气—气热管换热器的传热计算
热管换热器计算
热管换热器计算(2009-02-20 22:50:45)转载标签:热管换热器计算德天热管亚洲热管网热管换热器计算可用热平衡方程式进行计算,对于常温下使用的通风系统中的热管换热器的换热后温度,回收的冷热量也可用下列公式计算,由于公式采用的是显热计算,但实际热回收过程也发生潜热回收,因此计算值较实测值偏小,其发生的潜热回收可作为余量或保险系数考虑。
本文选自【亚洲热管网】热管换热器的计算:1. 热管换热器的效率定义η=t1-t2/t1- t3 (1-1)式t1、t2——新风的进、出口温度(℃)t3——排风的入口温度(℃)2.热管换热器的设计计算一般已知热管换热器的新风和排风的入口温度t1和t3,取新风量L x 与排风量L P相等。
即L x = L P,新风和排风的出口温度按下列公式计算:t2=t1-η(t1-t3) (1-2)t4=t3+η(t1-t3) (1-3)t4——排风出口温度(℃)回收的热量Q (kW), 负值时为冷量:Q(kW)= L xρX C x(t2-t1)/3600 (1-4)式中L x——新风量(m3/h )ρx——新风的密度(kg/m3)(一般取1.2 kg/m3)C x——新风的比热容,一般可取1.01kJ/ (kg ·℃)。
3.选用热管换热器时,应注意:1)换热器既可以垂直也可以水平安装,可以几个并联,也可以几个串联;当水平安装时,低温侧上倾5℃~7℃。
2)表面风速宜采用1.5 m/s~3.5m/s。
3)当出风温度低于露点温度或热气流的含湿量较大时,应设计冷凝水排除装置。
4)冷却端为湿工况时,加热端的效率η值应增加,即回收的热量增加。
但仍可按上述公式计算(增加的热量作为安全因素)。
需要确定冷却端(热气流)的终参数时,可按下式确定处理后的焓值,并按处理后的相对湿度为90%左右考虑。
h2=h1- 36Q/ L×ρ (1-5)式中h1, h2——热气流处理前、后的焓值(kJ/kg);Q ——按冷气流计算出的回收热量(W);L ——热气流的风量(m3/h );ρ——热气流的密度(kg/m3)。
气气板式换热器选型计算
气气板式换热器选型计算1. 引言气气板式换热器是一种常用于热力系统中的换热设备,它通过板式结构将热量从气体A传递给气体B,实现热能的转移和利用。
在实际应用中,我们需要进行换热器的选型计算,以确定最合适的换热器尺寸和参数。
本文将介绍气气板式换热器的选型计算方法,并给出一个实例以供参考。
2. 换热器选型计算方法2.1 确定热负荷在进行换热器选型计算之前,首先需要明确热负荷,即所需传热的热量。
热负荷的计算通常通过以下公式得到:Q = m * (h2 - h1) (1)其中,Q为热负荷(单位:kW),m为气体A的质量流量(单位:kg/s),h1为气体A的入口焓值(单位:kJ/kg),h2为气体A的出口焓值(单位:kJ/kg)。
2.2 确定热传导面积热传导面积是指换热器中用于热量传递的表面积。
在进行换热器选型计算时,需要根据热负荷确定热传导面积。
热传导面积的计算可以通过以下公式得到:A = Q / (U * (ΔTm)) (2)其中,A为热传导面积(单位:m2),Q为热负荷(单位:kW),U为换热器的传热系数(单位:W/(m2·K)),ΔTm为气体A和气体B的平均温差(单位:K)。
2.3 确定气体A和气体B的传热系数换热器的传热系数U反映了换热效果的好坏,需要根据具体情况进行确定。
通常情况下,可以通过以下公式近似计算气体A和气体B的传热系数:U = 1 / R (3)其中,R为换热器的总传热阻力。
2.4 确定换热器的总传热阻力换热器的总传热阻力包括板间阻力、壁阻力和接触阻力等。
在进行换热器选型计算时,需要根据具体的换热器结构和工艺参数确定总传热阻力。
总传热阻力的计算方法比较复杂,通常需要借助专业的软件或手册进行计算。
3. 实例演算假设我们需要为一个热力系统中的空气进行换热,已知空气的质量流量为1 kg/s,入口温度为150℃,出口温度为100℃,换热器的传热系数为1000W/(m^2·K)。
(完整版)气气热管换热器计算书
热管换热器设计计算1 确定换热器工作参数1.1 确定烟气进出口温度t 1,t 2,烟气流量V ,空气出口温度t 2c,饱和蒸汽压力p c .对于热管式换热器,t 1范围一般在250C ~600C 之间,对于普通水-碳钢热管的工作温度应控制在300C 以下.t 2的选定要避免烟气结露形成灰堵及低温腐蚀,一般不低于180C .空气入口温度t 1c.所选取的各参数值如下:2 确定换热器结构参数2.1 确定所选用的热管类型 烟气定性温度: t f =t 1+t 22=420°C+200°C2=310°C在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的平均值所得出:烟气入口处: t i =t 1+t 2c ×45=420°C+152°C×45=180°C 烟气出口处:t o =t 2+t 1c ×45=200°C+20°C×45=56°C选取钢-水重力热管,其工作介质为水,工作温度为30C ~250C o o ,满足要求,其相容壳体材料:铜、碳钢(内壁经化学处理)。
2.2 确定热管尺寸对于管径的选择,由音速极限确定所需的管径d v =1.64√Q cr(ρv p v )12根据参考文献《热管技能技术》,音速限功率参考范围,取C Q 4kW ,在t o =56°C 启动时ρv =0.1113kg/m 3p v =0.165×105pa r =2367.4kJ/kg因此 d v =1.64√Q cr(ρv p v )12=10.3mm由携带极限确定所要求的管径d v =√1.78×Q entπ∙r(ρL −14⁄+ρv −14⁄)−2[gδ(ρL−ρv ]14⁄ 根据参考文献《热管技能技术》,携带限功率参考范围,取4Q ent kw 管内工作温度 t i =180℃时ρL =886.9kg/m 3 ρv =5.160kg/m 3r =2013kJ/kg4431.010/N m因此 d v =√1.78×4π×2013×(886.9−14⁄+5.16−14⁄)−2[g×431.0×10−4(886.9−5.160)]14⁄=13.6mm考虑到安全因素,最后选定热管的内径为m m 22d i管壳厚度计算由式][200d P S iV式中,V P 按水钢热管的许用压力228.5/kg mm 选取,由对应的许用230C 来选取管壳最大应力2MAX 14kg/mm ,而2MAX 1[] 3.5/4kg mm故 0.896mm 3.52000.02228.5S考虑安全因素,取 1.5S mm ,管壳外径:m m 25.51222S 2d d i f . 通常热管外径为25~38mm 时,翅片高度选10~17mm (一般为热管外径的一半),厚度选在0.3~1.2mm 为宜,应保证翅片效率在0.8以上为好.翅片间距对干净气流取2.5~4mm ;积灰严重时取6~12mm ,并配装吹灰装置.综上所述,热管参数如下:翅片节距:'415f f f S S mm 每米热管长的翅片数:'10001000200/5f f n m S 肋化系数的计算:每米长翅片热管翅片表面积22[2()]14f f o f f f A d d d n每米长翅片热管翅片之间光管面积(1)r o f f A d n每米长翅片热管光管外表面积o o A d 肋化系数:22[2()]1(1)4f o f f f o f f f rood d d n d n A A A d22[0.5(0.050.025)0.050.001]2000.025(10.2)8.70.0252.3 确定换热器结构将热管按正三角形错列的方式排列,管子中心距S ′=(1.2~1.5)d f 取S ′=70mm 。
空气压缩热利用热管换热器的设计计算(互联网+)
空气压缩热利用热管换热器的设计计算杨宝莹摘 要: 热管技术以其独特的技术在很多领域得到了广泛的应用,在压缩热领域热管技术也逐渐受到重视,除了理论研究热管技术在压缩热领域的应用外,设计出合适的换热设备对热管在压缩热领域的应用也及其重要。
热管换热器的计算内容主要有热力计算和校核计算。
其中热力设计计算大致可分为常规计算法,离散计算法和定壁温计算法。
空气压缩热利用热管换热器一般为气-气型换热器,文章主要针对气-气型热管换热器的常规计算法进行介绍,并给出了一个具体实例的计算结果,以进一步促进热管换热器在空气压缩热利用领域的应用研究。
关键词: 热管 压缩热 热力计算1 引言[1][2][4]热管换热技术因其卓越的换热能力及其它换热设备所不具有的独特换热技术在航空,化工,石油,建材,轻纺,冶金,动力工程,电子电器工程,太阳能等领域已有很广泛的应用,空气压缩热利用领域冷热流体温差小,因此热管技术也逐渐受到重视。
根据实际需要设计出合理的热管换热器对于空气压缩热利用领域来说也极为重要。
同常规换热器计算一样,热管换热器的计算内容主要有两部分:热管换热器的热力计算和校核计算。
在这里主要对热管换热器的热力计算做个介绍。
热管换热器的热力设计计算目前大致可分为三类:常规计算法,离散计算法,定壁温计算法。
常规计算法将整个热管换热器看成一块热阻很小的间壁,然后采用常规间壁式换热器的设计方法进行计算。
离散计算法认为热量从热流体到冷流体的传递不是通过壁面连续进行的,而是通过若干热管进行传递,呈阶梯式变化,不是连续的。
定壁温计算法是针对热管换热器在运行中易产生露点腐蚀和积灰而提出的,计算时将热管换热器的每排热管的壁温都控制在烟气露点温度之上。
从而避免露点腐蚀及因结露而形成的灰堵。
压缩热利用系统要处理的对象压缩机排气或吸干机排气,都属于气态介质,因此空气压缩热利用热管换热设备为气-气热管换热器。
本文将对空气压缩热利用气-气热管换热器的常规计算法的热力计算做个简要介绍,文中的一次空气是压缩机排气,二次空气是吸干机排气。
气气热管换热器计算书
热管换热器设计计算1确定换热器工作参数1.1确定烟气进出口温度ti,t3,烟气流量V,空气出口温度頁,饱和蒸汽压力Pc・对于热管式换热器,ti范圉一般在250°C〜600°C之间,对于普通水-碳钢热管的工作温度应控制在300°C以下.t2的选定要避免烟气结露形成灰堵及低温腐蚀,一般不低于180°C.空气入口温度的.所选取的各参数值如下:2确定换热器结构参数2.1确定所选用的热管类型烟气定性温度:f 宇_4沁;2沁=310比在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的半均值所得出:烟气入口处:q =如+営=420・c+严z = 18O°C烟气出口处:. t2+tiX4 200°C+20°Cx4l° 5 5 C选取钢-水重力热管.其工作介质为水.工作温度为30OC~250°C・满足要求.其相容壳体材料:铜.碳钢(内壁经化学处理)。
2.2确定热管尺寸对于管径的选择,由音速极限确定所需的管径d v = 1.64 Qc t J厂9必)2根据参考文献《热管技能技术》,音速限功率参考范闱,取Qc=4kW,在10 = 56吃启动时p v = O.1113k^/7H3p v = 0.165 X 105par = 2367.4幼/kg因此d v = 1.64 I ! = 10.3 mmyr(p v p v)l由携带极限确定所要求的管径d _ I 1.78 X QentP Ji (P L"1/4+P V~1/4)_2^(P L -Pv]1/4根据参考文献《热管技能技术》,携带限功率参考范围,取Q ent=4kw 管内工作温度t t = 180°C时P L = 886.9kg/m3 pv = 5.160/c^/m3 r = 20\3kJ/kgJ = 431.0xl0^N/m178x4因此nx20L3x(8Q6.^i/4+SA6^i/4)-2 [gX431.0xl0-4(886.9-5.160)]1/4=13.6nun考虑到安全因素,最后选定热管的内径为4 = 22111111管売厚度计算由式Pv420qcr]式中,Pv按水钢热管的许用压力28.5kg /nmr选取,由对应的许用230°C來选取管壳最大应力乐朋=14kg/nim2,而[<r]= -(7,^ = 3.5ka / nmr 4考虑安全因素,= 1.5111111,管壳外径:df =4+2S= 22+2x1.5= 25mm. 通常热管外径为25〜38mm 时,翅片高度选10〜17mm (—般为热管外径的一半),厚度选在0.3~1.2mm 为宜,应保证翅片效率在0.8以上为好.翅片间距对 干净气流取2.5〜4mm :积灰严重时取6〜12inm,并配装吹灰装置.综上所述, 热管参数如下: 光管内径光管外径 翅片外径 翅片高度翅片厚度翅片间距肋化系数d]/mmd 。
【HETA】换热器的传热计算公式
【HETA】换热器的传热计算公式空调换热器,不管是蒸发器还是冷凝器,其都扮演着一个传热的角色。
今天我们就来讲一讲换热器传热的计算。
一:总传热速率方程1、总传热速率微分方程式2、局部总传热系数物理意义:单位传热面积、单位传热温差下的传热速率。
反映了传热过程的强度,是衡量换热器工作效率的重要参数。
注意:总传热系数的单位与对流传热系数的单位一样,都为W /(m2×°C),但温度差所代表的区域不同。
同样总传热系数也是必须与温度差和传热面积相对应的。
二:传热量的计算在传热计算中,传热速率和热负荷在数值上一般可视为相等,但其含义不同。
热负荷:由工艺条件决定的,是对换热器换热能力的要求;传热速率:换热器本身在一定的操作条件下的换热能力,是换热器本身的特性。
无相变:有相变:(1)选取经验值(2)实验(现场)测定(3)K 的计算式两流体通过壁面包括以下过程:上述过程的传热量为:以上三式相加得:比较有以下结果:1)当传热面为圆壁时:2)当传热面为平壁时:3.(1)由dQ=K×D t×dS知,总传热系数在数值上等于单位温度差下的热通量。
K的单位与的单位完全一样(W /( m 2 ×°C),或(W /(m2 ×K),但应注意温度差℃(或K)所代表的范围不同。
(2)说明:总传热系数随所取传热面的不同而不同。
今后无特别说明时均指基于外表面积的总传热系数。
(3)对圆管:(4) K 也可以表示为热阻的形式,即:表明:间壁两侧流体间传热的总热阻等于两侧流体的对流传热的热阻与管壁热传导的热阻之和。
(5)对以下几种情况可以简化:由此可看出,K值由热阻大(即h小)的一侧流体的传热所控制,要提高K,应提高h小的一侧。
(6)污垢热阻污垢热阻的存在使K降低,传热速率下降。
如传热面两侧(管壁内、外侧表面上)的污垢热阻分别用R si和表示R so,则前述的K值的计算式变为:备注:换热器要根据实际的操作情况定期清洗。
气气热管换热器计算书
气气热管换热器计算书热管换热器的设计计算1.确定换热器工作参数在设计热管式换热器时,需要确定烟气进出口温度t1和t2,烟气流量V,空气出口温度t2,以及饱和蒸汽压力pc。
对于普通水-碳钢热管的工作温度应控制在300℃以下,而t2的选定要避免烟气结露形成灰堵及低温腐蚀,一般不低于180℃。
所选取的各参数值如下:烟气流量:m2/h饱和蒸汽压力:0.2MPa空气出口温度:120℃空气入口温度:20℃排烟入口温度:20℃排烟出口温度:200℃2.确定换热器结构参数2.1 确定所选用的热管类型在工程上计算时,热管的工作温度一般由烟气温度与4倍冷却介质温度的和的平均值所得出。
对于本设计,烟气入口处的温度为180℃,烟气出口处的温度为56℃。
因此,选取钢-水重力热管作为工作介质,其工作温度为30℃~250℃,相容壳体材料为铜和碳钢(内壁经化学处理)。
2.2 确定热管尺寸在确定热管尺寸时,需要根据音速极限和携带极限来选择管径。
根据参考文献《热管技能技术》,取参考功率范围Qc=4kW,在t2=56℃启动时,可得到热管的管径为10.3mm。
根据参考文献《热管技能技术》,取参考功率范围Qent=4kW,在管内工作温度ti=180℃时,可得到热管的管径为1.11mm。
根据给定的公式,计算得到热管的内径为22mm,管壳厚度为1.5mm,外径为25mm。
为保证翅片效率在0.8以上,选取翅片高度为11mm,厚度为0.5mm,翅片间距为5mm,肋化系数为8.7.将热管按正三角形错列的方式排列,管子中心距取70mm。
确定热管的热侧和冷侧管长。
本文介绍了烟气余热锅炉中热管的设计计算方法。
首先需要确定烟气标准速度v,一般取2.5~5m/s,假设v=4m/s,可得出烟气迎风面的面积A=2.8m2.确定迎风面宽度E,取E=1.8m,热管的热侧管长Aℎ=1.5m,并且Aℎ⁄AA=3⁄1,∴AA=0.5m。
求出迎风面的管数B,A=A⁄A′=1.8⁄0.07=25.7,B为整数,应取B=26,因此实际的迎风面的宽度A=0.07×26=1.82m,同时实际的迎风面面积A′=A×Aℎ=1.82×1.5=2.73m2,实际的速度是A′=A⁄A′=4.07m/s。
热管换热器毕业设计计算
烟气余热利用热管换热器设计一.原始数据1. 烟气侧:流量 10V •=50000Nm ³/h (标况) 入口温度 t'₁=300℃ 2. 空气侧:流量 20V •=49000Nm ³/h (标况)⒊ 热管采用正三角形叉排,沿流动方向,其横向中心距T S =0.065m ,则纵向中心距L S =0.057m 。
光管外径 0D 0.025m = 光管内径 i d 0.02m = 热管全长 t l 2.5m =带翅片的热管长度 l 2.5m = 翅片高度 f l 0.0125m = 翅片厚度 f δ0.001m = 翅片间隙 f S =0.007m 翅片节距 S =f δ+f S =0.008m 单根热管长度之上的翅片数 f n =1S=125个 翅片管外径 d f =0.050m热力计算1. 工艺参数的计算热管换热器的工艺参数包括流量及进出口温度。
冷热流体的放热量及吸热量应满足如下的热平衡方程:Q =p m c t •∆△=p V c t ρ•∆△ 其中:Q ——放热量或吸热量,W ;m •——质量流量, /kg s ;p c ——定压比热,/()J kg ℃; t ∆△——进出口温度,℃; ρ——流体密度,3/kg m ; V •——流体的体积流量,3/m s考虑到露点腐蚀的问题,烟气的出口温度取为1''t 150=℃,空气的入口温度取为2't 20=℃, 标况下,烟气的物性参数为: 密度 10ρ 1.295= 3/kg m定压比热 10p c =1.10×10³/()J kg ℃假定热损失为10%101010()'''11p Q V -c t t ρ•=放 =1.295×(50000/3600)×1.10×10³×(300—150) =2967.9kWQ 吸=0.95Q 放=0.95×2967.9=2819.5kW''',202220=()20p Q V t t c ρ•-吸其中20ρ——标况下的空气密度1.293 3/kg m20V•——标况下的空气体积流量,490003/ms2m •——空气的质量流量, /kg s,20p c —工作状况下空气的定压比热,1.013×10³ /()J kg ℃代入数据:2819.5×10³=1.293×(49000/3600)×1.013×10³×(t 2”-20)得:t 2”=178.2℃烟气的平均温度 由1m T=12(1't +1''t ) =225℃ 得烟气的物性参数: 密度 1ρ=0.7218 3/kg m ;定压比热 1p c =1.12×10³ /()J kg ℃; 导热系数 1λ=0.0418 /()w m •℃; 运动粘度 1v =3.541×10ˉ5 2/m s ; 普朗特数 1r P =0.661;由空气侧平均温度2m T =12(2''t +2't ) =99.1 ℃ 得空气的物性参数: 密度 2ρ=0.946 3/kg m ;定压比热 2p c =1.009×10³ /()J kg ℃; 导热系数 2λ=0.0321 /()w m •℃; 运动粘度 2v =2.313×10ˉ52/m s ; 普朗特数 2r P =0.6882. 热管的工作温度v T 及热管的长度选择工作温度T v =(T 1m +T 2m )/2=162.1 ℃热管的总长度为2.5 m ,取12 1.25m l l == 其中 1l ——烟气侧的热管长度,m 2l ——空气侧的热管长度,m3. 热管换热器的流速选择及迎风面宽度B 的计算透过系数02()T f f f TS d l S S n ϕ=--⨯=0.336取烟气侧的迎风流速 10u =5/m s 由11010B u l V •= 得迎风面宽度10110B V l u •==(50000÷3600)/1.25×5=2.22 则横向热管数,即列数33.53TBn S ==,取n=34 则 340.065 2.18T S B n =⨯==⨯m 烟气侧的最大流速:101u u ϕ==14.9 /m s空气侧的迎风速度:20202BV u l •==(49000÷3600)/1.25×2.18=4.99 /m s 空气侧的最大流速:u 2=u 20/0.336=14.85 /m s4. 单根热管的总热阻及总热管数:烟气侧的雷诺数:1011e R u d v ==(14.9×0.025)/3.541×10-5=10520空气侧的雷诺数:0222e R u d v ==(14.85×0.025)/2.313×10-5=16051由无因次方程:130.63380.137e u r N R P =得106338300.137e rh R P d λ=烟气侧的换热系数:111110633830.137e r h R P d λ== 0.137×0.0418/0.025×105200.6338×0.6611/3 = 70.57 /()w m ⋅℃ 空气侧的对流换热系数:2222106338300.137e r h R P d λ== 0.137×0.0321/0.025×160510.6338×0.6881/3 = 71.66/()w m •℃ 翅片管的翅化比:00022[2]1(1)4()f f f f f d d d n d d δδπππβπ-+-+=⨯⨯⨯223.14[2(0.050.025) 3.140.050.001]143 3.140.025(10.001)43.140.025⨯⨯-+⨯⨯⨯+⨯⨯-⨯== 5.9翅化效率表示实际传热能力与翅片在根部温度时传热能力之比:()f fth ml ml η=其中,m =45w λ=/()w m •℃为翅片材料的导热系数则烟气侧的翅化效率 :1η== 0.863 空气侧的翅化效率:2η== 0.8615 单根热管的总热阻为:1220010112021111lnln 22i i w w R d d h d l l d l d h d l πβηπλπλπβη=+++ 110.025ln3.1467.750.025 1.25 6.80.87932 3.1445 1.250.02=+⨯⨯⨯⨯⨯⨯⨯⨯10.0251ln 2 3.1445 1.250.02 3.1436.590.025 1.25 6.80.9302++⨯⨯⨯⨯⨯⨯⨯⨯ = 0.058/w ℃对数平均温差为:△T m =(300-178.2)-(150-20)/㏑(300-178.2)/(150-20)=126.2 ℃单根热管的传热效率:q =△T m /R =126.2/0.058=2176总热管数:333230.7102.31010'Q N q ⨯⨯===1295.7取20%的富裕量,则实际需要热管数 1.2'N N ==1554最终取列数为n=34,排数m=46排 设备的基本尺寸为: 长:46×57=2622 mm 宽:34×65=2210 mm高:2500 mm5. 两侧的壁温及压力损失 烟气侧的平均壁温: 111101m m QNT T h d l πβη=-=173.5 ℃ 空气侧的平均壁温: 222220m m QNT T h d l πβη=+=149.9℃热管换热器的净自由容积:2220044()f f T L f d NFV S S d d n ππδ=---2223.140.0253.140.0650.057(0.050.025)0.00114344⨯⨯--⨯-⨯⨯==3.03×10-3 3/m m容积的当量直径:4NFVD A=其中A ——流体的总浸润表面积,2m烟气侧的容积当量直径:311447.34103.140.0251.256.8NFVD A -⨯⨯⨯⨯⨯===0.021m空气侧的容积当量直径:322447.34103.140.0251.256.8NFVD A -⨯⨯⨯⨯⨯===0.021m 烟气侧的雷诺数:511118.930.0444.450910e u D Rv -⨯⨯===8837空气侧的雷诺数:522224.690.0442.54510e u D Rv -⨯⨯===13483烟气侧的能量耗散系数: 110.1451.92e R ξ-==1.92×8837-0.145=0.5142空气侧的能量耗散系数: 220.1451.92e R ξ-==1.92×13483-0.145=0.4837 烟气侧的压力损失:。
换热器传热计算
dQ Tw t w b
dS m
3) 管壁与流动中的冷流体的对流传热
dQ i tw t dSi
间壁换热器总传热速率为:
dQ K T tdS0
dQ T t T 1R
KdS0
T TW 1
t1 TW tW
R1
b
t2 R2
tw t 1
t3 R3
0 dS0
dSm
i dSi
t2)
T2 t2
②
若max(Δt1
1
2
d1 d2
1 0.58103 0.0025 25 0.5103 25 1 25
2500
45 22.5
20 50 20
0.0004 0.00058 0.000062 0.000625 0.025
0.0267 m2 K /W K 37.5W / m2 K
(2)α1增大一倍,即α1 =5000W/m2·K时的传热系数K’
六、传热的平均温度差
恒温差传热:传热温度差不随位置而变的传热 传热
变温差传热:传热温度差随位置而改变的传热
并流 :两流体平行而同向的流动
逆流 : 两流体平行而反向的流动 流动形式
错流 : 两流体垂直交叉的流动 折流 :一流体只沿一个方向流动,而另一
流体反复折流
1.恒温传热时的平均温度差
换热器中间壁两侧的流体均存在相变时,两 流体温度可以分别保持不变,这种传热称为恒温 传热。
idi
1 K0
do
idi
Rsi
d o
di
bd o
dm
Rso
1
o
总传热系数计算式
管壁内表面 污垢热阻
管壁外表面 污垢热阻提高总传热系数途径的分析 Nhomakorabea1 K0
管式换热器的计算公式
管式换热器的计算公式
管式换热器的计算公式主要涉及到换热面积、热负荷、传热系数等方面,具体如下:
1. 换热面积计算公式:A=πdnL,其中d是管子的内径,n是管子的数量,L是管子的长度。
2. 热负荷计算公式:Q=(m1-m2)Cp(T1-T2),其中m1和m2是两个流体的质量流量,Cp是比热容,T1和T2是两个流体的温度差。
3. 传热系数计算公式:kd=m/πdnλv,其中λv是导管内膜的热导率,m是质量流量,d是导管的内径,n是导管数量。
4. 还有一个公式是:a=q/k(tr-△t),其中a为换热面积,q为总换热量,k 为导热系数。
这些公式在不同的场合有不同的应用,请根据实际情况选择合适的公式进行计算。
气—气管式换热器换热计算及讨论
气一气管式换热器换热计算及讨论于文江王颖王来(哈尔滨东宇农业工程机械有限公司,哈尔滨市150090)摘要:本文分别计算了烟气在管槽内强迫流动时的换热和空气横向绕流管束时的换热,确定管内外换热的大小和强弱.井指出管外换热强度必须大于或等于管内换热强度。
同时检验已定参数的合理性,为下一步进行换热器的系列设计计算提供依据。
关键词:汽.气管式换热器换热系数定性温度定型尺寸特征速度努谢尔特准则≮xKxrCALCULATIoNANDDISCNSSIoNOFCOMMUT工NGOFGAS—GASTUBEEXC}粼ER(HarbinDongyuAgriculturalEngineeringMachineryLimitedCorporation,Harbin150090)为了获得较高的传热系数,同时又不使烟气、空气阻力过大,(一般烟速控制在10~14m/s,空气流速在5-7m/s)。
避免换热器设计中的盲目和不合理。
当初步设定换热器的主要参数后.需分别对烟气在管内强迫流动时的换热及空气横向绕流管柬的换热进行计算,以确定两对流换热时的换热系数,并比较其大小及换热强弱(换热强度与待定的换热器形式及换热面积等因素有关),为卜_一步进行换热器的发计计算提供依据。
1烟气在管内强迫流动时的换热计算设:经过烟气再循环(即余热回收系统),烟气入口温度tn=700"C;烟气出口温度(排烟温度)tn=200"C,烟气平均温度:tf=(tn+t”)/2=(700+200)/2=4504C,管壁平均温度t,=350"C,使用外经由5.1mm壁厚为2.5mm的无缝钢管,定型尺寸D=46mm:特征速度v.=13m/s。
定性温度tm=(t。
+t0/2=(450+350)/2=400。
C查烟气热物理性质:导热系数:^。
=5.7×10~w/(m・℃)运动粘度:V。
=60.38×104m2/s定性温度下普朗特数:P。
=o,64由雷诺准则确定流态‰=等=意等篆圳oo根据艮。
热管的换热原理及其换热计算
热管的换热原理及其换热计算热管的换热原理及其换热计算一热管简介热管是近几十年发展起来的一种具有高导热性能的传热元件,热管最早应用于航天领域,时至今日,已经从航天、航天器中的均温和控温扩展到了工业技术的各个领域,石油、化工、能源、动力、冶金、电子、机械及医疗等各个部门都逐渐应用了热管技术。
热管一般由管壳、起毛细管作用的通道、以及传递热能的工质构成,热管自身形成一个高真空封闭系统,沿轴向可将热管分为三段,即蒸发段、冷凝段和绝热段。
其结构如图所示:热管的工作原理是:外部热源的热量,通过蒸发段的管壁和浸满工质的吸液芯的导热使液体工质的温度上升;液体温度上升,液面蒸发,直至达到饱和蒸气压,此时热量以潜热的方式传给蒸气。
蒸发段的饱和蒸汽压随着液体温度上升而升高。
在压差的作用下,蒸气通过蒸气通道流向低压且温度也较低的冷凝段,并在冷凝段的气液界面上冷凝,放出潜热。
放出的热量从气液界面通过充满工质的吸液芯和管壁的导热,传给热管外冷源。
冷凝的液体通过吸液芯回流到蒸发段,完成一个循环。
如此往复,不断地将热量从蒸发段传至冷凝段。
绝热段的作用除了为流体提供通道外,还起着把蒸气段和冷凝段隔开的作用,并使管内工质不与外界进行热量传递。
在热管真空度达到要求的情况下,热管的传热能力主要取决于热管吸液芯的设计。
根据热管的不同应用场合,我公司设计有多种不同的热管吸液芯,包括:轴向槽道吸液芯、丝网吸液芯和烧结芯等。
基于热管技术的相变传热原理、热管结构的合理设计以及专业可靠的品质保证,多年实践证明,我公司生产的热管及热管组件正逐渐迈向越来越广阔的市场。
(1) 产品展示(2) 产品参数说明项目技术参数热管长度> 100mm主体材料铜管毛细结构槽沟/烧结芯/丝网管工作介质冷媒设计工作温度30~200℃设计使用倾角> 5°传热功率50~1000w (根据实际产品规格型号)热阻系数< 0.08℃/W (参考值)传热功率测试原理测试总体要求1)加热功率有功率调节仪控制输入;2)热管保持与水平台面α角度(根据具体应用定);3)管壁上监测点的温度变化在5min 内小于0.5℃认为传热达到稳定状态,记录此时传热功率为最大传热功率。
非常全面的换热器计算
非常全面的换热器计算换热器是一种常见的热交换设备,用于在两个流体之间传递热量。
它通常由一系列平板或管道组成,其中一个流体在板或管道的表面流动,而另一个流体在板或管道的另一侧流动。
通过换热表面的热传导,热量从一个流体传递到另一个流体。
为了正确设计和选择换热器,需要进行全面的换热器计算。
换热器计算主要包括以下几个方面:1.热负荷计算:首先需要确定流体之间的热负荷,即需要传递的热量。
这可以通过指定流体的流量、温度差和换热器的效率来计算。
2.传热面积计算:根据热负荷和换热器的传热系数,可以计算所需的传热面积。
传热系数取决于流体的性质、流速和流动方式。
3.流体速度计算:在换热器的设计中,流体速度是一个重要参数。
通过确定流体速度,可以选择合适的管道直径或板间距,以提供足够的传热面积和压降。
4.压降计算:换热器需要在流体之间施加足够的压力差,以保证足够的流动和传热效果。
在设计中需要计算流体在换热器中的压降,并合理选择换热器结构和流体通道。
5.材料选择:根据换热器所处的环境条件和工作介质的性质,需要选择合适的材料来制造换热器。
材料的选择应考虑到其热导率、强度、耐腐蚀性和经济性等因素。
6.温度场分析:换热器中的流体温度分布对传热效果有重要影响。
通过数值模拟或实验分析,可以确定流体在换热器中的温度场,并对该温度场进行优化改进。
7.稳态和瞬态分析:换热器的工作过程可以是稳态的,也可以是瞬态的。
在计算中需要考虑流体的稳态和瞬态特性,并确定换热器在不同工况下的传热性能。
以上是换热器计算的一些基本方面,实际的计算过程可能更加复杂,需要根据具体的应用要求和换热器的结构特点进行调整。
换热器的设计和选择还需要考虑工艺条件、安全性和经济性等综合因素。
在进行换热器计算时,需要细致地分析和估算各项参数,以确保换热器的性能和可靠性。
换热器(气气传热)
3)
2 1)
2)
0.01088 0.02112 修正系数 1.02 ε co2′ 0.105 ε H2O′ 0.22 ε H2O′ 0.2244 ε co2″ 0.108 ε H2O″ 0.24 ε H2O″ 0.2448 α f′ α f″ 37.2 14.4 α yf′=4.6*(ε co2′+ε H2O′)α f′ 56.366928 α yf′ α yf″=4.6*(ε co2″+ε H2O″)α f″ 23.369472 α yf″ 烟气入口、出口综合给热系数 α y′=α yd′+α yf′ α y″=α yd″+α yf″ α y′= 116.166928 α y″= 81.973472 空气侧传热系数α k 雷诺数 入口流速ω ′=ω k(1+tk′/273) 出口流速ω ″=ω k(1+tk″/273) 5.549450549 8.113553114 ν ′= 16 ν ″= 25.8 入口雷诺数Re′=ω ′*d1/ν ′ 出口雷诺数Re″=ω ″*d1/ν ″ 18729.3956 16981.85535 d 烟气对流给热系数α y 入口烟气对流给热系数α kd′=α 0*Ct′*CL′*C1′ α 0 Ct′ CL′ C1′ 40 0.9 0.95 0.91 d 31.122 α k ′=
3.576741241 m 11 m 管子列数 4) 流通面积 Ay=烟气流量/流速 3.891666667 Ay m2 管子列数y=流通面积/管间距/单根长度 8.84469697 y= 列 50 y= 列 管束排数 5) 管束排数=管子根数/管子列数 34.4 x= 排 35 x= 排 管束排列结果:双行程; 管子单长3m;单管总数2*275=550根;横向24根,纵向20根 预热器外形尺寸 六 1、管子距离集气箱边缘b=0.05~0.1m, 取b= 0.05 2、两集气箱间距a=0.05~0.2m, 取a= 0.06 预热器宽度B B=(y-1)*S1+2*b 5 B= m 预热器长度L L=2*(x-1)*S2+4*b+a 7.06 L= m 管壁温度 七 入口处 tb′=(α k′*tk′+α y′*ty′)/(α t′*tk′+α y′*ty′) 203.5142248 tb′= ℃ 出口处 tb″=(α k″*tk″+α y″*ty″)/(α t″*tk″+α y″*ty″) 115.577889 tb″= ℃ 空、烟气阻力 八 空气侧阻力 hk=局部阻力hj+摩擦阻力hm 局部阻力hj=ξ 1*ω k^2/2*ρ (1+tk′/273)+ξ 2*ω k^2/2*ρ (1+tk″/273) 61.96016484 hj Pa 摩擦阻力hm=0.04*ω k^2/2*ρ (1+tkp/273)*L/Dk 32.63939764 hm Pa 94.59956247 hk Pa 双行程空气侧阻力=2*hk 189.1991249 Pa 烟气侧阻力 hy=ξ *ω y^2/2*ρ (1+typ/273) 九 φ =(S1-d)/(S2-d) 1 ξ 0=1.52*(S1/d-1)^0.5*φ ^-0.2*Re^-0.2 ξ 0= ξ 0=0.32*(S1/d-1)^-0.5*(φ -0.9)^-0.68*Re^(-0.2/φ ^2) 0.238949171 ξ 0= ξ =ξ 0*Z 8.363220986 ξ = 烟气侧阻力 hy=ξ *ω y^2/2*ρ (1+typ/273) 571.9487358 hy= Pa l= l=
换热器的传热计算
换热器的传热计算换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对已知换热面积的换热器,核算其传热量、流体的流量或温度。
这两种计算均以热量衡算和总传热速率方程为基础。
换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。
Q=W c pΔt ,若流体有相变,Q=c p r 。
热负荷确定后,可由总传热速率方程(Q=K S Δt )求得换热面积,最后根据《化工设备标准系列》确定换热器的选型。
其中总传热系数K=0011h Rs kd bd d d Rs d h d o m i i i i ++++ (1)在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。
在选用这些推荐值时,应注意以下几点:1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。
2. 设计中流体的性质(粘度等)和状态(流速等)应与所选的流体性质和状态相一致。
3. 设计中换热器的类型应与所选的换热器的类型相一致。
4. 总传热系数的推荐值一般范围很大,设计时可根据实际情况选取中间的某一数值。
若需降低设备费可选取较大的K 值;若需降低操作费用可取较小的K 值。
5. 为保证较好的换热效果,设计中一般流体采用逆流换热,若采用错流或折流换热时,可通过安德伍德(Underwood )和鲍曼(Bowman )图算法对Δt 进行修正。
虽然这些推荐值给设计带来了很大便利,但是某些情况下,所选K 值与实际值出入很大,为避免盲目烦琐的试差计算,可根据式(1)对K 值估算。
式(1)可分为三部分,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。
由此,K 值估算最关键的部分就是对流传热系数h 的估算。
影响对流传热系数的因素主要有:1.流体的种类和相变化的情况液体、气体和蒸气的对流传热系数都不相同。
牛顿型和非牛顿型流体的也有区别,这里只讨论牛顿型对流传热系数。
气汽热交换计算
气-汽热交换 1.实验设备参数 (1)水平管 内管(铜管)外径 m .d o 030= 内径 m .d i 0250= 内管横载面积 220004908704m .d S i ==π外管(玻璃管)外径 m .D o 0570= 内径 m .D i 050= 测试长度: m .l 850= (2)空气流量计连接管内径 m .d 0260= 孔板内径 m .d 01800= 孔流系数 6400.C =气气水ρρρπρπ)(gR d C )p p (d C q V -=-=2424221231000m /kg =水ρ 32931m /kg .=气ρ数据处理示例:数据记录:例如:空气流量在U 型压差计读数为m .cm R 0707==时,此时测得空气进出口温度分别是:05.741=t ℃,2.552=t ℃ 平均温度6.64=t ℃,查空气密度或计算300/05.16.64273273293.1m kg T T =+==ρρsm )gR d C q V /0059.005.1)05.11000(07.081.92018.0785.064.0(24322=-⨯⨯⨯⨯⨯=-==气气水ρρρπ空气粘度的计算:可用萨特兰公式计算:)4.1104.110()(05.100++⨯=T T T Tμμ K T 2730=时,s pa ⋅⨯=-501071.1μKT 3.3373.64273=+=,则17.185.037.1)4.113.3374.110273()2733.337(1071.15.15=⨯=++⨯=⨯-μs Pa ⋅⨯=⨯⨯=--551001.21071.11761.1μ空气的物理性质可用:粘度s pa ⋅⨯=-6101.20μ ,比热容K kg /J .c p ⋅⨯=3100171,导热系数K .m /W .0290=λW t t c q Q p V 8.118)2.5505.74(10017.105.10059.0)(321=-⨯⨯⨯⨯=-⋅=ρmt A QK ∆⨯=蒸汽进出口温度是89.10021==T T ℃2121t t ln t t t m ∆∆∆-∆=∆ 84.2605.7489.100111=-=-=∆t T t ℃ 69.452.5589.100222=-=-=∆t T t ℃ 得4.35=∆m t ℃ 2121‘ln t t t t t m ∆∆∆-∆=∆ 63.2605.7468.100111=-=-=∆t t t W 48.452.5568.100222=-=-=∆t t t W2.3563.2648.45ln63.2648.45‘=-=∆m t ℃K m W t l d Q t A Q m i m i 2/6.502.3585.0025.014.38.118=⨯⨯⨯=∆⨯=∆⨯=παs /m ...d q A q u i V i V 120250785000590422=⨯===π 15612101.20046.112025.0Re 6=⨯⨯⨯==-μρdu 705.0029.0101.2010017.1Pr 63=⨯⨯⨯==-λμp c6.43029.0025.06.50=⨯=⨯=λαi d Nu数据处理:实验结果对流传热系数根据量纲分析法得nmc Nu Pr Re =,取对数A m Nu +=Re lg lg ,其中n c A Pr lg =,设Nu y lg =,Re lg =x ,则可作直线A mx y +=, 求出斜率m k =,Pr 变化不大,可设为定值,取4.0=n ,在获得A 值的情况下,求得c ,这样就获得了求α的经验公式。
换热机组换热面积
换热机组换热面积
换热面积的计算涉及到许多参数,包括传热介质的物性参数、传热系数、被传热介质的流量及物性参数、流体状态参数等。
具体来说,不同的换热设备有不同的计算方法。
1. 管壳式换热器:换热面积A可以通过公式A=Q/(U×ΔT)来计算,其中A为换热面积,Q为热量,U为传热系数,ΔT为传热介质的温度差。
2. 换热管式换热器:换热面积A可以通过公式A=(π×d×l×n)/(e×N)来计算,其中d为管子外径,l为管长,n为管数,e为管子壁厚度,N为管板孔数。
3. 板式换热器:换热面积A可以通过公式A=Q/(U×ΔT)来计算,其中Q为传热量,U为传热系数,ΔT为介质温差。
以上是几种常见的换热设备的换热面积计算方法,更多类型的换热设备的换热面积计算方法需要参照具体的专业资料和手册。
另外,在计算换热面积时,需要注意确定传热系数及被传热介质的物性参数、确定传热介质流量、采用比较简单的计算方法以及根据实际工艺数据进行检验和验证。