrectly attributed only to the thermal properties of the materials, this effect is also due to the solar and infrared radiation “trap” and to reduced convective losses in thecanopy layer where airflow is retarded.4. Greater portion of absorbed solar radiation at the surface is converted to sensible rather than latent heat forms.This effect is due to the replacement of moist soils and plants with paved and waterproofedsurfaces, and a resultant decline in surface evaporation.5. Greater release of sensible and latent heat from the combustion of fuels forurban transport, industrial processing, and domestic space heating/cooling. Heat and moisture are also released from human metabolism, but this is usually a minor component of the surface energy balance.Source: Oke 19821881december 2012AmerIcAN meTeOrOLOGIcAL SOcIeTY|rural classification for the city of St. Louis, Missouri. He recognized 12 “meteorologically significant” land uses in St. Louis, based on the city’s vegeta-tion and building characteristics. Ellefsen (1991) derived a system of 17 neighborhood-scale “urban terrain zones” (UTZs) from the geometry, street configuration, and construction materials of 10 U.S. cities. His was the first system to represent city structure and materials, initially for acid rain studies. A key feature of Ellefsen’s system is the division of building types into “attached” and“detached” forms.F ig . 1. Examples of urban field sites in climate literature. Conventional methodology defines these sites as universally “urban” despite obvious differences in building structure, land cover, and human activity: (a) modern core of Vancouver, Canada; (b) old core of Uppsala, Sweden; (c) town center of Toyono, Japan; (d) business district of Akure, Nigeria; (e) city airport of Phoenix, Arizona; (f) university campus of Szeged, Hungary.1882december 2012|Combining features of both Auer’s and Ellefsen’s schemes, Oke (2004, 2008) designed a simple and generic classification of city zones to improve siting of meteorological instruments in urban areas. Hisscheme divides city terrain into seven homogenous regions called “urban climate zones” (UCZs), which range from semi-rural to intensely developed sites. The zones are distinguished by their urban structure (building/street dimensions), cover (permeability), fabric (materials), metabolism (human activity), and potential to modify the natural, or “preurban,” sur-face climate. Most recently, Loridan and Grimmond (2011) developed “urban zones for characterizing energy partitioning,” or UZEs. Their classes are de-fined by threshold values for the active vegetative and built surface fractions of cities (“active” here meaning engaged in energy exchange). The classification helps atmospheric modelers to distinguish urban areas with respect to their partitioning of incoming radiation.National land cover and land use classifications often include categories for both urban and rural environments. For example, the U.S. National Land Cover Dataset (NLCD) divides the coterminous United States into 16 land cover classes, 4 of which are deemed “urban oriented” (Homer et al. 2007). In some European countries, the “climatope” system has traditionally been used to classify urban terrain and urban climates, largely for planning purposes (Wilmers 1991; Scherer et al. 1999). Climatopes derive from local knowledge of wind, temperature, land use, building structure, surface relief, and population den-sity. These data are integrated across an urban area to reveal special climates of local places, or climatopes. Wilmers (1991) identified nine such climates for the city of Hannover, Germany, based on vegetation, surface structure, and land use criteria. Scherer et al. (1999) documented many more climatopes in Basel, Switzerland, based on ventilation and land cover characteristics.These previous classifications contain many fea-tures that align with the aims of heat island observa-tion. Their limitations, however, must be recognized. First, not all classifications use a full set of surface climate properties to define its classes. A complete set consists of the physical properties of surface structure, cover, fabric, and metabolism (Oke 2004). Second, a system that excludes rural landscapes is not well suited to heat island investigation, nor is one with class names and definitions that are culture or region specific. The classifications of Chandler, Auer, Ellefsen, and Oke are all predisposed to the form and function of modern, developed cities, so their use in more diverse economic settings is limited. Third, although the climatope concept is well adapted to most urban settings, its class names and definitions vary widely with place, and thus cannot provideclassification systems with a means for comparison.F ig . 2. “Rural” site used by Yamashita (1990) to measure UHI magnitude in Tokyo (red circles indicate site location). Urban and rural influences on surface climate are seen at (top, center) micro and (center, bottom) local scales. This overlap in landscapes and spatial scales on the Kanto Plain makes the urban–rural dichotomy an awkward fit for site classification. Aerial photographs courtesy of Google Earth.1883december 2012AmerIcAN meTeOrOLOGIcAL SOcIeTY|CONSTRUCTING A NEW CLASSIFICATION SYSTEM. In a classic paper on the logic, method, and theory of classification, Grigg (1965) listed several criteria that a system should meet. First, itshould invoke a simple and logical nomenclature by which objects/areas can be named and described. A system’s nomenclature is critical to its validity and acceptance. Second, a classification system should facilitate information transfer by associating objects/ areas in the real world with an organized system of generic classes. Users can then make comparative statements about the members belonging to each class. This condition led Grigg to his third and most important criterion: inductive generalization. A properly constructed classification system should simplify the objects/areas under study, and thereafter promote theoretical statements about their proper-ties and relations. To Grigg’s criteria, we add that a new classification of urban and rural field sites should be inclusive of all regions, independent of all cultures, and, for heat island assessment, quantifiable according to class properties that are relevant to sur-face thermal climate at the local scale (i.e., hundreds of meters to several kilometers).Classification by logical division. Scientific classification is essentially a process of definition. It begins with a “universe” class, which is divided into subclasses (Black 1952). The basis for division at each class level is a differentiating principle, or property, of theoreti-cal interest. The universe for the new classification is “landscape,” which we define as a local-scale tract of land with physical and/or cultural characteristics that have been shaped by physical and/or cultural agents. The landscape universe is divided according to properties that influence screen-height tempera-ture, namely surface structure (height and spacing of buildings and trees) and surface cover (pervious or impervious). Surface structure affects local climate through its modification of airflow, atmospheric heat transport, and shortwave and longwave radiation bal-ances, while surface cover modifies the albedo, mois-ture availability, and heating/cooling potential of the ground. These properties tend to “cluster” spatially, such that in locations where the building height-to-width ratio is large, so is the fraction of impervious cover and the density of urban construction materials. Dividing the landscape into these properties gen-erates dozens of prototype classes, many having clus-ters that are considered highly improbable or logically unacceptable in the real world (e.g., closely spaced buildings on pervious cover or closely spaced trees on impervious cover). Such clusters were removed from the system while others were added to represent landscapes defined not by their structural or surface cover characteristics, but by building materials or anthropogenic heat emissions. The resulting classes were quantified by their surface properties and assigned simple, concise names. Throughout this process, prospective users of the system in the inter-national climate community were asked for feedback on the general nature of the system, its application to local settings, and its cultural and regional biases. This early exposure of the system to its target com-munity resulted in substantial changes to the number, nature, and naming of the individual classes.Data sources. Quantitative data to characterize the classes by their surface properties were selected from the urban climate observational and numerical mod-eling literature. Measured and estimated values of geometric, thermal, radiative, metabolic, and surface cover properties were gathered from urban and rural field sites worldwide. Quantitative data were also retrieved from the classifications of Anderson et al. (1976), Auer (1978), Häubi and Roth (1980), Ellefsen (1990/91), Theurer (1999), and Oke (2004), and from reviews of empirical urban climate literature (e.g., Wieringa 1993; Grimmond and Oke 1999).Data to adapt the classes to the real world were chosen from the urban design literature, which gives qualitative attributes to urban form through expres-sions of “fabric,” “texture,” and “morphology” (e.g., Brunn and Williams 1983; O’Connor 1983; Vance 1990; Kostof 1991; Potter and Lloyd-Evans 1998). These are the same expressions to which urban cli-matologists give quantitative attributes. This overlap was especially useful to assimilate regional urban form into the classification system, and to balance its temporal (old vs modern) and spatial (core vs periph-ery) representation. These data also give support to culturally neutral definitions for each class. LOCAL CLIMATE ZONES. Hereafter, all classes to emerge from logical division of the landscape uni-verse are called “local climate zones” (LCZs; Table 2) (Stewart 2011a). The name is appropriate because the classes are local in scale, climatic in nature, and zonal in representation. We formally define local climate zones as regions of uniform surface cover, structure, material, and human activity that span hundreds of meters to several kilometers in hori-zontal scale. Each LCZ has a characteristic screen-height temperature regime that is most apparent over dry surfaces, on calm, clear nights, and in areas of simple relief. These temperature regimes persist1884december 2012|Built typesDefinitionLand cover typesDefinition1. Compact high-riseDense mix of tall buildings to tens of stories. Few or no trees. Land cover mostly paved. Concrete, steel, stone, and glass construction materials.A. Dense treesHeavily wooded landscape ofdeciduous and/or evergreen trees. Land cover mostly pervious (low plants). Zone function is naturalforest, tree cultivation, or urban park.2. Compact midriseDense mix of midrise buildings (3–9 stories). Few or no trees. Land cover mostly paved. Stone, brick, tile, and concrete construction materials.B. Scattered treesLightly wooded landscape ofdeciduous and/or evergreen trees. Land cover mostly pervious (low plants). Zone function is naturalforest, tree cultivation, or urban park.3. Compact low-riseDense mix of low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved. Stone, brick, tile, and concrete construction materials.C. Bush, scrubOpen arrangement of bushes, shrubs, and short, woody trees. Land cover mostly pervious (bare soil or sand). Zone function is natural scrubland or agriculture.4. Open high-riseOpen arrangement of tall buildings to tens of stories. Abundance of pervious land cover (low plants, scattered trees). Concrete, steel, stone, and glass construction materials.D. Low plants Featureless landscape of grass or herbaceous plants/crops. Few or no trees. Zone function is natural grassland, agriculture, or urban park.5. Open midriseOpen arrangement of midrise buildings (3–9 stories). Abundance of pervious land cover (low plants, scattered trees). Concrete, steel, stone, and glass construction materials.E. Bare rock or paved Featureless landscape of rock or paved cover. Few or no trees orplants. Zone function is natural desert (rock) or urban transportation.6. Open low-riseOpen arrangement of low-rise buildings (1–3 stories). Abundance of pervious land cover (low plants, scattered trees). Wood, brick, stone, tile, and concrete construction materials.F. Bare soil or sand Featureless landscape of soil or sand cover. Few or no trees or plants. Zone function is natural desert or agriculture.7. Lightweight low-riseDense mix of single-story buildings. Few or no trees. Land cover mostly hard-packed. Lightweight construction materials (e.g., wood, thatch, corrugated metal).G. Water Large, open water bodies such as seas and lakes, or small bodies such as rivers, reservoirs, and lagoons.8. Large low-rise Open arrangement of large low-rise buildings (1–3 stories). Few or no trees. Land cover mostly paved. Steel, concrete, metal, and stone construction materials.VARIABLE LAND COVER PROPERTIESVariable or ephemeral land cover properties that changesignificantly with synoptic weather patterns, agricultural practices, and/or seasonal cycles.9. Sparsely builtSparse arrangement of small or medium-sized buildings in a natural setting. Abundance of pervious land cover (low plants, scattered trees).b. bare treesLeafless deciduous trees (e.g., winter). Increased sky view factor. Reduced albedo.s. snow cover Snow cover >10 cm in depth. Low admittance. High albedo.10. Heavy industryLow-rise and midrise industrial struc-tures (towers, tanks, stacks). Few or no trees. Land cover mostly paved or hard-packed. Metal, steel, and concrete construction materials.d. dry ground Parched soil. Low admittance. Large Bowen ratio. Increased albedo.w. wet groundWaterlogged soil. High admittance. Small Bowen ratio. Reduced albedo.1885december 2012AmerIcAN meTeOrOLOGIcAL SOcIeTY|Local climate zone(LCZ)Sky viewfactor aAspectratio bBuildingsurfacefraction cImpervioussurfacefraction dPervioussurfacefraction eHeight ofroughnesselements fTerrainroughnessclass gLCZ 10.2–0.4> 240–6040–60< 10> 258 Compact high-riseLCZ 20.3–0.60.75–240–7030–50< 2010–256–7 Compact midriseLCZ 30.2–0.60.75–1.540–7020–50< 303–106 Compact low-riseLCZ 40.5–0.70.75–1.2520–4030–4030–40>257–8 Open high-riseLCZ 50.5–0.80.3–0.7520–4030–5020–4010–255–6 Open midriseLCZ 60.6–0.90.3–0.7520–4020–5030–603–105–6 Open low-riseLCZ 70.2–0.51–260–90< 20<302–44–5 Lightweight low-riseLCZ 8>0.70.1–0.330–5040–50<203–105 Large low-riseLCZ 9> 0.80.1–0.2510–20< 2060–803–105–6 Sparsely builtLCZ 100.6–0.90.2–0.520–3020–4040–505–155–6 Heavy industryLCZ A<0.4>1<10<10>903–308 Dense treesLCZ B0.5–0.80.25–0.75<10<10>903–155–6 Scattered treesLCZ C0.7–0.90.25–1.0<10<10>90<24–5 Bush, scrubLCZ D>0.9<0.1<10<10>90<13–4 Low plantsLCZ E>0.9<0.1<10>90<10<0.251–2 Bare rock or pavedLCZ F>0.9<0.1<10<10>90< 0.251–2 Bare soil or sandLCZ G>0.9<0.1<10<10>90–1 Watera Ratio of the amount of sky hemisphere visible from ground level to that of an unobstructed hemisphereb Mean height-to-width ratio of street canyons (LCZs 1–7), building spacing (LCZs 8–10), and tree spacing (LCZs A–G)c Ratio of building plan area to total plan area (%)d Ratio of impervious plan area (paved, rock) to total plan area (%)e Ratio of pervious plan area (bare soil, vegetation, water) to total plan area (%)f Geometric average of building heights (LCZs 1–10) and tree/plant heights (LCZs A–F) (m)g Davenport et al.’s (2000) classification of effective terrain roughness (z) for city and country landscapes. See Table 5 for class descriptions 1886december 2012|year-round and are associated with the homogeneous environ-ments or ecosystems of cities (e.g., parks, commercial cores), natural biomes (e.g., forests, deserts), and agricultural lands (e.g., orchards, cropped fields). Each LCZ is individually named and ordered by one (or more) distinguishing surface prop-erty, which in most cases is the height/packing of roughness objects or the dominant land cover. The physical properties of all zones are measurable and nonspecific as to place or time (Tables 3 and 4).The landscape universe con-sists of 17 standard LCZs, of which 15 are defined by surface structure and cover and 2 by construction materials and anthropogenic heat emissions. The standard set is divided into “built types” 1–10, and “land cover types” A–G (Table 2). Built types are composed of constructed features on a pre-dominant land cover, which is paved for compact zones and low plants / scattered trees for open zones. Land cover types can be classified into seasonal or ephemeral properties (i.e., bare trees, snow-covered ground, dry/wet ground).Thermal differentiation of LCZ classes. The logical structure of the LCZ system is supported by observational and numerical modeling data (Stewart and Oke 2010; Stewart 2011a). Mobile temperature observations from Uppsala, Sweden (Sundborg 1951; Taesler 1980); Nagano, Japan (Sakakibara and Matsui 2005); and Vancouver, Canada (T. Oke and A. Christen) were used to measure thermal con-trasts among LCZ classes. During calm, clear evenings,thermal contrasts are drivenLocal climate zone(LCZ)Surface admittance aSurface albedobAnthropogenic heat output cLCZ 11,500–1,8000.10–0.2050–300Compact high-rise LCZ 21,500–2,2000.10–0.20<75Compact midrise LCZ 31,200–1,8000.10–0.20<75Compact low-rise LCZ 41,400–1,8000.12–0.25<50Open high-rise LCZ 51,400–2,0000.12–0.25<25Open midrise LCZ 61,200–1,8000.12–0.25<25Open low-rise LCZ 7800–1,5000.15–0.35<35Lightweight low-rise LCZ 81,200–1,8000.15–0.25<50Large low-rise LCZ 91,000–1,8000.12–0.25<10Sparsely built LCZ 101,000–2,5000.12–0.20>300Heavy industry LCZ A unknown 0.10–0.200Dense trees LCZ B 1,000–1,8000.15–0.250Scattered trees LCZ C 700–1,5000.15–0.300Bush, scrub LCZ D 1,200–1,6000.15–0.250Low plants LCZ E1,200–2,5000.15–0.300Bare rock or paved LCZ F 600–1,4000.20–0.350Bare soil or sand LCZ G 1,5000.02–0.10Watera Ability of surface to accept or release heat (J m –2 s –1/2 K –1). Varies with soil wetness and material density. Few estimates of local-scale admittance exist in the literature; values given here are therefore subjective and should be used cautiously. Note that the “surface” in LCZ A is undefined and its admittance unknown.bRatio of the amount of solar radiation reflected by a surface to the amount received by it. Varies with surface color, wetness, and roughness.cMean annual heat flux density (W m −2) from fuel combustion and human activity(transportation, space cooling/heating, industrial processing, human metabolism). Varies significantly with latitude, season, and population density.1887december 2012AmerIcAN meTeOrOLOGIcAL SOcIeTY|。
【doc】LAND-COVER
LAND-COVERCH1NESEGE0GRAPH1CALSC1ENCEV olume15,Number2,PP.162-167,2005SciencePress,Beijing,China LAND—CoVERDENSITY—BASEDAPPRoACHToURBAN LANDUSEMAPPINGUSINGHIGH—RESoLUTIoNIMAGERY ZHANGXiu-ying,FENGXue-zhi,DENGHui!?【i‟Department(feb(111(111dResour(…css(…ien(…NanjingUniversit).Nanjin g210093.P.R.China:2.KeOpenLaborator) RemoteSensingandDigitdAgricMture.Ministr)ofAgriculture.BeOing1000 81,PR.China:3.1n.gtituteofAgq‟ieuItureResourcesan dRegiondPlanning,ChineseAcmlem),f,4gri~‟ultureSciem.es. Beijing100081.,R.China)ABSTRACT:Nowadays,remotesensingimagery,especiallywithitshighspati alresolution,hasbecomeanindispens—abletooltoprovidetimelyup—gradationofurbanlanduseandlandcoverinform ation,whichisaprcrcquisitcforproper urbanplanningandmanagement.Thepossiblemethoddescribedinthepresentp apertoobtainurbanlandusetypesis basedontheprinciplethatlandusecanbederivedfromthelandcoverexistinginaneighborhood.Here,movingwin—dowisusedtorepresentthespatialpatternof1andcoverwithinaneighborhooda ndsevenwindowsizes(61mx61m68mx68m.75mx75m,87mx87m.99mx99m,l1Omxl1Omand121mx121m)a reappliedtodeterminingthemostproperwindowsize.Then,theunsupervisedmethodof1SODA TAisemployedt oclassithelayeredlandcoverdensi—tymapsobtainedbythemovingwindow.Theresultsofaccuracyevaluationsho wthatthewindowsizeof99mx99mis propertoinferurbanlandusecategoriesandtheproposedmethodhasproduceda landusemapwithatotalaccuracyof85%.KEYWORDS:urbanlanduse;landcoverdensitymap;high—resolutionimage CLCnumber:TP79Documentcode:AArticleID:1002—0063(2005)02—01 62—06lINTRoDUCTIoNTimelyup.gradatingofurbanlanduseandlandcoverin. formationisessentialforurbanenvironmentalmonitor.ing,planningandmanagementpurposes.Traditionally, fieldsurveyandvisualinterpretationfromaerialphotog. raphyareprimarywaystocollectsuchneededinforlTla.tion.However,thesemethodsarebothtime.consumingandexpensivewithverylowtemporalresolution.Sate. 1literemotesensingimageries.especiallythosewith highspatialandtemporalresolutionslikeIKONOSrlm fOrthepandata)andQuickBirdf0.6mforthepandata). havetheadvantagesoflarge.scalecoverageandlow cost.whichcanprovidemulti.temporaldataforurban landusemappingandenvironmentalmonitoring. Landcoverreferstothetypeofphysicalfeatureofthe Earth‟ssurface.e.g.vegetation.soi l.andimpervioussur. face;whereaslanduseindicatesthetypesofhumaneco. nomicactivitiesinaparticulararea,forexample,resi- dentialandcommercialarea(LILLESANDand KIEFER.2000).Itiswellknownthatremotesensing imageryrepresentsthephysicalfeaturesontheearth throughtheircharacteristicsofemissiveandreflective electromagneticspectrum.Thus.1anduseiSmoredi. culttobeidentifieddirectlyfromremotelysensedim. ages.However.1anduseinfommtioncanbeindirectly obtainedfromthelandcoversrecognizedfromremotely senseddatabecauselandusecanbedepictedascomplex spatialarrangementsofdifferentlandcovertypes,which leadstoconsiderablespectralheterogeneitywithinthesamelandusetypes. Manyresearchershavebeenseriouslyinvolvedin searchingformethodstoobtainlanduseinformationfromhigh.resolutionimagesforvariousdevelopmental activitiesoftownsorcities.forexample.thekernel classificationtechniquesforlandusemappingrBARN-SLEY andBARRl996;KONTOESet..2000).rule.basedurbanlanduseinferringmethodrZHANGandWANG,2001;ZHANGandWANG,2003),par.ce1.basedurbanlanduseclassificationapproachbased onlandcoverdensitymap(WANGandZHANG,2002), andlanduseclassincationmethodbasedontheV.I.S(vegetation-impervioussurface-soil)model(HUNG,2002).Receiveddate:2005—02—24Foundationitem:UndertheauspicesofJiangsuProvincialNaturalScienceFou ndation(No.BIC2002420)Biography:ZHANGXiu—ying(1977-),female,anativeofTangshanofHebei Province,Ph.D.candidate,specializedinapplica—tionofremotesensingandG1S.E—mail:****************Land..coverDensity..basedApproachtoUrbanLandUseMappingUsingHighresolutionhnagery Thepresentresearchaimstodevelopanefficient methodtoattainurbanlandusemapusingIKONOSim—age.Thegeneralhypothesisisthaturbanlandusecanbe attainedbasedonthecompositionandarrangementpat—ternoflandcoverexistinginaneihborhood.Todefine thespatialpatternoflandcoverwithintheneighbor—hood.movingwindowisusedheretoconsiderneigh—borhoodcharacteristicsasitisusedintexturalandcon—textualanalysis. Whatwindowsizeisthemostsuitableforurbanland usemappinghasbeenadebateinmanystudies.HODG—SON‟sfl9981workindicatedth attheminimumwindow sizeof60mx60mwasrequiredtoidentifythreeurban landusecategoriesofcommercial,residentia1.andtrans—portationareas.However,itisnotthecasethatthelarger thewindow,thebetteraccuracythelandusemapping, fortheboundariesdeterminedbymovingwindoware notcertainbecauseofmixingsignaturesoftwoormore landuseswithinthemovingwindowalongboundariesa—mongdifferentlandusetypes.Todecidethemostsuit—ablewindowsizeforourmethodtoextracturbanlanduseinformation,61mx61m,68mx68m.75mx75m.87m×87m.99mx99m.1l0mxll0mandl21mx12lm arechosentoprocesstheneighborhood.2DA TADESCRIPTIoN Radiometricallyandgeometricallycorrectedpan—sharp—ened,multi—spectralIKONOSsub—sceneof1一mpixel resolutionacquiredduringMavof2000isemployedin thepresentstudy.Thisimageryisproducedbyfusing11_bitof1一mresolutionpanchromaticr0.45—0.90~zm) and4一mresolutionmulti—spectral--bluef0.45—0.53 l63Ixm),green(0.52—0.61Ixm),red(0.64—0.721xm)andnear infra—red(0.77-0.881xm)channelsviaprincipalcompo—nentanalysis.Theimageofthetestarea(Fig.1)has1404 pixelsand800lines,coveringapartofNanjingofJiang—suProvinceinChina.Thefollowingcategories recognizedfromthestudy oflandusepatternscouldbe areasuchasindustrialarea(M11atthesouthwesterncorner,watersurfacearound thestudyarea(E1),vegetationstripealongtheroadandriver(G12),parkarea(Gl1),mainroads(S1),old—buildingresidentialareafR41andnew—buildingresiden—tialareafR2).AllofthembelongtoeitherIIorIIIclass intheurbanlanduseclassificationsystemstipulatedbv UrbanManagementCommitteeofChinar2000).Fig.1showsthatsomelandusecategoriesaresimply madeuDofoneortwolandcovertypesandtheirspatial arrangementsarerelativelymoreregular.Threemajor roadscouldbeclearlyseenfromtheimagery.Theone locatedintheupperpartismadeofdarkimperviousas—phalt,whiletheothertwo,oneontheleftsideandanoth—erontherightsideoftheimagery,aremadeofmedium imperviousconcrete.The0inhuaiRiveranditsbranch constitutewatersurfaceandthevegetatedstripesare seenonlyalongriverbanksandmainstreets. Theotherlandusecategoriesarecomposedofthreeor morelandcovertypeswhosespatialarraysarecompli—cated.One—ortwo—storiedbuildingswithdarkroofsand embodiedwithvegetationpatchesprimarilycomprise theold—buildingresidentialarea.Five—ormore—storied concretebuildingswithreadilyvisibleshadowconstitute thenew—rgeandlowbuild—ingsdominatetheindustrialarea.Theparkareasare characterizedbydenselycoveredvegetation.Fig.IIKONOSsub—sceneintestareaZHANGXiu一,ing,FENGXue-zhi,DENGHui3METHoDoLoGIES Thisresearchattemptstoexploreatechnicalapproachf0robtainingdifierentlandusecategoriesfromtheland covermapobtainedfromhigh—resolutionremotely senseddata.Thewholeprocessiscarriedoutinthree steps.Firstly.thelandcovermapisacquiredviahierar—chytreeclassifcationmethod;secondly,thewatersur—face,roads,vegetationstripesalongroadandriverare obtainedthroughthespatialanalysisfromlandcover mapdirectly;thirdly,theresidential,industrialandpark areasareobtainedthroughtheunsupervisedclassifica—tionbasedonlandcoverdensitymap. Thefirsttwostepsweredepictedindetai1inZHANG‟s research(ZHANGeta1.,2004).Thispaperwillemphati—callypresentthemethodtoobtainthelandusetypes composedofsevera1difierentkindsof1andcovertypes withinaneighborhoodandmainlytalkaboutthemostsuitablewindowsizeforthemethodtoattainlandusein—formation.Asmentionedabore.movingwindowisused heretoconsiderthespatialpatternoflandcoverwithina neighborhood.Thiscanbestatedasthe”density”ofdif- ferentlandcovertypescalculatedusingthemovingwin. dowovertheimage.Basedontheformerresearchers‟workfHODGSON,l998;ZHANGandWANG,2003) andtheuncertaintycausedbymovingwindowalongthe boundariesbetweendifierentlandusetypes,sevenwin. dowsizesareevaluatedinthisresearch:6lmx6lm.68mx68m75mx75m87mx87m99mx99m,ll0m×ll0mandl2lmx12lm.Toproducethefinal1andusere—sult,thefollowingstepsaretaken.f1)Thecharacteristiclayerscomposedofthespecial landusesarechosenfromthelandcovermap.Forexam—pie.ifthestudyareaincludescommercialareawithhigh buildings,lightindustrialareawithlargebuilding,and newresidentialareawithmiddle.highbuildings.thenthe characteristiclayerswillincludethelayersoflargeshad—owrepresentingthehighbuilding,shadowrepresenting thehighbuildingandlargebuilding.Itshouldbenoticed herethatnotallofthelandcovertypesareinvolvedasthesourceforclassifying.buttheonlylayersrepresent. ingthecharacteristicsofthelanduseconstitution.f21Eachcharacteristiclandcoverlayerisencodedasa binarymap.withvaluesof0or1.Pixelsvaluedlrepre. sentwheretheparticular1andcoverexists.and0repre. senteverythingelse.Forinstance.thecharacteristiclayer “shadow”mapcontainstwovalues.withlrepresenting ……shadow”and0representing”non.shadow”.f3)Anaveragefilterofsize6lm×6lm,68mx68m,75mx75m,87mx87m,99mx99m,ll0m×ll0m,andl21mxl2lmisthenappliedtothebinarycharacteristic landcovermap.Theresultsareconsideredastheland coverdensitymapcalculatedfromamovingwindow.In theresultantmap,suchastheshadowdensitymap,va—luesrepresentthedensityoftheshadowintheneighbor—hoodfrom0tol00%.r41Alllandcoverclassesarecombinedasthesource oftheunsupervisedclassificationmethod.Here,weuse theapproachofISODA TAtoclassifytheimage.Each classisgivenauniqueidentifierintheresultantmap. (5)Watersurface,roadsandvegetationstripesalong riverandroadacquireddirectlybythespatialanalysisfromthelandcovermap(ZHANGeta1.,2004)substi—tutethecorrespondingareaintheresultantlandusemap. Suchdisposalwil1avoidtheuncertaintycausedbythe movingwindowintheareaoftheabovelandusetypes.(6)Smallpolygonsareremovedandsmallholesare filledbasedonthesurrounding1andusecontext.These polygonsreceivethelanduseidentifieroftheover—whelmingsurroundingclass.4RESUL TSANDDISCUSSION Accordingtovisualinterpretationofthestudyarea,five layersareconsideredasthecharacteristiclandcoverlay. ers:mediumimperviousbuilding,darkimpervious building,buildingswhoseareaisgreaterthan2000m, shadow,andvegetationwithoutvegetatedstrips.It shouldbenoticedthatshadow1ayerisincludedforex—cludingimperviousroadsandseparatingthenewbuild—ings(five—ormorestoried)andoldbuildings(one—or twostoried).Thebuildingswhoseareaisgreaterthan 2000marefilterlayerstoseparateindustrialbuildings fromresidentialbuildings.Thevegetatedstripsarenot includedinthevegetationlayerbecausetheyhavebeen confidentlyseparatedandtheywillinfluenceotherlandusetypethroughmovingwindow.Atotalof60clustersareproducedfromtheunsuper—visedISODA TAclassification.Theyarethenvisually checkedandlabelledagainstgroundreferencedata.Intheend,thelabelledclustersareaggregatedinto4landuseclasses:parkarea.1ightindustrialarea,andold.buil—dingandnew.buildingresidentialarea.Atlast.vegeta.tionstrips,watersurface,roadareasubstitutethecorre. spondinglandusetypesintheclassifiedmap.Inresults,thereare7landusecategoriesinthefina1map.Fig.2 showsthelanduseresultsbydifferentwindowsizes. Toevaluatetheaccuracyoffinallanduseclassifica.tion.therea1.world1andusemapsofthetestareawerei. dentifiedbyusinganaerialimageandfieldsurvey.The resultantlandusemapisthencomparedagainstthe groundinformationandaccuracymeasurementsarepro.Land—coverDensity—basedApproachtoUrbanLandUseMappingUsingHi gh—resolutionImagerybdGllR4R2MlGl2ElSlgFig.2Land—usemapsfromthewindowsizesof61mx6lm(a),68mx68m(b),75 mx75m(c),87mx87m(d),99mx99m(e),110mxl10m(D,and12lmxl21m(respectivelyduced.Theproducer‟saccuracyanduser‟Saccuracyofdifierent1andusetypesaredescribedrespectivelyinFig.3andFig.4,andthetotalaccuracyandKappaCO—efncientusingdifierentwindowsizesarelistedinFig.5.Fig.3show sthattheproducer‟Saccuracyofdifierent landusebehavesdifferenttendencieswiththeincreasing ofwindowsizes.Theproducer‟Saccuracyofnew—build—ingresidentialareaincreaseswiththeextendingofwin—dowsizes.anditreacheshighestwhenusingI10mXI10mwindowsize,andthendecl ines.Theproducer‟S accuracyvalueofold—buildingresidentialareaiSathighlevelanddoesnotchangemuchwiththechangeofwin—dowsizes.Thetendencyoftheproducer‟saccuracyofin—dustrialareashowsthesameasthatofold—buildingresi—l65一|L2—.__R4+Ml—G1161X6168X6875X7587X8799X99llO×110121X121 W‟mdowsize(mxm)Fig.3Producer‟SaccuracyofR2,R4,M1,andGl1fromthesevenwindowsizesdentialarea.Theproducer‟Saccuracyofparkarea changesmuchwithwideningofwindowsizes,first一_.一._口∞∞∞一‟‟一h2日B:80np星166ZHAAGXiu-)irFENGXue-zhi,DENGHuiabruptlyincreasesandattainsthehighestwhenusingthe windowsizeof68mx68m,andthendeclinesandre—mainsatlowvalueleveluntilusingthe110mx110m.and increasesthen.Fig.4showstheuser‟saccuracyofdifferentlanduse types.Theuser‟saccuracyvaluesofnew—buildingresi—dentia1.industrialandparkareaareathighlevelanddoes notchangemuchbetween61mx61mand110mx110m windowsizesandthen.thevaluesofnew—buildingresi—dentialandparkarea‟sincrease.whileindustrialarea‟s declines.Thetendencyoftheuser‟saccuracyof old—buildingresidentialareaisdifferentfromthethree others:thevalueisatlowleveluntilusing87mx87m windowsize.thenitkeepsathighleveluntilusingll0mxll0m.andatlast.declines.10090分ls.{70------一R2_.R4十M1—÷G116l×6168×6875×7587×8799×99110×110l21×121 WindowSlZe(m×m)Fig.4User‟sacc uracyofR2,R4,M1, andGllfromthesevenwindowsizesFig.5showsthatthetotalaccuracy(80%一87%)and Kappacoefficientsr0.69—0 neighborhoodsizesarevery79)fromthesevendifferentclose.Withtheincreasingofwindowsizes,thetotalaccuracyandKappacoefficient increase,andthen,decrease.Thus,the99mx99mwin—dowsizeresultedinslightlyhigheraccuracyasnoted withotherresearcher‟swork(ZHANGandWANG, 2003).100.7.[—÷一T0talaccuracyKappacoefficient ————————X一??…一‟.一iic (X)61×6168×6875×7587×8799×99110×110121×121 Windowsize(mxm)Fig.5TotalaccuracyandKappacoefficient omthesevenwindowsizes Thedistributionofthemisclassifiedcellusing99mx 99mwindowsize(Fig.61demonstratesthatmostofthe cellshavebeenclassifedaccurately.Themisclassified cellsmainlyexistedwithintheboundaryareaforthe mixingsignaturesoftwoormorelanduseclasseswithin themovingwindow.Thelargerthewindowsize.the greaterthepossibilityofmixedlanduseclassesexisting 裁躺荣Gll——一R4——一112黼麟Ml■■●GI2—■一E1[二]S1MisclassifiedcellFig.6Spatialdistributionofthemisclassifiedcell intheboundaryarea.Consequently,thismaycausemore conflictsalongtheboundariesbetweentwodifferent landuseclassesandthusreducetheaccuracy.5CoNCLUSIoNS Landuseandlandcoverinformationisverymuchre—quiredforurbanstudies.However,therearenomature methodsreadilyavailablesofartointerprethigh—resolu—tionimages.Thelanduseidentificationmethodbasedon characteristiclandcoverdensitymapcanproducecredi—blelandusec?。
地面车库办理防产证流程
地面车库办理防产证流程英文回答:The process of obtaining a property certificate for an underground garage can be a bit complicated, but I will try to explain it in a simple and straightforward manner. Please note that the specific steps may vary depending on the location and local regulations.1. Research and gather information: The first step is to gather all the necessary information about the property and the requirements for obtaining a property certificate for an underground garage. This may include documents such as land ownership documents, building permits, and any other relevant paperwork.2. Consult with professionals: It is advisable to consult with professionals such as lawyers or real estate agents who have experience in dealing with property certificates. They can guide you through the process andhelp you understand the legal requirements and necessary documents.3. Prepare the required documents: Once you have gathered all the necessary information, you need to prepare the required documents. This may include a copy of the land ownership documents, building permits, floor plans of the underground garage, and any other supporting documents required by the local authorities.4. Submit the application: After preparing all the required documents, you need to submit the application for a property certificate for the underground garage to the relevant local authorities. This may involve visiting the local land registry office or any other designated office for property registration.5. Pay the fees: Along with the application, you will typically be required to pay certain fees for the processing of the property certificate. The amount of fees may vary depending on the location and the size of the underground garage.6. Wait for approval: After submitting the application and paying the fees, you will need to wait for the approval of the property certificate. The processing time may vary, but it is advisable to follow up with the authorities to ensure that your application is being processed.7. Receive the property certificate: Once your application is approved, you will receive the property certificate for the underground garage. This certificate serves as proof of ownership and can be used for various purposes, such as selling or leasing the property.中文回答:办理地面车库的防产证流程可能会有点复杂,但我会尽量简单明了地解释。
地物分类的英语
地物分类的英语Land classification is a critical aspect of geographical information systems (GIS) and urban planning. It involves categorizing different types of land based on their use, characteristics, and potential for development. Here are some of the common classifications:1. Residential Land: This category includes areas designated for housing, including single-family homes, apartments, and condominiums.2. Commercial Land: Land used for business purposes, such as retail stores, offices, and hotels.3. Industrial Land: Areas zoned for manufacturing and other industrial activities.4. Agricultural Land: Land used for farming, including crop cultivation and livestock farming.5. Recreational Land: Land designated for parks, playgrounds, and other recreational activities.6. Conservation Land: Areas protected for their ecological, cultural, or scenic value, often including forests, wetlands, and wildlife habitats.7. Transportation Land: Land used for roads, highways,airports, and railroads.8. Public Utility Land: Land used for public utilities such as water treatment plants, power stations, and communication towers.9. Mixed-Use Land: Areas that combine two or more land uses, such as a building with residential units above a commercial space.10. Vacant Land: Undeveloped land that may be zoned for future development or left in its natural state.Understanding these classifications is essential for effective land management, planning for sustainable urban growth, and ensuring that land is used in a way that benefits both the community and the environment.。
LCCS地表覆盖分类系统简介及图例翻译
LCCS地表覆盖分类系统简介及图例翻译张小红;朱凌【摘要】地表覆盖信息及其变化反映着人类活动及环境变化,多数据源、多尺度的地表覆盖产品应运而生,但由于尺度不同、分类系统不同,导致各分类产品之间缺乏互操作性,而其对应的多种地表覆盖分类系统中类的定义也不尽相同,各图例类之间缺乏可比性.为解决该问题,联合国粮农组织与联合国环境规划署联合开发了LCCS(Land Cover Classification System)分类系统,建立了LCCS分类系统的基本构架.我们以美国NLCD2011图例及GlobCover2009图例为例,对LCCS分类系统的翻译功能进行具体讲解,并对其优缺点进行总结归纳.【期刊名称】《北京建筑大学学报》【年(卷),期】2017(033)004【总页数】8页(P45-52)【关键词】LCCS 分类模块图例模块翻译模块 NLCD 2011 Globc Cover2009【作者】张小红;朱凌【作者单位】北京建筑大学测绘与城市空间信息学院,北京100044;北京建筑大学测绘与城市空间信息学院,北京100044;【正文语种】中文【中图分类】P237地表覆盖及其变化反映着人类活动及生物环境的变化,可靠高精度的地表覆盖信息对于了解和监测气候变化、生物地球化学循环、森林砍伐等有着十分重要的意义[1]. 随着遥感与卫星技术的发展,涌现了大量的多尺度、多空间分辨率的地表覆盖产品,国际上,这些分类产品大多采用如下分类系统:Anderson地表覆盖分类系统[2]、USGS地表覆盖分类系统[3]、CORINE地表覆盖分类系统[4]、IGBP地表覆盖分类系统[5]、UMD地表覆盖分类系统[6]、FAO地表覆盖分类系统[7]等,在中国主要的地表覆盖分类系统主要有:国土资源部土地利用分类系统、中国科学院土地资源分类系统,还有2014年中国首套全球30 m分辨率地表覆盖产品—GlobeLand30所采用的分类系统等. 这些分类系统的建立有着不同的分类目的、分类方法、使用范围,这就导致了地表覆盖产品分类系统具有局限性. 但多尺度、多数据源的地表覆盖产品需要有一个相对统一标准的分类系统来适用于不同需求,这就迫切需要有一种标准来对这些地表覆盖产品的分类系统进行统一.本文着重介绍FAO/UNEP地表覆盖分类系统及其如何进行图例翻译,并以美国的地表覆盖产品NLCD 2011图例及GlobCover2009图例为例进行介绍.1 LCCS地表覆盖分类系统1.1 各地表覆盖分类系统对比如上所述各地表覆盖分类系统,其中Anderson地表覆盖分类系统、USGS地表覆盖分类系统、CORINE地表覆盖分类系统,中国的国土资源部土地利用分类系统、中国科学院土地资源分类系统属于区域尺度地表覆盖分类系统,用于国家层面的地表分类,其分类系统对比如表1所示. 而IGBP地表覆盖分类系统、UMD地表覆盖分类系统、FAO地表覆盖分类系统、GlobeLand30分类系统属于全球尺度地表覆盖分类系统,其分类系统对比如表2所示.表1 区域尺度地表覆盖分类系统对比表名称一级类(个)二级类(个)三级类(个)适用范围Anderson地表覆盖分类系统618-美国USGS地表覆盖分类系统935-美国CORINE地表覆盖分类系统51544欧洲国土资源部土地利用分类系统846-中国中国科学院土地资源分类系统625-中国1.2 LCCS地表覆盖分类系统简介上节中对各地表覆盖分类系统进行了对比分析,由表1、表2可以看出各地表覆盖分类系统有着不同的适用范围与分类方法,所使用的相应类定义也有差异,类之间无法进行比较. 为了获得兼容性更好的地表覆盖分类系统,联合国粮农组织(the Food and A gricu1ture Organization of the United Nations,FAO )与联合国环境规划署(United Nations Environment Programme,UNEP ) 联合开发了一种普遍适用的地表覆盖分类系统——LCCS(Land Cover Classification System),它可以在具有不同地理位置、地表覆盖类型及数据收集方法等的地表覆盖类别之间进行比较,并对于多源遥感数据及多尺度土地利用/覆盖信息之间起到有效的连接作用[8]. LCCS分类系统已经从最初的版本1升级到了版本3. 版本2可以访问Visual Basic,类定义更加完善,界面改进,新增加了链接功能. 而版本3使用了地表覆盖元语言(LCML),并成为了国际标准化组织(ISO)一个标准. 本文着重介绍版LCCS版本2分类系统结构.表2 全球尺度地表覆盖分类系统对比表名称一级类(个)二级类(个)三级类(个)适用范围分类方法IGBP地表覆盖分类系统17--全球非监督分类UMD地表覆盖分类系统14--全球分类树分类FAO地表覆盖分类系统248全球逐级分层分类GlobeLand30分类系统10--全球对象化分层分类LCCS分类系统是一个先验系统,该系统中所有的类都是预先定义好的,用户在使用时根据原始图例类定义选择需要的类,并可以通过添加、自定义属性在LCCS中定义类.总的来说,LCCS有如下特点:1)LCCS内部结构具有灵活性,可适用于所有的环境条件及生态区域,没有地理限制,并可以兼容其它地表覆盖分类系统[7]1-2.2)LCCS是一种综合性的、规范性的先验系统,采用逐级分层分类的系统,不同人对同一种地表覆盖类的定义可以得到相同的结果[9]. 3)可以通过LCCS分类系统对各地表覆盖分类系统类之间进行相似性比较.LCCS主界面主要有3大模块:分类模块、图例模块、翻译模块.1.3 分类模块分类模块的功能是对分类产品图例中的类,利用LCCS系统中相应的类依照其原定义进行重新定义. 该过程中使用的分类模块中的分类器和属性越多,类定义的就越详细. 分类模块主要有两个阶段:第一个阶段是初始的二分阶段,由8个分类器组成. 第二个阶段是模块化层次阶段,这个阶段由一系列已经定义好的纯地表覆盖分类器结合来创建地表覆盖类,还有环境属性和具体的技术属性来进一步对创建的地表覆盖类进行进一步的定义. 第一阶段结构中,8大分类器及其代码分别是A11耕地及管理陆地区域、A12自然及半自然陆地植被、A23耕作水田或规律性淹水区域、A24自然和半自然水域或规律性淹水植被、B15人造表面及相关区域、B16裸地、B27人造水体、人造雪和冰、B28自然水体、自然雪和冰,其结构如表3所示. 第二阶段是第一阶段中8个分类器的细化,以自然和半自然陆地植被为例进行介绍,如表4所示.表3 LCCS土地分类系统第一阶段结构框架LCCS基本框架A主要植被区域B主要非植被区域A1陆地A2水域及规律性淹水B1陆地B2水域及规律性淹水A11耕地及管理陆地区域A12自然及半自然陆地植被A23耕作水田或规律性淹水区域A24自然和半自然水域或规律性淹水植被B15人造表面及相关区域B16裸地B27人造水体、人造雪和冰B28自然水体、自然雪和冰1.4 图例模块图例模块,顾名思义是用来生成并保存图例的. 将某个分类产品的图例类在LCCS 中进行重新定义之后,要将重新定义的类保存在相应的图例模块中,它是按照分层结构进行存储的,以便用户随时查看及编辑,在保存新定义类的过程中会出现4个不同的选项,如图1所示,其中A、B等表示类,保存好之后,该类的代码就可以在图例模块中查看与编辑.图1 图例保存选项及其注意事项示意图对于已经定义并保存好的类,用户可以在图例选项中对其进行编辑,尤其是混合类,有时要对其进行属性定义,这部分将在NLCD 2011图例翻译中进行简单介绍.1.5 翻译模块翻译模块的使用需要在分类模块及图例模块进行完之后才能使用,其功能是将已存在的分类产品的类翻译进LCCS,并评价类之间的相似性,比较翻译后类的属性.在保存好图例之后打开翻译模块,选择新类,选中某个类,单击添加图例,然后在相应的编码、图例中类的名字、外部分类名字的相应框中输入对应的值,依次完成所有的图例命名,保存并输出,到此完成了将图例输入翻译模块的过程,然后用户就可以根据自己的需求进行相似性评估、属性对比等.2 NLCD 2011图例与GlobCover2009图例翻译2.1 NLCD 2011图例与GlobCover2009图例简介NLCD 2011由多分辨率土地特性共同体创建,描述了美国从2001~2011年的地表变化,具有8个一级类,20个二级类(包括阿拉斯加的4个类). 类采用MRLC分类系统(ACS)进行定义,空间分辨率为30 m[10],其图例如表5所示. GlobCover2009是GlobCover项目的成果,GlobCover项目是由欧洲航天局在2005年倡议,并与全球森林和地表覆盖动态观测、欧洲环境署、联合国粮农组织、联合国环境规划署、联合研究中心、国际地圈- 生物圈计划联合创建的,旨在开发全球复合材料与地表覆盖图. 具有22个类,类采用联合国地表覆盖分类系统(LCCS)进行定义,空间分辨率为300 m[11]. 其图例如表6所示.表4 自然和半自然陆地植被细化自然和半自然陆地植被(一级)生命形式和覆盖生命形式木本乔木灌木草本杂草禾草地衣/苔藓地衣苔藓稠密到稀疏100%-15%稠密到稀疏100%-40%覆盖稠密>65%稀疏65%-15%65%-40%40%-15%稀疏15%-1%15%-4%4%-1%(一级)高度>30~3m>30~14m14~7m7~3m5~0 3m5~0 5m5~3m<0 5m3~0 5m3~0 03m3~0 3m3~0 8m0 3~0 03m0 8~0 3m(一级)空间分布连续的条纹状片断的细胞状公园般的块(二级)叶形,生命周期阔叶针叶无叶常绿半常绿混合(二级)叶物侯落叶半落叶混合混合多年生的一年生的(三级)分层没有更多层第二层土地形式环境属性岩性/土壤气候海拔高度侵蚀具体的技术属性区系方面2.2 图例翻译及存在的问题在利用LCCS对NLCD 2011与GlobCover2009图例类进行翻译时,首要的任务就是要认真对比NLCD 2011与GlobCover2009中类的原始定义与LCCS中各类的定义,只有把LCCS中各类及其属性的定义认识清楚才能对NLCD 2011与GlobCover2009类进行较好的翻译,翻译的结果将直接影响该类与其它地表覆盖产品类之间的相似性比较. 如在分类器耕地及管理陆地区域中,主要作物是指其覆盖面积大于总面积的15%或具有较高的经济收益,而第二或第三类作物的覆盖面积要小于总面积的15%或具有较低的经济收益. 在分类器自然和半自然陆地植被中,乔木被定义为树高大于5 m的木本植被,但若某个植被具有明显的木本植被特征,且高度大于3 m小于5 m,也被定义为乔木. 而灌丛则是高度小于5 m的木本植被. 另外像竹类植被和蕨类植被这类植物,虽属于禾草类,但具有木本植被特征,当高度大于5 m时,属于乔木,当高度小于5 m时,属于灌丛. 乔木和灌丛混合的木本植被区域高度则在2 m到7 m之间[7]26-33.表5 NLCD 2011图例一级类二级类水体11开放水体.12常年冰/雪开发的21开发的,开放空间22开发的,低强度23开发的,中强度24开发的,高强度贫瘠的31荒地(岩石/沙/黏土)森林41落叶森林42常绿森林43混合森林灌丛51矮灌丛∗52灌木/矮树林草本71草地/草本72莎草/草本∗73地衣∗74苔藓∗种植/耕种81牧草/干草82耕种作物湿地90木本湿地95新兴的草本湿地*表示阿拉斯加州仅有的类.当对LCCS中各分类器及其属性定义了解透彻之后,要在其分类模块中选择相应的分类器及其属性对NLCD 2011与GlobCover2009图例类进行重新定义,并保存在相应的图例模块中,最后在翻译图例中给各个新图例加上NLCD 2011与GlobCover2009图例类原有的名称,完成翻译过程.由于NLCD 2011与GlobCover2009图例翻译结果较多,本文只列举部分类及其部分翻译编码,NLCD 2011图例翻译部分结果如表7所示,GlobCover2009图例翻译部分结果如表8所示,其中表7、表8中的编码值分别对应8大分类器细化之后的各个属性.由于GlobCover2009图例类是采用LCCS分类系统进行定义的,所以其在翻译时不存在翻译问题,所以本文只介绍NLCD 2011图例进行翻译时所遇到的问题.表6 GlobCover2009图例类代码类名称11后泛滥或灌溉农田(或水淹的)14旱作农田20镶嵌农田(50~70%)/植被(草地/灌丛/森林)(20~50%)30镶嵌植被(草地/灌丛/森林)(50~70%)/农田(20~50%)40密集到稀疏(>15%)阔叶常绿或半落叶森林(>5m)50密集(>40%)阔叶落叶林(>5m)60稀疏(15~40%)阔叶落叶森林/林地(>5m)70密集(>40%)针叶常绿林(>5m)90稀疏(15~40%)针叶落叶或常绿林(>5m)100密集到稀疏(>15%)混合阔叶和针叶林(>5m)110镶嵌森林或灌丛(50~70%)/草地(20~50%)120镶嵌草地(50~70%)/森林或灌丛(20~50%)130密集到稀疏(>15%)(阔叶或针叶,常绿或落叶)灌丛(<5m)140密集到稀疏(>15%)草本植被(草地、无树草原或地衣/苔藓)150稀疏(<15%)植被160密集到稀疏(>15%)经常被淹没的(半永久或暂时)阔叶森林—淡水或微咸水170密集(>40%)永久淹没的阔叶森林或灌丛—咸水或微咸水180密集到稀疏(>15%)草地或木本植被在经常泛滥或水淹的土壤上—淡水,微咸水或咸水190人工表面和相关区域(城市区域>50%)200裸地210水体220永久雪和冰本文在翻译时主要遇到的问题有:1)翻译后新定义的类与其原定义在阈值上有差异. 这些阈值包括植被或土壤覆盖率、不透水层面积、冠层密度、树高等,如类11原定义是植被或土壤覆盖率小于25%的开放水体区域,在LCCS中翻译成的水体在无植被区域中,其定义是植被覆盖率小于4%;类12原定义中其覆盖率大于25%,在LCCS翻译的冰雪的覆盖率要大于80%,二者在覆盖率上存在较大差异;类21原定义中不透水层面积小于总面积的20%,在LCCS中翻译成分散的城市地区,其不透水层面积小于总面积的15%~30%;类41、类42都是树高大于5 m,冠层密度大于20%,在LCCS中树高是3~30 m,冠层密度有多种选择,这里选择15%~100%.表7 NLCD 2011部分图例及其翻译编码图例代码LCCCode1LCCLevel117001∥8001A1∥A1127005∥7008∥8006∥8009A2B1∥A 3B1∥A2B1∥A3B1215003⁃17A4⁃A13A17225003⁃15∥5003⁃17A4⁃A13A16∥A4⁃A13A17235003⁃13∥5003⁃14A4⁃A13A14∥A4⁃A13A15245003⁃13∥5003⁃8A4⁃A13A14∥A4⁃A12315004⁃2∥6002⁃1∥6006A2⁃A6∥A3⁃A7∥A64121497∥2 1500A3A20B2XX D1E2∥A3A20B2XXD2E24221496∥21499A3A20B2XXD1E1∥A3A20B2XXD2E14321446(1)[Z43]A3A20B2Z43表8 Globcover2009部分图例及其翻译编码图例代码LCCCode1LCCLevel5021497⁃121340A3A20B2XXD1E2⁃A216020132⁃3012A3 A11B2XXD1E2⁃A137021499⁃121340A3A20B2XXD2E1⁃A219020134⁃3012∥20135⁃3012A3A11B2XXD2E1⁃A13∥A3A11B2XXD2E2⁃A1310021495/21498A 3A20B2XXD1/A3A20B2XXD211021446/21450∥21454A3A20B2/A4A20B3∥A2A20B412021454/21446∥21450A2A20B4/A3A20B2∥A4A20B313021450A 4A20B314021454∥21465A2A20B4∥A7A202) 某些类之间语义上会存在重叠. 如类71、类72都从属于草本,所以二者在翻译时语义会发生重叠,类95定义中也含有草本,也会在语义上与类71、类72发生重叠.3) 有些属于土地利用的类在翻译时语义模糊. 由于LCCS主要用于翻译地表覆盖成分,对于土地利用和非地表覆盖术语,在翻译时会出现语义模糊及重叠的现象. 如类81属于土地利用类,在利用LCCS进行翻译时,要添加相应的用户自定义属性来表明其是土地利用类,但在进行最后的相似性比较时,用户自定义属性是不参与比较的,所以这类在翻译时会出现语义模糊的情况.4) 混合类型翻译时较困难. 例如类43属于混交类,落叶林与常绿林的混交,而在LCCS系统中只有阔叶落叶混交、针叶常绿混交等,所以翻译时也会存在问题. 2.3 类相似性比较LCCS分类系统的翻译模块中共有3种类比较工具:相似性评估、外部类的比较、两个LCCS类进行比较. 本文利用NLCD 2011与GlobCover2009图例翻译结果进行相似性评估. 具体操作步骤如下:在翻译模块中选中相似性评估—选择其中一种图例—在打开的对话框中选择一种被评估的类—点击比较相似性评估—在打开的对话框中被比较的类选择所有类—阈值选择50%—点击处理,完成一个类的相似性评估. 其它类按照如上操作依次进行,最后可阅览并打印相似性评估结果,整个过程如图2所示.图2 相似性评估过程3 类相似性比较结果根据类相似性比较节,可以得到NLCD 2011图例类与GlobCover2009图例所有类的相似性评估,但在进行相似性评估时应注意,LCCS中的环境属性与用户自定义属性是不参与相似性评估的. 由于相似性评估结果较多,本文就其部分结果进行总结,如图3所示. 由图3可以看出,NLCD 2011图例类与GlobCover2009图例所有类的相似性基本都大于50%,本文由图3中各类的所有相似分数和的平均值得出其平均相似分数. 其中类81的平均相似性分数是100%,类43的平均相似性分数是91%,类52的平均相似性分数是90%,类11的平均相似性分数是85%,类82的平均相似性分数是80%,类42的平均相似性分数是75%,类41的平均相似性分数是74%,类90的平均相似性分数是74%,类51的平均相似性分数是68%,类71、类72、类95的平均相似分数均为50%,其余各类与GlobCover2009图例所有类没有相对应的类,所以无法进行相似性比较.4 结论图3 NLCD 2011图例翻译得分示意图LCCS作为一种规范的、相对统一的标准地表覆盖分类系统,它为使用多种地表覆盖分类产品的各种用户提供了一个很好的翻译工具. 通过对NLCD 2011的图例类进行翻译,并从图3所示的相似性评估情况,得出如下结论:LCCS分类系统具有多种分类组合,可以考虑多种情况;LCCS分类系统的层次结构很清晰,方便用户在翻译过程中进行查阅与修改;LCCS分类系统主要针对地表覆盖,在进行土地利用类翻译时效果不佳,会出现语义重叠模糊的现象. 例如类81牧草/干草,是指被种植用来进行家畜放牧或种子生产的草、豆科植物或草- 豆科植物混合的区域. 由定义可以知道该类属于土地利用类. 而在LCCS系统中只有添加相应的用户自定义属性才能表明其属于土地利用类,但在进行类之间相似性比较时,用户自定义属性不参与比较,即只有该类被重新定义时所选择的分类器及其细分属性被比较,这就导致了语义模糊,并且会与类71草本在语义上发生重叠. 另外LCCS分类系统并没有考虑森林砍伐、荒漠化等地球表面普遍存在的复合类型问题[9]164-165. 该系统还有一个缺点就是不能进行很好的测图与监测,但不可否认的是LCCS分类系统为实现全球地表覆盖信息共享做出了重要贡献.参考文献:[1] See L M, Fritz S. A method to compare and improve land cover datasets: application to the GLC-2000 and MODIS land cover products[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(7):1740-1746 [2] Anderson J R. Land use classification schemes used in selected recent geographic applications of remote sensing [J]. Photogrammetric Engineering and Remote Sensing,1971,37(4): 379-387[3] Anderson J R, Hardy E E, Roach J T, et al. A land use and land cover classification system for use with remote sensor data: U.S. geological survey professional paper[J]. Professional Papers-U.S. Geological Survey (USA),1976,964:964[4] Bossard M, Feranec J, Otahel J. CORINE land cover technical guide-Addendum 2000[J]. Young, 2000, 9(1):633-638[5] Hansen M C, Reed B, Defries R S, et al. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products.[J]. International Journal of Remote Sensing, 2000, 21(6-7):1365-1373[6] Hansen M C R S. Defries J R G. Townshend, et al. Global land cover classification at 1 km spatial resolution using a classification tree approach[J]. International Journal of Remote Sensing, 2000, 21(6-7):1331-1364[7] Di Gregorio A. Land cover classification system: classification concepts and user manual: LCCS[M]. Rome: Food & Agriculture Org., 2005:11-74 [8] 何宇华, 谢俊奇, 孙毅. FAO/UNEP土地覆被分类系统及其借鉴[J]. 中国土地科学, 2005, 19(6):45-49.[9] 蔡红艳, 张树文, 张宇博. 全球环境变化视角下的土地覆盖分类系统研究综述[J]. 遥感技术与应用, 2010, 25(1):161-167[10] Homer C, Dewitz J, Yang L, et al. Completion of the 2011 national land cover database for the conterminous united states-representing a decade of land cover change information[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(5):345-354[11] Bicheron P, Defourny P, Brockmann C, et al. GLOBCOVER: products description and validation report[J]. Foro Mundial De La Salud, 2011,17(3):285-287。
土地资源管理专业英语术语
土地资源管理(专业英语)术语1。
土地管理land administration2。
土地政策land policy3。
土地管理体制land administration system4.土地管理学science of land administration5。
土地权属管理land tenure administration6。
地权确认adjudication of land tenure7。
土地权属证明certification of land rights8.土地权属审核certification of land title9.土地权属审核公告declaration of land adjudication 10。
地权流转管理administration of land transaction 11.税收地籍fiscal cadastre12。
产权地籍juridical cadastre13。
多用途地籍multipurpose cadastre14。
地籍管理cadastre administration15。
土地登记land registration16。
初始土地登记initial land registration17.变更土地登记alterant land registration18。
注销土地登记nullification of land registration 19。
更正登记rectification of initial registration20.土地登记通告land registration announcement21.土地登记申请人land registration petitioner22。
无主土地land in open access23.土地登记申请书land registration application form24.土地登记申请代理agency application of land registration 25。
【初中地理】地理词汇英语翻译(L开头)
【初中地理】地理词汇英语翻译(L开头) labradorite拉长石冰晶石圆盘laccolith岩盘缺少背包lactate乳酸盐乳酸lacticacidbacteria乳酸菌乳酸发酵lactose乳糖湖泊沉积lacustrinesoil湖积土湖泊平原ladar激光雷达激光雷达扫描lagoon泻湖泻湖海岸泻湖海岸lagoondeposits泻湖沉积泻湖沉积物lahar火山泥溜湖lakebasin湖盆湖泊白垩土湖泊白垩纪粗土lakelandscape湖泊景观冷空气湖lakeplain湖平原湖泊沉积物异常laketerrace湖阶地湖底湖型lakeside湖岸兰伯特同构圆锥投影lambert'sazimuthalprojection兰勃特方位投影薄层壳lamellarstructure薄层状结构薄板laminarboundarylayer层吝界层层流laminatedclay层状粘土层状沼地层状泥炭laminatedrock页岩地图分层lamprophyre煌斑岩陆地和海风landbreeze陆风岚桥landcapabilityclassification地力分类陆地能力图landcover土地覆盖滑坡landevaluation土地评价陆相地貌landfog陆雾陆地半球landhydrographicmap陆地水文图土地信息系统landlevelling土地平整土地管理landplanning土地规划土地改良landresource土地资源土地资源图landresourcesurvey土地资源甸土地退化landstructure土地结构地面沉降地面沉降landsurvey土地测量土地类型图landtypes土地类型土地利用土地利用landusecapability土地利用率土地利用分类landuseclassificationsystem土地利用分类系统土地利用数据土地利用数据landuseinterpretation土地利用判读土地利用图土地利用图landusemapping土地利用制图土地利用监测landusepattern土地利用模式土地利用规划landusesurvey土地利用甸土地利用类型landutilization土地利用土地价值土壤价值landwind岸风土地形态分析landformclassificationmapforfloodprevention泛滥地形分级图土地形态类型图landforms地形地形图landmarknavigation地标导航陆地卫星landsatimage陆地卫星影像景观landscapeclass景观等级景观生态系统landscapegeochemicalprospecting景观地球化学勘探景观反转landscapemaps景观图景观物理学landscapescience景观学滑坡滑坡landslideclay土滑粘土滑坡地貌滑坡地形landslideslope山崩坡陆地赛跑landslidezone山崩区滑坡滑坡landspout陆龙卷Landwest插条lane路线镧系元素收缩lanthanideelements镧系元素镧系元素镧系元素lanthanum镧火山砾lapillituff火山砾凝灰岩拉普拉斯方位角lapserate温度垂直梯度落叶松林落叶松林larchtree日本落叶松落叶松林largeblockedstructure大块状结构大面包屑largefurrow大沟大比例尺地图largescaleplan大比例尺平面图幼虫laser激光激光寻的制导laseraltimeter激光测高计激光束laserdistancemeasuringinstrument激光测距仪激光荧光laserremotesensing激光遥感激光扫描数字化仪lasersemiactivehomingguidance半织激光寻的制导最后四分之一下弦latefrost晚霜晚冰期沉积物latency潜伏晚芽休眠芽latentheatofvaporization汽化潜热潜影latentinstability潜在不稳定晚价lateralanomaly侧移异常侧面陨石坑lateralerosion侧蚀横向误差lateralinclination横向倾斜横向迁移lateralmoraine侧碛横向重叠lateralpressure横压力侧根lateralshoot侧条红土砖红壤lateriticcrust砖红壤结壳红壤砖红壤lateriticredloam砖红壤性红壤红土laterization砖红壤化纬度latitudecorrection纬度校正纬度测定latosol砖红壤再生草latticedefect点阵缺损晶格能latticeexpansion晶格膨胀晶格间距latticestructure晶架构造月桂石月桂石launchingsite发射阵地月亮石弯霞石正长岩laurelforest月桂林Laurisilvae zhaoyelinlava熔岩熔岩灰熔岩灰lavadome熔岩穹丘熔岩流熔岩流lavafountain熔岩喷泉熔岩湖熔岩湖lavaneck熔岩颈熔岩泡沫lavasea熔岩海熔岩层lavasoil熔岩土壤熔岩泉熔岩泉lavastalactite熔岩钟乳熔岩隧道熔岩洞穴lavavolcano熔岩火山Geonet拥有最全面的地理知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A Land Cover Classification System for Use in Global ChangeModeling and based on BISE AlgorithmQuanfang WANG∗a, Haiwen ZHANG a, Hangzhou SUN a, Jiayong LI ba Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062,China;b Institute of Geographical Sciences & Natural Resources Research, Chinese Academy ofSciences, Beijing 100101, ChinaABSTRACTIn this paper, a new logic for land cover classification at regional scale has been introduced. The critical features of this classification are that: 1) indeed distinguished from land use to avoid the confusion between land use types and land cover types; 2) based on remote sensing so that repeatable and efficient re-classifications of existing land cover will be possible; 3) based on spectrum and primary attributes of plant-canopy structure, that are important to globe change modeling and can be measured in the field for validation or/and by remote sensing; 4) based on the phonological difference among broadly defined vegetation because some typical land cover is easily distinguished by using the characteristics of seasonal dynamic; 5) based on component and function properties (e.g., influence on land surface processes) of covers to differentiate mixed land cover. Following the above ideas and using time-series MODIS 250 m data (i.e. NDVI and reflectance) which were reprocessed by a BISE algorithm to identify contaminated pixels with residual cloud, a two-level land cover classification scheme was produced for the southeast Hubei Province and middle Qinling Mountains in Shanxi Province, China. Results show there were seven primary classes and fifteen sub-classes identified and mapped.Keywords: Land cover classification system, Time-series MODIS 250 m data, BISE Algorithm1.INTRODUCTIONAccurate information on land cover at regional to global scale is required by global modeling (e.g., climate models, carbon cycle models). However, it is very difficult to meet the demand in spite of abundant existing data on land cover and its changes. As for reasons, it mainly results from the absence of a standard land cover classification system with quantificational classification criteria so as to compare the data collected from many different sources for a specific purpose. Moreover, the absence of an unambiguous, repeatable definition of land cover [1] has also caused the confusion between land cover and land use. For example, land use and land cover were always regarded as a whole using “land use and land cover” or “land use/land cover (LULC) ” and land use types were employed for the replacements of land cover types [1-5]. As a result, it’s also nearly impossible to aggregate the present data on land cover.In this study, the objective is to introduce a new logic for land cover classification, which could help to solve the problems stated, and apply it to build a Land Cover Classification System (LCCS) at regional scale.2.STUDY AREA AND DATA PREPROCESSING2.1Surveys of study areaTwo areas between Yangtze River Basin and Weihe River Basin have been studied in this paper. The first one is the hilly southeastern Hubei Province (see Fig.1) in transitional zone from Mid-Subtropics to Northern Subtropics, where contradiction of more population and less cultivated land is comparatively outstanding and Yangtze River forms the division between the northern part with lower altitude and the southern part with higher altitude of the region. As for vegetation, there are mainly Evergreen Broadleaved Forest, Deciduous Broadleaved Forest, subtropical Coniferous forest, Mixed evergreen-deciduous Broadleaved Forests, Paddy, Wheat and Ramie[6].∗wangqf@; phone 86-27-8866-1099PIAGENG 2009: Intelligent Information, Control, and Communication Technologyfor Agricultural Engineering, edited by Honghua Tan, Qi Luo, Proc. of SPIE Vol. 7490, 749005© 2009 SPIE · CCC code: 0277-786X/09/$18 · doi: 10.1117/12.836419Another Study area is the middle Qinling Mountains in Shanxi Province in China (see Fig.2), which has been recognized as the geo-ecological boundary between Subtropical and Warm-temperate zones in eastern China [7, 8]. As a transitional ecotone, it has abundant plant species and a variety of vegetation types, such as evergreen coniferous forest, deciduous coniferous forest, deciduous broadleaf forest, shrub, meadow, mixed forests, and crops, etc. moreover, human activities (e.g. forest clear-cutting, selective logging, agricultural reclaiming, urbanization encroachment) and natural disturbance (e.g. fire, insects, climate warmer and drier) have resulted in substantial losses of old-growth forests and fragmentation in vegetation landscapes in the region [9-11]. For example, Qinling fir (Abies chensiensis), endemic to China and an endangered plant, which was listed in the China Plant Red Data Book as one of the third categories protected plants. Now it is only found scattered in small forest fragments in Mts. Qinling, Bashan and Shennongjia at the altitude of 1300 m to 2300 m and still tending to degenerate recently [11]. Therefore, the status of land cover in Qinling Mountains has received much attention. Yet, few earlier studies have used remote sensing data to document the areas and the types, which mainly results from high spatial complexity of land cover there, and a feasible method of regional-scale land cover mapping based on remotely sensed data is challenging [5] because it requires those data to have large geographic coverage, high temporal resolution, adequate spatial resolution relative to the typical field size, and minimal cost.(a) Hilly southeastern Hubei Province in China (b) Middle Qinling Mountains in Shanxi Province, ChinaFig. 1. Elevation maps of two study areas, which were derived from the SRTM 90m Elevation Imagery.2.2Remote sensing data preprocessingA real, feasible method of land cover classification must be derived from remote sensing so that repeatable and efficient global re-classifications of existing land cover will be possible [1]. However, global-scale and Regional-scale land cover classification all requires remotely sensed data that have large geographic coverage, high temporal resolution, adequate spatial resolution relative to the typical field size, and minimal cost. Remotely sensed data from traditional sources such as the Landsat Thematic Mapper (TM and ETM+) and the Advanced Very High Resolution Radiometer [AVHRR) have proved useful for LULC characterization, but are limited for such an approach because of resolution limitations, data availability/quality issues, and/or data costs[5, 12,13].The MODIS instrument, a new generation of land surface monitoring, offers new possibilities for large-area land-cover mapping by providing a near-daily global coverage of science-quality, intermediate resolution (250 m) image, including vegetation index (VI) and reflectance data, since February 2000 at no cost to the end user[14]. In particular, MODIS 250 m NDVI data, are well suited for land-cover classification and monitoring because these data have sufficient spatial, spectral, temporal, and radiometric resolutions to detect unique multi-temporal VI signatures for some typical land cover such as forest, crop, grassland, etc [2, 15, 16]. According to the location of study area, 250m 16-day composite time-series NDVI and some reflectance imageries of MODIS (MOD13Q1) over the period of December 19, 2005 to January 3, 2007 were acquired. Then the tiled NDVI data were mosaicked, re-projected from the Sinusoidal to Albers Conical Equal Area (ACEA) projection and subset over the study area for each composite period and then sequentially stacked to produce the time-series data set.2.3Contaminated pixels with residual cloud in the time-series MODIS 250 m NDVI data identifiedBecause cloud contamination always reduces the accuracy of classification on remote sensing images, MODIS 250 m 16-day composite NDVI data provided by NASA are generated by selecting the pixels that have the maximum NDVI values within a 16-day period to minimize the effect of cloud cover and variability in atmospheric optical depth. But in the region with long-term cloudy or rainy weather, the maximum NDVI value composite (MVC) approach only eliminates most cloudy pixels [12], and some images perhaps contain residual cloud contamination. White et al. (1997), Reed et al. (1994) and Viovy et al. (1992) had developed the Best Index Slope Extraction (BISE) technique for identifying contaminated pixels with residual cloud and reducing the effects of cloud contamination and atmospheric interference in seasonal NDVI time series from daily AVHRR data [17-19]. The BISE algorithm is:1) to calculate the difference in NDVI values for pixel i between time t - 1 and time t, and the difference in NDVI between time t + 1 and t, respectively:dNDVI t-1,t = (NDVI t-1 – NDVI t) (1)dNDVI t,t+1 = (NDVI t+1–NDVI t) (2) 2) to adopt a threshold of 20% decline in the NDVI value at time t for identifying cloudy pixels. If dNVIt-1,t and dNDVIt,t+1 were at least a 20% decline from both NDVIt-1 and NDVIt+1, respectively, it is assumed that the pixel was affected by clouds, and NDVIt values were replaced by the averaged NDVI values at time t - 1 and time t + 1. We applied the algorithm to smooth the NDVI time-series data over the period of January 1, 2006 to December 18, 2006 (a total of 22 time periods). The NDVI data for the periods of December 19, 2005 to January 3, 2006 and December 19, 2006 to January 3, 2007 are the starting and ending points in the time series and therefore were not corrected and not used for image classification.3.DESIGNING A LCCS FOR USE IN GLOBAL CHANGE MODELING3.1Basic principleFive basic principles has been adopted in this paper, which is: ⅰ) to be distinguished from land use indeed and adhere to clear and strict class boundary definitions so as to avoid disagreement among authors of the existing areal extent of different land cover classes; ⅱ) to be based on simple, unambiguous, quantificational characteristics of land cover which are important to globe change modeling; ⅲ) to be based on remote sensing so that repeatable and efficient global re-classifications of existing land cover will be possible[1]; ⅳ) independent of the scale and adopted data sources [4]; ⅴ) open-end, i.e. the LCCS is a prior as well as flexible classification system, in which only the major classes are distinguished in advance and the sub-classes (attached to the major land cover class) will be defined by users adopting the combination of a set of independent diagnostic criteria so as to the prior classification system extended [4].3.2Classification criteriaSo far, multitudinous land cover classification systems have been already built [3,4,20-26] , but none of the current classifications has been internationally accepted, which is mainly caused by the land cover classes inappropriate for particular purposes (e.g., statistical or rural development needs), the scale related to a specific purpose or the confusion between land cover and land use, and some factors often used in the classification system that result in a undesirable mixture of potential and actual land cover (e.g., including climate as a parameter) [4].Because of the above, we suggest that a land cover classification system adopt the following criteria:1) spectrum (color), which is the first criterion of the classification and the most important basis for land cover classification. According to the difference in characterization of spectral response, it’s easy to distinguish green land cover (dominated by Vegetation), blue land cover (Inland water or Ocean), grey land cover (Semi-desert, Urban or Built-up land), white land cover (Snow and Ice), Non-Vegetated land cover (Desert), and so on;2) primary attributes of plant-canopy structure. Running et al [1] have shown that a complete globe vegetation classification should be derived from combinations of three primary attributes of plant-canopy structure, i.e. permanence of aboveground live biomass which defines whether the vegetation retains perennial or annual aboveground live biomass, leaf longevity (often termed evergreen versus deciduous canopy), and leaf type (needleleaved, broadleaved orgrasses). In fact, these primary attributes of plant- canopy structure can also be adopted as the classification criterion of land cover with its embedded information on vegetation [13], because vegetation is the primary component of land cover and covers most of the land;3) phenological difference among broadly defined vegetation. Some typical land cover is easily distinguished by using the characteristics of land cover with the change of seasons that can be derived from multi-temporal remote sensor data. For example, the Normalized Difference Vegetation Index (NDVI) of evergreen land cover is high and no remarkable change in one year, while deciduous forest has one peak of NDVI sliding curve in one year, annually double crops two peaks, and annually triple crops three peaks. Therefore, the classification criteria of land cover can be quantified with the eigenvalue showed by NDVI, such as greenness value, crest value, trough value, green-up period, green-end period, integral of NDVI (NDVI-I), difference between the maximum and minimum NDVI (NDVI-MM), and waveform of NDVI sliding curve in one year, etc;4) component and function properties of covers. Gopal et al have shown that land cover, perhaps the most fundamental characteristic of a place, is an integrated expression of the physical, climatic, and biotic environment as well as the history of land use by humans [13]. At the same time, its functions, particularly reflectivity and net discharge of CO2, vary with different component and structure of covers. So some mixed land cover is better differentiated by its constituent characteristics and influence on land surface processes.3.3Building the classification systemTo guide the interpretation of remote sensing data, a two-level, hierarchical classification scheme (see Table 1) was built by adopting a combination of the above diagnostic criteria and with the help of open factual data of land cover (such as books, papers/reports, and maps, etc.) on the hilly southeastern Hubei Province and the middle Qinling Mountains in China. At the initial stage (Level Ⅰ), the entire study area was mapped into seven classes, i.e. evergreen cover (woody), seasonal green cover (woody), seasonal green cover (herbaceous), seasonal green cover (crops), seasonal green cover (mixed), grey cover, and blue cover. The evergreen cover was then further classified into four sub-classes (Level Ⅱ).Table1. Hierarchical Land cover classification scheme for the hilly southeastern Hubei Province and the middle Qinling Mountains, ChinaCode and Name of basic classes Code and Name of sub-classes1 Evergreen cover (Woody) 11 Evergreen broadleaf forest12 Evergreen coniferous forest13 Evergreen shrub14 Evergreen mixed forest2 Seasonal green cover (Woody) 21 Deciduous broadleaf forest22 Deciduous coniferous forest23 Deciduous shrub24 Deciduous mixed forest3 Seasonal green cover (Herbaceous) 31 Grasses32 Wetland4 Seasonal green cover (Crops) 41 Single cropping in one year42 Continuous double cropping in one year43 Continuous triple cropping in two years5 Seasonal green cover (Mixed) 51 Mixed cover of crop and tree52 Mixed cover of crop, grass and shrub53 Mixed cover of crop and water6 Grey cover 61 Urban or Built-up land62 Barren or Sparsely land7 Blue Cover 71 River72 Lake73 Reservoir74 Other waterbodiesMoreover, each of those classes on level 1 is identified by simple, observable, unambiguous characteristics that are important to ecosystem biogeochemistry and could be measured in the field for validation. For instance, evergreen cover (Woody) primarily consists of woody plant (maybe natural forest, half natural forest and/or planted forest), keeps green all year, and has high greenness-degree index without obvious change in the whole year. Seasonal green cover (Woody) mainly constitutes with deciduous woody plant and its curve of greenness-degree index often has one obvious peak in a year, but the average greenness-degree index is lower than evergreen cover. Seasonal green cover (Herbaceous) is usually classified into two types including annual grasses and wetland, and also has one obvious peak in the curve of greenness-degree index in a year. In particular, wetland perhaps has extremely low greenness-degree index similar to water bodies when submerged. Grey cover usually has low greenness-degree index without obvious change in the whole year and may be classified into two types: 1) Barren or Sparsely land, such as the sand and the bare land, etc., which coverage degree of vegetation is throughout lower than 10% in a year; 2) Urban or Built-up land, which mainly consists of artificial buildings, may be mapped into cities, countryside inhabitant, the constructions uses, etc., and extremely similar to sand and other grey cover on spectrum characteristics. Blue cover, with extremely low greenness-degree index, is usually classified into two types, i.e. ocean and territorial water body (river, lake, and reservoir, etc.), but ocean is not applicable to the study area.4.MODIS-BASED IMPLEMENTATION AT REGIONAL-SCALE4.1Results of classificationIn this study, the supervised classification technique (maximum likelihood) was used to MODIS 250 m time-series NDVI imageries spanning one growing season, on which training areas were selected based on some MODIS 250 m 16-day composite reflectance imageries (MOD13Q1) in winter and the data of forest resource inventory provided by Forestry Department of Hubei Province and Shanxi Province in China. Finally, seven primary classes and fifteen sub-classes were identified and mapped for the two study area (see Fig. 2) by synthesizing the laws of distribution and succession processes of vegetation, identifying power on surface cover of MODIS 250 m NDVI data, the characteristics of forest resource inventory data, structure and functional properties of covers, etc.(a) Hilly southeastern Hubei Province in China (b) Middle Qinling Mountains in Shanxi Province, ChinaFig. 2. Land cover classification maps of two study areas derived from 250m 16-day composite time-series imageries of MODIS (MOD13Q1) over the period of December 19, 2005 to January 3, 20074.2Accuracy assessmentAccuracy assessment adopted Error Matrix, which is often used to measure the thematic classification accuracy and consists of classified data and reference data [27-30]. From the Error Matrix, many statistics value about accuracy can be produced, such as Overall Classification Accuracy (OCA) and Overall Kappa Statistics (Kappa).The result of accuracy assessment on the sub-classes showed that OCA of land cover classification in the study region equals to 75.32% and Kappa 67.01%. The interpretation accuracy of three types of seasonal green cover (i.e. deciduous broadleaf forest, evergreen broadleaf forest and crops) was over 80%, evergreen coniferous forest and wetland over 70%, while others had low accuracy (<60%). In particular, error classification often occurs among barren land, urban or built-up land and water. The reason is mainly from the phenomenon of different objects with same spectrum and/or same object with different spectrum, which often occurs when only spectral feature used to identify land cover.5.CONCLUSION AND DISCUSSIONLand cover mainly represents morphological property and dynamic characteristics of the earth's surface. Its accurate representation is a continuing challenge even though based on remote sensing. For global modeling requirements, a standard land cover classification system should adhere to quantificational classification criteria, an unambiguous, repeatable definition of land cover and clear boundary definitions between two classes. In this study, a simple classification logic for land cover was proposed and implemented in the hilly southeastern Hubei Province and the middle Qinling Mountains in Shanxi Province, China based on time-series MODIS 250 m NDVI data and some reflectance imageries in winter. The results shows that the new logic of land cover classification is feasible at the regional scale, but the accuracy needs to be improved by combine spectral characteristics with ancillary data including elevation data, shape feature of land cover (very useful to linear river identified), climate and eco-region variables as to eliminate confusion [1].ACKNOWLEDGEMENTST his study benefited from the NASA's Earth Observing System (EOS) Data Gateway for the MODIS NDVI products. And it was supported by Program of National Science Foundation of China (NO.40601003) and Science &Technology Research Program of Education Office of Hubei Province, China (NO.Q200610002).REFERENCES[1]S.W. Running, T.R. Loveland, and L.L. Pierce, “A vegetation classification logic based on remote sensing for use inglobal biogeochemical models”, AMBIO, 23(1), 77-81 (1994).[2] B.D. Wardlow, S.L. Egbert, and J.H. Kastens,“Analysis of time-series MODIS 250 m vegetation index data forcrop classification in the U.S. Central Great Plains, Remote Sensing of Environment”, 108, 290−310 (2007).[3]J.R. Anderson, E.E. Hardy, J.T. Roach, and R.E. Witmer, “A land use and land cover classification System for usewith remote sensor data”, U.S. Geological Survey Professional Paper 964. USGPO, Washington, D.C. (1976).[4]Antonio Di Gregorio, and Louisa J.M. Jansen, “Land cover classification system (LCCS): classification conceptsand user manual for software version 1.0”, Food and Agriculture Organization of the United Nations (FAO), Rome (2000).[5] B.D. Wardlow, and S.L. Egbert, “Large-area crop mapping using time-series MODIS 250 m NDVI data: Anassessment for the U.S. Central Great Plains”, Remote Sensing of Environment, doi:10.1016/j.rse.2007.07.019 (2007)[6]Yingming WANG, “On the vegetation regionalization of Hubei province,” Journal of Wuhan Botanical Research.3(2), 165-174 (1985). [in Chinese][7]S.E. Liu, “Botanical geography in North and West of China”, Contributions from the Institute of Botany NationalAcademy of Peiping, 2(9), 423-464 (1934). [in Chinese][8]Editorial Committee of Vegetation of China. Vegetation of China, Beijing: Science Press (1980). [in Chinese][9]M.D. Lei (Ed.). Vegetation of Shanxi Province. Beijing: Science Press (1999). [in Chinese][10]X.G. Zhao, and L. Xiao, “The vegetational and environmental history in Qinling Mountain since 15 ka BP”, ActaBotanica Boreali-Occidentalia Sinica, 23(4), 523-530. (2003) (in Chinese)[11]X.H. Zhu, G.W. Liu, and G.X. Ru, et al, “Community quantitative characteristics and dynamics of endangered plantspecies Abies chensiensis”, Chinese Journal of Ecology, 26(12), 1942-1946. (2007) (in Chinese)[12]X.M. Xiao, S. Boles, and J.Y.Liu, et al, “Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data”, Remote Sensing of Environment, 82, 335–348(2002).[13]S. Gopal, C.E. Woodcock, and A.H. Strahler, “Fuzzy neural network classification of global land cover from1°AVHRR data set”, Remote Sens. Environ, 67,230-243 (1999).[14] C. O. Justice, & J. R. G. Townshend, “Special issue on the Moderate Resolution Imaging Spectroradiometer(MODIS): A new generation of land surface monitoring”. Remote Sensing of Environment, 83, 1−2 (2002).[15]X. Li, X. Cui, and X.D. Huang, et al, “Spatial and Temporal Change of MODIS vegetation indices for differentgrassland in northern Xingjiang”, Prataculrural Science, 24(9), 5-11 (2007). [in Chinese][16]X.F. Yu, and D.F. Zhuang, “Monitoring forest phenophases of Northeast China based on MODIS NDVI data”,Resources Science, 28(4), 111-117 (2006). [in Chinese][17]M.White, P. Thornton, & S. Running, “A continental phenology model for monitoring vegetation responses tointerannual climatic variability”. Global Biogeochemical Cycles, 11, 217-234 (1997).[18] B. Reed, J. Brown, D. Zee Vander, T. Loveland, et al., “Measured phenological variability from satellite imagery”.Journal of Vegetation Science, 5, 703-714 (1994).[19]N. Viovy, O. Arino, & A. S. Belward,, “The Best Index Slope Extraction (BISE): a method for reducing noise inNDVI time-series”. International Journal of Remote Sensing, 8, 1585-1590 (1992).[20]T. R. Loveland, B. C. Reed, J. F. Brown, et al. “Development of a global land cover characteristics database andIGBP DISCover from 1km AVHRR data”. International Journal of Remote Sensing,(1998).[21] B.K. Wyatt, J. N. Greatorex-Davies, M.O. Hill, et al, Comparison of Land Cover Definitions (Countryside 1990series, Vol.3). London: Department of the Environment (1994).[22]State Bureau of Surveying and Mapping, The technical regulation of global mapping, Beijing: State Bureau ofSurveying and Mapping, (1999).[in Chinese][23]J. E. Volgamann, T. Sohl, S. M. Howard. “Regional characterization of land cover using multiple sources of data”.Photogrammetric Engineering and Remote Sensing, 64(1):45~57(1998).[24]Yousong ZHAO, Anping LIAO, Lijun CHEN, “ The creation of national land cover database in China” Science ofSurveying and Mapping.32(4):138-140 (2007). [in Chinese][25]Pengfeng XIAO, Shunxi LIU, Xuezhi FENG, et al. “A Land Use/Cover Classification System Based on MediumResolution Remote Sensing Data”,China Land Science. 20(2),33-38(2006).[in Chinese][26]Zemeng FAN, Tianxiang YUE, Jiyuan LIU, et al. “Spatial and Temporal Distribution of Land Cover Scenarios inChina”. Acta Geographica Sinica ,60(6):941-952(2005). [in Chinese][27]R. G. Congalton, “A review of assessing the accuracy of classifications of remotely sensed data”. Remote Sens.Environ., 37, 35-46 (1991).[28]J.A. Richard, “Classifier performance and map accuracy”. Remote Sens. Environ., 57, 161-166 (1996).[29]S.V. Stehman, “Selecting and interpreting measures of thematic classification accuracy”, Remote Sens. Environ., 62,77-89(1997).[30]M. Story and R.G. Congalton, “Accuracy assessment: a user’s perspective”. Photogrammetric Engineering &Remote Sensing, 48(1), 131-137 (1986).。