自由度的计算(经典PPT)
合集下载
第02章--平面机构及自由度计算PPT课件
![第02章--平面机构及自由度计算PPT课件](https://img.taocdn.com/s3/m/b6eef822571252d380eb6294dd88d0d233d43c1e.png)
由度,故平面机构的自由度F为
F3 n2P LP H
10
2.3.2 计算平面机构自由度时应注意的事项
实际工作中,机构的组成比较复杂,运用公式 计算 F3n2PLPH 自由度时可能出现差错,这是由于机构中常常存在一些特 殊的结构形式,计算时需要特殊处理。
(1) 复合铰链 (2) 局部自由度 (3) 虚约束
图2-3 构件的自由度 4
1.1.3 课程任务
❖ 机构由若干个相互联接起来的构件组成。机构中两构件之间 直接接触并能作确定相对运动的可动联接称为运动副。如图 2-1(b)所示的内燃机的轴与轴承之间的联接,活塞与汽缸之 间的联接,凸轮与推杆之间的联接,两齿轮的齿和齿之间的 联接等。
❖ 两个构件构成运动副后,构件的某些独立运动受到限制,这 种运动副对构件的独立运动所加的限制称为约束。运动副每 引入一个约束,构件就失去一个自由度。
平面机构及自由度计算
所有构件均在同一平面或相互平行的平面内运动的机构 称为平面机构。工程中常用机构大多数都是平面机构。如图 2-1(a)所示的卡车自动卸料机构、如图2-1(b)所示的内燃机 中的机构都属于平面机构。
图2-1 平面机构 1
平面机构及自由度计算
2.1 平面机构的组成 2.2 平面机构运动简图 2.3 平面机构的自由度计算
11
2.3.3 平面机构具有确定运动的条件
机构相对机构是由构件和运动副组成的系统,机构要实 现预期的运动传递和变换,必须使其运动具有可能性和确 定性。
如图2-14(a)所示的机构,自由度F=0;如图2-14(b)所 示的机构,自由度F=-1,机构不能运动。
如图2-15所示的五杆机构,自由度F=2,若取构件1为 主动件,当只给定主动件1 的位置角1时,从动件2、3、 4的位置既可为实线位置,也可为虚线所处的位置,因此其 运动是不确定的。若取构件1、4为主动件,使构件1、4都 处于给定位置1、4时,才使从动件获得确定运动。
F3 n2P LP H
10
2.3.2 计算平面机构自由度时应注意的事项
实际工作中,机构的组成比较复杂,运用公式 计算 F3n2PLPH 自由度时可能出现差错,这是由于机构中常常存在一些特 殊的结构形式,计算时需要特殊处理。
(1) 复合铰链 (2) 局部自由度 (3) 虚约束
图2-3 构件的自由度 4
1.1.3 课程任务
❖ 机构由若干个相互联接起来的构件组成。机构中两构件之间 直接接触并能作确定相对运动的可动联接称为运动副。如图 2-1(b)所示的内燃机的轴与轴承之间的联接,活塞与汽缸之 间的联接,凸轮与推杆之间的联接,两齿轮的齿和齿之间的 联接等。
❖ 两个构件构成运动副后,构件的某些独立运动受到限制,这 种运动副对构件的独立运动所加的限制称为约束。运动副每 引入一个约束,构件就失去一个自由度。
平面机构及自由度计算
所有构件均在同一平面或相互平行的平面内运动的机构 称为平面机构。工程中常用机构大多数都是平面机构。如图 2-1(a)所示的卡车自动卸料机构、如图2-1(b)所示的内燃机 中的机构都属于平面机构。
图2-1 平面机构 1
平面机构及自由度计算
2.1 平面机构的组成 2.2 平面机构运动简图 2.3 平面机构的自由度计算
11
2.3.3 平面机构具有确定运动的条件
机构相对机构是由构件和运动副组成的系统,机构要实 现预期的运动传递和变换,必须使其运动具有可能性和确 定性。
如图2-14(a)所示的机构,自由度F=0;如图2-14(b)所 示的机构,自由度F=-1,机构不能运动。
如图2-15所示的五杆机构,自由度F=2,若取构件1为 主动件,当只给定主动件1 的位置角1时,从动件2、3、 4的位置既可为实线位置,也可为虚线所处的位置,因此其 运动是不确定的。若取构件1、4为主动件,使构件1、4都 处于给定位置1、4时,才使从动件获得确定运动。
自由度的计算(经典完整)ppt课件
![自由度的计算(经典完整)ppt课件](https://img.taocdn.com/s3/m/6eb4605c0b4e767f5bcfce41.png)
B2 A1
低副(以转动副为例) 联接前:F=3×2=6
能动吗?
联接后:F=3×2-2×1=4
高副(以凸轮副为例)
联接前:F=3×2=6
联接后:F=3×2-1×1=5
.
一、平面运动链的自由度计算公式
F3n2pl ph
n——活动构件数 Pl——低副数 Ph——高副数
分析: 两杆(如门、风扇)
F=3×1-2×1=1
如果运动链中其余各构件都有确定的相对运动,
则此运动链成为机构。
2
C
B
1
3
4
A
D
.
机构的组成(14/14)
4.机构 具有固定构件的运动链称为机构。 机 架 ——机构中的固定构件。
原动件 ——按给定已知运动规律 独立运动的构件;常以转向箭头表示。
2 从动件
3 4
1原动件
机架 平面铰链四杆机构
从动件 ——机构中其余活动构件。 其运动规律决定于原动件的运动规律
机构的组成(5/16)
y
转动副
x
2 1
约束特点: x,y方向移动.
自由度数目 约束数目
1
2
移动副
机构的组成(6/16)
一个独立相对运动。引入2个约束, 保留1个自由度
移动副
y
1
x
2
自由度数目 1
约束特点: Y方向移动 ,z方. 向转动
约束数目 2
机构的组成(7/14)
高副 两个独立相对运动。引入1个约束, 保留2个自由度
=3×4-2×5 -0 =2
.
机构自由度的计算(2/7)
2
3
1
4
3
2
4
《机械原理自由度》课件
![《机械原理自由度》课件](https://img.taocdn.com/s3/m/8993e366ae45b307e87101f69e3143323868f512.png)
机械故障诊断
通过运动分析诊断机械故障的原因 和位置。
控制系统设计
利用运动分析结果设计控制系统的 参数和策略。
机构运动分析的实例
平面四杆机构的运动分析
01
通过解析法计算平面四杆机构的自由度,并分析其运动特性。
凸轮机构的运动分析
02
利用实验法测量凸轮机构的位移、速度和加速度,分析其运动
规律。
机器人臂关节的运动分析
03
通过数值法模拟机器人臂关节的运动行为,优化关节的设计参
数。
04
机构动力学分析
机构动力学的基本概念
机构动力学是研究机 械系统中机构运动及 其与力的关系的学科 。
机构动力学的基本概 念包括力、力矩、加 速度、速度和位移等 。
它涉及到系统的平衡 、运动规律、动态响 应等方面的内容。
机构动力学分析的Байду номын сангаас法
空间机构自由度计算
总结词
空间机构自由度计算是机械原理中一个复杂的概念,它涉及到机构在空间中的 运动自由度数。
详细描述
空间机构的自由度计算公式为F=6n-(3PL + Ph),其中n为活动构件数,PL为低 副数,Ph为高副数。与平面机构不同,空间机构需要考虑三个方向的自由度, 因此计算更为复杂。
特殊机构自由度计算
通过建立平面连杆机构的运动学和动力学模型,分析其运动规律 和动态响应。
凸轮机构的动力学分析
研究凸轮机构的动态行为,包括从动件的运动规律和受力情况等。
齿轮机构的动力学分析
分析齿轮机构的动态特性,如振动、冲击和噪声等,以提高齿轮传 动的平稳性和可靠性。
05
机构优化设计
机构优化设计的目标和方法
目标
自由度的计算(经典课件)
![自由度的计算(经典课件)](https://img.taocdn.com/s3/m/8e46cd41591b6bd97f192279168884868762b8a4.png)
自由度的计算(经典课件)
目录
• 自由度的定义 • 自由度的计算方法 • 自由度在物理中的应用 • 自由度在数学中的应用 • 自由度的计算实例
01 自由度的定义
自由度的定义
自由度是指在某一物理系统或数学模型中,描述一个状态所需的独立参数的数量。
在物理学中,自由度通常用于描述粒子在空间中的位置和动量,或者描述物体的旋 转状态。
热力学的自由度计算
总结词
热力学的自由度计算是研究系统热力学性质的重要手段,它涉及到系统的熵、焓等热力学量的计算。
详细描述
在热力学中,自由度的计算通常基于系统的质量和能量守恒方程。通过求解这些方程,可以得到系统 的熵、焓等热力学量,进而确定系统的自由度数。自由度的计算对于分析系统热力学性质、预测反应 过程和优化能源利用等具有重要意义。
公式
对于一个$m times n$的矩阵$A$,其自由度可以通过计算其秩$r$来 获得,即$r = min(m, n)$。
向量的自由度计算
总结词
向量的自由度计算是解析几何中的基本概念,用于描述向量在空间中的独立变化程度。
详细描述
向量的自由度是指向量在空间中可以独立变化的维度数量。对于一个三维向量,其自由度为3, 因为三个参数(x、y、z)可以独立地变化以产生不同的向量。更高维度的向量具有更多的自 由度。
在数学中,自由度通常用于描述矩阵或向量的秩,或者描述概率分布的参数个数。
自由度在物理中的意义
01
在经典力学中,一个质点的自由度 是3,因为需要三个参数(x, y, z) 来描述其在空间中的位置。
02
对于一个刚体,其自由度取决于 其运动方式。例如,一个绕固定 点旋转的刚体有3个自由度(角度 和角速度)。
统计力学的自由度计算
目录
• 自由度的定义 • 自由度的计算方法 • 自由度在物理中的应用 • 自由度在数学中的应用 • 自由度的计算实例
01 自由度的定义
自由度的定义
自由度是指在某一物理系统或数学模型中,描述一个状态所需的独立参数的数量。
在物理学中,自由度通常用于描述粒子在空间中的位置和动量,或者描述物体的旋 转状态。
热力学的自由度计算
总结词
热力学的自由度计算是研究系统热力学性质的重要手段,它涉及到系统的熵、焓等热力学量的计算。
详细描述
在热力学中,自由度的计算通常基于系统的质量和能量守恒方程。通过求解这些方程,可以得到系统 的熵、焓等热力学量,进而确定系统的自由度数。自由度的计算对于分析系统热力学性质、预测反应 过程和优化能源利用等具有重要意义。
公式
对于一个$m times n$的矩阵$A$,其自由度可以通过计算其秩$r$来 获得,即$r = min(m, n)$。
向量的自由度计算
总结词
向量的自由度计算是解析几何中的基本概念,用于描述向量在空间中的独立变化程度。
详细描述
向量的自由度是指向量在空间中可以独立变化的维度数量。对于一个三维向量,其自由度为3, 因为三个参数(x、y、z)可以独立地变化以产生不同的向量。更高维度的向量具有更多的自 由度。
在数学中,自由度通常用于描述矩阵或向量的秩,或者描述概率分布的参数个数。
自由度在物理中的意义
01
在经典力学中,一个质点的自由度 是3,因为需要三个参数(x, y, z) 来描述其在空间中的位置。
02
对于一个刚体,其自由度取决于 其运动方式。例如,一个绕固定 点旋转的刚体有3个自由度(角度 和角速度)。
统计力学的自由度计算
自由度的计算 ppt课件
![自由度的计算 ppt课件](https://img.taocdn.com/s3/m/256fb5121ed9ad51f01df2cb.png)
为使运动链获得确定的相对运动,构件的总数、运动 副类型和数量以及独立运动数目必须符合一定的关系, 将在自由度计算中加以论述。
PPT课件
12
§1.2 机构运动简图
在对现有机械进行分析或设计新机器时,都需 要绘出其机构运动简图。 1. 机构运动简图的定义 机构运动简图 根据机构的运动尺寸,按一定的 比例尺定出各运动副的位置, 采用运动副及常 用机构运动简图符号和构件的表示方法,将机构 运动传递情况表示出来的简化图形。 机构示意图 按比例绘出不严格的,只表示机械 结构状况的简图。
18
平面运动副的约束
PPT课件
19
平面运动副的约束
高副约束1个自由度
PPT课件
20
§1.4 平面机构的自由度计算公式 n个活动构件(不包括机架), pl个低
副, ph个高副,则
自由度计算公式: F=3n-(2pl+ph)
PPT课件
21
举例 3
2
3
1
4
3
2
4
1
5
10 C 11
8 ,9 3
7D B
所拆杆组中,级别最高的杆组为 该机构的杆组级别
PPT课件
32
颚式破碎机 机构简图及杆组拆法
组成原理:原动件+机架+杆组(F=0)
PPT课件
33
平面机构中的高副低代
高副低代的原则:
• 代替前后机构的自由度完全相同 • 代替前后机构的瞬时速度和瞬时
加速度完全相同
PPT课件
34
高副低代的方法: 二高副元素在接触点处的曲率中心用
PPT课件
24
举例 4Βιβλιοθήκη F 3n 2 pl ph 35260 3
PPT课件
12
§1.2 机构运动简图
在对现有机械进行分析或设计新机器时,都需 要绘出其机构运动简图。 1. 机构运动简图的定义 机构运动简图 根据机构的运动尺寸,按一定的 比例尺定出各运动副的位置, 采用运动副及常 用机构运动简图符号和构件的表示方法,将机构 运动传递情况表示出来的简化图形。 机构示意图 按比例绘出不严格的,只表示机械 结构状况的简图。
18
平面运动副的约束
PPT课件
19
平面运动副的约束
高副约束1个自由度
PPT课件
20
§1.4 平面机构的自由度计算公式 n个活动构件(不包括机架), pl个低
副, ph个高副,则
自由度计算公式: F=3n-(2pl+ph)
PPT课件
21
举例 3
2
3
1
4
3
2
4
1
5
10 C 11
8 ,9 3
7D B
所拆杆组中,级别最高的杆组为 该机构的杆组级别
PPT课件
32
颚式破碎机 机构简图及杆组拆法
组成原理:原动件+机架+杆组(F=0)
PPT课件
33
平面机构中的高副低代
高副低代的原则:
• 代替前后机构的自由度完全相同 • 代替前后机构的瞬时速度和瞬时
加速度完全相同
PPT课件
34
高副低代的方法: 二高副元素在接触点处的曲率中心用
PPT课件
24
举例 4Βιβλιοθήκη F 3n 2 pl ph 35260 3
自由度的计算(经典PPT)
![自由度的计算(经典PPT)](https://img.taocdn.com/s3/m/411eb295ac51f01dc281e53a580216fc700a5395.png)
组内自由度是指每个处理 组内部观测值变异所对应 的自由度。
计算方法
组内自由度 = 总观测值数 - 处理因素的水平数。
示例
若有12个观测值,处理因 素有3个水平,则组内自由 度为12-3=9。
总自由度计算方法
总自由度的定义
计算方法
示例
总自由度是指所有观测 值变异所对应的自由度。
总自由度 = 总观测值数 - 1。
自由度的计算(经 典ppt)
目录
• 自由度概念及意义 • 单因素方差分析中自由度计算 • 多因素方差分析中自由度计算 • 回归分析中自由度计算与应用 • 假设检验中自由度确定方法 • 总结:提高自由度计算准确性策
略
01
自由度概念及意义
自由度定义
01
自由度是指当以样本的统计量来 估计总体的参数时,样本中独立 或能自由变化的数据的个数,称 为该统计量的自由度。
根据实验目的、效应大小、显 著性水平等因素合理确定样本 量。
在实验过程中及时调整样本量, 以确保结果的可靠性。
结合实际案例进行练习以提高熟练度
选择具有代表性的案例,涵盖不 同类型实验设计和数据处理方法。
逐步分析案例中的实验设计、数 据处理及自由度计算过程。
通过反复练习,加深对自由度计 算原理和方法的理解,提高计算
交互效应自由度
当考虑A、B两因素交互作用时, 交互效应的自由度为(a-1)(b-1)。 若不考虑交互作用,则交互效应
自由度为0。
总自由度
实验中所有观测值数目减1。例 如,在有n个观测值的实验中,
总自由度为n-1。
多因素实验设计下自由度计算实例
实验设计
主效应自由度
假设有一个2x3x2的多因素实验设计,即因 素A有2个水平,因素B有3个水平,因素C 有2个水平。
计算方法
组内自由度 = 总观测值数 - 处理因素的水平数。
示例
若有12个观测值,处理因 素有3个水平,则组内自由 度为12-3=9。
总自由度计算方法
总自由度的定义
计算方法
示例
总自由度是指所有观测 值变异所对应的自由度。
总自由度 = 总观测值数 - 1。
自由度的计算(经 典ppt)
目录
• 自由度概念及意义 • 单因素方差分析中自由度计算 • 多因素方差分析中自由度计算 • 回归分析中自由度计算与应用 • 假设检验中自由度确定方法 • 总结:提高自由度计算准确性策
略
01
自由度概念及意义
自由度定义
01
自由度是指当以样本的统计量来 估计总体的参数时,样本中独立 或能自由变化的数据的个数,称 为该统计量的自由度。
根据实验目的、效应大小、显 著性水平等因素合理确定样本 量。
在实验过程中及时调整样本量, 以确保结果的可靠性。
结合实际案例进行练习以提高熟练度
选择具有代表性的案例,涵盖不 同类型实验设计和数据处理方法。
逐步分析案例中的实验设计、数 据处理及自由度计算过程。
通过反复练习,加深对自由度计 算原理和方法的理解,提高计算
交互效应自由度
当考虑A、B两因素交互作用时, 交互效应的自由度为(a-1)(b-1)。 若不考虑交互作用,则交互效应
自由度为0。
总自由度
实验中所有观测值数目减1。例 如,在有n个观测值的实验中,
总自由度为n-1。
多因素实验设计下自由度计算实例
实验设计
主效应自由度
假设有一个2x3x2的多因素实验设计,即因 素A有2个水平,因素B有3个水平,因素C 有2个水平。
平面机构的自由度计算课件
![平面机构的自由度计算课件](https://img.taocdn.com/s3/m/037e81c28662caaedd3383c4bb4cf7ec4bfeb66b.png)
平面机构的自由度 计算课件
目录
• 平面机构基本概念 • 平面机构自由度计算公式推导 • 典型平面机构自由度计算实例分析 • 复杂平面机构自由度计算方法论述 • 平面机构具有确定运动条件总结归纳 • 平面机构自由度计算中常见问题解析与讨
论
01
平面机构基本概念
机构定义及分类
机构定义
由两个以上的构件通过活动联接以形成的具有一定相对运动 的系统。
为了使机构具有确定的运动,必须已知构件的惯性特性,包括构件的质量、质心位置、转 动惯量等参数。这些参数对于分析机构的动态特性和优化机构设计具有重要意义。
06
平面机构自由度计算 中常见问题解析与讨 论
局部自由度问题解析
局部自由度定义
01
在机构中,常出现一种与输出构件运动无关的自由度,称为局
部自由度或内部自由度。
机构分类
根据构件间相对运动的不同,机构可分为平面机构和空间机 构。其中,平面机构所有构件的运动都在同一平面或相互平 行的平面内,而空间机构的运动则不在同一平面内。
平面机构特点
运动特点
平面机构的运动相对简单,各构 件之间的相对位置关系易于确定
和分析。
结构特点
平面机构的构件一般呈平面形状 ,易于加工和制造。此外,平面 机构中的运动副也多为平面运动 副,其摩擦和磨损相对较小,使
THANKS
感谢观看
必要条件阐述
机构自由度等于原动件数
机构自由度是指机构中独立运动的构 件数减去机构中的运动副数。为了使 机构具有确定的运动,机构的自由度 必须等于原动件数。
运动副类型和数目确定
构件尺寸和形状已知
为了使机构的运动轨迹和速度等特性 是确定的,必须已知构件的尺寸和形 状,以便计算出机构的运动学参数。
目录
• 平面机构基本概念 • 平面机构自由度计算公式推导 • 典型平面机构自由度计算实例分析 • 复杂平面机构自由度计算方法论述 • 平面机构具有确定运动条件总结归纳 • 平面机构自由度计算中常见问题解析与讨
论
01
平面机构基本概念
机构定义及分类
机构定义
由两个以上的构件通过活动联接以形成的具有一定相对运动 的系统。
为了使机构具有确定的运动,必须已知构件的惯性特性,包括构件的质量、质心位置、转 动惯量等参数。这些参数对于分析机构的动态特性和优化机构设计具有重要意义。
06
平面机构自由度计算 中常见问题解析与讨 论
局部自由度问题解析
局部自由度定义
01
在机构中,常出现一种与输出构件运动无关的自由度,称为局
部自由度或内部自由度。
机构分类
根据构件间相对运动的不同,机构可分为平面机构和空间机 构。其中,平面机构所有构件的运动都在同一平面或相互平 行的平面内,而空间机构的运动则不在同一平面内。
平面机构特点
运动特点
平面机构的运动相对简单,各构 件之间的相对位置关系易于确定
和分析。
结构特点
平面机构的构件一般呈平面形状 ,易于加工和制造。此外,平面 机构中的运动副也多为平面运动 副,其摩擦和磨损相对较小,使
THANKS
感谢观看
必要条件阐述
机构自由度等于原动件数
机构自由度是指机构中独立运动的构 件数减去机构中的运动副数。为了使 机构具有确定的运动,机构的自由度 必须等于原动件数。
运动副类型和数目确定
构件尺寸和形状已知
为了使机构的运动轨迹和速度等特性 是确定的,必须已知构件的尺寸和形 状,以便计算出机构的运动学参数。
《自由度的计算》课件
![《自由度的计算》课件](https://img.taocdn.com/s3/m/bd5d6cc985868762caaedd3383c4bb4cf7ecb737.png)
3 统计学中的自由度
在统计学中,自由度衡量了样本数据中可以自由变动的数据点的个数。
自由度的计算方法
1
单样本t检验中的自由度
自由度的计算方法基于样本大小和方差,用于评估总体均值与样本均值之间是否 存在显著差异。
2
双样本t检验中的自由度
自由度的计算方法用于比较两个样本总体均值之间的差异,考虑了两个样本的大 小和方差。
《自由度的计算》PPT课 件
# 自由度的计算
一个引人入胜的主题,今天我们将一起探索自由度的计算方法以及它在不同 领域中的应用。让我们开始吧!
什么是自由度?
1 自由度的概念
自由度是指系统中独立变量的数量,从而决定了系统的状态和能力。
2 物理学中的自由度
在物理学中,自由度决定了系统的运动模式和空间维度。
3
卡方检验中的自由度
自由度的计算方法是基于观察到的频数和期望频数之间的差异,用于评估观察到 的频数与理论分布之间的拟合程度。
自由度的应用
假设检验中的自由度
方差分析中的自由度
自由度决定了在假设检验中所 使用的统计分布的自由度,用 于推断总体参数是否符合假设。
自由度用于评估不同组别之间 的均值差异,从而确定因素对 总体变异的贡献程度。
回归分析中的自由度
自由度是回归模型中独立变量 的数量,用于衡量解释变量对 响应变量的解释程度。
自由度的限制和拓展
自由度的限制
自由度的计算方法可能受到 样本量、方差等因素的限制, 需要在具体应用中进行适当 的调整。
稳健统计中的“自 由度”
稳健统计方法可以在数据受 到异常值或分布非正态影响 时,依然有效地评估自由度 相似的统计量。
3 自由度的应用场景
自由度广泛应用于假设检验、方差分析、回归分析等统计学和数据科学领域,具有重要 实际意义。
在统计学中,自由度衡量了样本数据中可以自由变动的数据点的个数。
自由度的计算方法
1
单样本t检验中的自由度
自由度的计算方法基于样本大小和方差,用于评估总体均值与样本均值之间是否 存在显著差异。
2
双样本t检验中的自由度
自由度的计算方法用于比较两个样本总体均值之间的差异,考虑了两个样本的大 小和方差。
《自由度的计算》PPT课 件
# 自由度的计算
一个引人入胜的主题,今天我们将一起探索自由度的计算方法以及它在不同 领域中的应用。让我们开始吧!
什么是自由度?
1 自由度的概念
自由度是指系统中独立变量的数量,从而决定了系统的状态和能力。
2 物理学中的自由度
在物理学中,自由度决定了系统的运动模式和空间维度。
3
卡方检验中的自由度
自由度的计算方法是基于观察到的频数和期望频数之间的差异,用于评估观察到 的频数与理论分布之间的拟合程度。
自由度的应用
假设检验中的自由度
方差分析中的自由度
自由度决定了在假设检验中所 使用的统计分布的自由度,用 于推断总体参数是否符合假设。
自由度用于评估不同组别之间 的均值差异,从而确定因素对 总体变异的贡献程度。
回归分析中的自由度
自由度是回归模型中独立变量 的数量,用于衡量解释变量对 响应变量的解释程度。
自由度的限制和拓展
自由度的限制
自由度的计算方法可能受到 样本量、方差等因素的限制, 需要在具体应用中进行适当 的调整。
稳健统计中的“自 由度”
稳健统计方法可以在数据受 到异常值或分布非正态影响 时,依然有效地评估自由度 相似的统计量。
3 自由度的应用场景
自由度广泛应用于假设检验、方差分析、回归分析等统计学和数据科学领域,具有重要 实际意义。
自由度的计算 PPT
![自由度的计算 PPT](https://img.taocdn.com/s3/m/06d9e740d0d233d4b04e6910.png)
低副(以转动副为例) 联接前:F=3×2=6
能动吗?
联接后:F=3×2-2×1=4
高副(以凸轮副为例)
联接前:F=3×2=6 联接后:F=3×2-1×1=5
一、平面运动链的自由度计算公式
F3n2pl ph
n——活动构件数 Pl——低副数 Ph——高副数
分析: 两杆(如门、风扇) F=3×1-2×1=1
机构的组成(7/14)
高副 两个独立相对运动。引入1个约束, 保留2个自由度
高副
n
t n2 t
21
1
约束特点:n方向移动
自由度数目 约束数目
2
1
机构的组成(13/1对可动的系统。
闭式运动链(简称闭链) 开式运动链(简称开链)
2
3
1
4
2 3
1 4
平面闭式运动链 空间闭式运动链
=3×4-2×5 -0 =2
机构自由度的计算(2/7)
2
3
1
4
3
2
4
1
5
3)曲柄滑块机构
F=3n-(2pl+ph) =3×3-2×4 -0 =1
机构自由度的计算(3/7)
4)凸轮机构
F=3n-(2pl+ph) =3×2-2×2 -1 =1
计算平面机构自由度时应注意的事项
1.要正确计算运动副的数目 (1)复合铰链 两个以上构件同时在一处以转 动副相联接就构成了复合铰链。
23
1
4
平面开式运动链
4
3
5
2 1
空间开式运动链
三、运动链
运动链:两个或两个以上的构件通过运动副联接而构成的系统。 开式运动链:运动链的各构件未构成首末封闭的系统
《自由度的计算》课件
![《自由度的计算》课件](https://img.taocdn.com/s3/m/09e5cbb44793daef5ef7ba0d4a7302768e996fc7.png)
在量子力学中,自由度通常定义为描述粒子状态所需的独立波函数的数目。
自由度的计算
对于一个粒子,其位置和动量是两个基本的自由度。然而,在量子力学中,位置和动量不再是经典意义上的确定值,而是由波函数描述的概率分布。
分子动力学模拟简介:分子动力学模拟是一种用于研究分子体系结构和动态行为的计算机模拟方法。通过模拟分子间的相互作用力和运动轨迹,可以预测体系的性质和行为。
自由度是指描述一个系统状态所需的独立变量数。
在热力学中,自由度用于描述系统的熵和焓等热力学量的变化。
在量子力学中,自由度用于描述粒子的波函数和动量等物理量。
在经典力学中,自由度用于描述物体的运动轨迹和速度等物理量。
03
在生态学中,自由度用于描述生态系统的稳定性和多样性等生态学性质。
01
在化学反应中,自由度用于描述反应的平衡常数和速率常数等化学性质。
总结词
阐述生物系统中自由度与生物功能之间的关系,以及如何通过自由度的研究来了解生物系统的运行机制和规律。
在生物系统中,自由度与生物功能之间存在着密切的联系。生物分子的自由度影响着其运动状态和相互作用,进而影响整个生物系统的功能。通过对自由度的研究,可以深入了解生物系统的运行机制和规律,为生物学的深入研究提供重要的理论支持和实践指导。
在光学系统中,自由度的计算涉及到光的波动方程和光束传播的特性,不同的光学元件和结构会对光束的自由度产生影响。
光学自由度在光学系统设计和优化中有重要应用,如光束整形、光学通信和光学传感等。
04
CHAPTER
自由度在化学系统中的应用
总结词
化学反应中的自由度变化是化学反应动力学研究的重要内容,它涉及到反应速率和反应机理的确定。
总结词
详细描述
自由度的计算
对于一个粒子,其位置和动量是两个基本的自由度。然而,在量子力学中,位置和动量不再是经典意义上的确定值,而是由波函数描述的概率分布。
分子动力学模拟简介:分子动力学模拟是一种用于研究分子体系结构和动态行为的计算机模拟方法。通过模拟分子间的相互作用力和运动轨迹,可以预测体系的性质和行为。
自由度是指描述一个系统状态所需的独立变量数。
在热力学中,自由度用于描述系统的熵和焓等热力学量的变化。
在量子力学中,自由度用于描述粒子的波函数和动量等物理量。
在经典力学中,自由度用于描述物体的运动轨迹和速度等物理量。
03
在生态学中,自由度用于描述生态系统的稳定性和多样性等生态学性质。
01
在化学反应中,自由度用于描述反应的平衡常数和速率常数等化学性质。
总结词
阐述生物系统中自由度与生物功能之间的关系,以及如何通过自由度的研究来了解生物系统的运行机制和规律。
在生物系统中,自由度与生物功能之间存在着密切的联系。生物分子的自由度影响着其运动状态和相互作用,进而影响整个生物系统的功能。通过对自由度的研究,可以深入了解生物系统的运行机制和规律,为生物学的深入研究提供重要的理论支持和实践指导。
在光学系统中,自由度的计算涉及到光的波动方程和光束传播的特性,不同的光学元件和结构会对光束的自由度产生影响。
光学自由度在光学系统设计和优化中有重要应用,如光束整形、光学通信和光学传感等。
04
CHAPTER
自由度在化学系统中的应用
总结词
化学反应中的自由度变化是化学反应动力学研究的重要内容,它涉及到反应速率和反应机理的确定。
总结词
详细描述
自由度(原理)(共102张PPT)可修改全文
![自由度(原理)(共102张PPT)可修改全文](https://img.taocdn.com/s3/m/b30fda2ec950ad02de80d4d8d15abe23492f0342.png)
=1
2
3
4
②计算铰链五杆机构的自由度。
解:活动构件数n= 4
2
低副数P = 5 3)
5)
F运动>0副,分原类动:件数>F,构件不能运动或产L生破坏。
②低副-面接触的运动副,应力低 。
1
典型Ⅱ级组: n=2 p=3 二杆三副
高副数P = 0 (部分Ⅲ、IV 级杆组)
F=3n - 2PL - PH
H
5
第1章 平面机构的结构分析
1-1 机构组成及运动简图的绘制 1-2 平面机构自由度计算 1-3 机构组成原理和结构分析
1-1 机构组成及运动简图的绘制 一 机构组成 1 目的及内容
1)机构的组成及其具有确定运动的条件
目的是弄清机构包含哪几个部分?各部分如何相联才能保证具有确定的相 对运动?这对于设计新的机构显得尤其重要。
解:F=3n - 2PL - PH =3×9-2×12 - 2×1 =1
9)计算图示包装机送纸机构的自由度。 分析:
复合铰链: 位置D ,2个低副
局部自由度 2个 虚约束 1处, 去掉后
n= 6,PL= 7,PH= 3
F=3n - 2PL - PH
=3×6 -2×7 -3 =1
例8复2ຫໍສະໝຸດ 71356
1 箱体 2 活塞 3 连杆
4 曲轴 5、6 齿轮
7
凸轮 8 推杆
连杆机构 齿轮机构 凸轮机构
内燃机
箱体+
活塞、连杆、曲轴
连杆机构
齿轮
齿轮机构
凸轮、推杆
凸轮机构
内燃机的机构运动简图
◆ 画机构运动简图的方法
例题三、图示为一冲床。绕固定中心A转动的菱形盘1为原动件, 与滑块2在B点铰接,滑块2推动拨叉3绕固定轴C转动,拨叉3与 圆盘4为同一构件,当圆盘4转动时,通过连杆5使冲头6实 现冲压运动。试绘制其机构运动简图。
2
3
4
②计算铰链五杆机构的自由度。
解:活动构件数n= 4
2
低副数P = 5 3)
5)
F运动>0副,分原类动:件数>F,构件不能运动或产L生破坏。
②低副-面接触的运动副,应力低 。
1
典型Ⅱ级组: n=2 p=3 二杆三副
高副数P = 0 (部分Ⅲ、IV 级杆组)
F=3n - 2PL - PH
H
5
第1章 平面机构的结构分析
1-1 机构组成及运动简图的绘制 1-2 平面机构自由度计算 1-3 机构组成原理和结构分析
1-1 机构组成及运动简图的绘制 一 机构组成 1 目的及内容
1)机构的组成及其具有确定运动的条件
目的是弄清机构包含哪几个部分?各部分如何相联才能保证具有确定的相 对运动?这对于设计新的机构显得尤其重要。
解:F=3n - 2PL - PH =3×9-2×12 - 2×1 =1
9)计算图示包装机送纸机构的自由度。 分析:
复合铰链: 位置D ,2个低副
局部自由度 2个 虚约束 1处, 去掉后
n= 6,PL= 7,PH= 3
F=3n - 2PL - PH
=3×6 -2×7 -3 =1
例8复2ຫໍສະໝຸດ 71356
1 箱体 2 活塞 3 连杆
4 曲轴 5、6 齿轮
7
凸轮 8 推杆
连杆机构 齿轮机构 凸轮机构
内燃机
箱体+
活塞、连杆、曲轴
连杆机构
齿轮
齿轮机构
凸轮、推杆
凸轮机构
内燃机的机构运动简图
◆ 画机构运动简图的方法
例题三、图示为一冲床。绕固定中心A转动的菱形盘1为原动件, 与滑块2在B点铰接,滑块2推动拨叉3绕固定轴C转动,拨叉3与 圆盘4为同一构件,当圆盘4转动时,通过连杆5使冲头6实 现冲压运动。试绘制其机构运动简图。
汽车机械基础 课件6 自由度的计算
![汽车机械基础 课件6 自由度的计算](https://img.taocdn.com/s3/m/2343aa7dc950ad02de80d4d8d15abe23492f0348.png)
虚约束常见情况及处理 3.两构件组成多个移动副,且导路相互平行或重合时,只有
一个移动副起约束作用,其余为虚约束。
◆计算中只计入一个移动副。
平面机构的自由度
虚约束常见情况及处理 4.机构中对运动不起独立作用的对称部分,将产生虚约束。
虚约束对机构运动虽然不 起作用,但可以增加构件的 刚性,改进受力,减少磨损, 因而在机构中经常出现。
例1.1 计算图示机构的自由度。
C
E
解:n = 4 、PL= 6 、 PH= 0
B
D
F = 3n–2PL–PH = 3×4–2×6–0
A
=0
(a)
A
D
E
解:n = 5 、PL= 7 、 PH= 0
G
F = 3n–2PL–PH
B
C
F
(b)
= 3×5–2×7–0
=1
例1.2 计算SSPU窗户开闭机构的自由度。 D E F
C
B A
解:n = 5 、PL= 7 、PH= 0
F = 3n–2PL–PH = 3×5–2×7–0
=1
例1.5 计算图示机构的自由度。
CDLeabharlann 解:A、B、D、E 为复合铰链
B
F = 3n–2PL–PH
= 3×7–2×10–0
E
=1
A
F
§ 平面机构的自由度
综合例题
大筛机构 的自由度
F= 3n-2Pl-PH =37-29-1 =2=原动件数
§ 平面机构的自由度
C处为复合铰链 n = 5, PL = 7, PH = 0 F = 3n - 2PL– PH = 3×5 -2×7 – 0 = 1
惯性筛机构
一个移动副起约束作用,其余为虚约束。
◆计算中只计入一个移动副。
平面机构的自由度
虚约束常见情况及处理 4.机构中对运动不起独立作用的对称部分,将产生虚约束。
虚约束对机构运动虽然不 起作用,但可以增加构件的 刚性,改进受力,减少磨损, 因而在机构中经常出现。
例1.1 计算图示机构的自由度。
C
E
解:n = 4 、PL= 6 、 PH= 0
B
D
F = 3n–2PL–PH = 3×4–2×6–0
A
=0
(a)
A
D
E
解:n = 5 、PL= 7 、 PH= 0
G
F = 3n–2PL–PH
B
C
F
(b)
= 3×5–2×7–0
=1
例1.2 计算SSPU窗户开闭机构的自由度。 D E F
C
B A
解:n = 5 、PL= 7 、PH= 0
F = 3n–2PL–PH = 3×5–2×7–0
=1
例1.5 计算图示机构的自由度。
CDLeabharlann 解:A、B、D、E 为复合铰链
B
F = 3n–2PL–PH
= 3×7–2×10–0
E
=1
A
F
§ 平面机构的自由度
综合例题
大筛机构 的自由度
F= 3n-2Pl-PH =37-29-1 =2=原动件数
§ 平面机构的自由度
C处为复合铰链 n = 5, PL = 7, PH = 0 F = 3n - 2PL– PH = 3×5 -2×7 – 0 = 1
惯性筛机构
平面机构的自由度计算PPT课件
![平面机构的自由度计算PPT课件](https://img.taocdn.com/s3/m/4b2c44fbe2bd960591c67793.png)
5)画出各运动副和机 构符号,并表示出各构 件
齿轮10
自用盘编号JJ321002
精选ppt
(二)空间运动副
若两构件之间的相对运动均为空间运动,则 称为空间运动副。
自用盘编号JJ321002
螺旋副
精选ppt
球面副
15
§2.2 平面机构的运动简图
一、机构运动简图的概念
1、机构运动简图:用简单的线条和规定符号表 示构件和运动副,并按一定的比例确定运动副 的相对位置及与运动有关的尺寸,这种表明机 构组成和各构件间真实运动关系的简单的图形。
28
自用盘编号JJ321002
精选ppt
29
自用盘编号JJ321002
原动机
精选ppt
30
自用盘编号JJ321002
精选ppt
31
自用盘编号JJ321002
精选ppt
32
自用盘编号JJ321002
(二)绘机构运动简图的步骤
1)分析机构,观察相对运动,数清所有构件 的数目;
2)确定所有运动副的类型和数目;
精选ppt
18
自用盘编号JJ321002
3. 移动副
两构件组成移动副,其导路必须与相对移动 方向一致。
精选ppt
19
自用盘编号JJ321002
4. 平面高副
两构件组成平面高副时,其运动简图中应画出两构 件接触处的曲线轮廓,对于凸轮、滚子,习惯划出其 全部轮廓;对于齿轮,常用点划线划出其节圆。
精选ppt
精选ppt
5
自用盘编号JJ321002
运动副元素:两构件直接接触而构成运动副的点、 线、面部分。
例如:轴与轴承间构成运动副,轴的外圆柱面 与轴承内孔为运动副元素。凸轮与滚子间构成运动 副,凸轮与滚子接触部分为运动副元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算平面机构自由度时应注意的事项(2/8)
F=3n-(2pl+ph) =3×5-2×7 -0 =1
计算平面机构自由度时应注意的事项(3/8)
(2)同一运动副 如果两构件在多处 接触而构成运动副,且符合下列情况者, 则为同一运动副,即只能算一个运动副。
1)移动副,且移动方向彼此平行或 重合;
2)转动副,且转动轴线重合; 3)平面高副,且各接触点处的公法 线彼此重合。
No Image
No Image
四、机构
机构:具有确定相对运动并传递运动和力的运动链。 在运动链中,如果将某一个构件加以固定; 而让另一个或几个构件按给定运动规律相固定构件运动时
如果运动链中其余各构件都有确定的相对运动,
则此运动链成为机构。
2
C
B
1
3
4
A
D
机构的组成(14/14)
4.机构 具有固定构件的运动链称为机构。 机 架 ——机构中的固定构件。
闭式运动链(简称闭链) 开式运动链(简称开链)
2
3
1
4
2 3
1 4
平面闭式运动链 空间闭式运动链
23
1
4
平面开式运动链
4
3
5
2 1
空间开式运动链
三、运动链
运动链:两个或两个以上的构件通过运动副联接而构成的系统。 开式运动链:运动链的各构件未构成首末封闭的系统
闭式运动链:运动链的各构件构成首末封闭的系统
移动副
y
1
x
2
自由度数目 1
约束特点: Y方向移动 ,z方向转动
约束数目 2
机构的组成(7/14)
高副 两个独立相对运动。引入1个约束, 保留2个自由度
高副
n N t no2 t
2
1
Im 1 age
约束特点:n方向移动
自由度数目 约束数目
2
1
机构的组成(13/14)
3.运动链
构件通过运动副的连接而构成的相对可动的系统。
构件与零件的区别: 构件是运动单元体 零件是加工制造单元体
构件——运动单元体。
零件——制造单元体。
构件是由一个或若干个零件组成刚性系统。
固定构件——机架
构件
No
Image 活动构件
主动件 从动件
主动件(或原动件。)
作用有驱动力(矩)的活动构件称为
输入运动或动力的主动件称为输入件。 输出运动或动力的从动件称为输出件。
内N燃o机 Image
键 轴
齿轮
机构的组成(2/16)
空间运动: 6个自由度 一个自由构件
平面运动: 3个自由度
2.运动副
机构的组成(3/16)
运动副 是两构件直接接触而构成的可动连接;
运动副元素是两构件参与接触而构成运动副的表面。
约束 两构件上组成运动副时相对运动受到限制,这种对 独立运动的限制称约束
No Image
1
1
1
2
2
2
转动副
No Image
1
1
1
2
2
2
运动副——高副
No Image
No Image
转动副 一个独立相对运动。 引入2个约束,保留1个自由度
机构的组成(5/16)
转动副
y
x
2 1
约束特点: x,y方向移动
自由度数目 约束数目
1
2
移动副
机构的组成(6/16)
一个独立相对运动。引入2个约束, 保留1个自由度
复合铰链:A(2)
此机构能动,须给定一个原动件
5)
b) n=5 pl=6 ph=2 F=3n-(2pl+ph-p’)-F’ =3*5-(2*6+2)=1
E、B处为局部自由度
6)
n=5 pl=7 ph=0 F’=0 F=3n-(2pl+ph) =3*5-(2*7+0) =1
图上运动重复部分为虚约束
No Image
虚约束——机构中那些二对、构件虚间约的束相对运动不起独立限制
作用的重复约束。或称消极约束。
机构的虚约束
机构的虚约束2
B
2E
C
1 A5
4
3
F
D
AB CD EF
F=3×4-2×6=0 ? F=3×3-2×4=1
二、虚约束——种类
No Image
1.机构中联结构件与被联结构件的轨迹重合
B4
AD=BD=DC
第二章 平面机构的运动简图及其自由度
运动副及其分类 平面机构运动简图 平面机构的自由度
2020/9/10
返回
主要内容及目的是:
研究机构的组成及机构运动简图的画法; 了解机构具有确定运动的条件、进行机构自由度计算; 研究机构的组成原理及结构分类。
1.构件
§2-2 机构的组成
• 机器中每一个独立的运动 单元体称为构件
计算平面机构自由度时应注意的事项(5/8)
例2-8 滚子推杆凸轮机构 解 滚子绕其轴线的转动为一个局部自 由度,在计算机构自由度时,应将 F′从计算 公式中减去,即
F=3n-(2pl+ph)- F′ 故凸轮机构的自由度为
F=3×3-(2×3+1)-1=1
3.要除去虚约束
虚约束是指机构中某些运动副带入的对 机构运动起重复约束作用的约束,以 p′表 示。
1
No Image
C 4
5
A
D
E G
B
D
67
E
C
No Image
A
O
局部自由度
F H
虚约束
F=3×7-2×10=1
F=3×6-2×8-1=1
机构具有确定运动,因为主动件数等于机构自由度数F 。
3)内燃机机构 F=3n-(2pl+ph)
=3×6-2×7-3 =1
4)鄂式破碎机 F=3n-(2pl+ph)
平面运动链的自由度计算
机构自由度:机构中各活动构件相对于机架的可能独立运动 的数目。
讨论:
C
单个平面活动构件的自由度:F=3 3
两构件以运动副相联后自由度: D 4
B2 A1
低副(以转动副为例) 联接前:F=3×2=6
能动吗?
联接后:F=3×2-2×1=4
高副(以凸轮副为例)
联接前:F=3×2=6 联接后:F=3×2-1×1=5
4)凸轮机构
F=3n-(2pl+ph) =3×2-2×2 -1 =1
计算平面机构自由度时应注意的事项
1.要正确计算运动副的数目 (1)复合铰链 两个以上构件同时在一处以转 动副相联接就构成了复合铰链。
由m个构件组成的复合铰 链,共有(m-1)个转动副。
1
复合铰链数=构件数-1
1
2
3
2
3
一、复合铰链
No Image
3)平面运动副包括
和
,前者包括
和
。
4)平面低副引入 个约束,保留 个自由度;
平面高副引入 个约束,保留 个自由度。
5)平面机构具有确定运动条件是
。
2.机构自由度计算(指出复合铰链、局部自由度及虚约束,
1)
并判断确定运动条件)
复合铰链:C(3) 、 A(2)
n=7 pl=10 ph=0
F=3*7-(2*10+0)=1
原动件 ——按给定已知运动规律 独立运动的构件;常以转向箭头表示。
2 从动件
3 4
1原动件
机架 平面铰链四杆机构
从动件 ——机构中其余活动构件。原动件 其运动规律决定于原动件的运动规律
2
和机构的结构及构件的尺寸。
1
机构常分为平面机构和空间机构 两类,其中平面机构应用最为广泛。
机架
3 从动件
4
空间铰链四杆机构
一、平面运动链的自由度计算公式
No Image
n——活动构件数 Pl——低副数 Ph——高副数
分析: 两杆(如门、风扇)
F=3×1-2×1=1 F=原动件数,∴运动确定
§2-5 机构自由度的计算
平面机构自由度计算公式:
F = 3n - 2Pl - Ph
F - 机构自由度; n - 机构中活动构件数 P - 机构中低副的数目
例2-9 平行四边形四杆机构
F=3n-(2pl+ph)- F′ =3×3-(2×4+0)-0=1
计算平面机构自由度时应注意的事项(6/8)
当增加一个构件5和两个转动副E、F,且BE∥= AF,则 F=3n-(2pl+ph)- F′ =3×4-(2×6+0)-0=0
原因:构件5 和两个转动副E、F 引入的一个约束为虚约束。
?
F=3×3-2×3-2=1
A 1
3D
4.在机构整个运动过程中,其中某两构件上两点之间的距离
ห้องสมุดไป่ตู้
始终不变。
B2
1 5
A
C D3
AB=CD, BC=EF, BE=CF,
F=3×4-2×6=0 ? F=3×3-2×4=1
4
AE=DF。
F
E
二、虚约束——种类
5.机构中,不影响运动的对称部分。
No Image
l P - 机构高副数目
h
举例 1)铰链四杆机构 F=3n-(2pl+ph)
=3×3-2×4 -0 =1
2)铰链五杆机构 F=3n-(2pl+ph)
=3×4-2×5 -0 =2
机构自由度的计算(2/7)
2
3
1
4
3
2
4
1
5
3)曲柄滑块机构
F=3n-(2pl+ph) =3×3-2×4 -0 =1