华师大版八下203菱形的判定同步习题精选2套
最新华东师大版八年级下册数学《菱形的性质》同步练习题及答案.docx
(新课标)2017-2018学年华东师大版八年级下册第19章矩形、菱形与正方形 19.2 菱形 19.2.1菱形的性质同步练习题1.如图,在菱形ABCD中,∠BAD=120°.若△ABC的周长是15,则菱形ABCD的周长是( )A.25 B.20 C.15 D.102.如图,在平面直角坐标系中,菱形OABC的顶点C的坐标是(3,4),则顶点A,B 的坐标分别是( )4)3.已知菱形的周长为20 cm,两个邻角的比是1∶2,这个菱形较短的对角线的长是____cm.4.已知四边形ABCD是菱形,DE⊥AB于点E,DF⊥BC于点F.求证:△ADE≌△CDF.5.菱形具有而一般平行四边形不具有的性质是( )A.对边相等 B.对角相等C.对角线互相平分 D.对角线互相垂直6.如图,在菱形ABCD中,AC与BD相交于点O,AC=8,BD=6,则菱形的边长AB等于( )A.10 B.7 C.6 D.57.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=____.8.如图,菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.9.菱形既是图形,又是图形.10.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A 的纵坐标是1,则点B的坐标是( )A.(3,1) B.(3,-1) C.(1,-3) D.(1,3)11.如图,在菱形ABCD中,BE⊥AD,BF⊥CD,E,F为垂足,AE=ED,则∠EBF等于( )A.75° B.60° C.50° D.45°12.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为____.13.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连结OE. 求证:OE =BC.14.如图,在菱形ABCD中,过AD的中点E作AC的垂线EF,交AB于点M,交CB 的延长线于点F.如果FB的长是2,求菱形ABCD的周长.15.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )A.1 B.2 C.3 D.416.在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.答案:1. B2. D3. 54. 由AAS 可证△ADE ≌△CDF5. D6. D7. 1258. 1)∵四边形ABCD 是菱形,∴AB 綊CD ,又∵BE =AB ,∴BE 綊CD ∴四边形BECD 是平行四边形,∴BD =EC (2)∵四边形BECD 是平行四边形,∴BD ∥CE ,∴∠ABO =∠E =50°,又∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠BAO =90°-∠ABO =40°9. 轴对称中心对称10. B11. B12. -613. ∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,DC=BC,∴四边形OCED是矩形,∴DC=OE,∴OE=BC14. 连结BD,∵在菱形ABCD中,∴AD∥BC,AC⊥BD,又∵EF⊥AC,∴BD∥EF,∴四边形EFBD为平行四边形,∴FB=ED=2,∵E是AD的中点,∴AD=2ED=4,∴菱形ABCD的周长为4×4=1615. C16. (1)连结AC,∵四边形ABCD是菱形,∴AB=BC=CD,∵∠B=60°,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∵∠AEF=60°,∴∠FEC=90°-60°=30°,∵∠C=180°-∠B=120°,∴∠EFC=30°,∴∠FEC=∠EFC,∴CE=CF,∵BC=CD,∴BC-CE=CD-CF,即BE=DF(2)连结AC,由(1)得△ABC是等边三角形,∴AB=AC,∵∠BAE+∠EAC=60°,∠EAF=∠CAF+∠EAC=60°,∴∠BAE=∠CAF,∵四边形ABCD是菱形,∠B=60°,∴∠ACF=12∠BCD=∠B=60°,∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF是等边三角形。
华师大版初中数学八年级下册《19.2.1 菱形的性质》同步练习卷(含答案解析
华师大新版八年级下学期《19.2.1 菱形的性质》同步练习卷一.选择题(共15小题)1.用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是()A.90°B.60°C.45°D.30°2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A.4cm B.5cm C.6cm D.8cm3.菱形的周长为4,两个相邻内角度数为1:2,则该菱形的面积为()A.B.C.2D.24.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为()A.10°B.15°C.20°D.30°5.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分6.某课外小组设计了一个菱形挂钟.如图,菱形的边长为12厘米,时钟的中心在菱形的交点上,∠ADC=120°,数字3,6,9,12分别在四个顶点ABCD上,则数字1的位置与D点的距离为()A.3厘米B.4厘米C.3厘米D.6厘米7.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1B.C.2D.28.如图,在菱形ABCD中,∠B=100°,O是对角线AC的中点,过点O作MN⊥AD交AD于点M,交BC于点N,则下列结论错误的是()A.∠ACD=40°B.OM=ON C.AM+BN=AB D.MN=AC 9.如果菱形的两条对角线长分别为3和4,那么这个菱形的面积是()A.12B.6C.5D.710.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°11.如图所示,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC 的中点,在下列结论中错误的是()A.S△ADE=S△EODB.四边形BFDE是中心对称图形C.△DEF是轴对称图形D.∠ADE=∠EDO12.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别平行B.两组对边分别相C.一组邻边相等D.对角线互相平分13.在菱形ABCD中,∠ABC=60°,E是AD的中点,点P在对角线BD上,PE⊥AD,若BD=12cm,则PE的长为()A.cm B.2cm C.cm D.3cm14.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°15.如图,一张平行四边形纸片,AB>BC,点E是AB上一点,且EF∥BC,若沿EF剪开,能得到两张菱形纸片,则AB与BC间的数量关系为()A.AB=2BC B.AB=3BC C.AB=4BC D.不能确定二.填空题(共22小题)16.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.17.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=.18.如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=s时,△PAB为等腰三角形.19.如图,菱形ABCD中,AB=5,BD=8,则菱形ABCD的面积为.20.菱形的面积是16,一条对角线长为4,则另一条对角线的长为.21.如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为.22.菱形ABCD的周长为52cm,它的一条对角线长10cm,则另一条对角线的长是.23.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.24.如图,菱形ABCD中,点E是AD的中点,连接CE,并延长CE与BA的延长线相交于点F.若∠BCF=90°,则∠D的度数为.25.如图,菱形ABCD落在平面直角坐标系中,其中A点坐标(0,4),D点坐标(﹣3,0),则C点坐标是.26.如图,在菱形ABCD中,对角线BD=10,E点在BD上,且AE=BE=3,那么这个菱形的边长等于.27.如图,菱形ABCD的周长为8,两邻角的比为2:1,则对角线的长分别为.28.已知菱形的周长为40,两条对角线长度之比为3:4,那么对角线的长度分别为.29.如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为.30.若菱形的周长是20cm,相邻的两个内角的度数比是1:2,那么菱形中较短的一条对角线的长是cm.31.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.32.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上,且BE=BO,则∠EOA=度.33.如图,菱形ABCD的边长为cm,菱形的四个顶点正好能放在间隔距离(相邻两条平行线间的距离)为1cm的一组平行线上,则菱形的面积为cm2.34.如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是.35.学校植物园沿路护栏的纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示,已知每个菱形图案的边长为cm,其中一个内角为60°.若d=26,该纹饰要用231个菱形图案,则纹饰的长度L=cm.36.如图所示,两个全等的菱形边长为1m,一个微型机器人由A点开始按ABCDEFCGA…的顺序沿菱形的边循环运动,行走2011m停下,则这个微型机器人停在点.37.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是.三.解答题(共13小题)38.如图,在菱形ABCD中,点E为AB的中点,请只用无刻度的直尺作图(1)如图1,在CD上找点F,使点F是CD的中点;(2)如图2,在AD上找点G,使点G是AD的中点.39.(1)如图1,四边形ABCD是平行四边形,E为BC上任意一点,请仅用无刻度直尺,在边AD上找点F,使DF=BE.(2)如图2,四边形ABCD是菱形,E为BC上任意一点,请仅用无刻度直尺,在边DC上找点M,使DM=BE.40.如图所示,在菱形ABCD中,∠BAD=120°,AB=4.求:菱形ABCD对角线AC,BD的长.41.如图,菱形ABCD中,对角线AC、BD交于点O,AC=24,BD=10,DE⊥AB于E,(1)求菱形ABCD的周长;(2)求菱形ABCD的面积;(3)求DE的长.42.如图所示,在菱形ABCD中,∠BAD=120°,AB=4.求:(1)对角线AC,BD的长;(2)菱形ABCD的面积.43.如图,菱形ABCD的周长为48cm,它的一条对角线BD长12cm.(1)求菱形的每一个内角的度数.(2)求菱形另一条对角线AC的长.44.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.45.如图,菱形ABCD的边长为12cm,∠B=60°,从初始时刻开始,点P、Q同时从A点出发,点P以2cm/秒的速度沿A→C→B的方向运动,点Q以4cm/秒的速度沿A→B→C→D的方向运动,当Q点运动点D点时,P、Q两点同时停止运动.设P、Q运动的时间为x秒时,解答下列问题:(1)点P、Q从出发到相遇所用时间是秒;(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时,请求此时x的值是多少秒?46.如图,四边形ABCD是菱形,对角线AC=24,BD=10,过O作OH⊥AB,垂足为H.(1)求菱形ABCD的面积;(2)求OH的长.47.如图所示,在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF(1)AE和AF有何数量关系?证明你的结论.(2)过点C作CG∥EA交AF于点H,交AD于点G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数.48.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.49.如图,在菱形ABCD中,P是AB上的一个动点(不与A,B重合),连接DP 交对角线AC于E,连接EB.求证:∠APD=∠EBC.50.如图,已知两个菱形ABCD、CEFG,其中点A、C、F在同一直线上,连接BE、DG.(1)在不添加辅助线时,写出其中的两对全等三角形;(2)证明:BE=DG.华师大新版八年级下学期《19.2.1 菱形的性质》同步练习卷参考答案与试题解析一.选择题(共15小题)1.用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是()A.90°B.60°C.45°D.30°【分析】根据菱形的判定方法即可解决问题;【解答】解:如图,∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∴当AC⊥BD时,四边形ABCD是菱形,故选:A.【点评】本题考查菱形的判定,解题的关键是熟练掌握类型的判定方法,属于中考常考题型.2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A.4cm B.5cm C.6cm D.8cm【分析】由菱形ABCD的周长为48cm,根据菱形的性质,可求得AD的长,AC ⊥BD,又由E是AD的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OE的长.【解答】解:∵菱形ABCD的周长为48cm,∴AD=12cm,AC⊥BD,∵E是AD的中点,∴OE=AD=6(cm).故选:C.【点评】此题考查了菱形的性质以及直角三角形斜边的中线的性质.此题难度不大,注意掌握数形结合思想的应用.3.菱形的周长为4,两个相邻内角度数为1:2,则该菱形的面积为()A.B.C.2D.2【分析】求出两对角线的长度,然后根据菱形的面积等于对角线乘积的一半进行计算即可求解.【解答】解:如图,AB=4÷4=1,∵两个相邻内角的度数的比为1:2,∴∠BAD=×180°=60°,∴△ABD是等边三角形,∴BD=AB=1,∴BO=×1=,在Rt△ABO中,AO===,∴AC=2AO=,∴菱形的面积为:AC•BD=×1×=故选:A.【点评】本题考查了菱形的对角线互相垂直平分的性质,以及菱形的四条边都相等的性质,根据度数求出以较短的对角线BD为边的三角形是等边三角形是解题的关键.4.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为()A.10°B.15°C.20°D.30°【分析】根据菱形的性质,已知菱形的对角相等,故推出∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB,∠ADE=∠AED,易得解.【解答】解:根据菱形的对角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根据折叠得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°﹣∠DAE)÷2=55°.∴∠EDC=70°﹣55°=15°.故选:B.【点评】此题要熟练运用菱形的性质得到有关角和边之间的关系.在计算的过程中,综合运用了等边对等角、三角形的内角和定理以及平行线的性质.注意:折叠的过程中,重合的边和重合的角相等.5.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分【分析】由菱形的对角线互相平分且垂直,可得菱形对角线所在直线是对称轴,继而求得答案.【解答】解:∵菱形对角线具有的性质有:对角线互相垂直,对角线互相平分,∴对角线所在直线是对称轴.故A,B,D正确,C错误.故选:C.【点评】此题考查了菱形的性质.注意菱形的对角线互相平分且垂直.6.某课外小组设计了一个菱形挂钟.如图,菱形的边长为12厘米,时钟的中心在菱形的交点上,∠ADC=120°,数字3,6,9,12分别在四个顶点ABCD上,则数字1的位置与D点的距离为()A.3厘米B.4厘米C.3厘米D.6厘米【分析】设时钟的中心为O点,数字1所在的位置是E点,连结AC、OD、OE,根据菱形的性质得出∠ODC=∠ODE=∠ADC=60°,OD⊥AC,∠DOE=∠AOD=30°.解Rt△ODC求出OD=CD=6cm,解Rt△ODE,求出DE=OD=3cm.【解答】解:设时钟的中心为O点,数字1所在的位置是E点,连结AC、OD、OE.∵四边形ABCD是菱形,∴∠ODC=∠ODE=∠ADC=60°,OD⊥AC,∠DOE=∠AOD=30°.∵在Rt△ODC中,∠COD=90°,∠OCD=30°,∴OD=CD=6cm.∵在Rt△ODE中,∠OED=180°﹣∠DOE﹣∠ODE=180°﹣30°﹣60°=90°,∠DOE=30°,∴DE=OD=3cm.故选:A.【点评】本题考查了菱形的性质,含30°角的直角三角形的性质,求出∠OED=90°是解题的关键.7.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1B.C.2D.2【分析】利用菱形的性质以及等边三角形的判定方法得出△DAB是等边三角形,进而得出BD的长.【解答】解:∵菱形ABCD的边长为2,∴AD=AB=2,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=2,则对角线BD的长是2.故选:C.【点评】此题主要考查了菱形的性质以及等边三角形的判定,得出△DAB是等边三角形是解题关键.8.如图,在菱形ABCD中,∠B=100°,O是对角线AC的中点,过点O作MN⊥AD交AD于点M,交BC于点N,则下列结论错误的是()A.∠ACD=40°B.OM=ON C.AM+BN=AB D.MN=AC【分析】根据菱形的性质,对角线互相平分且垂直,各边平行且相等,然后判断各选项即可.【解答】解:∵AB∥CD,∠B=100°,∴∠BCD=80°,∴∠BCA=∠DAC=40°,连接BD,如下图所示:∵在△DOM和△BON中,,∴△DOM≌△BON(AAS),∴OM=ON,DM=BN,∴AM+BN=AB,∵M不是AD的中点,∴MN≠AC,∴选项D是错误的,故选:D.【点评】本题考查菱形的性质,难度适中,解题关键是熟练掌握菱形的性质并灵活运用.9.如果菱形的两条对角线长分别为3和4,那么这个菱形的面积是()A.12B.6C.5D.7【分析】根据菱形面积=ab.(a、b是两条对角线的长度),求出即可.【解答】解:∵菱形的两条对角线长分别为3和4,∴这个菱形的面积是:×3×4=6.故选:B.【点评】此题主要考查了菱形的性质,熟练根据菱形对角线求面积公式是解题关键.10.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.11.如图所示,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC 的中点,在下列结论中错误的是()A.S△ADE=S△EODB.四边形BFDE是中心对称图形C.△DEF是轴对称图形D.∠ADE=∠EDO【分析】由O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点,易证得四边形BFDE是菱形,△DEF是等腰三角形,即可判定B,D正确;又由等底等高三角形的面积相等,即可判定A正确,继而求得答案.【解答】解:A、∵E是OA的中点,∴AE=OE,∵△ADE与△EOD等高,∴S=S△EOD,△ADE故本选项正确;B、∵四边形ABCD是菱形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OF,∴四边形BFDE是平行四边形,∴四边形BFDE是中心对称图形;故本选项正确;C、∵OE=OF,AC⊥BD,∴△DEF是等腰三角形,∴△DEF是轴对称图形;故本选项正确;D、∵AD>OD,AE=OE,∴∠ADE≠∠ODE,故本选项错误.故选:D.【点评】此题考查了菱形的性质与判定、轴对称性与中心对称性.此题难度适中,注意掌握数形结合思想的应用.12.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别平行B.两组对边分别相C.一组邻边相等D.对角线互相平分【分析】对菱形和平行四边形的性质进行比较从而得到最后答案.【解答】解:根据菱形的性质及平行四边形的性质进行比较,发现只有一组邻边相等只有菱形具有平行四边形不具有,故选:C.【点评】此题主要考查了菱形的性质及平行四边形的性质,属于基础题,要注意掌握一些图形的基本性质.13.在菱形ABCD中,∠ABC=60°,E是AD的中点,点P在对角线BD上,PE⊥AD,若BD=12cm,则PE的长为()A.cm B.2cm C.cm D.3cm【分析】连接AC,则可判定△ADC是等边三角形,然后可得出AD、ED的长度,继而在Rt△PED中可求出PE的长.【解答】解:由题意得,四边形ABCD是菱形,∠ABC=60°,故可得△ADC是等边三角形,OD=OB=BD=6cm,在RT△AOD中,AD===4,又∵E是AD的中点,∴AE=ED=AD=2cm,在RT△PED中,PE=EDtan∠ADB=2×=2cm.故选:B.【点评】本题考查了菱形的性质、等边三角形的判定与性质,利用菱形的对角线平分一组对角的性质求解,熟练掌握菱形的性质是解题的关键.14.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°【分析】先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.【解答】解:在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO=∠BAD=×50°=25°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.故选:B.【点评】本题主要考查了菱形的邻角互补,每一条对角线平分一组对角的性质,直角三角形两锐角互余的性质,熟练掌握性质是解题的关键.15.如图,一张平行四边形纸片,AB>BC,点E是AB上一点,且EF∥BC,若沿EF剪开,能得到两张菱形纸片,则AB与BC间的数量关系为()A.AB=2BC B.AB=3BC C.AB=4BC D.不能确定【分析】根据菱形四边相等的性质,可得出AE=AD=BC=EB,从而可得出AB与BC 的关系.【解答】解:∵菱形的四边相等,∴AE=AD=BC=EB,即可得出AB=AE+EB=2BC.故选:A.【点评】本题考查菱形的性质及平行四边形的性质,属于基础知识的考察,关键是掌握平行四边形的对边相等及菱形的四边相等的性质.二.填空题(共22小题)16.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为52.【分析】根据菱形的对角线互相垂直平分,可知AO和BO的长,再根据勾股定理即可求得AB的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC=10,BD=24,菱形对角线互相垂直平分,∴AO=5,BO=12cm,∴AB==13,∴BC=CD=AD=AB=13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB的值是解题的关键.17.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=.【分析】先根据菱形的性质得OA=OC=4,OB=OD=3,AC⊥BD,再利用勾股定理计算出AB=5,然后根据菱形的面积公式得到•AC•BD=DH•AB,再解关于DH 的方程即可.【解答】解:∵四边形ABCD是菱形,∴OA=OC=4,OB=OD=3,AC⊥BD,在Rt△AOB中,AB==5,∵S=•AC•BD,菱形ABCDS菱形ABCD=DH•AB,∴DH•5=•6•8,∴DH=.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.18.如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=5或8或s时,△PAB为等腰三角形.【分析】求出BA的值,根据已知画出符合条件的三种情况:①当PA=AB=5cm时,②当P和C重合时,PB=AB=5cm,③作AB的垂直平分线交AC于P,此时PB=PA,连接PB,求出即可.【解答】解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,∴AC⊥BD,AO=OC=4cm,BO=OD=3cm,由勾股定理得:BC=AB=AD=CD=5cm,分为三种情况:①如图1,当PA=AB=5cm时,t=5÷1=5(s);②如图2,当P和C重合时,PB=AB=5cm,t=8÷1=8(s);③如图3,作AB的垂直平分线交AC于P,此时PB=PA,连接PB,在Rt△BOP中,由勾股定理得:BP2=BO2+OP2,AP2=32+(4﹣AP)2,AP=;t=÷1=(s),故答案为:5或8或.【点评】本题考查了菱形性质和等腰三角形的判定的应用,主要考查学生能否求出符合条件的所有情况.19.如图,菱形ABCD中,AB=5,BD=8,则菱形ABCD的面积为24.【分析】由菱形ABCD的对角线AC=6,BD=8,根据菱形的面积等于其对角线乘积的一半,即可求得菱形ABCD的面积.【解答】解:∵菱形ABCD的对角线AC=6,BD=8,∴菱形ABCD的面积为:AC•BD=×6×8=24.故答案为:24.【点评】此题考查了菱形的性质.解此题的关键是掌握菱形的面积等于其对角线乘积的一半定理的应用.20.菱形的面积是16,一条对角线长为4,则另一条对角线的长为8.【分析】根据菱形的面积=对角线乘积的一半,即可得出另一条对角线的长.【解答】解:设另一条对角线为x,由题意得,×x×4=16,解得:x=8.故答案为:8.【点评】本题考查了菱形的性质,属于基础题,注意掌握菱形的面积=对角线乘积的一半.21.如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为18.【分析】根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律不难求得第6个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=2,∴BM=1,∴AM==,∴AC=2AM=2,同理可得AC1=AC=6,AC2=AC1=6,AC3=AC2=18,AC4=AC3=18.故答案为:18.【点评】本题考查了菱形的性质,勾股定理,等边三角形的性质和判定的应用,解此题的关键是能根据求出的结果得出规律.22.菱形ABCD的周长为52cm,它的一条对角线长10cm,则另一条对角线的长是24.【分析】先由菱形ABCD的周长求出边长,再根据菱形的性质求出OA,然后由勾股定理求出OB,即可得出BD.【解答】解:如图所示:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,OA=AC=5,OB=BD,∵菱形ABCD的周长为52cm,∴AB=13,在Rt△AOB中,根据勾股定理得:OB===12,∴BD=2OB=24.故答案为:24.【点评】本题考查了菱形的性质以及勾股定理的运用;熟练掌握菱形的性质和运用勾股定理计算是解决问题的关键.23.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF 是等边三角形,再利用菱形的边长为4求出时间t的值.【解答】解:延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°∴AB=AD,∠A=60°,∵BM=AE,∴AD=ME,∵△DEF为等边三角形,∴∠DAE=∠DFE=60°,DE=EF=FD,∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,∴∠MEF=∠ADE,∴在△DAE和△EMF中,∴△DAE≌EMF(SAS),∴AE=MF,∠M=∠A=60°,又∵BM=AE,∴△BMF是等边三角形,∴BF=AE,∵AE=t,CF=2t,∴BC=CF+BF=2t+t=3t,∵BC=4,∴3t=4,∴t=故答案为:.或连接BD.根据SAS证明△ADE≌△BDF,得到AE=BF,列出方程即可.【点评】本题主要考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质等知识,解题的关键是运用三角形全等得出△BMF是等边三角形.24.如图,菱形ABCD中,点E是AD的中点,连接CE,并延长CE与BA的延长线相交于点F.若∠BCF=90°,则∠D的度数为60°.【分析】首先连接AC.由条件易得AE垂直平分CF,则AC=AF,易证得△AEF≌△DEC,则可得△ACD为正三角形,故∠D=60°.【解答】解:连接AC,∵四边形ABCD是菱形,∴AD∥BC,AD=AC,∵∠BCF=90°,∴∠AEF=∠BCF=90°,即AD⊥CF,∵点E是AD的中点,∴AC=AF,∵AB∥CD,∴∠F=∠DCE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴CD=AF,∴AC=AD=CD,∴∠D=60°.故答案为:60°.【点评】此题考查了菱形的性质、全等三角形的判定与性质以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.25.如图,菱形ABCD落在平面直角坐标系中,其中A点坐标(0,4),D点坐标(﹣3,0),则C点坐标是(2,0).【分析】根据勾股定理得出AD的长,再利用菱形的性质得出CD的长,即可得出C点坐标.【解答】解:∵A点坐标(0,4),D点坐标(﹣3,0),∴AO=4,DO=3,∴AD=5,∴CD=5,则OC=2,∴C点坐标是:(2,0).故答案为:(2,0).【点评】此题主要考查了菱形的性质以及勾股定理等知识,得出CD的长是解题关键.26.如图,在菱形ABCD中,对角线BD=10,E点在BD上,且AE=BE=3,那么这个菱形的边长等于.【分析】首先连接AC,得出BO的长以及EO的长,再利用勾股定理得出AO的长,进而利用勾股定理得出AB的长.【解答】解:连接AC,∵在菱形ABCD中,对角线BD=10,∴AC⊥BD,BO=5,∵AE=BE=3,∴EO=2,∴AO==,∴AB==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理等知识,得出AO的长是解题关键.27.如图,菱形ABCD的周长为8,两邻角的比为2:1,则对角线的长分别为2和2.【分析】依题意,根据菱形的性质首先求出边长,然后推出对角线与菱形的两边构成的三角形为等边三角形,最后可解答.【解答】解:∵菱形的周长为8,∴菱形的边长是:8×=2,∵两个邻角的比是1:2,∴较大的角是120°,较小的角是60°,∴这个菱形的对角线AC所对的角是60°,由菱形的性质得到,AC与菱形的两边构成的三角形是等边三角形,∴AC=2,BD=2××tan60°=2.故答案为:2和2.【点评】本题考查菱形性质的运用,属于基础题目,根据菱形的性质求出菱形的边长,然后根据等边三角形的性质求解.28.已知菱形的周长为40,两条对角线长度之比为3:4,那么对角线的长度分别为12,16.【分析】首先根据题意画出图形,然后设OA=3x,OB=4x,由菱形的性质,可得方程:102=(3x)2+(4x)2,继而求得答案.【解答】解:如图,∵菱形的周长为40,∴AB=10,OA=AC,OB=BD,AC⊥BD,∵两条对角线长度之比为3:4,∴OA:OB=3:4,设OA=3x,OB=4x,在Rt△AOB中,AB2=OA2+OB2,∴102=(3x)2+(4x)2,解得:x=2,∴OA=6,OB=8,∴AC=12,BD=16,∴对角线的长度分别为:12,16.故答案为:12,16.【点评】此题考查了菱形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想与方程思想的应用.29.如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为8a.【分析】根据已知可得菱形性质和直角三角形斜边上的中线等于斜边的一半可以求得AB=2OE,从而不难求得其周长.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,又∵点E是AB的中点,∴AB=20E,则菱形ABCD的周长为8a.故答案为:8a.【点评】此题主要考查学生对菱形的性质及中位线的性质的理解及运用,属于基础题.30.若菱形的周长是20cm,相邻的两个内角的度数比是1:2,那么菱形中较短的一条对角线的长是5cm.【分析】由已知可求得较短的对角线与菱形的一组邻边组成一个等边三角形,从而得到较短的对角线的长等于其边长.【解答】解:如图,AB=20÷4=5cm,∵两个相邻内角的度数的比为1:2,∴∠BAD=×180°=60°,∴△ABD是等边三角形,∴BD=AB=5cm,∴BO=×10=cm,∴BD=5cm,在Rt△ABO中,AO==cm,∴AC=2AO=2×=5cm,∴菱形中较短的一条对角线的长是5cm.故答案为5.【点评】此题主要考查菱形的性质及等边三角形的判定的理解及运用,难度一般,如果不熟练菱形的性质,解答本题的时候可以先画出草图.31.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=cm.【分析】根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.【解答】解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,。
八年级数学下册菱形同步练习、含答案2(含答案)
菱形班级:___________________________姓名:___________________________作业导航理解并掌握菱形的性质及判别方法,会利用菱形的性质和判别方法进行推理说明和有关计算.一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2 B.336 cm2 C.672 cm2 D.84 cm24.菱形的周长为16,两邻角度数的比为1:2,此菱形的面积为()A.43B.83C.103D.1235.下列语句中,错误的是()A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到二、填空题6.菱形的周长是8 cm,则菱形的一边长是______.7.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为______.8.菱形的对角线的一半的长分别为8 cm和11 cm,则菱形的面积是_______.9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.10.菱形的面积为83平方厘米,两条对角线的比为1:3,那么菱形的边长为_______.三、解答题11.如图,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.12.□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,四边形AFCE 是否是菱形?为什么?13.菱形ABCD的周长为20 cm,两条对角线的比为3:4,求菱形的面积.14.如图,菱形ABCD的对角线AC、BD交于点O,且AC=16 cm,BD=12 cm,求菱形ABCD的高DH.参考答案一、1.C2.D3.B4.B5.D二、6.2 cm7.44厘米8.176 cm29.8 cm 5 cm10.4 cm三、11.四边形AEDF是菱形,AE=E D.12.□AFCE是菱形,△AOE≌△COF,四边形AFCE是平行四边形,EF⊥AC13.24 cm214.9.6 cm。
菱形 华东师大版八年级下册同步练习(含答案) (2)
【精编】初中数学华东师范大学八年级下册第十九章19.2.1.菱形的性质同步练习一、单选题1.下列性质中,矩形具有而菱形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边相等2.在平面直角坐标系内,点O是原点,点A的坐标是(3,4),点B的坐标是(3,﹣4),要使四边形AOBC是菱形,则满足条件的点C的坐标是()A.(﹣3,0)B.(3,0)C.(6,0)D.(5,0)3.正方形具有而菱形不具有的性质是()A.对角相等B.对角线互相平分C.对角线相等D.四条边都相等4.菱形的两条对角线长分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm5.下列命题错误..的是()A.平行四边形的对边平行且相等B.矩形的四条边均相等C.菱形的对角线互相垂直D.正方形的四个内角均为90°6.如图,菱形花坛ABCD的面积为12平方米,其中沿对角线AC修建的小路长为4米,则沿对角线BD修建的小路长为()A.6米B.3米C.8米D.10米7.有下列说法:①平行四边形既是中心对称图形,又是轴对称图形;②正方形有四条对称轴;③平行四边形相邻两个内角的和等于180°;④菱形的面积计算公式,除了“ S菱形=底×高”之外,还有“ S菱形=两对角线之积”;⑤矩形和菱形均是特殊的平行四边形,因此具有平行四边形的所有性质.其中正确的结论的个数有()A.1B.2C.3D.4 8.为了说明各种三角形之间的关系,小敏画了如下的结构图(如图1).小聪为了说明“A.正方形;B.矩形;C.四边形;D.菱形;E.平行四边形”这五个概念之间的关系,类比小敏的思路,画了如下结构图(如图2),则在用“①、②、③、④”所标注的各区域中,正确的填法依次是()(用名称前的字母代号表示)A.C,E,B,D B.E,C,B,D C.E,C,D,B D.E,D,C,B二、填空题9.如图,菱形ABCD中,∠A=60°,BD=6,则菱形ABCD的周长为.10.菱形ABCD的一条对角线长为6,边AB的长是方程的解,则菱形ABCD 的周长为.11.已知菱形的面积为16,一条对角线长为16,那么这个菱形的另一条对角线长为.12.如图,菱形ABCD中,已知∠D=110°,则∠BAC的度数为.13.如图,在菱形ABCD中,AC、BD交于点O,BC=5,若DE∠AC,CE∠BD,则OE的长为.14.在∠ABCD中,连接BD,作AE∠BD于E,CF∠BD于F,连接CE、AF,点P、Q 在线段BD上,且BP=DQ,连接处AP、CP、AQ、CQ,那么图中共有个平行四边形(除∠ABCD外),它们是.三、解答题15.如图,在□ABCD中,点E、F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF16.已知:如图,四边形DEBF是平行四边形,且AE=CF.求证:四边形ABCD是平行四边形.17.如图,在∠ABC中,点D,E,F分别在AB,AC,BC边上,若四边形DEFB为菱形,且AB=8,BC=12,求菱形DEFB的边长.参考答案与试题解析1.【答案】A2.【答案】C3.【答案】C4.【答案】B5.【答案】B6.【答案】A7.【答案】C8.【答案】A9.【答案】2410.【答案】1611.【答案】212.【答案】35°13.【答案】514.【答案】2;∠AECF,∠APCQ15.【答案】解:连接BE、DF,∵四边形ABCD是平行四边形,∴AD∠BC,AD=BC,又∵AE=CF,∴DE∠BF,DE=BF,∴四边形BEDF是平行四边形,∴OE=OF.16.【答案】解:连接BD,交AC于O,如图所示:∵四边形DEBF是平行四边形.∴OE=OF,BO=DO.∵AE=CF,∴OE+AE=OF+CF.∴AO =CO .∴四边形ABCD 是平行四边形.17.【答案】解:设菱形DEFB 的边长为x , ∵四边形DEFB 是菱形,∴BD=DE=BF=x ,DE∠BF ,∴∠ADE∠∠ABC ,∴DE BC = AD AB, ∵AB=8,BC=12,∴x 12 = 8−x 8, 解得:x= 245, 即菱形DEFB 的边长为 245。
华师大版八年级数学下册:19.2.1《菱形的判定》同步训练(含答案)
19.2.1菱形的判定农安县合隆中学徐亚惠一.选择题(共6小题)1.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),四边形ABCD是()A.矩形 B.菱形 C.正方形D.梯形2.如图,在矩形ABCD中,E,F分别是AD,BC中点,连接AF,BE,CE,DF分别交于点M,N,四边形EMFN 是()A.正方形B.菱形 C.矩形 D.无法确定3.下列说法正确的是()A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线相互垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形4.如图,在平行四边形ABCD中,添加下列条件不能判定平行四边形ABCD是菱形的是()A.AB=BC B.AC⊥BD C.BD平分∠ABC D.AC=BD5.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.矩形的对角线一定互相垂直D.四条边相等的四边形是菱形6.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直二.填空题(共7小题)7.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是_________ (写出一个即可).8.已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是_________ .9.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是_________ (只填写序号).10.如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD= _________ ,平行四边形CDEB为菱形.11.如图,在平行四边形ABCD中,请再添加一个条件,使它成为菱形,则该条件可以是_________ .12.如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.其中,正确的有_________ (只填写序号)..13.在四边形ABCD中,AB=CD,AD=BC,那么再加上条件_________ ,此四边形就成为菱形(填上一个正确的条件即可).三.解答题(共7小题)14.如图:在▱ABCD中,AC为其对角线,过点D作AC的平行线与BC的延长线交于E.(1)求证:△ABC≌△DCE;(2)若AC=BC,求证:四边形ACED为菱形.15.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.16.如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.17.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.。
华师大版八年级数学初二下册:菱形同步练习 含答案
菱形班级:________ 姓名:________一、选择题1.下列命题中,真命题是( )A .对角线互相垂直且相等的四边形是菱形B .对角线互相垂直的平行四边形是菱形C .对角线互相平分且相等的四边形是菱形D .对角线相等的四边形是菱形2.菱形的周长为12cm ,相邻两角之比为5:1,那么菱形对边间的距离是( ) A .6cm B .1.5cm C .3cm D .0.75cm3.在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,且E 、F 分别为BC 、CD 的中点,(如图1)则∠EAF 等于( )A .75°B .60°C .45°D .30°图1 图24.已知菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24,且AE =6,则菱形的边长为( ) A .12 B .8 C .4 D .2 5.菱形的边长是2 cm ,一条对角线的长是23 cm ,则另一条对角线的长是( ) A .4cmB .3cmC .2cmD .23cm二、判断正误:(对的打“√”错的打“×”) 1.两组邻边分别相等的四边形是菱形.…………………………………………………( ) 2.一角为60°的平行四边形是菱形.…………………………………………………( ) 3.对角线互相垂直的四边形是菱形.……………………………………………………( ) 4.菱形的对角线互相垂直平分.…………………………………………………………( )三、填空题1.如图3,菱形ABCD 中,AC 、BD 相交于O ,若OD =21AD ,则四个内角为________.图3 图42.若一条对角线平分平行四边形的一组对角,且一边长为a 时,如图4,其他三边长为________;周长为________.3.菱形ABCD 中,AC 、BD 相交于O 点,若∠OBC =21∠BAC ,则菱形的四个内角的度数为____________.4.若菱形的两条对角线的比为3:4,且周长为20cm ,则它的一组对边的距离等于__________cm ,它的面积等于________cm 2.5.菱形ABCD 中,如图5,∠BAD =120°,AB =10cm ,则AC =________cm ,BD =________ cm .图5 图6四、已知:△ABC 中,CD 平分∠ACB 交AB 于D ,DE ∥AC 交BC 于E ,DF ∥BC 交AC 于F .求证:四边形DECF 是菱形.五、已知ABCD 中,如图7,BE 平分∠ABC 交AD 于E ,若CE 平分∠DCB ,且AB =2,求:ABCD 的其余边长.图7参考答案一、1.B 2.B 3.B 4.C 5.C 二、1.× 2.× 3.× 4.√三、1.60°,120°,60°,120° 2.分别为a 4a 3.60°,120°,60°,120° 4.52424 5.10 103 四、证明:∵DE ∥AC ,DF ∥BC∴四边形DECF 为平行四边形 ∠2=∠3 又∵∠1=∠2 ∴∠1=∠3 ∴DE =EC∴DECF 为菱形(有一组邻边相等的平行四边形是菱形) 五、解:过E 作EF ∥AB 交BC 于F∵ABCD ,∴AD ∥BC ∴ABFE 是平行四边形 ∴EF =AB ,∠1=∠3又∵∠2=∠1,∴∠2=∠3 ∴BF =FE ,同理:EF =FC ∴F 为BC 的中点.又BE 、CE 为∠ABC 、∠DCF 的平分线 AB ∥CD ,∴∠EBC +∠ECB =90°∴∠BEC =90°,∴EF =21BC =AB ∴AB =CD =2,AD =BC =2AB =4。
菱形 华东师大版八年级下册同步练习(含答案)
【优编】初中数学华东师范大学八年级下册第十九章19.2.2.菱形的判定同步练习一、单选题1.下列命题中,为假命题的是()A.两组邻边分别相等的四边形是菱形B.对角线互相垂直平分的四边形是菱形C.四个角相等的四边形是矩形D.对角线相等的平行四边形是矩形2.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=2,则四边形CODE的周长是()A.2.5B.3C.4D.5 3.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∥ADB=90°B.OA=OB C.OA=OC D.AB=BC4.下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形5.下列说法错误的是()A.矩形的对角线相等B.正方形的对称轴有四条C.平行四边形既是中心对称图形又是轴对称图形D.菱形的对角线互相垂直且平分6.已知四边形ABCD中,AB=BC=CD=DA,对角线AC,BD相交于点O.下列结论一定成立的是()A.AC⊥BD B.AC=BD C.∠ABC=90°D.∠ABC=∠BAC7.下列命题正确的是()A.对角线互相垂直平分且相等的四边形是正方形B.对角线相等的四边形是矩形C.一组对边相等,另一组对边平行的四边形是平行四边形D.对角线互相垂直的四边形是菱形8.用两个全等的等边三角形,可以拼成下列哪种图形()A.矩形B.菱形C.正方形D.等腰梯形二、填空题9.如图,在等边三角形ABC中,AB=2√3,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合),将∥BMN沿直线MN折叠,若点B的对应点B'恰好落在等边三角形ABC的边上,则BN的长为.10.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是.11.如图,矩形ABCD的面积为2016,E、F、G、H分别是边AB,CD的三等分点,则图中阴影四边形的面积为;若AB·BC=2016,AD:AB=8:9,则阴影四边形的周长为.12.如图四边形ABCD的对角线互相垂直,且OB=OD,请你添加一个适当的条件使它成为菱形(只需添加一个)13.一个平行四边形的一边长是3,两条对角线的长分别是4和2√5,则此平行四边形的面积为.14.如图,在四边形ABCD中,对角线AC,BD交于点O,且OA=OC,OB=OD,若要使四边形ABCD是菱形,则可以添加的条件是.三、解答题15.如图,已知∥ABC,AB=AC,将∥ABC沿边BC翻折,得到的∥DBC与原∥ABC拼成四边形ABDC.求证:四边形ABDC是菱形.16.如图,在平面直角坐标系中,O为原点,已知直线y= −43x+4与x轴交于点A,与y轴交于点B。
华东师大版八级下册《菱形》同步练习含答案
华东师大版八年级下册第19章矩形、菱形与正方形19.2菱形菱形的性质运用菱形的有关知识进行计算和说理专题练习题1.已知菱形的周长为16 cm,一条对角线长为4 cm,则菱形的4个角分别为()A.30°,150°,30°,150°B.45°,135°,45°,135°C.60°,120°,60°,120°D.以上都不对2.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC相交于点O,连结BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°3.如图,在菱形ABCD中,点E是AB上的一点,连结DE交AC于点O,连结BO,且∠AED=50°,则∠CBO=____度.4.如图,在菱形ABCD中,∠ABC=120°,对角线AC,BD相交于点O,AE平分∠CAD,分别交OD,CD于F,E两点,求∠AFO的度数.5.如图,在菱形ABCD中,AB=13 cm,BC边上的高AH=5 cm,那么对角线AC的长为____cm. 6.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.245B.125C.5 D.47.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为____.8.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和4时,则阴影部分的面积为____.9.如图,O是菱形ABCD对角线AC与BD的交点,CD=5 cm,OD=3 cm, 过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求四边形OBEC的面积.10.如图,在菱形ABCD中,∠BAD=44°,AB的垂直平分线交对角线AC于点F,垂足为E,连结DF,则∠CDF等于()A.112°B.114°C.116°D.118°11.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.12.如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.13.如图,在菱形ABCD中,AB=4,E为BC中点,AE⊥BC,AF⊥CD于点F,CG∥AE,CG交AF 于点H,交AD于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.14.如图,在菱形ABCD中,F是BC上任意一点,连结AF交对角线BD于点E,连结EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?请说明理由.15.如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是____.16.如图1,在菱形ABCD中,点E,F分别为AB,AD的中点,连结CE,CF.(1)求证:CE=CF;(2)如图2,若H为AB上一点,连结CH,使∠CHB=2∠ECB,求证:CH=AH+AB.答案:1. C2. C3. 504. ∵在菱形ABCD中,∠ABC=120°,∴∠BAD=60°,∵对角线AC,BD相交于点O,∴∠BAC =∠CAD=30°,∠DOA=90°,∵AE平分∠CAD,∴∠OAF=15°,∴∠AFO的度数为90°-15°=75°5. 266. A7. 308. 109. (1)∵四边形ABCD是菱形,∴AC⊥BD,∴在Rt△OCD中,OC=CD2-OD2=52-32=4 (cm)(2)∵CE∥DB,BE∥AC,∴四边形OBEC为平行四边形,又∵AC⊥BD,即∠COB=90°,∴平行四边形OBEC为矩形,∵OB=OD,∴S四边形OBEC=OB·OC=4×3=12(cm2)10. B11. 45°或105°12. 连结AC,∵四边形ABCD是菱形,∴AC平分∠DAB,CD=BC,∵CE⊥AB,CF⊥AD,∴CE =CF,∠CFD=∠CEB=90°,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE13. (1)连结AC,BD,并且AC和BD相交于点O,∵AE⊥BC,且AE平分BC,∴AB=AC=BC,∴BE=12BC=2,∴AE=42-22=23,S=BC·AE=4×23=83,∴菱形ABCD的面积是8 3(2)∵AC=AB=AD=CD,△ADC是等边三角形,∵AF⊥CD,∴∠DAF=30°,又∵CG∥AE,AE⊥BC,∴四边形AECG是矩形,∴∠AGH=90°,∴∠AHC=∠DAF+∠AGH=120°14. (1)连结AC,∵BD也是菱形ABCD的对角线,∴BD垂直平分AC,∴AE=EC(2)点F是线段BC的中点.理由:在菱形ABCD中,AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴∠BAC=60°,∵AE=EC,∴∠EAC=∠ACE,∵∠CEF=60°,∴∠EAC=12∠CEF=30°,∴∠EAC=12∠BAC,∴AF是△ABC的角平分线,∵AF交BC于点F,∴AF是△ABC的BC边上的中线,∴点F是线段BC的中点15. 17 216.(1)易证△BCE≌△DCF(SAS),∴CE=CF(2)延长BA与CF,交于点G,∵四边形ABCD是菱形,∴∠B=∠D,AB=BC=CD=AD,AF∥BC,AB∥CD,∴∠G=∠FCD,∵点F为AD的中点,且AG∥CD,易证△AGF≌△DCF(AAS),∴AG=CD,∵AB=CD,∴AG=AB,∵△BCE≌△DCF,∴∠ECB=∠DCF=∠G,∵∠CHB=2∠ECB,∴∠CHB=2∠G,∵∠CHB=∠G+∠HCG,∴∠G=∠HCG,∴GH=CH,∴CH=AH+AG=AH+AB。
华东师大版八年级数学下册:19.2菱形的判定 同步课时作业
第1课时菱形的判定定理11.用两个全等的等边三角形,可以拼成下列哪种图形()A.矩形B.菱形C.正方形D.等腰梯形2.红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图所示.红丝带重叠部分形成的图形是()A.正方形B.等腰梯形C.菱形D.矩形3.四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是()A.平行四边形B.矩形C.菱形D.正方形4.如图所示,D,E,F分别是△ABC的边BC,CA,AB上的点,且DE∥AB,DF∥CA,要使四边形AFDE是菱形,则要增加的条件是________.(只写出符合要求的一个即可)第4题图5.如图所示,在四边形ABCD中,AB∥CD,AB=CD=BC,四边形ABCD是菱形吗?说明理由.6.如图,AD是△ABC的角平分线。
DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由。
7.如图,平行四边形ABCD的对角线相交于点O,且OC=OD,PD∥AC,PC∥BD,PD,PC相交于点P,四边形PCOD是菱形吗?试说明理由.DACF H E B8.如图,已知四边形ABCD 为菱形,AE =CF. 求证:四边形BEDF 为菱形.9. 如图所示,△ABC 中,∠ACB=90°,∠ABC 的平分线BD•交AC 于点D ,CH⊥AB 于H ,且 BD 于点F ,DE⊥AB 于E ,四边形CDEF 是菱形吗?请说明理由.10.如图,已知四边形ABCD 为矩形,AD =20㎝、AB =10㎝。
M 点从D 到A ,P 点从B 到C ,两点的速度都为2㎝/s ;N 点从A 到B ,Q 点从C 到D ,两点的速度都为1㎝/s 。
若四个点同时出发。
F EC BA(1)判断四边形MNPQ 的形状。
(2)四边形MNPQ 能为菱形吗?若能,请求出此时运动的时间;若不能,说明理由。
20.3 《菱形的判定》同步练习(华东师大版八年级下)doc
20.3 菱形的判定 同步练习目标与方法1.会证明菱形的判定定理2.能运用菱形的判定定理进行简单的计算与证明.3.能运用菱形的性质定理与判定定理进行比较简单的综合推理与证明.基础与巩固1.下列条件中,不能判定四边形ABCD 为菱形的是( ).A .AC ⊥BD ,AC 与BD 互相平分B .AB=BC=CD=DAC .AB=BC ,AD=CD ,且AC ⊥BD D .AB=CD ,AD=BC ,AC ⊥BD2.已知点A 、B 、C 、D 在同一平面内,下面列有6个条件:①AB ∥CD ,②AB=•CD ,•③BC ∥CD ,④BC=AD ,⑤AC ⊥BD ,⑥AC 平分∠DAB 与∠DCB .从这6个条件中选出(•直接填写序号)___________3个,能使四边形ABCD 是菱形.3.已知:如图,在ABCD 中,O 为AC 的中点,过点O 作AC 的垂线,与AD 、BC 相交于点E 、F ,求证:四边形AFCE 是菱形.4.已知:如图,在ABCD 中,AE 平分∠BAD ,与BC 相交于点E ,EF ∥AB ,与AD 相交于点F ,求证:四边形ABEF 是菱形.拓展与延伸 O B AC ED F B A CE DF5.如图,将一张矩形纸片ABCD 先折出一条对角线AC ,再将点A 与点C 重合折出折痕EF ,最后分别沿AE 、CF 折叠.得到的四边形AECF 是什么样的四边形?试证明你的猜想.与第3题对照,你有什么发现?6.结合所给的图形,编一道几何证明题,证明四边形AEDF 是菱形.•并利用所给的条件,写出“已知”“求证”和“证明”的过程.后花园智力操 已知:如图,四边形ABCD 是菱形,∠ABC=30°,求证:AB 2=AC ·BD .参考答案:1.C 2.(答案不惟一,只要正确即可)①②⑤或③④⑤等.B AC ED F B A CE DF BA D 3.可证出△AEO≌△CFO,得AE=CF.再由AC是EF的垂直平分线,得EC=EA,AF=CF.由此得EC=AF=CF,所以四边形AFCE是菱形.4.先证四边形ABEF是平行四边形,再由AE平分∠BAF,•得∠FAE=•∠BAE.• 又由∠FAE=∠AEB,得∠BAE=∠BEA,所以AB=BE,所以ABEF是菱形.5.四边形AECF是菱形,无论原图形是什么图形,只要能得到平行四边形,• 在此基础上满足“对角线相互垂直”,该平行四边形就一定是菱形.6.(答案不惟一,只要合理,符合题意即可)略.智力操过点C作CE⊥BA,垂足为E.在Rt△BEC中,∠ABC=30°,∴EC=12BC,•∵四边形ABCD为菱形,∴EC=12AB.S菱形=AB·EC=AB·12AB=12AB2.又∵S菱形=12AC·BD,∴AB2=AC·BD.。
(新课标)华东师大版八年级数学下册同步跟踪训练:菱形的判定
(新课标)2017-2018学年华东师大版八年级下册19.2.1菱形的判定一.选择题(共6小题)1.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),四边形ABCD是()A.矩形B.菱形C.正方形D.梯形2.如图,在矩形ABCD中,E,F分别是AD,BC中点,连接AF,BE,CE,DF分别交于点M,N,四边形EMFN是()A.正方形B.菱形C.矩形D.无法确定3.下列说法正确的是()A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线相互垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形4.如图,在平行四边形ABCD中,添加下列条件不能判定平行四边形ABCD是菱形的是()A.AB=BC B.AC⊥BD C.BD平分∠ABC D.AC=BD5.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.矩形的对角线一定互相垂直D.四条边相等的四边形是菱形6.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直二.填空题(共7小题)7.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是_________ (写出一个即可).8.已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是_________ .9.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是_________ (只填写序号).10.如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD= _________ ,平行四边形CDEB 为菱形.11.如图,在平行四边形ABCD中,请再添加一个条件,使它成为菱形,则该条件可以是_________ .12.如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.其中,正确的有_________ (只填写序号)..13.在四边形ABCD中,AB=CD,AD=BC,那么再加上条件_________ ,此四边形就成为菱形(填上一个正确的条件即可).三.解答题(共7小题)14.如图:在▱ABCD中,AC为其对角线,过点D作AC的平行线与BC的延长线交于E.(1)求证:△ABC≌△DCE;(2)若AC=BC,求证:四边形ACED为菱形.15.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E 在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.16.如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.17.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.18如图所示,已知:矩形ABCD中,O是AC与BD的交点,过点O的直线EF 与AB、CD的延长线分别交于点E、F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么条件时,四边形AECF是菱形?并证明你的结论.19.如图,在▱ABCD中,EF过AC的中点O,与边AD、BC分别相交于点E、F.(1)试说明四边形AECF是平行四边形;(2)当EF过AC的中点,且与AC垂直时,试说明四边形AECF是菱形.13.如图,在矩形ABCD中,E,F分别为AD,BC的中点,连结AF,DF,BE,CE,AF与BE交于G,DF与CE交于H.求证:四边形EGFH为菱形.19.2.1菱形的判定参考答案与试题解析一.选择题(共6小题)1.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),四边形ABCD是()A.矩形B.菱形C.正方形D.梯形考点:菱形的判定;坐标与图形性质.菁优网版权所有分析:在平面直角坐标系中,根据点的坐标画出四边形ABCD,再根据图形特点进行判断.解答:解:图象如图所示:∵A(﹣3,0)、B(0,2)、C(3,0)、D(0,﹣2),∴OA=0C,OB=OD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD为菱形,故选:B.点评:本题考查了点的坐标的表示方法,及菱形的判定定理.2.如图,在矩形ABCD中,E,F分别是AD,BC中点,连接AF,BE,CE,DF分别交于点M,N,四边形EMFN是()A.正方形B.菱形C.矩形D.无法确定考点:菱形的判定;矩形的性质.菁优网版权所有分析:求出四边形ABFE为平行四边形,四边形BFDE为平行四边形,根据平行四边形的性质得出BE∥FD,即GE∥FH,同理可证EH∥GF,得出四边形EGFH为平行四边形,求出GE=GF,根据菱形的判定得出即可.解答:解:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵E,F分别为AD,BC中点,∴AE∥BF,AE=BF,ED∥CF,DE=CF,∴四边形ABFE为平行四边形,四边形BFDE为平行四边形,∴BE∥FD,即GE∥FH,同理可证EH∥GF,∴四边形EGFH为平行四边形,∵四边形ABFE为平行四边形,∠ABC为直角,∴ABFE为矩形,∴AF,BE互相平分于G点,∴GE=GF,∴四边形EGFH为菱形.故选B.点评:本题考查了矩形的性质和判定,菱形的判定,平行四边形的性质和判定的应用,能综合运用性质进行推理是解此题的关键,题目比较好,综合性比较强.3.下列说法正确的是()A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线相互垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形考点:菱形的判定.菁优网版权所有分析:利用菱形的判定定理对各个选项逐一判断后即可确定正确的选项.解答:解:A、对角线相等的平行四边形是矩形,故A选项错误;B、有一组邻边相等的平行四边形是菱形,故B选项正确;C、对角线相互垂直的平行四边形是菱形,故C选项错误;D、有一个角是直角的平行四边形是矩形,故D选项错误,故选:B.点评:本题考查了菱形的判定,牢记菱形的判定定理是解答本题的关键,难度不大.4.如图,在平行四边形ABCD中,添加下列条件不能判定平行四边形ABCD是菱形的是()A. AB=BC B.AC⊥BD C.BD平分∠ABC D.AC=BD考点:菱形的判定;平行四边形的性质.菁优网版权所有分析:根据菱形的判定定理,即可求得答案.注意排除法的应用.解答:解:∵四边形ABCD是平行四边形,∴A、当AB=BC时,根据有一组邻边相等的平行四边形是菱形,可得▱ABCD是菱形,故本选项正确;B、当AC⊥BD时,根据对角线互相垂直的平行四边形是菱形,可得▱ABCD是菱形,故本选项正确;C、当BD平分∠ABC时,易证得AB=AD,根据有一组邻边相等的平行四边形是菱形,可得▱ABCD是菱形,故本选项正确;由排除法可得D选项错误.故选D.点评:此题考查了菱形的判定.熟记判定定理是解此题的关键.5.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.矩形的对角线一定互相垂直 D.四条边相等的四边形是菱形考点:菱形的判定;同位角、内错角、同旁内角;平行四边形的判定;矩形的性质.菁优网版权所有分析:A、根据平行线的性质进行判断;B、由平行线的判定定理进行判断;C、由矩形的性质进行判断;D、由菱形的判定定理进行判断.解答:解:A、两直线平行时,同位角才相等.故本选项错误;B、对角线相等的四边形不一定是平行四边形.例如:等腰梯形的对角线相等.故本选项错误;C、矩形的对角线不一定互相垂直,菱形的对角线一定垂直.故本选项错误;D、根据菱形的定义知,四条边相等的四边形是菱形.故本选项正确;故选:D.点评:本题考查了菱形、平行四边形的判定,矩形的性质等.熟记四边形的性质和定义是解题的关键.6.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形 D.矩形的对角线一定互相垂直考点:菱形的判定;同位角、内错角、同旁内角;平行四边形的判定;矩形的性质.菁优网版权所有分析:根据平行线的性质判断A即可;根据平行四边形的判定判断B即可;根据菱形的判定判断C即可;根据矩形的性质判断D即可.解答:解:A、如果两直线平行,同位角才相等,故A选项错误;B、对角线互相平分的四边形是平行四边形,故B选项错误;C、四边相等的四边形是菱形,故C选项正确;D、矩形的对角线互相平分且相等,不一定垂直,故D选项错误;故选C.点评:本题考查了平行线的性质,平行四边形、菱形的判定、矩形的性质的应用,主要考查学生的理解能力和辨析能力.二.填空题(共7小题)7.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是AB=AD (写出一个即可).考点:菱形的判定.菁优网版权所有专题:开放型.分析:利用菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.解答:解:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵邻边相等的平行四边形是菱形,∴添加的条件是AB=AD(答案不唯一),故答案为:AB=AD.点评:本题考查了菱形的判定,牢记菱形的判定定理是解答本题的关键.8.已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是AD=DC .考点:菱形的判定;平行四边形的性质.菁优网版权所有专题:开放型.分析:根据菱形的定义得出答案即可.解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.9.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是③(只填写序号).考点:菱形的判定.菁优网版权所有专题:推理填空题.分析:首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.解答:解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,①BE⊥EC,根据这个条件只能得出四边形EBFC是矩形,②BF∥CE,根据EBFC是平行四边形已可以得出BF∥CE,因此不能根据此条件得出菱形,③AB=AC,∵,∴△ADB≌△ADC,∴∠BAD=∠CAD∴△AEB≌△AEC(SAS),∴BE=CE,∴四边形BECF是菱形.故答案为:③.点评:本题考查了菱形的判定,解题的关键是了解菱形的判定定理,难度不是很大.10.如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD= ,平行四边形CDEB为菱形.考点:菱形的判定.菁优网版权所有分析:首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分、邻边相等推知OD=OB,CD=CB;最后Rt△BOC中,根据勾股定理得,OB的值,则AD=AB﹣2OB.解答:解:如图,连接CE交AB于点O.∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB==5(勾股定理).若平行四边形CDEB为菱形时,CE⊥BD,且OD=OB,CD=CB.∵AB•OC=AC•BC,∴OC=.∴在Rt△BOC中,根据勾股定理得,OB===,∴AD=AB﹣2OB=.故答案是:.点评:本题考查了菱形的判定与性质.菱形的对角线互相垂直平分.11.如图,在平行四边形ABCD中,请再添加一个条件,使它成为菱形,则该条件可以是AC⊥BD,AB=BC .考点:菱形的判定;平行四边形的性质.菁优网版权所有专题:开放型.分析:在平行四边形ABCD的基础上,邻边相等或对角线互相垂直均可判定.解答:解:在平行四边形ABCD的基础上①∵菱形ABCD是一组邻边相等的平行四边形,∴平行四边形ABCD中,只需添一个条件:邻边AB=AD或AD=CD;②∵菱形ABCD的对角线互相垂直平分,∴平行四边形ABCD中,只需添一个条件:AC⊥BD.故答案是:AC⊥BD,AB=BC等.点评:本题主要考查的是平行四边形和菱形的判定定理.但需要注意的是本题的知识点是关于平行四边形、菱形之间的关系.12.如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.其中,正确的有①②③④(只填写序号).考点:菱形的判定;平行四边形的判定;矩形的判定.菁优网版权所有专题:压轴题.分析:根据平行四边形、矩形、菱形的判定方法进行解答.解答:解:①∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形;故①正确;②若∠BAC=90°,则平行四边形AEDF是矩形;故②正确;③若AD平分∠BAC,则DE=DF;所以平行四边形是菱形;故③正确;④若AD⊥BC,AB=AC;根据等腰三角形三线合一的性质知:DA平分∠BAC;由③知:此时平行四边形AEDF是菱形;故④正确;所以正确的结论是①②③④.点评:此题主要考查了平行四边形、菱形、矩形的判定方法:两组对边分别平行的四边形是平行四边形;有一个角是直角的平行四边形是矩形;一组邻边相等的平行四边形是菱形.13.在四边形ABCD中,AB=CD,AD=BC,那么再加上条件AB=AD ,此四边形就成为菱形(填上一个正确的条件即可).考点:菱形的判定.菁优网版权所有专题:开放型.分析:根据两组对边相等的四边形是平行四边形,可知四边形ABCD是平行四边形;根据一组邻边相等的平行四边形是菱形,可补充条件AB=AD.此题属开放性题目,答案不唯一.解答:解:可添加的条件为AB=AD,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD为菱形.故答案为:AB=AD.点评:此题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).三.解答题(共7小题)14.如图:在▱ABCD中,AC为其对角线,过点D作AC的平行线与BC的延长线交于E.(1)求证:△ABC≌△DCE;(2)若AC=BC,求证:四边形ACED为菱形.考点:菱形的判定;全等三角形的判定与性质;平行四边形的性质.菁优网版权所有专题:证明题.分析:(1)利用AAS判定两三角形全等即可;(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.解答:证明:(1)∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴∠B=∠1,又∵DE∥AC∴∠2=∠E,在△ABC与△DCE中,,∴△ABC≌△DCE;(2)∵平行四边形ABCD中,∴AD∥BC,即AD∥CE,由DE∥AC,∴ACED为平行四边形,∵AC=BC,∴∠B=∠CAB,由AB∥CD,∴∠CAB=∠ACD,又∵∠B=∠ADC,∴∠ADC=∠ACD,∴AC=AD,∴四边形ACED为菱形.点评:本题考查了菱形的判定等知识,解题的关键是熟练掌握菱形的判定定理,难度不大.15.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E 在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.考点:菱形的判定;线段垂直平分线的性质.菁优网版权所有专题:证明题.分析:(1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论;(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.解答:(1)证明:∵在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠1=∠2;(2)四边形BCDE是菱形;证明:∵∠1=∠2,∴AC垂直平分BD,∵OE=OC,∴四边形DEBC是平行四边形,∵AC⊥BD,∴四边形DEBC是菱形.点评:本题考查了菱形的判定及线段的垂直平分线的性质,解题的关键是了解菱形的判定方法,难度不大.16.如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.考点:菱形的判定;翻折变换(折叠问题).菁优网版权所有专题:证明题.分析:由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF.解答:证明:∵AD平分∠BAC∴∠BAD=∠CAD又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中,∴△AEO≌△AFO(ASA),∴EO=FO又∵A点与D点重合,∴AO=DO,∴EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形.点评:本题考查了平行四边形的判定,菱形的判定,线段垂直平分线,全等三角形的性质和判定等知识点,注意:对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.17.如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD=∠BCD,AM=AN,求证:四边形ABCD是菱形.考点:菱形的判定.菁优网版权所有专题:证明题.分析:首先证明∠B=∠D,可得四边形ABCD是平行四边形,然后再证明△ABM≌△ADN可得AB=AD,再根据菱形的判定定理可得结论.解答:证明:∵AD∥BC,∴∠B+∠BAD=180°,∠D+∠C=180°,∵∠BAD=∠BCD,∴∠B=∠D,∴四边形ABCD是平行四边形,∵AM⊥BC,AN⊥DC,∴∠AMB=∠AND=90°,在△ABM和△ADN中,,∴△ABM≌△ADN(AAS),∴AB=AD,∴四边形ABCD是菱形.点评:此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.18.如图所示,已知:矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB、CD的延长线分别交于点E、F.(1)求证:△BOE≌△DOF;(2)当EF与AC满足什么条件时,四边形AECF是菱形?并证明你的结论.考点:菱形的判定;全等三角形的判定与性质;矩形的性质.菁优网版权所有专题:证明题.分析:(1)由矩形的性质:OB=OD,AE∥CF证得△BOE≌△DOF;(2)当EF⊥AC时,四边形AECF是菱形.根据已知条件可证明四边形AECF 是平行四边形,当EF⊥AC,可根据对角线互相垂直的平行四边形是菱形判定.解答:证明:(1)∵四边形ABCD是矩形∴OB=OD(矩形的对角线互相平分)AE∥CF(矩形的对边平行)∴∠E=∠F,∠OBE=∠ODF∴△BOE≌△DOF(AAS);(2)当EF⊥AC时,四边形AECF是菱形.证明:∵四边形ABCD是矩形∴OA=OC(矩形的对角线互相平分)又∵△BOE≌△DOF∴OE=OF∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形)∵EF⊥AC,∴四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).点评:本题考查了矩形的性质、全等三角形的判定和性质和菱形的判定.解答此题的关键是熟知矩形、菱形、全等三角形的判定与性质定理.19.如图,在▱ABCD中,EF过AC的中点O,与边AD、BC分别相交于点E、F.(1)试说明四边形AECF是平行四边形;(2)当EF过AC的中点,且与AC垂直时,试说明四边形AECF是菱形.考点:菱形的判定;平行四边形的判定与性质.菁优网版权所有专题:证明题.分析:(1)要说明四边形AECF是平行四边形,我们可以通过说明AE=CF、AE∥CF或AO=CO、EO=FO.证△AOE≌△COF可得;(2)运用对角线互相垂直的平行四边形是菱形来加以说明.解答:解:(1)∵在平行四边形ABCD中,∴AD∥BC,∴∠EAC=∠FCA,∠AEF=∠CFE.又AO=OC,∴△AOE≌△COF,∴OE=OF.∴四边形AECF是平行四边形;(对角线互相平分的四边形是平行四边形)(2)∵四边形AECF是平行四边形,AC⊥EF,∴四边形AECF是菱形.(对角线互相垂直的平行四边形是菱形)点评:菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.20.如图,在矩形ABCD中,E,F分别为AD,BC的中点,连结AF,DF,BE,CE,AF与BE交于G,DF与CE交于H.求证:四边形EGFH为菱形.考点:菱形的判定;矩形的性质.菁优网版权所有专题:证明题.分析:根据一组对边平行且相等的四边形式平行四边形,可证明四边形AECF、BEDF是平行四边形,根据平行四边形的性质,可得GF与EH、EG与FH的关系,根据平行四边形的判定,可得EGFH的形状,根据三角形全等,可得EG与FG的关系,根据菱形的定义,可得证明结论.解答:证明:∵在矩形ABCD中AD=BC,且E、F分别是AD、BC的中点,∴AE=DE=BF=CF又∵AD∥BC,∴四边形AECF、BEDF是平行四边形.∴GF∥EH、EG∥FH.∴四边形EGFH是平行四边形.在△AEG和△FBG中,,∴△AEG≌△FBG(AAS)∴EG=GB,AG=GF,在△ABE和△BAF中∵,∴△ABE≌△BAF(SAS),∴AF=BE,∵EG=GB=BE,AG=GF=AF,∴EG=GF,∴四边形EGFH是菱形.点评:考查了菱形的判定,牢记有关菱形的判定定理是解答本题的关键,难度不大.。
华师大版数学八年级下册19.2《菱形》同步练习2
菱形解答题1.:如图,在ABC ∆中,D 是BC 边上一点,AC DE //交AB 于E ,AB DF //交AC 于F ,且./DF DE 求证:四边形AEDF 是菱形.2.:如图,在菱形ABCD 中,E 、F 分别是BC 、CD 上的点,︒=∠︒=∠=∠18,60BAE EAF B ,求CEF ∠的度数.3.:如图,四边形ABCD 是菱形,AC 、BD 是对角线,︒=∠30ABC .求证:.2BD AC AB ⋅=4.如图,菱形ABCD 的对角线交于点cm 120,cm 16,==BD AC O ,求菱的高.5.如图,在菱形ABCD 中,BD AC 、相交于点O ,且3:1:=BD AC ,假设12=AB ,求菱形ABCD 的面积.6.如图,在ABCD 中,AB AD 2=,把AB 向两方延长,使AB BF AE ==,连结CE 、DF ,请问CE 、DF 有怎样的位置关系,并证明你的结论.7.把两条宽度一样的纸条穿插重叠放在一起,如图,重叠局部ABCD是什么四边形?度证明你的结论?参考答案1.AB DF AC DE //,// ,∴四边形AEDF 是平行四边形,又DF DE = ,∴平行四边形AEDF 是菱形.2.连结ABC AC ∆,是等边三角形,∴AC AB ACB BAC =︒=∠=∠,60,又可证ACF ABE ∆≅∆,∴AEF ∆是等边三角形,∴︒=∠18CEF .3.由︒=∠30ABC ,可知菱形的高等于边长的一半.∴2212121AB AB BC BD AC S ABCD =⋅=⋅=菱形,∴.2BD AC AB ⋅= 4.5.3726.DF CE ⊥,连结MN ,可证得DMC AME ∆≅∆,那么DC DM =,同理CN DC =,由CN DM =,且CN DM //可知四边形DMNC 是平行四边形,又DM DC =,可知四边形DMNC 是菱形,所以DF CE ⊥. 7.ABCD 是菱形,作BC AP ⊥于CD AQ P ⊥,于Q ,由于两纸条的宽度相等,所以AQ AP =,那么AQD APB ∆≅∆,∴AD AB =,那么AQD APB ∆≅∆,∴AD AB =,又由四边形是平行四边形可知ABCD 是菱形.。
数学初二下华东师大版20.3菱形的判定练习
数学初二下华东师大版20.3菱形的判定练习【一】选择题〔每题5分,共25分〕A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形2.以下条件中,能判定四边形是菱形的是〔〕A两条对角线相等B两条对角线互相垂直C两条对角线相等且互相垂直D两条对角线互相垂直平分3.ABCD的对角线AC、BD相交于点O,以下条件中,不能判定ABCD 是菱形的是〔〕A.AB=ADB.AC⊥BDC.∠A=∠DD.CA平分∠BCD4.如下图,过四边形ABCD的各顶点作对角线BD、AC的平行线围成四边形EFGH,假设四边形EFGH是菱形,那么原四边形ABCD一定是〔〕A.菱形B.平行四边形C.矩形D.对角线相等的四边形5.如下图,将两条等宽的纸条重叠在一起,那么四边形ABCD是〔〕A.菱形B.平行四边形C.矩形D.对角线相等的四边形【二】填空题〔每题5分,共25分〕6.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD 于点P,垂足为E,连接CP,那么∠CPD=_____度7.对角线互相平分的四边形是8.对角线互相垂直平分的四边形是_______9.两组对边分别平行,且对角线的四边形是菱形10.如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE ∥CA,DF∥BA.以下四种说法:①四边形AEDF是平行四边形;②假如∠BAC=90°,那么四边形AEDF是矩形;③假如AD平分∠BA,那么四边形AEDF是菱形;④假如AD⊥BC且AB=AC,那么四边形AEDF是菱形其中,正确的有〔只填写序号〕【三】解答题〔每题10分,共50分〕11.:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,求证:四边形AFCE是菱形12.如图10,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE〔1〕求证:△ABE≌△ACE〔2〕当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由13.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E〔1〕求∠ABD的度数;〔2〕求线段BE的长14.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD〔1〕试判断四边形OCED的形状,并说明理由;〔2〕假设AB=6,BC=8,求四边形OCED的面积15.在□ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE 〔1〕如图①,试判断四边形EGFH的形状,并说明理由;〔2〕如图②,当EF⊥GH时,四边形EGFH的形状是;〔3〕如图③,在〔2〕的条件下,假设AC=BD,四边形EGFH的形状是;参考答案1.D2.D3.C4.C5.A6.727.平行四边形8.菱形9.垂直10.①②③④11.证明:∵四边形ABCD是平行四边形,∴AE∥FC∴∠1=∠2又∠AOE=∠COF,AO=CO,∴△AOE≌△COF∴EO=FO∴四边形AFCE是平行四边形又EF⊥AC,∴AFCE是菱形〔对角线互相垂直的平行四边形是菱形〕12.〔1〕证明:∵AB=AC点D为BC的中点∴∠BAE=∠CAEAE=AE∴△ABE≌△ACE〔SAS〕〔2〕当AE=2AD〔或AD=DE或DE=12AE〕时,四边形ABEC是菱形理由如下:∵AE=2AD,∴AD=DE又点D为BC中点,∴BD=CD∴四边形ABEC为平行四形边∵AB=AC∴四边形ABEC为菱形13.解:〔1〕在菱形ABCD中,AB=AD,∠A=60°∴△ABD为等边三角形∴∠ABD=60〔2〕由〔1〕可知BD=AB=4又∵O为BD的中点∴OB=2又∵OE ⊥AB ,及∠ABD=60°∴∠BOE=30°,∴BE=114.解:〔1〕四边形OCED 是菱形. ∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形, 又在矩形ABCD 中,OC=OD ,∴四边形OCED 是菱形〔2〕连结OE.由菱形OCED 得:CD ⊥OE , D C B AOE∴OE ∥BC又CE ∥BD∴四边形BCEO 是平行四边形∴OE=BC=8∴S 四边形OCED=12 OE ·CD=12 ×8×6=2415.解:〔1〕四边形EGFH 是平行四边形 证明:∵□ABCD 的对角线AC 、BD 交于点O ∴点O 是□ABCD 的对称中心∴EO=FO ,GO=HO∴四边形EGFH 是平行四边形〔2〕菱形〔3〕菱形。
华东师大版八年级数学下册19.2.2 菱形的判定 练习试题
19.2.2菱形的判定1.如图所示,四边形ABCD是矩形,AE∥BD,DE∥AC,则四边形AODE是()A.平行四边形但不是菱形B.矩形C.菱形D.无法确定2 如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=ADB.AC=BDC.AC⊥BDD.∠ABO=∠CBO3.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=12,AB=10,则AE 的长为()A.16B.15C.14D.134.如图,在矩形ABCD中,E,F分别是AD,BC的中点,连结AF,BE,CE,DF分别交于点M,N,则四边形EMFN是()A.梯形B.菱形C.矩形D.无法确定5.如图所示,AE是▱ABCD的∠DAB的平分线,且交BC于点E,EF∥AB交AD于点F,则四边形ABEF一定是.6.如图所示,将两条宽度相同的纸条交叉重叠放在一起,则重叠部分ABCD是形.若纸条宽DE=4 cm,CE=3 cm,则四边形ABCD的面积为.7如图所示,在矩形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,则四边形EFGH是形.8.如图,小刚先画两条等长的线段AB,AD,然后分别以点B,D为圆心,以AB长为半径画弧,得到两弧的交点C,连结BC,CD,则得到的四边形ABCD是,其根据是.9.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件:,使四边形ABCD是菱形.(只需添加一个即可)10 如图,在▱ABCD中,添加一个条件:,使▱ABCD是菱形.11.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.12 如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.13.已知:如图在矩形ABCD中,对角线AC,BD相交于点O,E是CD的中点,连结OE,过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.14.如图,在矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连结CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.15.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=8 cm,AD=16 cm,BC=22 cm,点P从点A 出发,以1 cm/s的速度向点D运动,点Q从点C同时出发,以3 cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为t s.(1)当t为多少时,四边形ABQP为矩形?(2)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由.并探究如何改变点Q 的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.答案1.C2.B3.A4.B5.菱形6.菱20 cm27.菱8.菱形四条边都相等的四边形是菱形9.答案不唯一,如OA=OC10.答案不唯一,如AB=BC11.证明:∵AD是△ABC的角平分线,∴∠EAD=∠F AD.∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠F AD=∠ADF,∴AF=DF,∴平行四边形AEDF是菱形.13.证明:(1)∵CF∥BD,∴∠EDO=∠ECF,∠EOD=∠EFC.∵E是CD的中点,∴DE=CE,∴△ODE≌△FCE.(2)∵△ODE≌△FCE,∴EO=FE.又∵CE=DE,∴四边形ODFC是平行四边形.∵四边形ABCD是矩形,∴OC=OD,∴四边形ODFC是菱形.14.解:(1)证明:由折叠的性质可知,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE.∵FG∥CE,∴∠FGE=∠CEB ,∴∠FGE=∠FEG , ∴FG=FE ,∴FG=EC ,∴四边形CEFG 是平行四边形.又∵CE=FE ,∴四边形CEFG 是菱形.(2)∵在矩形ABCD 中,AB=6,AD=10,∠BAF=90°.AD=BC=BF=10,∴AF=8,∴DF=2. 设EF=x ,则CE=x ,DE=6-x.∵∠FDE=90°,∴由勾股定理,得22+(6-x )2=x 2,解得x=103,∴CE=103,∴四边形CEFG 的面积=CE ·DF=103×2=203. 15.解:由题意,得AP=t cm,CQ=3t cm,PD=(16-t )cm,BQ=(22-3t )cm . (1)∵∠ABC=90°,AP ∥BQ ,∴当AP=BQ 时,四边形ABQP 为矩形,此时有t=22-3t ,解得t=112,∴当t=112时,四边形ABQP 为矩形.(2)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD=BQ=BP 时,四边形PBQD 能成为菱形.由PD=BQ ,得16-t=22-3t ,解得t=3,当t=3时,PD=BQ=13 cm,BP=√AB 2+AP 2=√82+t 2=√82+32=√73(cm)≠13 cm,∴四边形PBQD 不能成为菱形.如果点Q 的速度变为v cm/s 时,能够使四边形PBQD 在t s 时为菱形. 由题意,得{16-t =22-vt ,16-t =√82+t 2,解得{t =6,v =2,故当点Q 的速度变为2 cm/s 时,能够使四边形PBQD 在某一时刻为菱形.。
2020—2021年华东师大版八年级数学下册《菱形的判定与性质》同步训练(含答案).docx
(新课标)华东师大版八年级下册19.2.2菱形的判定与性质一.选择题(共8小题)1.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形2.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.103.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P 不与点A、C重合)且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是()A.2 B.C.3 D.4.如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,则平行四边形ABCD的周长为()A.4 B.6 C.8 D.125.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是()A.1 B.2 C.3 D.46.如图△ABC中,AD是角平分线,DE∥AC交AB于E,DF∥AB交AC于F,若AE=4cm,那么四边形AEDF周长为()A.12cm B.16cm C.20cm D.22cm7.下列命题中,真命题是()A.对角线相等且互相垂直的四边形是菱形B.有一条对角线平分对角的四边形是菱形C.菱形是对角线互相垂直平分的四边形D.菱形的对角线相等8.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S△EOD;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称图形.其中正确的结论有()A.5个B.4个C.3个D.2个二.填空题(共5小题)9.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则BG= _________ .10.如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,若AC=4,则四边形CODE的周长为_________ .11.如图,在菱形ABCD中,过对角线BD上任一点P,作EF∥BC,GH∥AB,下列结论正确的是_________ .(填序号)①图中共有3个菱形;②△BEP≌△BGP;③四边形AEPH的面积等于△ABD的面积的一半;④四边形AEPH的周长等于四边形GPFC的周长.12.如图,两张宽为1cm的矩形纸条交叉叠放,其中重叠部分是四边形ABCD,已知∠BAD=60度,则重叠部分的面积是_________ cm2.13.如图,BF平行于正方形ABCD的对角线AC,点E在BF上,且AE=AC,CF∥AE,则∠BCF的度数为_________ .三.解答题(共7小题)14.如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.15.如图,四边形ABCD中,∠A=90°,AD∥BC,BE⊥CD于E交AD的延长线于F,DC=2AD,AB=BE.(1)求证:AD=DE.(2)求证:四边形BCFD是菱形.16.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE 交DE的延长线于F.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.17.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.18.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.19.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD 相交于点O,与BD相交于点N,连接MB,ND.(1)求证:四边形BMDN是菱形;(2)若AB=1,AD=2,求MD的长.20.如图,在矩形ABCD中,对角线AC的垂直平分线分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)证明:四边形AECF为菱形;(2)若AB=1,BC=3,求菱形AECF的边长.19.2.2菱形的判定与性质参考答案与试题解析一.选择题(共8小题)1.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形考点:菱形的判定与性质;平行四边形的判定与性质.分析:根据平行四边形和菱形的性质对各个选项进行分析从而得到最后答案.解答:解:根据平行四边形和菱形的性质得到ABC均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形,故故选:D.点评:主要考查了平行四边形和特殊平行四边形的特性,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.菱形的特性是:四边相等,对角线互相垂直平分.2.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.10考点:菱形的判定与性质;矩形的性质.分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.解答:解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.点评:此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.3.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P 不与点A、C重合)且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是()A.2 B.C.3 D.考点:菱形的判定与性质;三角形的面积.专题:计算题.分析:设AP,EF交于O点,四边形AFPE为平行四边形,可得△AEO的面积=△FOP的面积,所以阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.解答:解:设AP,EF交于O点,∵PE∥BC交AB于E,PF∥CD交AD于F,∴四边形AFPE为平行四边形,∴△AEO的面积=△FOP的面积,∴阴影部分的面积等于△ABC的面积.∵△ABC的面积等于菱形ABCD的面积的一半,菱形ABCD的面积=AC•BD=5,∴图中阴影部分的面积为5÷2=2.5.故选:B.点评:本题主要考查了菱形的面积的计算方法,根据菱形是中心对称图形,得到阴影部分的面积等于菱形面积的一半是解题的关键.4.如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,则平行四边形ABCD的周长为()A.4 B.6 C.8 D.12考点:菱形的判定与性质.专题:计算题.分析:在平行四边形ABCD中,AC平分∠DAB,利用平行线的性质可证△ACD,△ABC为等腰三角形,又AB=CD,则四边形ABCD为菱形,根据菱形的性质求周长.解答:解:∵四边形ABCD为平行四边形,∴∠1=∠4,∠2=∠3,∵AC平分∠DAB,∴∠1=∠2,∴∠1=∠3,∴AD=DC,四边形ABCD为菱形,∴四边形ABCD的周长=4×2=8.故选C.点评:本题考查了菱形的判定与性质.关键是根据平行四边形的性质,AC平分∠DAB,得出等腰三角形.5.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是()A.1 B.2 C.3 D. 4考点:菱形的判定与性质;等边三角形的性质;平移的性质.分析:先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.解答:解:∵△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.∵四边形ACED是菱形,∴AC⊥BD,∵AC∥DE,∴∠BDE=∠COD=90°,∴BD⊥DE,故④正确,综上可得①②③④正确,共4个.故选D.点评:此题主要考查了菱形的判定与性质,以及平移的性质,关键是掌握菱形四边相等,对角线互相垂直.6.如图△ABC中,AD是角平分线,DE∥AC交AB于E,DF∥AB交AC于F,若AE=4cm,那么四边形AEDF周长为()A.12cm B.16cm C.20cm D.22cm考点:菱形的判定与性质;平行四边形的性质.专题:计算题.分析:由角平分线的定义,可得∠EAD=∠DAF=∠ADE,进而可得AE=ED,由平行四边形的性质可得答案.解答:解:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EDA=∠FAD,∵∠EAD=∠FAD,∴∠EAD=∠EDA,∴EA=ED,∴平行四边形AEDF是菱形.∴四边形AEDF周长为4AE=16.故选B.点评:本题考查菱形的判定和平行四边形的性质.运用了菱形的判定方法“一组邻边相等的平行四边形是菱形”.7.下列命题中,真命题是()A.对角线相等且互相垂直的四边形是菱形B.有一条对角线平分对角的四边形是菱形C.菱形是对角线互相垂直平分的四边形D.菱形的对角线相等考点:菱形的判定与性质.分析:根据菱形的判定与性质进行判断.解答:解:A、对角线互相垂直平分的四边形是菱形,故此选项错误;B、有一条对角线平分对角的四边形不一定是菱形,此选项错误;C、菱形的对角线是互相垂直平分的四边形,此选项正确;D、菱形的对角线不一定相等,此选项错误.故选C.点评:本题考查了菱形的判定与性质.解题的关键是熟练掌握菱形有关判定与性质.8.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S△EOD;②四边形BFDE也是菱形;③四边形ABCD的面积为EF×BD;④∠ADE=∠EDO;⑤△DEF是轴对称图形.其中正确的结论有()A.5个B.4个C.3个D.2个考点:菱形的判定与性质.分析:①正确,根据三角形的面积公式可得到结论.②根据已知条件利用菱形的判定定理可证得其正确.③正确,根据菱形的面积等于对角线乘积的一半即可求得.④不正确,根据已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确,由已知可证得△DEO≌△DFO,从而可推出结论正确.解答:解:①正确∵E、F分别是OA、OC的中点.∴AE=OE.∵S△ADE=×AE×OD=×OE×OD=S△EOD∴S△ADE=S△EOD.②正确∵四边形ABCD是菱形,E,F分别是OA,OC的中点.∴EF⊥OD,OE=OF.∵OD=OD.∴DE=DF.同理:BE=BF∴四边形BFDE是菱形.③正确∵菱形ABCD的面积=AC×BD.∵E、F分别是OA、OC的中点.∴EF=AC.∴菱形ABCD的面积=EF×BD.④不正确由已知可求得∠FDO=∠EDO,而无法求得∠ADE=∠EDO.⑤正确∵EF⊥OD,OE=OF,OD=OD.∴△DEO≌△DFO.∴△DEF是轴对称图形.∴正确的结论有四个,分别是①②③⑤,故选B.点评:此题主要考查学生对菱形的性质等知识的理解及运用能力.二.填空题(共5小题)9.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则BG= 5 .考点:菱形的判定与性质;直角三角形斜边上的中线;勾股定理.分析:首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.解答:解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,即BG=5.故答案是:5.点评:本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.10.如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD,若AC=4,则四边形CODE的周长为8 .考点:菱形的判定与性质;矩形的性质.专题:几何图形问题.分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.解答:解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故答案为:8.点评:此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.11.如图,在菱形ABCD中,过对角线BD上任一点P,作EF∥BC,GH∥AB,下列结论正确的是①②④.(填序号)①图中共有3个菱形;②△BEP≌△BGP;③四边形AEPH的面积等于△ABD的面积的一半;④四边形AEPH的周长等于四边形GPFC的周长.考点:菱形的判定与性质;全等三角形的判定与性质.分析:根据菱形的判定判断①即可;根据菱形性质求出四边形BEPG是平行四边形,推出PE=BG,PG=BE,根据全等三角形的判定推出△BEP≌△PGB,即可判断②;根据三角形面积公式即可判断③;求出四边形AEPH、四边形HPFD、四边形BEPG、四边形PFCG是平行四边形,推出AH=BG=PE,AE=HP=DF,BE=PG=CF,DH=PF=VG,求出AH=PE=BG=BE=CF=PG,同理AE=HP=DF=PF=CG,即可判断④.解答:解:∵图中有三个菱形,如菱形ABCD、菱形HOFD、菱形BEPG,∴①正确;∵四边形ABCD是菱形,∴AB∥DC,AD∥BC,∠ABD=∠CBD,∵EF∥BC,GH∥AB,∴四边形BEPG是平行四边形,∴PE=BG,PG=BE,在△BEP和△PGB中,∴△BEP≌△PGB(SSS),∴②正确;∵只有当H为AD中点,E为AB中点时,四边形AEPH的面积等于△ABD的面积的一半,∴③错误;∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EF∥BC,GH∥AB,∴AD∥EF∥BC,AB∥GH∥CD,∴四边形AEPH、四边形HPFD、四边形BEPG、四边形PFCG是平行四边形,∴AH=BG=PE,AE=HP=DF,BE=PG=CF,DH=PF=VG,∵四边形ABCD是菱形,∴∠EBP=∠GBP,∵PE∥BG,∴∠EPB=∠GBP,∴∠EBP=∠EPB,∴BE=PE,∴AH=PE=BG=BE=CF=PG,同理AE=HP=DF=PF=CG,∴四边形AEPH的周长=四边形GPFC的周长,∴④正确;故答案为:①②④.点评:本题考查了菱形的性质和判定,平行四边形的性质和判定,全等三角形的性质和判定的应用,主要考查学生的推理能力,题目比较好,但是比较容易出错.12.如图,两张宽为1cm的矩形纸条交叉叠放,其中重叠部分是四边形ABCD,已知∠BAD=60度,则重叠部分的面积是cm2.考点:菱形的判定与性质.分析:首先过点B作BE⊥AD于点E,BF⊥CD于点F,由题意可得四边形ABCD 是平行四边形,继而求得AB=BC的长,判定四边形ABCD是菱形,则可求得答案.解答:解:过点B作BE⊥AD于点E,BF⊥CD于点F,根据题意得:AD∥BC,AB∥CD,BE=BF=1cm,∴四边形ABCD是平行四边形,∵∠BAD=∠BCD=60°,∴∠ABE=∠CBF=30°,∴AB=2AE,BC=2CF,∵AB2=AE2+BE2,∴AB=cm,同理:BF=cm,∴AB=BC,∴四边形ABCD是菱形,∴AD=cm,∴S菱形ABCD=AD•BE=(cm2).故答案为:.点评:此题考查了菱形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.13.如图,BF平行于正方形ABCD的对角线AC,点E在BF上,且AE=AC,CF∥AE,则∠BCF的度数为105°.考点:菱形的判定与性质;正方形的性质.分析:首先过点A作AO⊥FB的延长线于点O,连接BD,交AC于点Q,易得四边形AOBQ是正方形,四边形ACFE是菱形,Rt△AOE中,AE=2AO,即可求得∠AEO=30°,继而求得答案.解答:解:过点A作AO⊥FB的延长线于点O,连接BD,交AC于点Q,∵四边形ABCD是正方形,∴BQ⊥AC∵BF∥AC,∴AO∥BQ 且∠QAB=∠QBA=45°∴AO=BQ=AQ=AC,∵AE=AC,∴AO=AE,∴∠AEO=30°,∵BF∥AC,∴∠CAE=∠AEO=30°,∵BF∥AC,CF∥AE,∴∠CFE=∠CAE=30°,∵BF∥AC,∴∠CBF=∠BCA=45°,∴∠BCF=180°﹣∠CBF﹣∠CFE=180﹣45﹣30=105°.故答案为:105°.点评:此题考了正方形的性质、平行四边形的判定与性质以及含30°的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.三.解答题(共7小题)14.如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.考点:菱形的判定与性质;旋转的性质.专题:几何综合题.分析:(1)根据旋转可得AE=CE,DE=EF,可判定四边形ADCF是平行四边形,然后证明DF⊥AC,可得四边形ADCF是菱形;(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.解答:(1)证明:∵将△ADE绕点E旋转180°得到△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵D、E分别为AB,AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解:在Rt△ABC中,BC=8,AC=6,∴AB=10,∵D是AB边上的中点,∴AD=5,∵四边形ADCF是菱形,∴AF=FC=AD=5,∴四边形ABCF的周长为8+10+5+5=28.点评:此题主要考查了菱形的判定与性质,关键是掌握菱形四边相等,对角线互相垂直的平行四边形是菱形.15.如图,四边形ABCD中,∠A=90°,AD∥BC,BE⊥CD于E交AD的延长线于F,DC=2AD,AB=BE.(1)求证:AD=DE.(2)求证:四边形BCFD是菱形.考点:菱形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)由,利用“HL”可证△BDA≌△BDE,得出AD=DE;(2)由AD=DE,DC=DE+EC=2AD,可得DE=EC,又AD∥BC,可证△DEF≌△CEB,得出四边形BCFD为平行四边形,再由BE⊥CD证明四边形BCFD是菱形.解答:证明:(1)∵∠A=∠DEB=90°,在Rt△BDA与Rt△BDE中,,∴△BDA≌△BDE,∴AD=DE;(2)∵AD=DE,DC=DE+EC=2AD,∴DE=EC,又∵AD∥BC,∴△DEF≌△CEB,∴DF=BC,∴四边形BCFD为平行四边形,又∵BE⊥CD,∴四边形BCFD是菱形.点评:本题考查了菱形的判定,全等三角形的判定与性质.关键是明确每个判定定理的条件,逐步推出特殊四边形.16.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE 交DE的延长线于F.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.考点:菱形的判定与性质.分析:(1)由题意易得,EF与BC平行且相等,故四边形BCFE是平行四边形.又麟边EF=BE,则四边形BCFE是菱形;(2)连结BF,交CE于点O.利用菱形的性质和等边三角形的判定推知△BCE是等边三角形.通过解直角△BOC求得BO的长度,则BF=2BO.利用菱形的面积=CE •BF进行解答.解答:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE.∵CF∥BE,∴四边形BCFE是平行四边形.∵BE=2DE,BC=2DE,∴BE=BC.∴□BCFE是菱形;(2)解:连结BF,交CE于点O.∵四边形BCFE是菱形,∠BCF=120°,∴∠BCE=∠FCE=60°,BF⊥CE,∴△BCE是等边三角形.∴BC=CE=4.∴.∴.点评:此题主要考查菱形的性质和判定以及面积的计算,使学生能够灵活运用菱形知识解决有关问题.17.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.考点:菱形的判定与性质;全等三角形的判定与性质.专题:压轴题.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BAC=∠DAC,再证明△ABF≌△ADF,可得∠AFD=∠AFB,进而得到∠AFD=∠CFE;(2)首先证明∠CAD=∠ACD,再根据等角对等边可得AD=CD,再有条件AB=AD,CB=CD可得AB=CB=CD=AD,可得四边形ABCD是菱形;(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,在△ABF和△ADF中,,∴△ABF≌△ADF(SAS),∴∠AFD=∠AFB,∵∠AFB=∠CFE,∴∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD,又∵∠BAC=∠DAC,∴∠CAD=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.18.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.考点:菱形的判定与性质;矩形的性质.分析:(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由BC=CD得平行四边形ABCD是菱形;(2)根据菱形的性质得出AD的长,进而得出AE的长,再利用矩形面积公式求出即可.解答:(1)答:四边形ABCD是菱形.证明:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)解:∵菱形ABCD的周长为20,∴AD=AB=BC=CD=5,∵BE=3,∴AE=4,∴DE=5+4=9,∴矩形BEDG的面积为:3×9=27.点评:此题主要考查了菱形的判定与性质以及勾股定理的应用,熟练掌握矩形的性质是解题关键.19.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD 相交于点O,与BD相交于点N,连接MB,ND.(1)求证:四边形BMDN是菱形;(2)若AB=1,AD=2,求MD的长.考点:菱形的判定与性质;全等三角形的判定与性质;矩形的性质.分析:(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=x2﹣32x+256+64,求出即可.解答:(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,在△DMO和△BNO中,,∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,在Rt△AMB中,∵BM2=AM2+AB2∴MD2=(2﹣MD)2+12,解得:MD=(舍去负值),即:MD长为.点评:本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用,对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.20.如图,在矩形ABCD中,对角线AC的垂直平分线分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)证明:四边形AECF为菱形;(2)若AB=1,BC=3,求菱形AECF的边长.考点:菱形的判定与性质;线段垂直平分线的性质;矩形的性质.分析:(1)求出AO=OC,∠AOE=∠COF,根据平行线的性质得出∠EAO=∠FCO,根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=3﹣x,在Rt△ABF中,由勾股定理得出方程62+(8﹣x)2=x2,求出即可.解答:(1)证明:∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°,∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA);∴OE=OF又∵OA=OC,∴四边形AECF是平行四边形,又∵EF⊥AC∴平行四边形AECF是菱形;(2)解:设AF=x,∵EF是AC的垂直平分线,∴AF=CF=x,BF=3﹣x,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,12+(3﹣x)2=x2,解得 x=.即菱形AECF的边长是.点评:本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.。
八年级数学下册菱形的判定练习新版华东师大版
八年级数学下册菱形的判定练习新版华东师大版1.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( B )(A)一组邻边相等的四边形是菱形(B)四边相等的四边形是菱形(C)对角线互相垂直的平行四边形是菱形(D)每条对角线平分一组对角的平行四边形是菱形2.如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的是( B )(A)B A=BC (B)AC,BD互相平分(C)AC=BD (D)AB∥CD3.已知四边形ABCD是平行四边形,下列结论不正确的是( D )(A)当AB=BC时,它是菱形(B)当AC⊥BD时,它是菱形(C)当∠ABC=90°时,它是矩形(D)当AC=BD时,它是菱形4.(2018扬州改编)如图,在平行四边形ABCD中,DB=DA=9,点F是AB的中点,连结DF并延长,交CB的延长线于点E,连结AE,则四边形AEBD的周长是36 .5.如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB 的长为半径画弧,两弧相交于C,D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是菱形.6.▱ABCD的对角线AC与BD相交于点O,若∠BAO=∠DAO,则▱ABCD是菱形.第6题图7.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是AC⊥BD(或AB=BC或BC=CD或CD=DA或AB=AD)(答案不唯一) (添加一个条件即可).第7题图8.将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图①;再次折叠该三角形纸片,使点A与点D重合,折痕为EF,再次展平后连结DE,DF,如图②.求证:四边形AEDF是菱形.证明:由第一次折叠得AD为∠CAB的平分线,所以∠1=∠2.由第二次折叠得∠CAB=∠EDF,所以∠3=∠4.因为AD=AD,所以△AED≌△AFD.所以AE=AF,DE=DF.由第二次折叠得AE=ED,AF=DF,所以AE=ED=DF=AF.所以四边形AEDF是菱形.9.(2018内江)如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CFD.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.证明:(1)因为四边形ABCD是平行四边形,所以∠A=∠C.因为A E=CF,∠AED=∠CFD,所以△AED≌△CFD.(2)因为△AED≌△CFD,所以AD=CD.因为四边形ABCD是平行四边形,所以四边形ABCD是菱形.10.已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.(1)证明:在▱ABCD中,因为AD∥BC,所以∠ADB=∠CBD.因为OB=OD,∠DOE=∠BOF,所以△DOE≌△BOF.(2)解:当∠DOE=90°时,四边形BFDE为菱形.因为△DOE≌△BOF,所以OE=OF.因为OB=OD,所以四边形BFDE为平行四边形.因为∠DOE=90°,所以EF⊥BD,所以▱BFDE为菱形.11.(拓展探究题)如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连结CE;③过C作CF∥AB交PQ于点F,连结AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.证明:(1)根据题中作图步骤①和②可知PQ是AC的垂直平分线.所以CD=AD,ED⊥AC.因为CF∥AB,所以∠DCF=∠DAE.因为∠DCF=∠DAE,CD=AD,∠CDF=∠ADE,所以△AED≌△CFD.(2)因为△AED≌△CFD,所以FD=ED,AD=CD.所以四边形AECF为平行四边形.又因为PQ是AC的垂直平分线,所以四边形AECF是菱形.。
华师大版初中数学八年级下册《19.2.2 菱形的判定》同步练习卷(含答案解析
华师大新版八年级下学期《19.2.2 菱形的判定》同步练习卷一.选择题(共4小题)1.如图,△ABC中,点P是AB边上的一点,过点P作PD∥BC,PE∥AC,分别交AC,BC于点D,E,连按CP.若四边形CDPE是菱形,则线段CP应满足的条件是()A.CP平分∠ACB B.CP⊥ABC.CP是AB边上的中线D.CP=AP2.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,下列条件中,不能使四边形DBCE成为菱形的是()A.AB=BE B.BE⊥DC C.∠ABE=90°D.BE平分∠DBC 3.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④∠ACD=∠DCE,其中正确的个数是()A.1B.2C.3D.44.如图,在▱ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是()A.AM=AN B.MN⊥ACC.MN是∠AMC的平分线D.∠BAD=120°二.填空题(共2小题)5.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是.6.如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=,平行四边形CDEB为菱形.三.解答题(共32小题)7.已知:如图,已知AD是Rt△ABC斜边BC上的高,∠B的平分线交AD于M 交AC于E,∠DAC的平分线交ME于O,交CD于N.求证:四边形AMNE是菱形.8.已知:如图,AF∥DE,AC平分∠BAD交DE于点C,DB平分∠ADC交AF于点B,连接BC.求证:四边形ABCD是菱形9.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.10.如图,已知点P为∠ACB平分线上的一点,∠ACB=60°,PD⊥CA于D,PE⊥CB于E.点M是线段CP上的动点(不与两端点C、P重合),连接DM,EM.(1)求证:DM=ME;(2)当点M运动到线段CP的什么位置时,四边形PDME为菱形,请说明理由.11.如图,在△ABC中,AB=AC,AD⊥BC于D,点E,F分别是AB,AC的中点.求证:四边形AEDF是菱形.12.如图,在▱ABCD中,AB⊥BD,P,O分别为AD,BD的中点,延长PO交BC 于点Q,连结BP,DQ,求证:四边形PBQD是菱形.13.如图:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形.14.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE 于点D,连接CD,求证:(1)AC⊥BD;(2)四边形ABCD是菱形.15.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A 作AG∥DB交CB的延长线于点.(1)求证:△ADE≌△CBF;(2)若∠G=90°,求证:四边形DEBF是菱形.16.在Rt△ABC中∠B=90°,∠ACB=30°,∠BAC的平分线AD交BC于D,过点D 作DE⊥AB于E,过A作AF∥BC交DE延长线于点F,连接FC求证:(1)△AEF≌△CED;(2)四边形ADCF是菱形.17.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC 于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.18.如图,在△ABC中,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.判断四边形EBGD的形状,并说明理由.19.已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.20.如图,在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA 上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.21.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.22.如图,Rt△ABC中∠C=90°,D为AB的中点,分别作AE∥CB、BE∥AC,两线交于点E,连接DE.作EF∥AB交CB延长线于点F,取EF中点G,连接BG.问四边形DEGB是什么特殊四边形?说明理由.23.如图1,Rt△BAD与Rt△BCD的直角顶点A、C在斜边BD所在直线的两旁.连接AC,(1)点O、E分别是AC、BD的中点,过点C作AE的平行线与EO的延长线交于点F,求证:四边形AFCE是菱形.(2)如果Rt△BAD与Rt△BCD的直角顶点A、C在斜边BD所在直线的同侧(如图2),保持(1)中其它条件不变,则(1)中的结论是否成立?请在图2上画出相应图形并写明结论.(画出图形,写明结论,不需证明)(3)在图2中,过B、D两点分别向AC所在直线作垂线,垂足为M、N(如图3),则AM与CN是否相等?如果相等,给出证明;如果不相等,请说明理由.24.已知:如图,矩形ABCD中,AB=2,AD=3,E、F分别是AB、CD的中点.(1)在边AD上取一点M,使点A关于BM的对称点G恰好落在EF上.设BM 与EF相交于点N,求证:四边形ANGM是菱形;(2)设P是AD上一点,∠PFB=3∠FBC,求线段AP的长.25.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF ∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.27.在五边形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分别为AC、AB、BC的中点.(1)求证:△EMO≌△OND;(2)若AB=AC,且∠BAC=40°,当∠DAB等于多少时,四边形ADOE是菱形,并证明.28.在△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC交AD于E,交AC 于G,GF⊥BC于F,连接EF.(1)如图1,求证:四边形AEFG是菱形;(2)如图2,若E为BG的中点,过点E作EM∥BC交AC于M,在不添加任何辅助线的情况下,请直接写出图2中是CM长倍的所有线段.29.如图,在平行四边形ABCD中,CE平分∠BCD,交AB边于点E,EF∥BC,交CD于点F,点G是BC边的中点,连接GF,且∠1=∠2,CE与GF交于点M,过点M作MH⊥CD于点H.(1)求证:四边形BCFE是菱形;(2)若CH=1,求BC的长;(3)求证:EM=FG+MH.30.如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,判断AC与CD的数量关系和位置关系,并说明理由.31.如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60°,∠ACB=45°,BD=2,试求BF的长.32.如图,在▱ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,AE与BF相交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=,求▱ABCD的面积.33.如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC 于点F,CE与DF交于点P,连接EF,BP.(1)求证:四边形CDEF是菱形;(2)若AB=2,BC=3,∠A=120°,求BP的值.34.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB 交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.35.如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.36.如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD 上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?37.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作ED∥AC,两线相交于点E.(1)求证:四边形AODE是菱形;(2)连接BE,交AC于点F.若BE⊥ED于点E,求∠AOD的度数.38.如图1,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)如图2,若∠AED=2∠EAD,AC=8.求DE的长.华师大新版八年级下学期《19.2.2 菱形的判定》同步练习卷参考答案与试题解析一.选择题(共4小题)1.如图,△ABC中,点P是AB边上的一点,过点P作PD∥BC,PE∥AC,分别交AC,BC于点D,E,连按CP.若四边形CDPE是菱形,则线段CP应满足的条件是()A.CP平分∠ACB B.CP⊥ABC.CP是AB边上的中线D.CP=AP【分析】根据菱形的性质解答即可.【解答】解:∵四边形CDPE是菱形,∴∠DCP=∠ECP,∴CP平分∠ACB,故选:A.【点评】此题考查菱形的性质,关键是根据菱形的性质解答.2.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,下列条件中,不能使四边形DBCE成为菱形的是()A.AB=BE B.BE⊥DC C.∠ABE=90°D.BE平分∠DBC 【分析】根据菱形的判定方法一一判断即可;【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵BE⊥DC,∴对角线互相垂直的平行四边形为菱形,故本选项正确;C、∵∠ABE=90°,∴BD=DE,∴邻边相等的平行四边形为菱形,故本选项正确;D、∵BE平分∠DBC,∴对角线平分对角的平行四边形为菱形,故本选项正确.故选:A.【点评】此题主要考查了平行四边形的判定以及菱形的判定,正确掌握菱形的判定与性质是解题关键.3.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④∠ACD=∠DCE,其中正确的个数是()A.1B.2C.3D.4【分析】由△ABC、△DCE是等边三角形,可求出∠ACD=60°,继而可判断△ACD 是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD 是平行四边形,从而可判断②是正确的;根据①的结论,可判断四边形ACED 是菱形,即③正确,继而判定④正确.【解答】解:∵△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确;∵四边形ACED是菱形,∴∠ACD=∠DCE;故④正确.故选:D.【点评】本题考查了平移的性质、等边三角形的性质、平行四边形的判定与性质及菱形的判定.解答本题的关键是先判断出△ACD是等边三角形.4.如图,在▱ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是()A.AM=AN B.MN⊥ACC.MN是∠AMC的平分线D.∠BAD=120°【分析】根据平行四边形性质推出∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,求出∠BAM=∠DCN,证△ABM≌△CDN,推出AM=CN,BE=DN,求出AN=CM,得出四边形AMCN是平行四边形,再根据菱形的判定判断即可.【解答】解:如图,∵四边形ABCD是平行四边形,∴∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,∵AM,CN分别是∠BAD和∠BCD的平分线,∴∠DCN=∠DCB,∠BAM=∠BAD,∴∠BAM=∠DCN,在△ABM和△CDN中,∴△ABM≌△CDN(ASA),∴AM=CN,BM=DN,∵AD=BC,∴AN=CM,∴四边形AMCN是平行四边形,A、∵四边形AMCN是平行四边形,AM=AN,∴平行四边形AMCN是菱形,故本选项错误;B、∵MN⊥AC,四边形AMCN是平行四边形,∴平行四边形AMCN是菱形,故本选项错误;C、∵四边形AMCN是平行四边形,∴AN∥BC,∴∠MNA=∠CMN,∵MN是∠AMC的平分线,∴∠NMA=∠NMC,∴∠MNA=∠MAC,∴∠MAC=∠NMA,∴AM=AN,∵四边形AMCN是平行四边形,∴四边形AMCN是菱形,故本选项错误;D、根据∠BAD=120°和平行四边形AMCN不能推出四边形是菱形,故本选项正确;故选:D.【点评】本题考查了平行四边形的性质和判定、菱形的判定、全等三角形的性质和判定、平行线的性质等知识点;证明三角形全等是解决问题的关键.二.填空题(共2小题)5.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF;②△EFG≌△GBE;③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是①②④.【分析】由中点的性质可得出EF∥CD,且EF=CD=BG,结合平行即可证得②结论成立,由BD=2BC得出BO=BC,即而得出BE⊥AC,由中线的性质可知GP∥BE,且GP=BE,AO=EO,通过证△APG≌△EPG得出AG=EG=EF得出①成立,再证△GPE≌△FPE得出④成立,此题得解.【解答】解:令GF和AC的交点为点P,如图所示:∵E、F分别是OC、OD的中点,∴EF∥CD,且EF=CD,∵四边形ABCD为平行四边形,∴AB∥CD,且AB=CD,∴∠FEG=∠BGE(两直线平行,内错角相等),∵点G为AB的中点,∴BG=AB=CD=FE,在△EFG和△GBE中,,∴△EFG≌△GBE(SAS),即②成立,∴∠EGF=∠GEB,∴GF∥BE(内错角相等,两直线平行),∵BD=2BC,点O为平行四边形对角线交点,∴BO=BD=BC,∵E为OC中点,∴BE⊥OC,∴GP⊥AC,∴∠APG=∠EPG=90°∵GP∥BE,G为AB中点,∴P为AE中点,即AP=PE,且GP=BE,在△APG和△EGP中,,∴△APG≌△EPG(SAS),∴AG=EG=AB,∴EG=EF,即①成立,∵EF∥BG,GF∥BE,∴四边形BGFE为平行四边形,∴GF=BE,∵GP=BE=GF,∴GP=FP,∵GF⊥AC,∴∠GPE=∠FPE=90°在△GPE和△FPE中,,∴△GPE≌△FPE(SAS),∴∠GEP=∠FEP,∴EA平分∠GEF,即④成立.故答案为:①②④.【点评】本题考查了全等三角形的判定与性质、中位线定理以及平行线的性质定理,解题的关键是利用中位线,寻找等量关系,借助于证明全等三角形找到边角相等.6.如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=,平行四边形CDEB为菱形.【分析】首先根据勾股定理求得AB=5;然后利用菱形的对角线互相垂直平分、邻边相等推知OD=OB,CD=CB;最后Rt△BOC中,根据勾股定理得,OB的值,则AD=AB﹣2OB.【解答】解:如图,连接CE交AB于点O.∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB==5(勾股定理).若平行四边形CDEB为菱形时,CE⊥BD,且OD=OB,CD=CB.∵AB•OC=AC•BC,∴OC=.∴在Rt△BOC中,根据勾股定理得,OB===,∴AD=AB﹣2OB=.故答案是:.【点评】本题考查了菱形的判定与性质.菱形的对角线互相垂直平分.三.解答题(共32小题)7.已知:如图,已知AD是Rt△ABC斜边BC上的高,∠B的平分线交AD于M 交AC于E,∠DAC的平分线交ME于O,交CD于N.求证:四边形AMNE是菱形.【分析】根据全等三角形的判定和菱形的判定证明即可.【解答】证明:∵BE平分∠ABC交AD于M,交AC于E,∵∠ABE=∠DBM,∵AD是Rt△ABC斜边BC上的高,∴∠BAC=∠ADB=90°,∴∠AEM=∠BMD,∵∠AME=∠BMD,∴∠AEM=∠AME,∴AE=AM,∵∠DAC的平分线交CD于N,∴∠MAN=∠NAE,AN⊥ME,且AN平分ME,在△BAO和△BNO中,,∴△ABO≌△NBO(ASA),∴AO=NO,∴AN和ME互相垂直平分,∴四边形AMNE是菱形.【点评】此题考查菱形的判定,关键是根据全等三角形的判定和性质解答.8.已知:如图,AF∥DE,AC平分∠BAD交DE于点C,DB平分∠ADC交AF于点B,连接BC.求证:四边形ABCD是菱形【分析】根据平行线的性质和菱形的判定证明即可.【解答】证明:∵AC平分∠BAD交DE于点C,∴∠DAC=∠CAB,∵AF∥DE,∴∠DCA=∠CAB,∴∠DAC=∠DCA,∴AD∥BC,∴四边形ABCD是平行四边形,∵DB平分∠ADC交AF于点B,∴∠ADB=∠BDC,∵AF∥DE,∴∠ADC+∠DAB=180°,∴∠ADB+∠DAC=90°,∴DB⊥AC,∴平行四边形ABCD是菱形.【点评】此题考查菱形的判定,关键是根据平行四边形和菱形的判定解答.9.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.【分析】(1)只要证明AD=BC,∠ADP=∠BCQ,DP=CQ即可解决问题;(2)首先证明四边形ABQP是平行四边形,再证明AB=AP即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.【点评】本题考查菱形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.如图,已知点P为∠ACB平分线上的一点,∠ACB=60°,PD⊥CA于D,PE⊥CB于E.点M是线段CP上的动点(不与两端点C、P重合),连接DM,EM.(1)求证:DM=ME;(2)当点M运动到线段CP的什么位置时,四边形PDME为菱形,请说明理由.【分析】(1)先利用角平分线定义得到∠ACP=∠BCP=30°,再根据角平分线的性质得PD=PE,则利用“HL”可证明Rt△DCP≌Rt△ECP得到CD=CE,然后证明△DCM≌△ECM得到DM=ME;(2)利用∠DCP=30°得到PC=2PD,∠CPD=60°,则当DM=DP时,PD=PE=MD=ME,则四边形DMEP为菱形,由于此时△PDM为等边三角形,所以PD=PM,从而得到CM=PM,即当点M运动到线段CP的中点时,四边形PDME为菱形.【解答】(1)证明:∵点P为∠ACB平分线上的一点,∴∠ACP=∠BCP=30°,∵PD⊥CA于D,PE⊥CB于E,∴PD=PE,在Rt△DCP和Rt△ECP中,∴Rt△DCP≌Rt△ECP,∴CD=CE,在△DCM和△ECM中,∴△DCM≌△ECM,∴DM=ME;(2)解:当点M运动到线段CP的中点时,四边形PDME为菱形.理由如下:∵∠DCP=30°,∴PC=2PD,∠CPD=60°,∵PD=PE,MD=ME,∴当DM=DP时,PD=PE=MD=ME,则四边形DMEP为菱形,此时△PDM为等边三角形,∴PD=PM,∴CM=PM,∴当点M运动到线段CP的中点时,四边形PDME为菱形.【点评】本题考查了菱形的判定:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);四条边都相等的四边形是菱形.也考查了全等三角形的判定与性质和角平分线的性质.11.如图,在△ABC中,AB=AC,AD⊥BC于D,点E,F分别是AB,AC的中点.求证:四边形AEDF是菱形.【分析】先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形.【解答】证明:∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形.【点评】本题考查了菱形的判定、三角形的中位线定理、线段的垂直平分线的性质定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,在▱ABCD中,AB⊥BD,P,O分别为AD,BD的中点,延长PO交BC 于点Q,连结BP,DQ,求证:四边形PBQD是菱形.【分析】根据四边相等的四边形是菱形即可判断;【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC,∴∠ABD=∠BDC,∵AB⊥BD,∴∠ABD=∠BDC=90°,∵AP=PD,BQ=QC,∴PB=PD=AP,DQ=BQ=QC,∴PB=PD=BQ=DQ,∴四边形PBQD是菱形.【点评】本题考查菱形的判定、直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.如图:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形.【分析】根据三角形内角和定理求出∠B=∠CAD,根据角平分线性质求出AE=EF,由勾股定理求出AC=CF,证△ACG≌△FCG,推出∠CAD=∠CFG,得出∠B=∠CFG,推出GF∥AB,AD∥EF,得出平行四边形,根据菱形的判定判断即可.【解答】证明:∵AD⊥BC,∴∠ADB=90°,∵∠BAC=90°,∴∠B+∠BAD=90°,∠BAD+∠CAD=90°,∴∠B=∠CAD,∵CE平分∠ACB,EF⊥BC,∠BAC=90°(EA⊥CA),∴AE=EF(角平分线上的点到角两边的距离相等),∵CE=CE,∴由勾股定理得:AC=CF,∵△ACG和△FCG中,∴△ACG≌△FCG,∴∠CAD=∠CFG,∵∠B=∠CAD,∴∠B=∠CFG,∴GF∥AB,∵AD⊥BC,EF⊥BC,∴AD∥EF,即AG∥EF,AE∥GF,∴四边形AEFG是平行四边形,∵AE=EF,∴平行四边形AEFG是菱形.【点评】本题考查了平行四边形的性质和判定,菱形的判定,全等三角形的性质和判定的应用,通过做此题培养了学生的推理能力,题目比较好,综合性也比较强.14.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE 于点D,连接CD,求证:(1)AC⊥BD;(2)四边形ABCD是菱形.(1)证得△BAC是等腰三角形后利用三线合一的性质得到AC⊥BD即可;【分析】(2)首先证得四边形ABCD是平行四边形,然后根据对角线互相垂直得到平行四边形是菱形.【解答】证明:(1)∵AE∥BF,∴∠BCA=∠CAD,∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形,∵BD平分∠ABC,∴AC⊥BD;(2)∵△BAC是等腰三角形,∴AB=CB,∵∠CBD=∠ABD=∠BDA,∴△ABD也是等腰三角形,∴AB=AD,∴DA=CB,∵BC∥DA,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形.【点评】本题考查了菱形的判定,解题的关键是熟练掌握菱形的几个判定方法,难度不大.15.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A 作AG∥DB交CB的延长线于点.(1)求证:△ADE≌△CBF;(2)若∠G=90°,求证:四边形DEBF是菱形.【分析】(1)根据已知条件证明AE=CF,从而根据SAS可证明两三角形全等;(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C,∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,∵,∴△ADE≌△CBF(SAS);(2)∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴AE=BE=DE,∵DF∥BE,DF=BE,∴四边形DEBF是平行四边形,∴四边形DEBF是菱形.【点评】本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,难度适中.16.在Rt△ABC中∠B=90°,∠ACB=30°,∠BAC的平分线AD交BC于D,过点D 作DE⊥AB于E,过A作AF∥BC交DE延长线于点F,连接FC求证:(1)△AEF≌△CED;(2)四边形ADCF是菱形.【分析】(1)由全等三角形的判定定理AAS证得△AEF≌△CED;(2)根据(1)中的全等三角形的性质推出四边形ADCF是平行四边形,再证明△AED≌△ABD,推出DF⊥AC,由此即可证明.【解答】(1)证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED(AAS).(2)∵在Rt△ABC中∠B=90°,∠ACB=30°,∴AB=AC.由(1)知,△AEF≌△CED,则AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形.由题意知,AE=AB,∠EAD=∠BAD,AD=AD,∴△AED≌△ABD.∴∠AED=∠B=90°,即DF⊥AC.∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.17.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC 于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,进而可证明BF=CF;(2)当AC=BC时,四边形BCFD为菱形,根据菱形的判定得出即可;【解答】解:(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∴CD=BF,∴BF=CF;(2)当AC=BC时,四边形BDCF为菱形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∵四边形BDCF是平行四边形,∴四边形BDCF是菱形.【点评】本题考查了平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.18.如图,在△ABC中,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.判断四边形EBGD的形状,并说明理由.【分析】首先垂直平分线的性质得到BE=DE,BG=DG,再证明△BGF≌△DEF,得到DE=BG,利用四边相等的四边形是菱形得到结论.【解答】解:四边形EBGD是菱形,理由:∵EG垂直平分BD,∴BE=DE,BG=DG,∴∠EBD=∠EDB,∵BD平分∠ABC,∴∠EBD=∠DBG,∴∠DBG=∠EDB,∵∠EFD=∠GFB,BF=DF,∴△BGF≌△DEF,∴DE=BG,∴BE=DE=BG=DG,∴四边形EBGD是菱形.【点评】本题主要考查了菱形的判定,解题的关键是掌握四边形相等的四边形是菱形.19.已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【分析】(1)根据平行四边形的性质可得到对应角相等对应边相等,从而不难求得其周长;(2)根据中位线的性质及菱形的判定不难求得四边形AQMP为菱形.【解答】解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a;(2)当点M在BC的中点时,四边形APMQ是菱形,∵AB∥MP,点M是BC的中点,∴==,∴P是AC的中点,∴PM是三角形ABC的中位线,同理:QM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.【点评】此题主要考查了平行四边形的判定和性质,中位线的性质,菱形的判定等知识点的综合运用.20.如图,在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA 上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.【分析】(1)由全等三角形的判定定理SAS证得结论;(2)易证四边形EFGH是平行四边形,那么EF∥GH,那么∠HGE=∠FEG,而EG 是角平分线,易得∠HEG=∠FEG,根据等量代换可得∠HEG=∠HGE,从而有HE=HG,易证四边形EFGH是菱形.【解答】(1)证明:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)解:∵在ABCD中∠B=∠D,且AB=CD AD=BC又∵AE=CG AH=CF,∴BE=DG DH=BF,∴△DHG≌△BFE,∴HG=EF又∵HE=GF∴四边形EFGH是平行四边形又∵EG平分∠HEF,∴∠1=∠2又∵HG∥EF,∴∠2=∠3,∴∠1=∠3,∴HE=HG,∴EFGH是菱形;【点评】本题考查了全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定.解题的关键是掌握两组对边相等的四边形是平行四边形,一组邻边相等的平行四边形是菱形.21.如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.【分析】(1)依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△DPG,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)依据∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.【解答】解:(1)∵AF=FG,∴∠FAG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG,∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED,∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)证明:过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△PAG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△DPG,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形,证明:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.【点评】本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.22.如图,Rt△ABC中∠C=90°,D为AB的中点,分别作AE∥CB、BE∥AC,两线交于点E,连接DE.作EF∥AB交CB延长线于点F,取EF中点G,连接BG.问四边形DEGB是什么特殊四边形?说明理由.【分析】由AE∥CB,BE∥AC,Rt△ABC中∠C=90°,可得四边形DEGB是矩形,△AEB和△EBF都是直角三角形,又由D、G分别是AB、EF的中点,可得四边形ABFE是平行四边形,继而可得ED=BD=EG=BG,则可证得四边形DEGB是菱形.【解答】解:四边形DEGB是菱形.理由:∵AE∥CB,BE∥AC,∴四边形DEGB是平行四边形,又∵∠C=90°,∴四边形ACBE是矩形,∴∠AEB=∠CBE=90°,∴△AEB和△EBF都是直角三角形,又∵D、G分别是AB、EF的中点,∴ED=BD,EG=BG,∵AE∥BF,EF∥AB,∴四边形ABFE是平行四边形,∴AB=EF,又∵D、G分别是AB、EF的中点,∴BD=EG,∴ED=BD=EG=BG,∴四边形DEGB是菱形.【点评】此题考查了菱形的性质与判定、平行四边形的判定与性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.23.如图1,Rt△BAD与Rt△BCD的直角顶点A、C在斜边BD所在直线的两旁.连接AC,(1)点O、E分别是AC、BD的中点,过点C作AE的平行线与EO的延长线交。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.3 菱形的判定A卷一、选择题1.下列四边形中不一定为菱形的是()A.对角线相等的平行四边形 B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形 D.用两个全等的等边三角形拼成的四边形2.四个点A,B,C,D在同一平面内,从①AB∥CD;②AB=CD;③AC⊥BD;④AD= BC;⑤AD∥BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().A.1种 B.2种 C.3种 D.4种3.菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和43cm B.4cm和83cm C.8cm和83cm D.4cm和43cm二、填空题4.如图1所示,已知□ABCD,AC,BD相交于点O,•添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)图1 图25.如图2所示,D,E,F分别是△ABC的边BC,CA,AB上的点,且DE∥AB,DF∥CA,要使四边形AFDE是菱形,则要增加的条件是________.(只写出符合要求的一个即可)6.菱形ABCD的周长为48cm,∠BAD: ∠ABC= 1:•2,•则BD=•_____,•菱形的面积是______.7.在菱形ABCD中,AB=4,AB边上的高DE垂直平分边AB,则BD=_____,AC=_____.三、解答题8.如图所示,在四边形ABCD中,AB∥CD,AB=CD=BC,四边形ABCD是菱形吗?•说明理由.四、思考题9.如图,矩形ABCD 的对角线相交于点O ,PD∥AC,PC∥BD,PD ,PC 相交于点P ,四边形PCOD 是菱形吗?试说明理由.参考答案一、1.A 点拨:本题用排除法作答.2.D 点拨:根据菱形的判定方法判断,注意不要漏解.3.C 点拨:如图所示,若∠ABC=60°,则△ABC 为等边三角形,•所以AC=AB=14×32=8(cm ),AO=12AC=4cm . 因为AC⊥BD, 在Rt△AOB 中,由勾股定理,得222284AB OA -=-3cm ),•所以BD=2OB=83cm.二、4.AB=BC 点拨:还可添加AC⊥BD或∠ABD=∠CBD等.5.点D在∠BAC的平分线上(或AE=AF)6.12cm;723cm2点拨:如图所示,过D作DE⊥AB于E,因为AD∥BC,•所以∠BAD+∠ABC=180°.又因为∠BAD:∠ABC=1:2,所以∠BAD=60°,因为AB=AD,所以△ABD是等边三角形,所以BD=AD=12cm.所以AE=6cm.在Rt△AED中,由勾股定理,得AE2+ED2=AD2,62+ED2=122,所以ED2=108,所以ED=63cm,所以S菱形ABCD=12×63=723(cm2).7.4;43点拨:如图所示,因为DE垂直平分AB,又因为DA=AB,所以DA=DB=4.所以△ABD是等边三角形,所以∠BAD=60°,由已知可得AE=2.在Rt△AED 中,•AE2+DE2=AD2,即22+DE2=42,所以DE2=12,所以DE=23,因为12AC·BD=AB·DE,即12AC·4=4×23,所以AC=43.三、8.解:四边形ABCD是菱形,因为四边形ABCD中,AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以ABCD是菱形.D A CF H E B K AHG 点拨:根据已知条件,不难得出四边形ABCD 为平行四边形,又AB=BC ,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、9.解:四边形PCOD 是菱形.理由如下:因为PD∥OC,PC∥OD,•所以四边形PCOD 是平行四边形.又因为四边形ABCD 是矩形,所以OC=OD ,所以平行四边形PCOD 是菱形.20.3 菱形的判B 卷一、七彩题1.(一题多解题)如图所示,△ABC 中,∠ACB=90°,∠ABC 的平分线BD•交AC 于点D ,CH⊥AB 于H ,且交BD 于点F ,DE⊥AB 于E ,四边形CDEF 是菱形吗?请说明理由.二、知识交叉题2.(科内交叉题)如图所示,已知△ABC 中,AB=AC ,D 是BC 的中点,过点D•作DE⊥AB,DF⊥AC,垂足分别为E ,F ,再过E ,F 作EG⊥AC,FH⊥AB,垂足分别为G ,H ,且EG ,•FH相交于点K ,试说明EF 和DK 之间的关系.AFHGB三、实际应用题3.菱形以其特殊的对称美而备受人们喜爱,在生产生活中有极其广泛的应用.如图所示是一块长30cm,宽20cm的长方形的瓷砖,E,F,G,H分别是边BC,CD,DA,•AB的中点,涂黑部分为淡蓝色花纹,中间部分为白色.现有一面长4.2m,宽2.8m•的墙壁准备贴这种瓷砖,试问:(1)这面墙壁最少要贴这种瓷砖多少块?(2)全部贴满瓷砖后,这面墙壁最多会出现多少个面积相等的菱形?•其中有花纹的菱形有多少个?四、经典中考题4.(宜宾)已知:如图所示,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.(1)试说明:AE=AF;(2)若∠B=60°,点E,F分别为BC和CD的中点,试说明:△AEF为等边三角形.五、探究学习篇1.(结论开放题)如图所示,在菱形ABCD中,E,F分别是BC,CD上的点,且CE=CF.请你仔细观察图,除了菱形自身已经具备的性质和题目中的条件外,请你选取一个角度提出一个问题,并加以说明.2.阅读下列材料,完成后面的问题:如图,在ABCD中,∠BAD的平分线AE与BC相交于点E,∠ABC的平分线BF与AD相交于点F,AE•与BF•相交于点O,•求证:•四边形ABEF 是菱形.证明:①因为四边形ABCD是平行四边形;②所以AD∥BC;③所以∠ABE+∠BAF= 180°;④因为AE,BF分别平分∠BAF,∠ABE;⑤所以∠1=∠2=12∠BAF,∠3=∠4=12∠ABE; ⑥所以∠1+∠3=12(∠ABE+∠BAF)=90°;⑦所以∠AOB=90°;⑧所以AE⊥BF;•⑨所以四边形ABEF是菱形,问:(1)上述证明是否正确?答:___________;(2)如有错误,在第______步推理错误,应在第_____步后添加如下证明过程:参考答案一、1.解法一:四边形CDEF是菱形.理由:如图所示,因为∠1=∠2,∠ACB=90°,DE⊥AB,又BD=•BD,•所以△CBD≌△EBD,所以CD=DE,因为∠1+∠4=90°,∠2+∠5=90°,∠1=∠2,∠3=∠5,•所以∠3=∠4.所以CF=CD.所以CF=DE.因为CH⊥AB,DE⊥AB,所以CH∥DE.所以CF//DE.•所以四边形CDEF是平行四边形.又因为CF=CD,所以□CDEF是菱形.解法二:四边形CDEF是菱形.理由:如答图20-3-4所示,连结CE交DF于点O.因为∠1=∠2,∠BCD=∠BED=90°,BD=BD,所以△BCD≌△BED.所以BC=BE.又因为∠1=∠2,所以BD⊥CE,且OC=OE.因为∠1+∠4=90°,∠2+∠5=90°,∠1=∠2,∠3=∠5,所以∠3= ∠4.所以CF=CD.又因为CE⊥DF,所以OF=OD.所以四边形CDEF是平行四边形,•又因为DF⊥CE,所以CDEF是菱形.点拨:解法一利用了菱形的定义,•解法二利用了“对角线互相垂直的平行四边形是菱形”的方法,本题除以上两种解法外,还可利用“四条边都相等的四边形是菱形”的方法解决,请同学们再进行探讨.二、2.解:EF与DK互相垂直平分.理由:因为DE⊥AB,FH⊥AB,所以DE∥FH.•因为DF⊥AC,EG⊥AC,所以DF∥EG.所以四边形DEKF是平行四边形.因为AB=AC,所以∠B=∠C.又因为BD=CD,∠BED=∠CFD=90°,所以△BDE≌△CDF,所以DE=DF.所以DEKF是菱形,•所以EF与DK互相垂直平分.点拨:要说明EF与DK互相垂直平分,只要说明四边形DEKF是菱形,•要说明四边形DEKF是菱形,可先说明四边形DEKF是平行四边形,再说明一组邻边相等即可.三、3.解:(1)因为墙壁的总面积为4.2×2.8=11.76(m2),每块瓷砖的面积为0.3×0.2=0.06(m2),所以最少需要贴这种瓷砖11.76÷0.06=196(块).(2)因为每相邻4块瓷砖构成一个有花纹的菱形(如图),在长4.2m,宽2.8m的墙壁上贴长30cm,宽20cm的长方形瓷砖,可贴4.2÷0.3=14(列),2.8÷0.2=14(•行).因此构成的有花纹的菱形共13列13行,所以有花纹的菱形共13×13=169(个).同时,白色菱形的个数与瓷砖的块数相同,故有白色菱形196个.从而面积相等的菱形最多有169+196=365(个).四、4.解:(1)因为四边形ABCD是菱形,所以AB=AD,∠B=∠D,又因为BE=DF,•所以△ABE≌△ADF,所以AE=AF.(2)连结AC.因为AB=BC,∠B=60°,所以△ABC 是等边三角形,因为E是BC的中点,所以AE⊥BC,所以∠BAE=90°-60°=30°,同理∠DAF=30°.因为∠BAD=180°-∠B=120°,所以∠EAF=∠BAD-∠BAE-∠DAF=60°.又因为AE=AF,•所以△AEF是等边三角形.。