高中数学必修2《立体几何初步》教材解读之一
高中数学 必修二-第一章 立体几何初步 知识点整理
底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。
数学:第1章《立体几何初步》教材分析(必修二)
第1章《立体几何初步》教材分析立体几何是研究三维空间中物体的形状、大小和位置关系的一门数学学科,而三维空间是人们生存发展的现实空间.所以,学习立体几何对我们认识、理解现实世界,更好地生存与发展具有重要的意义.《立体几何初步》一章,是在义务教育阶段“空间与图形”课程的延续与发展,教材的编写力图凸显《普通高中数学课程标准》(以下简称《课程标准》)对立体几何的教学要求,通过直观感知、操作确认、思辩论证、度量计算等方法,以帮助学生实现逐步形成空间想像能力这一教学目的.一、《课程标准》关于《立体几何初步》的表述及教学要求1.表述:《课程标准》指出:几何学是研究现实世界中物体的形状、大小与位置关系的数学学科.人们通常采用直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质.三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求.在《立体几何初步》部分,学生将先从对空间几何体的整体观察入手,认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系;能用数学语言表述有关平行、垂直的性质与判定,并对某些结论进行论证.学生还将了解一些简单几何体的表面积与体积的计算方法.2.教学要求:2.1 空间几何体(1)利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧画法画出它们的直观图.(3)通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式.(4)完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).2.2 点、线、面之间的位置关系(1)借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可作为推理依据的公理和定理:◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.◆公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的一条直线.◆公理3:过不在一条直线上的三点,有且只有一个平面.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.(2)以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辩论证,认识和理解空间中线面平行、垂直的有关性质与判定.通过直观感知、操作确认,归纳出以下判定定理:◆如果平面外一条直线和这个平面内的一条直线平行,那么该直线与这个平面平行.◆如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面.◆如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.通过直观感知,操作确认,归纳出以下性质定理,并加以证明.◆如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.◆如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行.◆如果一条直线垂直于两个平行平面中的一个平面,那么它页垂直于另一个平面.◆如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.(3)能运用已获得的结论证明一些空间位置关系的简单命题.二、对比《课程标准》与《教学大纲》,在要求上的主要变化1. 对于“空间几何体”:《教学大纲》要求:了解概念,掌握性质;《课程标准》则要求:认识柱、锥、台、球及简单组合体的结构特征. 《课程标准》把重点放在了空间想像能力上,对概念、性质则降低了要求.2. 对于“点、线、面之间的位置关系”:《课程标准》把重点放在了定性研究(平行和垂直)上,定量研究(角和距离)在必修中不作要求(移到选修中),对线、面垂直的判定定理不证明,移到空间向量中再证.分段设计,分层递进.3. 对知识发生的过程提出了较高的要求:多处使用了“观察”、“认识”、“画出”、“直观感知、操作确认,归纳”等情感、态度与价值要求的行为动词.对空间几何体的要求是直观感知;对线、面关系则要求操作确认、思辨论证;对判定定理的要求是操作确认、合情推理;对性质定理则要求思辨论证、逻辑推理.4. 不要求用反证法证明简单的问题.三、新课程教材和大纲教材处理图2 图1的变化与以往高中数学课程中的立体几何相比,立体几何教材处理的变化主要表现在几何定位,几何内容处理方式,几何内容的分层设计以及几何内容的增减等方面.1. 定位:定位于培养和发展学生把握图形的能力,空间想象与几何直观能力、逻辑推理能力等.强调几何直观,合情推理与逻辑推理并重,适当渗透公理化思想.2. 内容处理与呈现:按照从整体到局部的方式展开:柱、锥、台、球→ 点、线、面→ 侧面积、表面积与体积的计算(如图1),而原教材是点、线、面→ 柱、锥、台、球,即从局部到整体(如图2),突出直观感知、操作确认,并结合简单的推理发现、论证一些几何性质.3. 内容设计:螺旋上升,分层递进,逐步到位.在必修课程中,主要是通过直观感知、操作确认,获得几何图形的性质,并通过简单的推理发现、论证一些几何性质.进一步的论证与度量则放在选修2中用向量处理.教材在内容的设计上不是以论证几何为主线展开几何内容,而是先使学生在特殊情境下通过直观感知、操作确认,对空间的点、线、面之间的位置关系有一定的感性认识,在此基础上进一步通过直观感知、操作确认,归纳出有关空间图形位置关系的一些判定定理和性质定理,并对性质定理加以逻辑证明.不是不要证明,而是完善过程,既要发展演绎推理能力,也要发展合情推理能力.4. 教学内容增减:删除(或在选修课内体现的):(1)异面直线所成的角的计算.(2)直线与平面所成角的计算.(3)三垂线定理及其逆定理.(4)二面角及其平面角的计算.(5)多面体及欧拉公式.(6)原教材中有4个公理,4个推论,14个定理(都需证明)(不包含以例题出现的定理).新教材中有4个公理,9个定理(4个需证明).增加:(7)简单空间图形的三视图.专设“空间几何体的三视图和直观图”这一节,重点在于培养空间想像能力.(8)台体的表面积和体积等内容.立体几何内容采用上述处理方式,主要是为了增进学生对几何本质的理解,培养学生对几何内容的兴趣,克服以往几何学习中易造成的学生两极分化的弊端.四、江苏省数学学科关于《立体几何初步》的教学建议§1.1空间几何体(4课时)基本要求发展要求说明1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,了解柱、锥、台、球的概念.2.了解画立体图形三视图的原理,并能画出简单几何图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图.能识别上述的三视图表示的立体模型,会用斜二测法画出立体图形的直观图.1.能用运动的观点整体认知柱、锥、台、球.2.通过本节学习,进一步体会观察、比较、归纳、分析等一般科学方法的运用.1.柱、锥、台、球的结构特征只须通过实例概括,不必证明.2.空间几何体的性质不必深入挖掘.重点:让学生感受大量空间实物及模型,概括出柱、锥、台、球的结构特征,会用斜二测画法画空间几何体的直观图.难点:如何让学生概括柱、锥、台、球的结构特征.教学建议:1.新课标在几何教学中强调几何学习的直观性,强调实物、模型对几何学习的作用.因此对柱、锥、台、球的学习需要从实物图形的感知出发,抽象出其本质特征,来建立多面体、旋转体的概念,进一步研究它们的结构和分类.课外可让学生动手做一做,更直接的感受空间几何图形的特征.如建议学生用纸板或游戏棒或细铁丝(作骨架)做出下列几何体的模型:(1)正方体;(2)长方体;(3)三棱锥;(4)四棱锥;(5)三棱台.学生通过动手做,亲身体验柱、锥、台的结构特征,必会帮助学生逐步形成空间想像能力.2.用斜二测画法画直观图,关键是掌握画水平放置的平面图形,它是画空间几何体直观图的基础.而水平放置的平面图形的画法可以归结为确定点的位置的画法.在平面上确定点的位置我们可以借助直角坐标系来完成,因此画水平放置的直角坐标系是学生首先要掌握的方法.通过例题的教学使学生明确画直观图的基本要求.3. 关于“三视图”的一些补充说明:(1)画三视图容易忽视的问题①不给出“正方向”,把想当然的“正方向”看作是规定的“正方向” .如某中考题:“下面四个几何体中,左视图是四边形的几何体共有( )”A .1个B .2个C .3个D .4个严格意义上来说,该题(属开放性问题)是没有答案的,因为你没有给出正方向,所以不知左视图为何形.②视图中缺少应有的线段,尤其是缺少该用虚线描绘的不可见的物体轮廓线、分界线和棱.如常将四棱锥S -ABCD 的三视图作成图(10)而非图(11),即俯视图中缺少棱SC 。
北师大版高中高一数学必修2《立体几何初步》教案及教学反思
北师大版高中高一数学必修2《立体几何初步》教案及教学反思一、教案教学目标通过本节课的学习,学生能够:1.熟练掌握立体几何初步的相关知识点。
2.能够运用所学知识,解决简单的实际问题。
3.将所学知识拓展到更多实际场景中,增强学生的应用能力。
教学重点1.立体几何的相关概念。
2.对立体几何各种图形的认识。
3.算法的掌握。
教学难点1.立体图形的参照系和构造,特别是棱锥和棱台的构造。
2.三角形所在平面与棱台、锥的关系。
教学步骤步骤1. 知识引入(5分钟)1.复习必修1中的知识(包括二维图形的计算、空间中的直线和平面等)。
2.从三维空间的实际意义出发,引出立体几何。
步骤2. 理论讲解(35分钟)1.讲解立体图形的基本概念和分类,特别是棱锥和棱台。
2.讲解三角形所在平面与棱台、锥的关系。
3.给出算法,讲解如何计算体积、表面积和相应的几何参数。
步骤3. 课堂练习(30分钟)1.学生根据题目,在黑板上画出相应的图形。
2.教师讲解解题思路,注意解题的每一个步骤和方法。
3.学生自主完成小组或者个人的练习。
步骤4. 课堂讨论(20分钟)1.整个班级讲解问题和解决问题的方法。
2.常见错误及其解决方法。
步骤5. 课堂总结(10分钟)1.总结本堂课讲解的内容,确认学生掌握的程度。
2.确认下一堂课的学习内容。
二、教学反思立体几何是高中数学中的重要知识点,在课堂教学中需要抓住学生的兴趣点,通过生动形象的教学方式来激发学生的学习兴趣。
在本次教学中,我采用了多种教学方式,例如讲解、课堂练习和课堂讨论等,帮助学生全面掌握了立体几何初步的相关知识点。
在理论讲解环节中,我深入浅出地讲解了立体图形的基本概念和分类,让学生有一个非常清晰、明确的认识。
在课堂练习环节中,我加强了练习的质量,并及时讲解了解题思路,让学生深入理解每一个步骤和方法。
在课堂讨论环节中,我引导学生积极主动地发表自己的意见,并帮助他们答疑解惑。
此外,我还提醒学生要注意常见的错误及解决方法,在重点难点上加强精讲和对教材的详细解读指导,让学生深入理解所学知识,知识掌握更加深入。
高中数学必修2《立体几何初步》第一章空间几何体教学体会
32
金太阳教育网
品质来自专业 信赖源于诚信
让学生用所学的投影知识,解答下面的问题: ⑴ 画水平放置的正六边形的直观图; ⑵ 画一个五棱柱,其中底面五边形为正五边形,俯视图也是正五 边形; ⑶ 已知某个简单几何体的三视图,用斜二侧画 法画出它的直观图。
33
金太阳教育网
26
金太阳教育网
如建议学生用纸板或游戏棒或细铁丝
品质来自专业 信赖源于诚信
(作骨架)做出下列几何体的模型:
⑴正方体;⑵长方体;⑶三棱锥;
⑷四棱锥;⑸三棱台。 学生通过动手做,亲身体验柱、锥、台
的结构特征,必会帮助学生逐步形成空
间想像能力。
27
金太阳教育网
金太阳教育网
在三视图的教学中要通过学生的亲身体验来完
品质来自专业 信赖源于诚信
成,教师应该充分利用“探究”栏目中提出的问 题,让学生在探究中学会三视图的画法,体 会三视图的作用,同时要让学生感到三视图缺乏
空间图形的立体感,为我们进一步学习直观图的 画法埋下伏笔。为突破本节的难点“识别三视图 所表示的空间几何体”,先举例分析根据三视图 找对应物体,再由简单图形入手分析识别方法, 所选的例题不必太难,注意例题的梯度性。
金太阳教育网
品质来自专业 信赖源于诚信
《立体几何初步》第一章
空间几何体
教学体会
1
金太阳教育网
品质来自专业 信赖源于诚信
整体把握:
一、了解“变化”
二、领会“变化” 三、应对“变化” 四、反思“变化”
2
金太阳教育网
品质来自专业 信赖源于诚信
第三层次 严格的推理证明
重点内容:线面平行、垂直的性质定理的证明。 选修2-2《推理与证明》
高中数学必修2《立体几何初步》教材解读之一
高中数学必修2《立体几何初步》教材解读之一永安一中吴强一.义务教育阶段(7-9年级)已经学习过的与立体几何有关的内容在“空间与图形”部分要求:(1)要求会画几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。
(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体图形。
(3)了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)。
(4)观察与现实生活中的有关图片(如照片、简单的模型图、平面图、地图等),了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。
(5)通过背景丰富的实例,知道物体的阴影是怎么形成的,并能根据光线的方向辨认实物的阴影(如在阳光下,观察手的阴影或人的身影)。
(6)了解视点、视角及盲区的涵义,并能在简单的平面图和立体图中表示。
因为,有许多高中教师并不担任初中数学的教学任务,了解初中阶段学生已有的知识结构对于组织高中数学教学是十分重要和必要的。
二.认真研读课标,站在一个整体、全局的高度把握好教学的深浅度.从整套教材来看,几何教学、学习的要求不是一步到位,而是分阶段,分层次,多角度的.一共分为三个阶段:第一阶段必修课程: 数学2:立体几何初步、解析几何初步.第二阶段选修系列1:圆锥曲线与方程系列2 :空间向量与立体几何.第三阶段选修系列3:球面上的几何、对称与群、欧拉公式与封闭曲线、三等分角与数域扩充选修系列4:几何证明选讲、矩阵与变换、坐标系与参数方程。
三.高中数学2新课程中“立体几何”部分的教学内容结合《标准》的学习和教科书的编写,概括一下,高中数学新课程中“立体几何”部分的教学内容:“空间几何体”教科书内容及课时分配1.1 空间几何体的结构约2课时1.2 空间几何体的三视图和直观图约2课时1.3 空间几何体的表面积与体积约2课时实习作业约1课时小结约1课时2.点、直线、平面之间的位置关系知识结构2.教科书内容及课时分配2.1 空间点、直线、平面之间的位置关系约3课时2.2 直线、平面平行的判定及其性质约3课时2.3 直线、平面垂直的判定及其性质约3课时小结约1课时四.知识编排方面与传统的对比在内容安排上,通过研读课标和作新旧教材的如上对比,我们发现新课程《数学2》中立体几何初步的内容体现了从整体到局部,从具体到抽象的原则.而旧教材这部分的内容遵循的是从局部到整体的原则.同时在内容的难度要求上,《数学2》与旧教材比较,难度进行了降低,并且引入了合情推理.立体几何削弱的内容:逻辑推理能力的要求(如判定定理的证明);三垂线定理与逆定理及其应用;简单几何体的面积与体积公式的推导等.立体几何增加的内容:三视图;简单几何体的面积和体积(球除外)及其应用.立体几何删除的内容:多面体欧拉定理的发现.五.与大纲的比较,有哪些变化(1)安排体系发生变化,更符合人们的认识规律传统的教材是先学习空间点、线、面,再研究由它们组成的几何体,而《课程标准》是先展示大量的几何体的结构,再剖析组成几何体的点、线、面。
高中数学第1章立体几何初步1.2.2空间两条直线的位置关系讲义苏教版必修2
1.2.2 空间两条直线的位置关系1.空间两直线的位置关系2.公理4及等角定理(1)公理4:平行于同一条直线的两条直线互相平行. 符号表示:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c .(2)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.3.异面直线的判定及其所成的角 (1)异面直线的判定定理提示:(1)异面直线的定义表明异面直线不具备确定平面的条件.异面直线既不相交,也不平行.(2)不能把异面直线误认为分别在不同平面内的两条直线,如图中,虽然有a α,b β,即a 、b 分别在两个不同的平面内,但是因为a ∩b =O ,所以a 与b 不是异面直线.(2)异面直线所成的角①定义:a 与b 是异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,我们把直线a ′和b ′所成的锐角(或直角)叫做异面直线a ,b 所成的角.②异面直线所成的角θ的取值范围:0°<θ≤90°.③当θ=π2时,a 与b 互相垂直,记作a ⊥b .1.思考辨析(1)如果a ⊥b ,b ⊥c ,则a ∥c .( )(2)如果a ,b 是异面直线,b ,c 是异面直线,则a ,c 也是异面直线.( ) (3)如果a ,b 相交,b ,c 相交,则a ,c 也相交. ( ) (4)如果a ,b 共面,b ,c 共面,则a ,c 也共面. ( )[答案] (1)× (2)× (3)× (4)×2.已知棱长为a 的正方体ABCD A ′B ′C ′D ′中,M ,N 分别为CD ,AD 的中点,则MN 与A ′C ′的位置关系是________.平行 [如图所示,MN 12AC ,又∵ACA ′C ′, ∴MN 12A ′C ′.]3.已知AB ∥PQ ,BC ∥QR ,∠ABC =30°,则∠PQR 等于__________.30°或150° [∠ABC 的两边与∠PQR 的两边分别平行,但方向不能确定是否相同,所以∠PQR =30°或150°.]4.已知a ,b 是异面直线,直线c ∥直线a ,则c 与b 的位置关系是________. 相交或异面 [a ,b 是异面直线,直线c ∥直线a ,因而c 不平行于b ,若c ∥b ,则a ∥b ,与已知矛盾,因而c 不平行于b .]①两条直线无公共点,则这两条直线平行;②两条不重合的直线若不是异面直线,则必相交或平行;③过平面外一点与平面内一点的直线与平面内的任意一条直线均构成异面直线; ④和两条异面直线都相交的两直线必是异面直线. (2)a ,b ,c 是空间中三条直线,下列给出几个说法: ①若a ∥b ,b ∥c ,则a ∥c ;②a ∥b 是指直线a ,b 在同一平面内且没有公共点;③若a ,b 分别在两个相交平面内,则这两条直线不可能平行.其中正确的有__________.(填序号)思路探究:根据空间两直线位置关系的有关概念及公理4进行判断.(1)② (2)①② [(1)对于①,空间两直线无公共点,则可能平行,也可能异面,因此①不正确;对于②,因为空间两条不重合的直线的位置关系只有三种:平行、相交或异面,所以②正确;对于③,过平面外一点与平面内一点的直线和过平面内这点的直线是相交直线,因此③不正确;对于④,和两条异面直线都相交的两直线可能是相交直线,也可能是异面直线,因此④不正确.(2)由公理4知①正确;由平行线的定义知②正确;若α∩β=l ,a α,b β,a ∥l ,b ∥l ,则a ∥b ,③错误.]空间两直线的位置关系为相交、平行、异面,若两直线有交点则为相交,若两直线共面且无交点则为平行,若以上情况均不满足则为异面.1.如图所示,正方体ABCD A 1B 1C 1D 1中,判断下列直线的位置关系: ①直线A 1B 与直线D 1C 的位置关系是________; ②直线A 1B 与直线B 1C 的位置关系是________; ③直线D 1D 与直线D 1C 的位置关系是________; ④直线AB 与直线B 1C 的位置关系是________.①平行 ②异面 ③相交 ④异面 [直线A 1B 与直线D 1C 在平面A 1BCD 1中,且没有交点,则两直线平行,所以①应该填“平行”;点A 1,B ,B 1在一个平面A 1BB 1内,而C 不在平面A 1BB 1内,则直线A 1B 与直线B 1C 异面.同理,直线AB 与直线B 1C 异面,所以②④都应该填“异面”;直线D 1D 与直线D 1C 显然相交于D 1点,所以③应该填“相交”.]1.如图所示,在四棱锥P ABCD 中,底面ABCD 是平行四边形,若E ,F ,G ,H 分别为PA ,PB ,PC ,PD 的中点.那么四边形EFGH 是什么四边形?为什么?[提示] 平行四边形.因为在△PAB 中, ∵E ,F 分别是PA ,PB 的中点, ∴EF 12AB ,同理GH 12DC .∵四边形ABCD 是平行四边形,∴ABCD ,∴EFGH ,∴四边形EFGH 是平行四边形.2.如果两条相交直线和另两条相交直线分别平行,那么由等角定理能推出什么结论? [提示] 这两条直线所成的锐角(或直角)相等.【例2】 如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F ,E 1,F 1分别为棱AD ,AB ,B 1C 1,C 1D 1的中点.求证:∠EA 1F =∠E 1CF 1.思路探究:解答本题时,可先证明角的两边分别平行,即A 1E ∥CE 1,A 1F ∥CF 1,然后根据等角定理,得出结论.[证明] 如图所示,在正方体ABCD A 1B 1C 1D 1中,取A 1B 1的中点M ,连结BM ,MF 1, 则BF =A 1M =12AB .又BF ∥A 1M ,∴四边形A 1FBM 为平行四边形, ∴A 1F ∥BM .而F 1,M 分别为C 1D 1,A 1B 1的中点,则F 1MC 1B 1. 而C 1B 1BC ,∴F 1M ∥BC ,且F 1M =BC . ∴四边形F 1MBC 为平行四边形, ∴BM ∥F 1C .又BM ∥A 1F , ∴A 1F ∥CF 1.同理取A 1D 1的中点N ,连结DN ,E 1N ,则A 1NDE , ∴四边形A 1NDE 为平行四边形, ∴A 1E ∥DN .又E 1N ∥CD ,且E 1N =CD , ∴四边形E 1NDC 为平行四边形, ∴DN ∥CE 1,∴A 1E ∥CE 1.∴∠EA 1F 与∠E 1CF 1的两边分别对应平行. 即A 1E ∥CE 1,A 1F ∥CF 1, ∴∠EA 1F =∠E 1CF 1.运用公理4的关键是寻找“中间量”即第三条直线.证明角相等的常用方法是等角定理,另外也可以通过证明三角形相似或全等来实现.2.如图,已知棱长为a 的正方体ABCD A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点.(1)求证:四边形MNA 1C 1是梯形; (2)求证:∠DNM =∠D 1A 1C 1. [证明] (1)在△ADC 中, ∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ADC 的中位线.∴MN 12AC .由正方体性质知,ACA 1C 1, ∴MN 12A 1C 1,即MN ≠A 1C 1.∴四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1, 又因为ND ∥A 1D 1,而∠DNM 与∠D 1A 1C 1均是直角三角形的锐角, ∴∠DNM =∠D 1A 1C 1.11111111DB 1与EF 所成角的大小.思路探究:先根据异面直线所成角的定义找出角,再在三角形中求解.[解] 法一:如图(1),连结A 1C 1,B 1D 1,并设它们相交于点O ,取DD 1的中点G ,连结OG ,A 1G ,C 1G ,则OG ∥B 1D ,EF ∥A 1C 1,(1)∴∠GOA 1为异面直线DB 1与EF 所成的角或其补角. ∵GA 1=GC 1,O 为A 1C 1的中点. ∴GO ⊥A 1C 1.∴异面直线DB 1与EF 所成的角为90°.法二:如图(2),连结A 1D ,取A 1D 的中点H ,连结HE ,HF ,则HE ∥DB 1,且HE =12DB 1.(2)于是∠HEF 为异面直线DB 1与EF 所成的角或补角.设AA 1=1.则EF =22,HE =32, 取A 1D 1的中点I ,连结IF ,IH ,则HI ⊥IF , ∴HF 2=HI 2+IF 2=54,∴HF 2=EF 2+HE 2.∴∠HEF =90°,∴异面直线DB 1与EF 所成的角为90°.法三:如图(3),在原正方体的右侧补上一个全等的正方体,连结DQ ,B 1Q ,则B 1Q ∥EF .(3)于是∠DB 1Q 为异面直线DB 1与EF 所成的角或其补角.设AA 1=1,则DQ =22+1=5,B 1D =12+12+12=3,B 1Q =12+12=2,所以B 1D 2+B 1Q 2=DQ 2,从而异面直线DB 1与EF 所成的角为90°.求两条异面直线所成角的步骤(1)恰当选点,用平移法构造出一个相交角. (2)证明这个角就是异面直线所成的角(或补角).(3)把相交角放在平面图形中,一般是放在三角形中,通过解三角形求出所构造的角的度数.(4)给出结论:若求出的平面角是锐角或直角,则它就是两条异面直线所成的角;若求出的角是钝角,则它的补角才是两条异面直线所成的角.3.如图所示,在空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E ,F 分别为BC ,AD 的中点,求EF 和AB 所成的角.[解] 如图所示,取BD 的中点G ,连结EG ,FG . ∵E ,F ,G 分别为BC ,AD ,BD 的中点,AB =CD , ∴EG 12CD ,GF 12AB .∴∠GFE 就是EF 与AB 所成的角或其补角. ∵AB ⊥CD ,∴EG ⊥GF , ∴∠EGF =90°. ∵AB =CD ,∴EG =GF , ∴△EFG 为等腰直角三角形,∴∠GFE =45°,即EF 和AB 所成的角为45°.1.本节课的重点是会判断空间两直线的位置关系,理解异面直线的定义,会求两异面直线所成的角,能用公理4和等角定理解决一些简单的相关问题.难点是求异面直线所成的角.2.本节课要重点掌握的规律方法(1)判断两条直线位置关系的方法.(2)证明两条直线平行的方法.(3)求异面直线所成角的解题步骤.3.本节课的易错点是将异面直线所成的角求错.1.分别在两个相交平面内的两条直线间的位置关系是( )A.平行B.相交C.异面D.以上皆有可能[答案] D2.若空间两条直线a和b没有公共点,则a与b的位置关系是________.平行或异面[若直线a和b共面,则由题意可知a∥b;若a和b不共面,则由题意可知a与b是异面直线.]3.空间中有一个∠A的两边和另一个∠B的两边分别平行,∠A=70°,则∠B=________.70°或110°[∵∠A的两边和∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,又∠A=70°,∴∠B=70°或110°.]4.如图,已知长方体ABCDA′B′C′D′中,AB=23,AD=23,AA′=2.(1)BC和A′C′所成的角是多少度?(2)AA′和BC′所成的角是多少度?[解](1)因为BC∥B′C′,所以∠B′C′A′是异面直线A′C′与BC所成的角.在Rt△A′B′C′中,A′B′=23,B′C′=23,所以∠B′C′A′=45°.(2)因为AA′∥BB′,所以∠B′BC′是异面直线AA′和BC′所成的角.在Rt△BB′C′中,B′C′=AD=23,BB′=AA′=2,所以BC′=4,∠B′BC′=60°.因此,异面直线AA′与BC′所成的角为60°.。
人教版高三数学必修二知识点总结:立体几何初步
1、柱、錐、臺、球的結構特徵(1)棱柱:定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)棱錐定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等表示:用各頂點字母,如五棱錐幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)棱臺:定義:用一個平行於棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等表示:用各頂點字母,如五棱臺幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原棱錐的頂點(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓臺:定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)注:正視圖反映了物體上下、左右的位置關係,即反映了物體的高度和長度;俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。
高中数学必修2《立体几何初步》教材分析和教学建议
高中数学必修2《立体几何初步》教材分析和教学建议2016/10/23一、立体几何在近几年高考中分布近几年客观题重点在于三视图面积或体积计算及简单判断,一般有2小题,难度中等稍多(如2016等出在第6题),但有时也比较靠后(如2014出在第12题),解答题位居第2,3题的位置,包含推理证明及计算,证明主要是平行和垂直关系,利用平行证明共面(2008四川)、证异面直线(2009辽宁)比较少,全国1卷近几年还没出过,理科计算以求角居多,文科计算比较多考体积或点面距离。
注意,现在文科也考求角了,今年第11题2016:6三视图,体积面积,11,异面直线所成角,(理)18证面面垂直,计算二面角,五面体,(文)18证中点,体积,三棱锥2015:6体积,11三视图,面积,(理)18证面面垂直,计算异面直线所成角,线面(文)18证面面垂直,计算体积,四棱锥2014:12三视图,棱长,(理)19证相等,计算二面角,三棱柱(文)19证线线垂直,计算棱柱高,三棱柱2013:6体积,相接,8三视图,体积,(理)18证线线垂直,计算线面角,三棱柱(文)19证线线垂直,计算体积,三棱柱2012:7三视图,体积,11与球相接,体积,(理)19证线线垂直,计算二面角,三棱柱(文)19证面面垂直,计算体积,三棱柱2011:6三视图,判断,15与球相接,体积,(理)18证线线垂直,计算二面角,四棱锥(文)18证线线垂直,计算棱锥高,四棱锥2010:10与球相接,面积,14三视图,判断,(理)18证线线垂直,计算线面角,四棱锥(文)18证面面垂直,计算体积,四棱锥二、对教材重点内容的处理建议1.对三视图的教学建议三视图是年年都考的内容,由三视图还原直观图是解题的第一步,也是很关键的一步,有些年份容易有些年份难,这部分内容初中也学过一下,不要以为学生都会,掉以轻心。
三视图还原直观图,可以考虑以一些简单的几何体为原形,从三个方向切割的方法确定,三个图形从简到繁构图。
高中数学北师大版必修二课件:第一章 立体几何初步
向量的加法运算:向量加法遵循平行四边形 法则如(x1, y1, z1) + (x2, y2, z2) = (x1+x2, y1+y2, z1+z2)
添加 标题
向量的减法运算:向量减法遵循平行四边形 法则如(x1, y1, z1) - (x2, y2, z2) = (x1x2, y1-y2, z1-z2)
向量积的坐标表示:两个向量的向 量积的坐标表示为两个向量坐标的 乘积
添加标题
添加标题
添加标题
添加标题
混合积:三个向量的混合积是一个 向量其坐标表示为三个向量坐标的 乘积
混合积的坐标表示:三个向量的混 合积的坐标表示为三个向量坐标的 乘积
总结与展望
本章内容的总结与回顾
本章主要介绍了立体几何的基本概念和性质包括点、线、面、体等。 学习了立体几何的度量方法如长度、角度、体积等。 掌握了立体几何的证明方法如平行、垂直、相似等。 学习了立体几何的应用如空间图形的绘制、空间物体的测量等。 展望未来我们将继续深入学习立体几何掌握更多的知识和技能为未来的学习和工作打下坚实的基础。
棱锥的表面积和体积
棱锥的定义: 由一个多边 形底面和若 干个侧面组 成的几何体
棱锥的表面 积:底面积+ 侧面积
棱锥的体积: 底面积×高 ÷3
棱锥的表面 积和体积的 计算公式: S=πr²+n(l ×h)V=πr²h /3
棱锥的表面 积和体积的 应用:建筑、 工程等领域
球的表面积和体积
球的表面积:4πr^2 球的体积:4/3πr^3 球的表面积和体积公式推导 球的表面积和体积在实际生活中的应用
几何性质:立体几何具有空间位置、 形状、大小等性质平面几何具有位 置、形状等性质
高中数学必修2解析几何初步教材分析及教学建议之一
高中数学必修2《解析几何初步》教材分析及教学建议之一三明九中李宇宙一、解析几何内容的设计:1. 几何的内容按三个层次设计(1)必修课程中的几何,主要包括:立体几何初步、解析几何初步、平面向量、解三角形等。
(2)选修系列1、系列2中的几何,主要包括:圆锥曲线与方程、空间向量与立体几何。
(3)选修系列3、系列4(专题)中的几何.主要包括:球面上的几何、坐标系与参数方程、几何证明选讲等。
2.解析几何内容的变化突出了用代数方法解决几何问题的过程,同时也强调代数关系的几何意义。
解析几何的内容也是分层次设计的:在必修课程中,主要是直线与方程、圆与方程;圆锥曲线与方程的内容则放在选修系列1、系列2中。
3.必修2削弱的内容两条直线的位置关系(删除了两条直线的夹角)等。
4.必修2增删的内容(1) 解析几何增加的内容:直线与圆、圆与圆的位置关系;空间直角坐标系(2) 解析几何删除的内容:曲线与方程;圆的参数方程;圆锥曲线;线性规划移至必修5(第三章)不等式部分二、数学必修2《解析几何初步》的教学建议认真把握教学要求教学中,注意控制教学的难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。
关注重要数学思想方法的教学重要的数学思想方法不怕重复。
《标准》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
在教学中应自始至终强化这一思想方法,这是解析几何的特点。
教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,应避免只强调“形”到“数”的方面,而忽视“数”到“形”的方面。
关注学生的动手操作和主动参与学习方式的转变是课程改革的重要目标之一。
教学中,注意适当给学生数学活动和交流的机会,引导他们在自主探索的过程中获得知识、增强技能、掌握基本的数学思想方法。
苏教版高中数学必修2-1.3《立体几何初步》单元教学分析
必修2 第一章《立体几何初步》单元教学分析一.教材分析1.本章节的课时分配情况如下:2.本章节在整个教材体系中的地位和作用本章教材是高中数学学习的重点之一,通过研究空间几何体的结构特征、三视图和直观图、表面积和体积等,运用直观感知、操作确认、度量计算等方法,认识和探索空间图形及其性质,使学生建立空间概念,掌握思考空间几何体的分类方法,在认识空间点、直线、平面位置的过程中,进一步提高学生的空间想像能力,发展推理能力,通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言;以具体的长方体中的点、线、面之间的关系作为载体,使学生在直观感知的基础上,认识空间中点、线、面之间的位置关系;通过对图形的观察和实验,使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关系,并能解决一些简单的推理论证及应用.本章内容在每年的高考中都必考,在选择题、填空题和解答题中均能出现,分值约20分左右,主要考查线、面之间的平行、垂直关系.3.本章节的教学目标、数学思想、数学方法通过对空间几何体的整体观察,使学生直观认识空间几何体的结构特征,理解空间点、线、面的位置关系,并会用数学语言表述空间有关平行、垂直的判定与性质,能运用这些结论对有关空间图形位置关系的简单命题进行论证,了解一些简单几何体的表面积与体积的计算方法.培养和发展学生的空间想象能力、推理论证能力、合情推理能力、运用图形语言进行交流的能力.4.本章节的教学重点、教学难点、教学特点:本章的重点是空间中的直线与直线、直线与平面、平面与平面的平行和垂直的判定和性质.本章的难点是建立空间概念,培养学生的空间想象,空间识图能力.5.本章节的知识结构和框架体系二.学情分析:1.师生双边教学活动设计:本章内容是义务教育阶段“空间与图形”课程的延续与发展,重点是帮助学生逐步形成空间想像能力,为了符合学生的认知规律,培养学生对几何学习的兴趣,增进学生对几何本质的理解,本章在内容的编选及内容的呈现方式上,与以往的处理相比有较大的变化.首先,通过观察和操作,使学生了解空间简单几何体(柱、锥、台、球)的结构特征,以此作为发展空间想像能力的基本模型;然后,通过归纳和分析,使学生进一步认识和理解空间的点、线、面之间的位置关系,作为思辩论证的基础,由于几何图形的面积和体积的计算和体积的计算需要应用垂直的概念,因而这一部分内容放入本章最后一节.本章内容的设计遵循从整体到局部、从具体到抽象的原则,强调借助实物模型,通过整体观察、直观感知、操作确认、思辨论证、度量计算,引导学生多角度、多层次地揭示空间图形的本质;重视合情推理与逻辑听结合,注意适度形式化;倡导学生积极主动、勇于探索的学习方式,帮助学生完善思维结构,发展空间想像能力.2.本章的教学建议:(1)、由于是从运动变化的观点来认识柱、锥、台、球的几何特点,因此教学时要通过大量的柱、锥、台、球实物模型进行演示,有条件的可以使用计算机演示柱、锥、台、球的生成过程,以帮助学生认识空间简单几何体的结构特征,并逐步形成空间观念.(2)、本章内容设计遵循从整体到局部的原则,因而有些概念在教学时只需通过大量实例让学生感受、认识即可,不必给出它们的严格定义,如关于棱台的部分中涉及的“两个平面平行”与关于正投影的部分中涉及的“天对着(直线与平面垂直)”等.(3)、在研究直线与直线、直线与平面、平面与平面的位置关系时,首先应强调位置关系的分类标准,然后引导学生给出正确分类.由于是通过直观感知、操作确认,探索关于“垂直”、“平行”的判定定理,所以教学中要给出大量的空间图形,有条件的可用计算机演示,让学生通过观察、实验,确认“垂直”、“平行”的判定方法.关于“垂直”、“平行”的判定与性质定理的应用,教学时应先让学生理解定理成立的条件,着重引导学生创设定理成立的条件.并逐渐让学生感悟到:空间中直线与直线、直线与平面、平面与平面的垂直或平行问题常常相互转化,将空间问题化归为平面问题是处理立体几何问题的重要思想,对空间中“角”与“距离”的度量问题,教学中不必拓展延伸,随意地提高教学要求.(4)、关于“柱、锥、台、球的表面积和体积”一节的教学,对一些简单组合体的表面积和体积计算,重在通过分析得到它是由哪些简单几何体组合而成.在介绍求柱、锥、台、球的表面积和体积的方法时,应着重让学生体会祖恒原理和积分思想在表面积与体积计算中的应用.(5)、本章教学中要注意联系平面图形的知识,利用类比、引申、联想等方法,理解平面图形和立体图形的异同,以及两者的内在联系,逐步培养学生的空间想像能力.三.教学手段、数学思想和数学方法:立体几何适宜采用多媒体教学手段,本章涉及的思想方法有:1、反证法与同一法;2、分类的思想;3、转化与化归思想;4、构造法,主要包括辅助线、面、体的添作,包括割补的思想方法;5、函数、方程和参数的思想方法.转化与化归思想是立体几何中最常见、最重要的数学思想方法,证明题实际上是定理间的相互转化和化归;证明或计算时,经常需要把空间图形化归为平面图形,把陌生问题纳入到原有的认知结构中,用熟悉的平面几何或三角的方法进行处理.立体几何中角与距离的计算建立在弄清概念、准确作图、严格论证的基础上,三种空间角,最终都化为两条相交直线的夹角,通常通过“线线角抓平移,线面角抓射影,二面角抓平面角”达到转化的目的;有关距离的问题通常化归为两点间的距离或点到直线的距离或点到平面的距离来解决,而点到平面的距离有时可以借助三棱锥的体积而求得.。
新教材人教版高中数学必修第二册 第八章 立体几何初步(章末知识梳理与能力提升 )
l3 d2
(1)
第二十页,共二十六页。
又因为f∝Sl,故
bl ∝dl32
(2)
由生物学角度可以假定,经过长期进化,对每种动物而言
b l
应为一个常数,即
l3∝d2
(3)
又由d2∝S,f∝Sl,故
f∝l4
(4)
第二十一页,共二十六页。
即体重与躯干长度的 4 次方成正比. 反思总结:在此模型的构成过程中,有两点值得注意. 首 先,此模型的建立,只用到简单的比例法,非常简便易懂, 但更重要的是大胆地把动物的躯干与弹性梁作类比,从而可 以借用弹性力学的结果;其次使用该模型时,要注意其条件. 在建立此模型时,我们把四足动物的躯干视为圆柱体,也就 是说,对于那些躯干的形状与圆柱体相去甚远的四足动物, 该模型就不适用了,比如乌龟.
第十七页,共二十六页。
[应用问题与数学建模] ——动物的身长与体重
问题描述:四足动物的躯干与其体重之间有什么关系?此 问题有一定的实际意义. 比如在生猪收购站,工作人员希望能 从生猪的身长估计出它的体重.
问题分析:如果对此问题陷入复杂的生理结构的研究,将 会得出复杂的模型,而失去使用价值. 在这里我们用类比的方 法借助于弹性力学的结果,建立一个粗略的几何模型.
[答案] C
第二十五页,共二十六页。
[ 学习方法指导] 为了直观的解决此题,可同桌相互 配合解决,过程是这样的:同桌两同学每人拿一本书,打 开就得到了两个平面且摆成如图所示的模型.
由于&⊥β而&绕 L 可来回转动.但两个面始终保持垂直.所以这两个二
面角不会相等也不会互补,并且学生也易于理解了. 布鲁纳说:“最好的学习动机是学生对所学材料有内在的兴趣.”如果我
人教版数学必修2立体几何初步知识点
第一章 立体几何初步1.柱、锥、台、球的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
(2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体(3)棱台:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分(4)圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体(5)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体(6)圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分(7)球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体2. 空间几何体的表面积和体积:(1)侧面积公式:① 直棱柱S ch =(c 为底面周长,h 为高)② 正棱锥'12S ch =(c 为底面周长,'h 为斜高)③ 正棱台'121()2S c c h =+(12c c 、分别为上下底面的周长,'h 为斜高)④ 圆柱2S rh π=(r 为底面半径,h 为高)⑤ 圆锥S rl π=(r 为底面半径,l 为母线长)⑥ 圆台12()S r r l π=+(12r r 、分别为上下底面半径,l 为母线长)(2)体积公式:① 棱柱V Sh =(S 为底面积,h 为高)② 棱锥13V Sh =(S 为底面积,h 为高)③ 棱台121()3V S S h =+(12S S 、分别为上下底面积,h 为高)④ 圆柱2V Sh r h π==(S 为底面积,r 为底面半径,h 为高)⑤ 圆锥21133V Sh r h π==(S 为底面积,r 为底面半径,h 为高)⑥ 圆台121()3V S S h =+(12S S 、分别为上下底面积,h 为高)(3)球:①球的表面积公式:24S R π=②球的体积公式:343V R π= (R 表示球的半径)③球的任意截面的圆心与球心的连线垂直截面,若设球的半径为R ,截面圆的半径是r ,截面圆的圆心与球心的连线长为d ,则:222d R r =-。
最新人教版高中数学必修2第一章《立体几何初步》本章概览
第一章立体几何初步
本章概览
三维目标
1.通过生活中的实际例子引入空间几何体的相关概念,体现了由特殊到一般、由具体到抽象的理论形成过程.从而形成了立体几何的初步理论.而本章内容的整体思路体现了从点到线、从线到面、从面到体的基本研究思想.
2.空间几何体的三视图和直观图从不同方面反应了几何体的特征,通过画三视图可以增强空间想象能力,而直观图不仅反映了几何体具有的特征,也为把立体图形在平面中表示的方法提供了依据.斜二测画法不仅是画几何图形的工具,也是立体几何理论的基础,它为空间几何体转化到平面中进行研究提供了可能.
3.求几何体的体积是生活中经常遇到的问题,而体积也是几何体的一个重要特征,通过对体积的探讨不仅加深了对几何体特征的认识,体现了数学的应用价值,增强了对数学的感性理解,也体现了学习立体几何的必要性.
4.在初中平面几何的基础上,通过对比与联想等方法总结出空间直线与平面之间的位置关系,进一步讨论平面与平面的关系则是对几何体知识的更深层次的细化,理解这一部分知识可以加强对几何体中某些元素的认识,实现了认识从表面到本质的飞跃.
5.空间的平行与垂直关系与初中平面几何中的平行与垂直关系既有联系又有区别,空间的垂直与平行关系是几何体中某些局部元素性质的反应,也是把几何体抽象化后的结果.因此,无论线还是面都离不开相应的几何体,体现了事物之间互相联系的辩证唯物主义思想,也是人类认识世界的方法论基础.
知识网络。
必修二新教材第八章立体几何初步知识点
《立体几何初步》核心知识点速记8.2空间几何体的三视图和直观图直观图:斜二测画法斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图8.3空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和2圆柱的表面积3圆锥的表面积2S rl r ππ=+4圆台的表面积22S rl r Rl R ππππ=+++5球的表面积24S Rπ=6扇形的面积公式213602n R S lr π==扇形(其中l 表示弧长,r 表示半径)(二)空间几何体的体积1柱体的体积V S h=⨯底2锥体的体积13V S h =⨯底3台体的体积1)3V S S h =++⨯下上(4球体的体积343V R π=8.4空间点、直线、平面之间的位置关系1平面含义:平面是无限延展的,无大小,无厚薄.2平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD 等.3基本事实:(1)基本事实1:过不在一条直线上的三点,有且只有一个平面.符号表示为:A、B、C 三点不共线⇒有且只有一个平面α,使A∈α、B∈α、C∈α.作用:确定一个平面的依据.补充3个推论:推论1:经过一条直线与直线外一点,有且只有一个平面.推论2:经过两条平行直线,有且只有一个平面.推论3:经过两条相交直线,有且只有一个平面.(2)基本事实2:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为A l B l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭作用:判断直线是否在平面内(3)基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号表示为:,p l p lαβαβ∈⇒=∈ 且作用:判定两个平面是否相交的依据空间中直线与直线之间的位置关系222r rl Sππ+=1空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.2基本事实4:平行于同一条直线的两条直线互相平行.符号表示为:设a、b、c 是三条直线,//////a b a c c b ⎫⇒⎬⎭3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.4异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线符号表示:,,,A B l B l AB l ααα∉∈⊂∉⇒直线与直线异面.5注意点:1异面直线11a b 与所成的角的大小只由它们的相互位置来确定,与选择的位置无关,为简便一般取在两直线中的一条上;2两条异面直线所成的角:(000,90]θ∈③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角.空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点特别指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α⊄来表示a αa∩α=A a∥α8.5空间直线、平面的平行直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.简记为:线线平行,则线面平行.符号表示:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行.共面直线ba α符号表示://////a b a b A a b ββαβαα∈⎫⎪∈⎪⎪⇒=⎬⎪⎪⎪⎭.图解:2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行.符号表示为:,//a a αβαβ⊥⊥⇒直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.简记为:线面平行,则线线平行.符号表示:////a a a bb αβαβ⎫⎪⊂⇒⎬⎪=⎭ 作用:利用该定理可解决直线间的平行问题.2、定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.符号表示:////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭,简记为:面面平行,则线线平行作用:可以由平面与平面平行得出直线与直线平行3、两个平面平行具有如下的一些性质:⑴如果两个平面平行,那么在一个平面内的所有直线都与另一个平面平行βα//且α⊂a β//a ⇒(面面平行→线面平行)⑵如果两个平行平面同时和第三个平面相交,那么它们的交线平行.⑶如果一条直线和两个平行平面中的一个相交,那么它也和另一个平面相交⑷夹在两个平行平面间的所有平行线段相等8.6空间直线、平面的垂直直线与平面垂直的判定1、定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l α⊥,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面.直线与平面垂直时,它们唯一公共点P,点P 叫做垂足.2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.符号表示:,,,,l a l b a b a b A l ααα⊥⊥⊂⊂=⇒⊥ ,简记为:线线垂直,则线面垂直.注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.3、补充性质://,a b a b αα⊥⇒⊥4、直线与平面所成的角的范围为:00[0,90]//////,a b a b P a b ββαβα⎧⎪⎪⇒⎨=⎪⎪⊂⎩ a βα平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A梭lβB α2、二面角的记法:二面角α-l-β或α-AB-β,平面之间二面角范围是00[0,180]3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.符号表示:,,l l βααβ⊥⊂⇒⊥,简记为:线面垂直,则面面垂直.4、线面角的求法,在直线上任找一点作平面的垂线,则直线和射影所成的角就是了.直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行.符号表示://a a b b αα⊥⎫⇒⎬⊥⎭补充性质:(1),//a b a b αα⊥⇒⊥,(2),//a b a b αα⊥⇒⊥,(3),,//a a αβαβ⊥⊥⇒,(4),//,a a βαββ⊥⇒⊥2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号表示:,,,,a l a a l a βαβαβ⊥=⊂⊥⇒⊥ ,面面垂直,则线面垂直.图示:b a a a b αβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭。
高中数学人教A版2019必修第二册 第八章《立体几何初步》本章教材分析
《立体几何初步》教材分析一、本章知能对标二、本章教学规划本章的内容主要包括两部分,第一部分是基本立体图形,主要是对空间几何体的认识.教材从对空间几何体的整体观察入手,通过认识柱、锥、台、球等基本立体图形的组成元素及其相互关系,帮助学生认识这些图形的几何结构特征,学习它们在平面上的直观图表示以及它们的表面积和体积的计算;第二部分是基本图形位置关系,主要是对组成立体图形的几何元素之间的位置关系的认识,教材从组成立体图形的基本元素——点、直线、平面出发,研究平面基本性质,认识空间点、直线、平面的位置关系,重点研究直线、平面的平行和垂直这两种特殊的位置关系.三、本章教学目标1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.会用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简单组合体)的直观图.3.知道棱柱、棱锥、棱台、球的表面积和体积公式的计算,能用公式解决简单的实际问题.4.以长方体为载体,在直观感知的基础上,认识空间中点、直线、平面之间的位置关系.5.通过对大量图形的观察、实验、操作和说理,进一步了解平行、垂直的判定方法及基本性质.6.学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题.四、本章教学重点难点重点:1.多面体与旋转体及基本几何体的结构特征,用斜二测法画出空间几何体的直观图.2.4个基本事实、等角定理、直线与直线、直线与平面、平面与平面平行和垂直的判定与性质..难点:1.简单组合体的表面积和体积计算.2.理解异面直线,掌握线线、线面、面面平行与垂直的关系和应用.五、课时安排建议本章教学约需14课时,具体安排如下:六、本章教学建议1.充分利用实物原型和长方体模型,帮助学生理解基本立体图形及位置关系,发展学生的数学抽象核心素养.本章教学中,长方体是一个基本的数学模型,在各种多面体中它是最基本的几何体,研究基本图形位置关系中,无论对于空间点、直线、平面位置关系的整体认识,还是对于研究空间直线、平面的平行、垂直关系,长方体都是一个基本模型.基本图形位置关系中的各种定理(判定定理、性质定理等)都可以在长方体中找到对应的图形.因此,在教学中,一定要充分理解长方体的作用.另外,在生活中,长方体形状的物体也是随处可见的,其中与学生最接近的就是学生所在的教室,在教学中也要利用好教室这个实物模型,以便将基本图形的位置关系在生活中找到对应的实例,加强直观性,以更好地培养学生的直观想象核心素养.2.重视研究方法的引导,让学生体会立体几何研究的基本思路和方法.在本章,基本立体图形和基本图形位置关系是主要的研究对象.对于基本立体图形和基本图形位置关系的教学,要注意加强“一般观念”的引导.首先要让学生明确研究对象,也就是要研究什么问题;其次要让学生知道怎么研究.使学生体会立体几何研究的基本思路和方法,逐步学会抽象数学对象,提出数学问题的方法,提升发现和提出问题的能力.3.把握好教学要求,循序渐进地培养推理能力.本章内容由于比较抽象,需要比较强的空间想象力,历来也是高中教学的难点.在教学中,要注意把握教学要求,教学要求应该适当,不要急于提高、增加难度,否则教学要求超出学生的理解和接受能力,就会挫伤学生的学习积极性,对后续教学带来不良影响.这就要求在教学中,注意了解每一部分内容在全章的地位、安排和要求,对于教学有整体的思考和把握,循序渐进.4.重视作图技能训练,培养学生空间想象力.我们知道,与平面图形可以在纸上或黑板上用直尺、圆规真实地画出来不同,立体图形是三维的,我们没有三维的纸或黑板,因此立体图形的直观图是在二维平面上表示三维图形.画直观图需要我们了解立体图形的结构特征;反过来,作出的直观图也可以引导我们想象它所代表的真实图形的样子.在二维平面上画三维图形,对于培养学生的空间想象力是有重要意义的.在教学中,在获得几何对象、描述概念、发现性质等各个环节中都要加强作图的训练,在解题教学中,也要把“观察图形”“根据题意作出图形”作为出发点.5.充分利用信息技术工具,为理解和掌握图形提供直观帮助,在本章的学习中,信息技术工具可以给我们提供一个仿真的三维空间的学习环境,帮助我们认识立体图形的结构特征,发现其中的基本位置关系,为把握和理解立体图形提供几何直观.在教学中,有条件的学校,应尽可能多地使用计算机或图形计算器等信息技术工具,为学生理解和掌握立体图形提供直观帮助.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修2《立体几何初步》教材解读之一永安一中吴强一.义务教育阶段(7-9年级)已经学习过的与立体几何有关的内容在“空间与图形”部分要求:(1)要求会画几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。
(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体图形。
(3)了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)。
(4)观察与现实生活中的有关图片(如照片、简单的模型图、平面图、地图等),了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。
(5)通过背景丰富的实例,知道物体的阴影是怎么形成的,并能根据光线的方向辨认实物的阴影(如在阳光下,观察手的阴影或人的身影)。
(6)了解视点、视角及盲区的涵义,并能在简单的平面图和立体图中表示。
因为,有许多高中教师并不担任初中数学的教学任务,了解初中阶段学生已有的知识结构对于组织高中数学教学是十分重要和必要的。
二.认真研读课标,站在一个整体、全局的高度把握好教学的深浅度.从整套教材来看,几何教学、学习的要求不是一步到位,而是分阶段,分层次,多角度的.一共分为三个阶段:第一阶段必修课程: 数学2:立体几何初步、解析几何初步.第二阶段选修系列1:圆锥曲线与方程系列2 :空间向量与立体几何.第三阶段选修系列3:球面上的几何、对称与群、欧拉公式与封闭曲线、三等分角与数域扩充选修系列4:几何证明选讲、矩阵与变换、坐标系与参数方程。
三.高中数学2新课程中“立体几何”部分的教学内容结合《标准》的学习和教科书的编写,概括一下,高中数学新课程中“立体几何”部分的教学内容:“空间几何体”教科书内容及课时分配1.1 空间几何体的结构约2课时1.2 空间几何体的三视图和直观图约2课时1.3 空间几何体的表面积与体积约2课时实习作业约1课时小结约1课时2.点、直线、平面之间的位置关系知识结构2.教科书内容及课时分配2.1 空间点、直线、平面之间的位置关系约3课时2.2 直线、平面平行的判定及其性质约3课时2.3 直线、平面垂直的判定及其性质约3课时小结约1课时四.知识编排方面与传统的对比在内容安排上,通过研读课标和作新旧教材的如上对比,我们发现新课程《数学2》中立体几何初步的内容体现了从整体到局部,从具体到抽象的原则.而旧教材这部分的内容遵循的是从局部到整体的原则.同时在内容的难度要求上,《数学2》与旧教材比较,难度进行了降低,并且引入了合情推理.立体几何削弱的内容:逻辑推理能力的要求(如判定定理的证明);三垂线定理与逆定理及其应用;简单几何体的面积与体积公式的推导等.立体几何增加的内容:三视图;简单几何体的面积和体积(球除外)及其应用.立体几何删除的内容:多面体欧拉定理的发现.五.与大纲的比较,有哪些变化(1)安排体系发生变化,更符合人们的认识规律传统的教材是先学习空间点、线、面,再研究由它们组成的几何体,而《课程标准》是先展示大量的几何体的结构,再剖析组成几何体的点、线、面。
这种安排的特点是由整体到部分,由具体到抽象,更加符合人们的认知规律。
我们生活在三维世界中,对于一个物体,首先感受的是它的轮廓,之后才会对它的侧面、边角感兴趣。
(2)重视联系,强调应用传统的立体几何强调综合方法,强调逻辑推理,这种单一的处理方法使学生孤立地学习立体几何,从而学习难度较大,许多中学生惧怕立体几何,解答立体几何问题总是不理想(立体几何一直是高考中的难点,位于承上启下的位置),在《课程标准》中,比较初步的,不是太难的用综合方法处理,以培养空间想象能力和逻辑推理能力,而较难处理的问题则采用代数的方法。
从而有利于改变学生对立体几何的态度,建立起学生学好立体几何的信心。
更重要的是加强了几何与代数的联系,培养数形结合的思想,完善数学的认知结构。
加强立体几何与现实生活的联系,强调应用是立体几何课程改革的又一特色。
立体几何课程从空间几何体开始,利用实物模型、计算机软件观察大量的空间图形,使学生归纳出“柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构”。
这也就是从生活中来,到生活中去,善于从生活中获取知识,也善于将学到的知识应用于生活,培养学生用数学视角观察世界和用数学思维思考世界的习惯。
(3)加强直观,侧重空间想象能力的培养高中立体几何历来以培养逻辑思维能力为主要目标。
而新课程更加强调空间想象能力的培养,空间观念的建立,逻辑思维能力的培养退至次要地位。
立体几何的基础是平面几何《全日制义务教育数学课程标准》(实验稿)将合情推理引入课程,强调几何直观,在给出大量的平面图形的基础上,引导学生归纳、概括出若干定理,整个教学过程只要求证明8个定理,目的是让学生感受公理化思想和了解证明的含义。
立体几何课程改革同样引入大量的实物模型,计算机模拟与演示,加强学生的直观感受。
在数学2的立体几何初步中只给出4个公理、9个定理,其中只有4个定理需要证明,其余4个判定定理在选修2-1中用向量方法给出证明(比如三垂线定理也用向量方法证明),而选修课程并不是要求所有学生都掌握的。
由此可见,立体几何的教学目的由重点培养逻辑思维能力转向培养几何直观能力和空间想象能力。
然而大量削减逻辑证明会不会影响学生的数学能力,尤其是思维能力和推理能力的提高,有待于实践的检验和进一步研究。
(4)加强动手操作方面的要求2002年数学教学大纲要求学生能够“用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系”,“会画直棱柱的直观图。
”,“会画正棱锥的直观图”。
《课程标准》要求“能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图”,“用两种方法(平行投影与中心投影)画出的视图与直观图”,“画出某些建筑的视图与直观图”。
同学们在动手实践的过程中体会、感受、经历,从而增加对几何体的认识和对客观世界的认识,学生动手还体现在让学生参与知识形成过程。
以往的大纲只给出终极目标,到达目标的途径没有做明确的要求,而《课程标准》不但明确知识的终极目标,而且明确了到达终极目标的途径。
如“通过直观感知、操作确认,归纳出以下判定定理”,“通过直观感知、操作确认,归纳出以下性质定理”,“通过对图形的观察、实验和说理,使学生进一步了解平行、垂直关系的基本性质以及判定方法”,等等。
综合以上,可见《课程标准》立体几何部分从内容到要求,从形式到结构都较以往的大纲有较大的改动。
六、必修二教学说明与建议(一)棱柱、棱锥、棱台这些空间几何体要求到什么程度?按照《标准》的要求,教材首先通过实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征。
结构特征是这些空间几何体的本质特征,我们需要抽象概括出这些空间几何体的概念。
以棱柱为例,抽象出它的本质特征后,要不要讲斜棱柱、直棱柱、正棱柱以及棱柱的一些性质?由于《标准》在选修2-1“空间向量与立体几何”中有“参考案例”例1,例1中明确提出“直三棱柱……”,所以必须讲。
棱锥也有类似的问题,正棱锥怎么讲?在何处讲?(二)关于三视图与几何直观能力、空间想象能力视图和投影是《全日制义务教育数学课程标准(实验稿)》新增的内容,作为与初中数学课程内容的衔接,“空间几何体”包括视图和投影的内容。
要求到什么程度?1.三视图是不是要求到“长对正、高平齐、宽相等”?与初中阶段的相关内容如何衔接?2.对于平行投影和中心投影下的视图与直观图,如果只是“通过观察用两种方法(平行投影与中心投影)画出的视图和直观图,了解空间图形的不同表示形式。
”,是不是要求太低了?3.如果不明确给出直棱柱、正棱柱、斜棱柱等的概念,棱柱的三视图能否讲清楚?因为棱柱的三视图涉及棱柱的高等概念。
增加三视图的有关内容,对于进一步培养学生的空间想象能力和几何直观能力具有重要的促进作用。
过去的“立体几何”内容相对来说,这方面比较薄弱。
三视图的有关内容在一定程度上改善了这种状况。
对图形既需要直观地感觉,也需要思辨地论证。
我们要求学生能够画出空间几何体的三视图和直观图,能够从空间几何体的直观图画出它的三视图,从三视图画出它的直观图等等。
使得学生能通过“实物模型—三视图—直观图”这样一个相互转化的过程认识空间几何体。
这些数学活动是培养学生空间想象能力的有效途径。
只有这样,立体几何的教学目标才更加全面。
基于以上原因,我们认为,教师和学生应该知道正视图、侧视图、俯视图的“摆放”位置,以及“长对正、高平齐、宽相等”的要求,但尺寸、线条、具体怎么画不作严格要求。
这部分内容是初中“投影与视图”的基础上的发展。
一个现实情况是,“空间几何体”8个课时的容量,留给“空间几何体的三视图和直观图”仅有2个课时的时间,很多内容无法展开。
要想说的很清楚,势必冲破2个课时的限制,这显然违背《标准》的要求。
因此,很多内容“点到为止”,要求不高,像上面提到点在平面的射影、空间几何体的高,平行投影和中心投影下的视图和直观图等几个问题,必须明确提到,但要求较低。
(三)高中数学新课程中“立体几何”部分的教学内容是不是过去“直线、平面、简单几何体”内容的真子集?单从课时上看,容易产生这种印象:高中数学新课程中“立体几何”部分的教学内容是过去“直线、平面、简单几何体”内容的真子集。
实际是这种情况吗?答案是否定的。
从《标准》和《普通高中课程标准实验教科书·数学2》A版(以下简称《数学2》)看,高中数学新课程中“立体几何”部分新增加了一些内容:平行投影、中心投影,三视图。
这些内容与义务教育阶段“空间与图形”中的“视图与投影”紧密衔接,而“直线、平面、简单几何体”没有这部分内容。
增加这部分内容的主要目的是进一步认识空间图形,通过三视图以及空间几何体与其三视图的互相转化,对空间图形有比较完整的认识,培养和发展学生的空间想象能力、几何直观能力,更全面地把握空间几何体。
投影是视图的基础,投影分为平行投影和中心投影。
立体几何中研究的图形都是平行投影下的图形。
中心投影在日常生活中非常普遍,但不是高中“立体几何”研究的主要内容。
有了投影,才有视图。
除了“平行投影、中心投影,三视图”的内容外,其他内容是“直线、平面、简单几何体”的真子集。
(四)教学过程注意事项①备每堂课前要在通读教材内容基础上,做完课后练习,以便更好地把握重、难点,例题的选择、课堂练习的安排;②教学时必须留足时间让学生操作确认,并用自然语言表述出来;③时时注意以长方体中的点、线、面为载体,引导学生学会自然语言转化为图形语言和符号语言;④始终把握数学教学的特点:问题中心、设计自然(即数学知识发生发展的原过程),引导学生自己概括出数学本质,保持高水平的数学思维活动;⑤注重数学思想方法蕴含其中的道理,课堂必须经常留时间总结好数学思想,体会数学思维规律;⑥严格按照模块本身内容要求教学,不得随意补充知识,理解好螺旋上升设计;⑦教材中有大量的旁白,有的是画龙点睛,有的是一般性概括,也有的是方法指要,教学时不可忽视这部分内容的点拨。