第三章 放射性衰变及衰变方程式
放射性元素的衰变课件
个质子结合得比较紧密,有时会作为一个整体从较大的原子核中抛
射出来,这就是放射元素的_α_衰___变___现象;原子核里虽没有电子, 但核内的___中__子___可转化成质子和电子,产生的电子从核内发射出 来,这就是__β_衰__变___.
(4)γ 射线产生的本质:原子核的能量只能取一系列不连续数
值,当原子核发生 α 衰变、β 衰变后,新核往往处于高能级.这时
2.公式.
N
余=N
原21Tt ,m
余=m
1 t 原2T
式中 N 原、m 原表示衰变前的放射性元素的原子数或质量,N 余、
m 余表示衰变后尚未发生衰变的放射性元素的原子数或质量,t 表示
衰变时间,T 表示半衰期.
注:半衰期由放射性元素的原子核内部本身的因素决定,跟原子
所处的物理状态(如压强、温度、环境)或化学状态(如单质、化合物)
放射性元素的衰变
1.原子核的衰变. (1)原子核的衰变:原子核放出 α 粒子或 β 粒子,由于 _核__电__荷__数_ 变 了 , 它 在 周 期 表 中 的 位 置 变 了 , 变 成 另 一 种 ___原__子__核_.这种变化称为原子核的___衰__变___. (2)衰变规律:原子核衰变时,衰变前后的电荷数和质 量数都___守__恒___. α 衰变:质量数减少 4,电荷数减少 2,衰变方程为:AZ
解析:原子核的衰变是由原子核内部因素决定 的,与一般外界环境无关.原子核的衰变有一定的 速率,每隔一定的时间即半衰期,原子核就衰变了 总数的一半.不同种类的原子核,其半衰期也不 同.若开始时原子核数目为 N0,经时间 t 剩下的原 子核数目为 N,半衰期为 T,则有如下关系式:N= N012Tt .若能测定出 N 与 N0 的比值.则就可求出时间 t 值,依此公式就可测定地质年代、生物年代或考察 出土文物存在年代等.
物理新人教版选修3-5192放射性元素的衰变
物理新人教版选修3-5192放射性元素的衰变放射性元素的衰变是指原子核自发地发生变化,放出放射性粒子或电磁辐射的过程。
这种自发变化会导致原子核的质量和/或电荷发生变化,从而使元素转变成另一种元素。
放射性衰变是放射性物质持续放射能量的原因,也是现代核物理和核工业研究的重要基础。
放射性衰变可以分为三个主要类型:α衰变、β衰变和γ衰变。
α衰变是指原子核放出α粒子(由两个质子和两个中子组成的氦核),导致原子核质量减小两个质子和两个中子,原子序数减少2、β衰变是指原子核放出β粒子(电子或正电子),导致原子核中的中子转变成质子(或质子转变成中子),原子序数增加1、γ衰变是指原子核处于激发态的高能级转变到低能级时,放出γ射线,不改变原子核的质量和原子序数。
以铀系列为例,铀238(U-238)经过一系列衰变逐步转变成稳定的铅206(Pb-206)。
被称为“钍系列”的钍232(Th-232)也经过一系列衰变最终转变成稳定的铅208(Pb-208)。
这种放射性衰变过程是放射性同位素的自然变化,其速率是稳定的,通常用半衰期来表示。
半衰期是指在半数原子核发生衰变的时间长度。
放射性元素的衰变不仅在研究核物理和核工业中有重要应用,还在医学诊断和治疗中发挥着重要作用。
例如,放射性同位素碘131(I-131)可用于甲状腺扫描和治疗,放射性同位素锶89(Sr-89)可用于骨转移癌的治疗。
放射性同位素砷74(As-74)可用于检测器官移植和抗癌药物的代谢。
此外,放射性元素的衰变还有一些应用领域。
例如,碳14(C-14)的衰变可用来确定古代物体的年龄。
放射性同位素铯137(Cs-137)可用于土壤污染的测量和辐射源的照射。
放射性同位素氚3(T-3)可用于水污染的测量。
放射性元素的衰变是一种不稳定的过程,可以被外界条件(如温度、压力和化学环境)所影响。
这也为放射性物质的储存和处理提出了挑战。
目前,人们正在努力研究和开发更安全的方式来管理放射性废物和控制核能的使用。
第三章 2 放射性 衰变
2放射性衰变[学习目标] 1.了解放射性和天然放射现象,知道三种射线的实质和特征.2.了解衰变的概念,知道放射现象的实质就是原子核的衰变.3.了解半衰期的概念,知道半衰期的统计意义,并会计算半衰期.一、天然放射现象1.天然放射性:(1)1896年,法国物理学家亨利·贝克勒尔发现,铀化合物能放出看不见的射线,这种射线可以使密封完好的照相底片感光.物质发射射线的性质称为放射性,具有放射性的元素称为放射性元素.(2)玛丽·居里和她的丈夫皮埃尔·居里发现了两种比铀放射性更强的新元素,命名为钋、镭.2.天然放射现象:放射性元素自发地发出射线的现象.原子序数大于83的元素,都能自发地发出射线,原子序数较小的元素,有的也能放出射线.例如14 6C有放射性.二、衰变1.放射性衰变:放射性元素是不稳定的,它们会自发地蜕变为另一种元素,同时放出射线,这种现象为放射性衰变.2.衰变形式:常见的衰变有两种,放出α粒子的衰变为α衰变,放出β粒子的衰变为β衰变,而γ射线是伴随α射线或β射线产生的.3.衰变方程举例:(1)α衰变:238 92U→234 90Th+42He(2)β衰变:234 90Th→234 91Pa+0-1e.4.原子核衰变前、后电荷数和质量数均守恒.三、三种射线的性质1.α射线:带正电的α粒子流,α粒子是氦原子核,α射线的速度只有光速的10%,穿透能力弱,容易被物质吸收,一张薄薄的铝箔或一层裹底片的黑纸,都能把它挡住.2.β射线:带负电的电子流,它的速度很快,穿透力强,在空气中可以走几十米远,而碰到几毫米厚的铝片就不能穿过了.3.γ射线:本质上是一种波长极短的电磁波,波长约是X射线波长的1%,穿透力极强,能穿过厚的混凝土和铅板.四、半衰期1.半衰期:放射性元素的原子核有半数发生衰变所需要的时间,叫做这种元素的半衰期.2.半衰期是大量原子核衰变的统计规律,反映放射性元素衰变的快慢.3.半衰期是由原子核自身的因素决定的,跟原子所处的化学状态和外部条件没有关系.1.判断下列说法的正误.(1)α射线实际上就是氦原子核,α射线具有较强的穿透能力.( × ) (2)原子核在衰变时,它在元素周期表中的位置不变.( × ) (3)同种放射性元素,在化合物中的半衰期比在单质中长.( × )(4)放射性元素的半衰期与元素所处的物理和化学状态无关,它是一个统计规律,只对大量的原子核才适用.( √ )(5)氡的半衰期是3.8天,若有4个氡原子核,则经过7.6天后只剩下一个氡原子核.( × ) 2.碘131的半衰期约为8天,若某药物含有质量为m 的碘131,经过32天后,该药物中碘131的质量大约还有__________________________________. 答案m 16解析 由题意可知m 余=3281.216m m ⎛⎫=⎪⎝⎭一、对三种射线性质的理解如图1为三种射线在匀强磁场中的运动轨迹示意图.图1(1)α射线向左偏转,β射线向右偏转,γ射线不偏转说明了什么?(2)α粒子的速度约为β粒子速度的十分之一,但α射线的偏转半径大于β射线的偏转半径说明什么问题?答案 (1)说明α射线带正电,β射线带负电,γ射线不带电.(2)根据带电粒子在匀强磁场中运动的半径公式r =m v qB 可知,α粒子的m q 应大于β粒子的mq ,即α粒子的质量应较大.α、β、γ三种射线的比较种类α射线β射线γ射线组成高速氦核流高速电子流光子流(高频电磁波)质量4m p(m p=1.67×10-27kg)m p1 836静止质量为零带电荷量2e -e 0 速率0.1c 0.99c c穿透能力最弱,用一张纸就能挡住较强,不能穿透几毫米厚的铝片最强,能穿透厚的混凝土和铅板电离作用很强较弱很弱在电、磁场中偏转偏转不偏转例1一置于铅盒中的放射源可以发射α、β和γ射线,由铅盒的小孔射出,在小孔外放一铝箔,铝箔后面的空间有一匀强电场.进入电场后,射线变为a、b两束,射线a沿原来的方向行进,射线b发生了偏转,如图2所示,则图中的射线a为________射线,射线b为________射线.图2答案γβ解析放射源可以发射α、β、γ三种射线,α射线的穿透能力弱,不能穿透铝箔,β射线和γ射线的穿透能力强,可以穿透铝箔.由于β射线带负电,经过电场时受到电场力的作用会发生偏转,γ射线不带电,经过电场时不发生偏转,所以题图中射线a是γ射线,射线b是β射线.1.对放射性和射线的理解:(1)一种元素的放射性,与其是单质还是化合物无关,这说明一种元素的放射性和核外电子无关.(2)射线来自于原子核,说明原子核是可以再分的.2.对三种射线性质的理解:(1)α射线带正电、β射线带负电、γ射线不带电.α射线、β射线是实物粒子流,而γ射线是光子流,属于电磁波的一种.(2)α射线、β射线都可以在电场或磁场中偏转,但偏转方向不同,γ射线则不发生偏转.(3)α射线穿透能力弱,β射线穿透能力较强,γ射线穿透能力最强,而电离本领相反.针对训练1天然放射性元素放出的三种射线的穿透能力实验结果如图3所示,由此可推知()图3A.②来自原子核外的电子B.①的电离作用最强,是一种电磁波C.③的电离作用较强,是一种电磁波D.③的电离作用最弱,是一种电磁波答案 D解析①射线能被一张纸挡住,说明它的穿透能力差,所以①射线是α射线,α射线是高速运动的氦核流,它的电离作用最强,选项B错误;②射线的穿透能力较强,能穿透纸但不能穿透几毫米厚的铝板,说明它是β射线,β射线来自于原子核,不是来自于原子核外的电子,选项A错误;③射线的穿透能力最强,能够穿透几厘米厚的铅板,③射线是γ射线,γ射线的电离作用最弱,穿透能力最强,它是能量很高的电磁波,故选项C错误,D正确.二、原子核的衰变规律与衰变方程如图4为α衰变、β衰变示意图.图4(1)当原子核发生α衰变时,原子核的质子数和中子数如何变化?(2)当发生β衰变时,新核的核电荷数相对原来的原子核变化了多少?新核在元素周期表中的位置怎样变化?答案 (1)α衰变时,质子数减少2,中子数减少2.(2)β衰变时,核电荷数增加1.新核在元素周期表中的位置向后移动一位.1.衰变种类、实质与方程(1)α衰变:A Z X ―→A -4Z -2Y +42He实质:原子核中,2个中子和2个质子结合得比较牢固,有时会作为一个整体从较大的原子核中被释放出来,这就是放射性元素发生的α衰变现象.如:238 92U ―→234 90Th +42He. (2)β衰变:A Z X ―→ A Z +1Y +0-1e.实质:原子核中的中子转化成一个质子且放出一个电子即β粒子,使电荷数增加1,β衰变不改变原子核的质量数,其转化方程为:10n ―→11H +0-1e. 如:234 90Th ―→234 91Pa +0-1e.(3)γ射线是伴随α衰变或β衰变产生的. 2.衰变规律衰变过程遵循质量数守恒和电荷数守恒. 3.确定原子核衰变次数的方法与技巧(1)方法:设放射性元素A Z X 经过n 次α衰变和m 次β衰变后,变成稳定的新元素A ′Z ′Y ,则衰变方程为:A Z X →A ′Z ′Y +n 42He +m 0-1e根据电荷数守恒和质量数守恒可列方程: A =A ′+4n ,Z =Z ′+2n -m .以上两式联立解得:n =A -A ′4,m =A -A ′2+Z ′-Z .由此可见,确定衰变次数可归结为解二元一次方程组.(2)技巧:为了确定衰变次数,一般先由质量数的改变确定α衰变的次数(这是因为β衰变的次数对质量数没有影响),然后根据衰变规律确定β衰变的次数.例223892U核经一系列的衰变后变为206 82Pb核,问:(1)一共经过几次α衰变和几次β衰变?(2)20682Pb与238 92U相比,质子数和中子数各少了多少?(3)综合写出这一衰变过程的方程.答案(1)86(2)1022(3)238 92U→206 82Pb+842He+60-1eU衰变为20682Pb经过x次α衰变和y次β衰变,由质量数守恒和电荷数守恒可得解析(1)设23892238=206+4x①92=82+2x-y②联立①②解得x=8,y=6.即一共经过8次α衰变和6次β衰变(2)由于每发生一次α衰变质子数和中子数均减少2,每发生一次β衰变,而质子数增加1,故20682Pb较238 92U质子数少10,中子数少22.(3)衰变方程为238 92U→206 82Pb+842He+60-1e.1.衰变方程的书写:衰变方程用“→”,而不用“=”表示,因为衰变方程表示的是原子核的变化,而不是原子的变化.2.衰变次数的判断技巧(1)衰变过程遵循质量数守恒和电荷数守恒.(2)每发生一次α衰变质子数、中子数均减少2.(3)每发生一次β衰变中子数减少1,质子数增加1.针对训练2在横线上填上粒子符号和衰变类型.(1)23892U→234 90Th+________,属于________衰变;(2)23490Th→234 91Pa+________,属于________衰变;(3)210 84Po→210 85At+________,属于________衰变;(4)6629Cu→6227Co+________,属于________衰变.答案(1)42Heα(2)0-1eβ(3)0-1eβ(4)42Heα解析 根据质量数和电荷数守恒可以判断:(1)中生成的粒子为42He ,属于α衰变.(2)中生成的粒子为 0-1e ,属于β衰变.(3)中生成的粒子为 0-1e ,属于β衰变.(4)中生成的粒子为42He ,属于α衰变.三、半衰期的理解和有关计算什么是半衰期?对于某个或选定的几个原子核,能根据该种元素的半衰期预测它的衰变时间吗?答案 半衰期是某种放射性元素的大量原子核有半数发生衰变所用的时间.半衰期是统计规律,故无法预测单个原子核或几个特定原子核的衰变时间.1.半衰期:表示放射性元素衰变的快慢. 2.半衰期公式:1/21/211=,=22ttT T N N m m 0⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭原余余,式中N 原、m 0分别表示衰变前的原子核数和质量,N 余、m 余分别表示衰变后的尚未发生衰变的原子核数和质量,t 表示衰变时间,T 1/2表示半衰期.3.适用条件:半衰期是一个统计概念,是对大量的原子核衰变规律的总结,对于一个特定的原子核,无法确定其何时发生衰变.4.应用:利用半衰期非常稳定的特点,可以测算其衰变过程,推算时间等. 例3 (多选)关于放射性元素的半衰期,下列说法正确的是( ) A .原子核全部衰变所需要的时间的一半 B .原子核有半数发生衰变所需要的时间 C .相对原子质量减少一半所需要的时间 D .该元素原子核的总质量减半所需要的时间 答案 BD解析 放射性元素的原子核有半数发生衰变所需要的时间叫做这种元素的半衰期,它与原子核全部衰变所需要的时间的一半不同.放射性元素发生衰变后成为一种新的原子核,原来的放射性元素原子核的个数不断减少,当原子核的个数减半时,该放射性元素的原子核的总质量也减半,故选项B 、D 正确.例4 (多选)地球的年龄到底有多大,科学家利用天然放射性元素的衰变规律,通过对目前发现的最古老的岩石中铀和铅含量来推算,测得该岩石中现含有铀是岩石形成初期时(岩石形成初期时不含铅)的一半.铀238衰变后形成铅206,铀238的相对含量随时间变化规律如图5所示,图中N 为铀238的原子数,N 0为铀和铅的总原子数.由此可以判断出( )图5A .铀238的半衰期为90亿年B .地球的年龄大致为45亿年C .被测定的岩石样品在90亿年时铀、铅原子数之比约为1∶4D .被测定的岩石样品在90亿年时铀、铅原子数之比约为1∶3 答案 BD解析 半衰期是有半数原子核发生衰变所需要的时间,根据题图可知半数衰变的时间是45亿年,选项A 错误,B 正确;90亿年是铀核的两个半衰期,有34的铀原子核发生衰变,还有14的铀原子核没有发生衰变,根据衰变方程可知一个铀核衰变时产生一个铅核,故衰变后的铀、铅原子数之比约为1∶3,选项C 错误,D 正确.1.半衰期是指放射性元素的原子核有半数发生衰变所需的时间,而不是样本质量减少一半的时间.2.半衰期是一个统计规律,适用于对大量原子核衰变的计算,对于少数原子核不适用. 3.半衰期由核内部自身的因素决定,与原子所处的化学状态和外部条件都无关. 4.注意区分两个质量已发生衰变的质量1/2112t T m ⎡⎤⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦,未发生衰变的质量1/212tT m ⎛⎫. ⎪⎝⎭针对训练3 大量的某放射性元素经过11.4天有78的原子核发生了衰变,该元素的半衰期为( ) A .11.4天 B .7.6天 C .5.7天D .3.8天答案 D解析 由于经过了11.4天还有18的原子核没有衰变,由m 余=⎝⎛⎭⎫12n m 0,可知该放射性元素经过了3个半衰期,即可算出半衰期是3.8天,故D 正确.1.(三种射线的特性)(多选)天然放射性物质的射线包含三种成分,下列说法中正确的是( ) A .α射线的本质是高速氦核流 B .β射线是不带电的光子C .三种射线中电离作用最强的是γ射线D .一张厚的黑纸可以挡住α射线,但挡不住β射线和γ射线 答案 AD解析 α射线的本质是高速氦核流,β射线是高速电子流,A 正确,B 错误;三种射线中电离作用最强的是α射线,C 错误;一张厚的黑纸可以挡住α射线,但挡不住β射线和γ射线,D 正确.2.(射线的区分)研究放射性元素射线性质的实验装置如图6所示.两块平行放置的金属板A 、B 分别与电源的两极a 、b 连接,放射源发出的射线从其上方小孔向外射出.则( )图6A .a 为电源正极,到达A 板的为α射线B .a 为电源正极,到达A 板的为β射线C .a 为电源负极,到达A 板的为α射线D .a 为电源负极,到达A 板的为β射线 答案 B解析 β射线为高速电子流,质量约为质子质量的11 836,速度接近光速;α射线为氦核流,速度约为光速的110.在同一电场中,β射线的偏转程度大于α射线的偏转程度,由题图知,向左偏的为β射线;因α粒子带正电,向右偏转,说明电场方向水平向右,a 为电源正极,故B 正确,A 、C 、D 错误.3.(原子核的衰变)放射性同位素钍232经α、β衰变会生成氡,其衰变方程为232 90Th →22086Rn +x α+y β,则( ) A .x =1,y =3 B .x =2,y =3 C .x =3,y =1 D .x =3,y =2答案 D解析 由衰变规律可知,β衰变不影响质量数,所以质量数的变化由α衰变的次数决定,由232 90Th变为220 86Rn ,质量数减少了232-220=12,每一次α衰变质量数减少4,因此α衰变次数为3次;3次α衰变电荷数减少了3×2=6个,而现在只减少了90-86=4个,所以发生2次β衰变(每次β衰变电荷数增加1),故x =3,y =2,故选项D 正确.4.(半衰期的相关计算)一个氡核222 86Rn 衰变成钋核218 84Po ,并放出一个α粒子,其半衰期T 1/2=3.8天.(1)写出该核反应方程;(2)求32 g 氡经过多少天衰变还剩余1 g 氡.答案 (1)222 86Rn →218 84Po +42He (2)19解析 (1)根据衰变过程中质量数和电荷数守恒可知:该核反应方程是222 86Rn →218 84Po +42He.(2)根据半衰期公式可知,m 余=1/21,2tT m ⎛⎫ ⎪⎝⎭原 解得t =3.8天×5=19天.考点一 天然放射现象及三种射线1.在天然放射性物质附近放置一带电体,带电体所带的电荷很快消失的根本原因是( ) A .γ射线的贯穿作用 B .α射线的电离作用C.β射线的贯穿作用D.β射线的中和作用答案 B解析由于α粒子电离作用较强,能使空气中的分子电离,电离产生的电荷与带电体的电荷中和,使带电体所带的电荷很快消失.2.(多选)下列关于放射性元素发出的三种射线的说法中正确的是()A.α粒子就是氢原子核,它的穿透本领和电离本领都很强B.β射线是电子流,其速度接近光速C.γ射线是一种频率很高的电磁波,它可以穿透几厘米厚的铅板D.以上三种说法均不正确答案BC解析α粒子是氦原子核,它的穿透本领很弱而电离本领很强,A项错误;β射线是电子流,其速度接近光速,B项正确;γ射线的频率很高,穿透能力很强,可以穿透几厘米厚的铅板,C项正确,D项错误.3.如图1所示,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是()图1A.①表示γ射线,③表示α射线B.②表示β射线,③表示α射线C.④表示α射线,⑤表示γ射线D.⑤表示β射线,⑥表示α射线答案 C解析γ射线为电磁波,在电场、磁场中均不偏转,故②和⑤表示γ射线,A、B、D项错;α射线中的α粒子为氦的原子核,带正电,在匀强电场中,沿电场方向偏转,故③表示α射线,由左手定则可知在匀强磁场中α射线向左偏,故④表示α射线,C项对.4.(2021·洛阳一中高二期末)如图2所示为研究某未知元素放射性的实验装置.实验开始时在薄铝片和荧光屏之间有图示方向的匀强电场E,通过显微镜可以观察到在荧光屏的某一位置上每分钟闪烁的亮点数,撤去电场后继续观察,发现每分钟闪烁的亮点数没有变化,再将薄铝片移开,观察到每分钟闪烁的亮点数大大增加.由此可以判断,放射源发出的射线最可能为()图2A.β射线和γ射线B.α射线和β射线C.β射线和X射线D.α射线和γ射线答案 D解析放射性元素可放射出的射线有三种:α射线、β射线和γ射线,三种射线中α射线和β射线带电,进入电场后会发生偏转,而γ射线不带电,在电场中不偏转.由题述将电场撤去,从显微镜内观察到荧光屏的同一位置上每分钟闪烁的亮点数没有变化,可知穿过薄铝片的射线中只含有γ射线.再将薄铝片移开,则从显微镜内观察到每分钟闪烁的亮点数大大增加,根据α射线的穿透本领最弱,一张纸就能挡住,分析得知放射源发出的射线中还含有α射线,故放射源发出的射线最可能为α射线和γ射线,选项D正确.考点二原子核的衰变半衰期5.新发现的一种放射性元素X,它的氧化物X2O的半衰期为8天,X2O与F2发生化学反应2X2O+2F2===4XF+O2之后,XF的半衰期为()A.2天B.4天C.8天D.16天答案 C解析放射性元素的半衰期由原子核内部自身的因素决定,与原子核的化学状态无关,故半衰期不变,仍为8天,选项A、B、D错误,C正确.6.某原子核A先进行一次β衰变变成原子核B,再进行一次α衰变变成原子核C,则() A.核C的质子数比核A的质子数少2B.核A的质量数减核C的质量数等于3C.核A的中子数减核C的中子数等于3D.核A的中子数减核C的中子数等于5答案 C解析原子核A进行一次β衰变后,一个中子转变为一个质子并释放一个电子,再进行一次α衰变,又释放两个中子和两个质子,所以核A比核C多3个中子、1个质子,选项C正确,A、B、D错误.7.(多选)(2021·衡水中学期中)下列说法正确的是()A.226 88Ra衰变为222 86Rn要经过1次α衰变和1次β衰变B.238 92U衰变为234 91Pa要经过1次α衰变和1次β衰变C.232 90Th衰变为208 82Pb要经过6次α衰变和4次β衰变D.238 92U衰变为222 86Rn要经过4次α衰变和4次β衰变答案BC解析原子核经1次α衰变和1次β衰变后质量数减4,核电荷数减1(先减2再加1),故A 错误;发生α衰变时放出42He,发生β衰变时放出电子0-1e,设238 92U衰变为234 91Pa发生了x次α衰变和y次β衰变,则根据质量数和电荷数守恒有:2x-y+91=92,4x+234=238,解得x =1,y=1,故衰变过程为1次α衰变和1次β衰变,故B正确;设232 90Th衰变为208 82Pb发生了x次α衰变和y次β衰变,则根据质量数和电荷数守恒有:2x-y+82=90,4x+208=232,解得x=6,y=4,故衰变过程要经过6次α衰变和4次β衰变,故C正确;设238 92U衰变为222 86Rn 发生了x次α衰变和y次β衰变,则根据质量数和电荷数守恒有:2x-y+86=92,4x+222=238,解得x=4,y=2,故衰变过程要经过4次α衰变和2次β衰变,故D错误.8.放射性元素氡(222 86Rn)经α衰变成为钋(218 84Po),半衰期约为3.8天,但勘测表明,经过漫长的地质年代后,目前地壳中仍存在天然的含有放射性元素222 86Rn的矿石,其原因是() A.目前地壳中的222 86Rn主要来自其他放射性元素的衰变B.在地球形成的初期,地壳中元素222 86Rn的含量足够高C.当衰变产物218 84Po积累到一定量以后,218 84Po的增加会减慢222 86Rn的衰变进程D.22286Rn主要存在于地球深处的矿石中,温度和压力改变了它的半衰期答案 A解析地壳中222 86Rn主要来自其他放射性元素的衰变,则A正确,B错误;放射性元素的半衰期与外界环境等因素无关,则C、D错误.考点三衰变综合问题9.(多选)在匀强磁场中,一个原来静止的原子核发生了衰变,得到两条如图3所示的径迹,图中箭头表示衰变后粒子的运动方向.不计放出的光子的能量,则下列说法正确的是()图3A .发生的是β衰变,b 为β粒子的径迹B .发生的是α衰变,b 为α粒子的径迹C .磁场方向垂直于纸面向外D .磁场方向垂直于纸面向里答案 AD解析 由动量守恒定律,原子核发生衰变后两粒子运动方向相反,由左手定则知两粒子电性相反,故发生的是β衰变.静止的原子核发生β衰变时,根据动量守恒定律知,β粒子与反冲核的动量p 大小相等、方向相反,由半径公式r =m v qB =p qB知,两粒子做匀速圆周运动的半径与电荷量成反比,β粒子电荷量小,则其半径较大,即b 是β粒子的运动轨迹,由左手定则可知磁场方向垂直纸面向里,选项A 、D 正确.10.一块氡222放在天平的左盘时,需要天平的右盘加444 g 砝码,天平才能处于平衡,氡222发生α衰变,经过一个半衰期以后,欲使天平再次平衡,应从右盘中取出的砝码为( )A .222 gB .8 gC .2 gD .4 g答案 D解析 原有氡222共444 g ,经过一个半衰期后有222 g 氡发生衰变,其衰变方程为222 86Rn → 218 84Po +42He ,但是衰变后生成的钋218还在左盘,也就是说,经过一个半衰期只有4 g 的α粒子从左盘放射出去,因此欲使天平再次平衡,右盘中只需取出4 g 砝码,故选项A 、B 、C 错误,D 正确.11.如图4所示,一天然放射性物质发出三种射线,经过一个匀强电场和匀强磁场共存的区域.调整电场强度E 和磁感应强度B 的大小,使得在MN 上只有两个点受到射线的照射,则下列判断正确的是( )图4A.射到b点的一定是α射线B.射到b点的一定是β射线C.射到b点的是α射线或β射线D.射到b点的一定是γ射线答案 C解析γ射线不带电,在电场和磁场中它都不受力的作用,只能射到a点,选项D错误.调整E和B的大小,既可以使带正电的α射线沿直线前进,也可以使带负电的β射线沿直线前进,沿直线前进的条件是电场力与洛伦兹力平衡,即qE=qB v.已知α粒子的速度比β粒子的速度小得多,当α粒子沿直线前进时,速度较大的β粒子向右偏转;当β粒子沿直线前进时,速度较小的α粒子也向右偏转,故选项C正确,A、B错误.12.(多选)1941年,王淦昌提出了利用轻原子核的K俘获反应来探测中微子的方案,并在美国《物理评论》上发表了“关于探测中微子的一个建议”一文,当年即由J.S.阿伦根据这一方案首次确切地证明了中微子的存在.该实验被称为“王淦昌-阿伦实验”,为1942年国际物理学界重要成就之一.从1941年开始到1952年,物理学家按照王淦昌的建议,进行了一系列的实验,最终确认了中微子的存在.“轨道电子俘虏”是放射性同位素衰变的一种形式,即原子核俘获一个核外电子,核内一个质子变为中子,原子核衰变成一个新核,并且放出一个中微子(其质量小于电子质量且不带电).若一个静止的原子核发生“轨道电子俘获”(电子的初动量可不计),则()A.生成的新核与衰变前的原子核质量数相同B.生成的新核的核电荷数增加C.生成的新核与衰变前的原子核互为同位素D.生成的新核与中微子的动量大小相等答案AD解析衰变前后质子数与中子数之和相同,所以发生“轨道电子俘获”后新核与原核质量数相同,故A选项正确;新核质子数减少,故核电荷数减少,故B选项错误;新核与原核质子数不同,不是同位素,故C选项错误;以静止原子核及被俘获电子为系统,系统动量守恒,系统初动量为零,所以生成的新核与中微子的动量大小相等,方向相反,故D选项正确.13.在匀强磁场中,一个原来静止的原子核,由于放出一个α粒子,结果得到一张两个相切圆的径迹照片(如图5所示),今测得两个相切圆半径之比r1∶r2=1∶44.求:图5(1)图中哪一个圆是α粒子的径迹?(说明理由)(2)这个原子核原来所含的质子数是多少?答案 见解析解析 (1)因为两粒子的动量大小相等,所以轨道半径与粒子的电荷量成反比,所以圆轨道2是α粒子的径迹,圆轨道1是新生核的径迹.(2)设衰变后新生核的电荷量为q 1,α粒子的电荷量为q 2=2e ,它们的质量分别为m 1和m 2,衰变后的速度分别为v 1和v 2,所以原来原子核的电荷量q =q 1+q 2,根据轨道半径公式有r 1r 2=m 1v 1Bq 1m 2v 2Bq 2=m 1v 1q 2m 2v 2q 1, 又由于衰变过程中遵循动量守恒定律,则m 1v 1=m 2v 2,联立各式解得q =90e ,即这个原子核原来所含的质子数为90.14.天然放射性铀(238 92U)发生衰变后产生钍(234 90Th)和另一个原子核. (1)请写出衰变方程;(2)若衰变前铀(238 92U)核的速度为v ,衰变产生的钍(234 90Th)核的速度为v 2,且与铀核速度方向相同,试估算产生的另一种新核的速度.答案 (1)238 92U ―→234 90Th +42He (2)1214v ,方向与铀核速度方向相同 解析 (1)原子核衰变时电荷数和质量数都守恒,有238 92U ―→234 90Th +42He.(2)由(1)知新核为氦核,设氦核的速度为v ′,一个核子的质量为m ,则氦核的质量为4m 、铀核的质量为238m 、钍核的质量为234m ,。
放射性元素的衰变(高中物理教学课件)完整版
1.半衰期:放射性元素的原子核有半数发生衰变 所需的时间,叫作这种元素的半衰期。
注意: ①不同的放射性元素,半衰期不同。 ②半部自身的因素决定的,跟物理性质化学 性质无关。
二.半衰期
二.半衰期
2.半衰期的计算:
m
m0
(
1 2
)
t T
,N
的实验模拟图,实验中涉及有三种粒子,则
(B ) A.x1是中子
Be
B.x2是中子
C.x3是中子
D.x2是α粒子
提示:查德威克发现中子的实验,是利用钋(Po)衰变 放出的α粒子轰击铍(Be)产生的中子能将石蜡中的质 子打出来,则x1是α粒子,x2是中子,x3是质子。
四.放射性同位素及其应用 1.放射性同位素:具有放射性的同位素。
②放射治疗 在医疗方面,患了癌症的病 人可以接受钴60的放射治疗。
四.放射性同位素及其应用
4.应用: ③培优、保鲜
利用γ射线照射种子,会使种子的遗传基因 发生变异,经过筛选,可以培育出新品种。 用γ射线照射食品可以杀死使食物腐败的细 菌,抑制蔬菜发芽,延长保存期。
④示踪原子
一种元素的各种同位素都有相同的化学性质。 这样,我们可以用放射性同位素代替非放射 性的同位素来制成各种化合物,这种化合物 的原子跟通常的化合物一样参与所有化学反 应,但却带有“放射性标记”,可以用仪器 探测出来。这种原子就是示踪原子。
2.分类:
天然放射性同位素:40多种 人工放射性同位素:1000多种,每种元素都有了自己的 放射性同位素。
3.人工放射性同位素的优点:
①放射强度容易控制 ②半衰期短,废料容易处理 ③可以制成各种所需的形状
注意:凡是用到射线时,用的都是人工放射性同 位素
放射性元素的衰变
放射性元素的衰变
放射性元素的衰变是由元素的原子核自然发生改变的一种过程,它通常以半衰期来表示。
半衰期指的是某一放射性原子核类型在放射衰变过程中消失的一半数量需要花费多少时间,单位通常为年。
在这一变化过程中,原子核将不稳定的放射能量转变成更稳定的物质,这样就会产生新的元素,放射性元素的这种衰变叫做放射性衰变。
放射性元素会按照一种特定的顺序进行衰变,这种顺序叫做放射性衰变链。
例如铀-238是一种以最慢速度衰变的放射性元素,它具有较长的半衰期,大约为4.468亿年,它将以alpha衰变的方式完成改变,即发射一个α粒子(分子),以及一个$ 0^1_1 $碘原子,然后变成长度稳定的元素-锶(碘)。
放射性元素在衰变过程中放射出放射性物质,它们会产生有害的放射性辐射,因此,必须采取防范措施,以降低放射性核素的有害性。
例如,在利用放射性元素进行药物治疗时,在患者与放射性元素之间加入阻挡层,从而有效地减少放射性污染和危害。
放射性衰变的研究一直是科学界的一个重要的研究领域,放射性衰变对放射性物质交换,生物吸收,物理和化学反应,以及太阳能变化等领域具有重要作用,它们在几乎所有生命学、地质学、化学、物理学以及天文学等领域都发挥着重要作用。
因此,放射性衰变是许多科学领域不可或缺的部分,也是物质运动和能量能源研究中非常重要的一环。
大学课件《核化学与放射化学》第三章 放射性衰变及衰变方程式
第三章 放射性衰变及衰变方程式
一. 放射性衰变类型 放射性衰变通常由下式描述:
A B x E
能量是以放出的粒子或量子的动能形式出现的。在放 射性衰变时释放的能量称作Q值,它是由衰变前 后处于基态的核的质量差得出。
Q mc (mA mB mx )c
放射性活度作为物质的一个特性可用于合适的探测器进行测量。后面 会讲到。
第三章 放射性衰变及衰变方程式 二. 放射性衰变规律
1.放射性衰变平衡的建立 两级衰变:
1/ 2 ,1 1/ 2 ,2 N1 T N 2 T N 3
在衰变产生子体原子数的计算中,除了要母体生成的子体原子数的增 加外,还要考虑它衰变生成下一代子体使其减少:
252 98
Cf Xe Ru 4n Q
140 54 108 44
第三章 放射性衰变及衰变方程式
一. 放射性衰变类型
5. 其它衰变 质子衰变:1981年初证实。(T1/2=8.5ms)
96
Ru( Ni, p2n) Lu 150Yb
58 151
p
发射中等质量粒子的衰变:
重粒子的缓发发射:
T1 / 2 ln 2
0.693
将上式代入到:
N N 0e
ln 2 t T1 / 2
第三章 放射性衰变及衰变方程式 二. 放射性衰变规律
1.放射性衰变的时间规律 平均寿命:即放射性活度下降到1/e时所需的时间。是衰变常数 的倒数。 表征放射性的几个概念: (1)放射性活度:单位时间内该放射性核素的衰变数。单位贝可(Bq)。 1Bq相当于每秒1个衰变数。 1Ci=3.71010Bq(1Ci近似相当于1g226Ra的放射性活度) 常用放射性核素的倍数单位是:1kBq(103s-1),1MBq(106s-1)和 1GBq(109s-1) 在放射性活度说明上,除了放射性活度外,还必须给出放射性核素和时 刻。 在铀和钍的天然放射性同位素的混合物中,一般仅给出238U及232Th的活 度,与这一规则不一致时需注明。
放射性衰变基本规律
核衰变 原子核是一个量子体系,核衰变是一个量子跃迁过程。 对一个特定的放射性核素,其衰变的精确时间是无法
预测的; 但对足够多的放射性核素的集合,其衰变规律是确定
的,并服从量子力学的统计规律。
放射性衰变基本规律
指数衰变律
dN lNdt
N N 0e lt
粒子的遂穿频率: n
v
2RX
31021 AX1/ 3 Ek1/ 2
Ek 为粒子在母核内的动能
衰变
T 0.693 0.693
l
nP
2.4 1022 AX1/ 3 Ek1/ 2e 4ZY / E 3 ZY R
ln T AE1/ 2 B
衰变
衰变的能级图
i 1
n 1
lj
hi
j 1 n
(l j li )
j i
放射性衰变基本规律
放射性平衡
久期平衡:lA<<lB, TA>>TB
N B
N A0
lA lB lA
e l At
lA lB lA
NA
lB N B lAN A
寿命测量
短寿命核素的保存:母体+子体
放射性衰变基本规律
放射性衰变基本规律
平均寿命
lNtdt
0
1
T
1.44T
N0
l ln 2
平均寿命表示:经过时间以后,剩下的核素数目为初 始核素数目的37%
高速粒子: L
m
1v2 / c2
放射性衰变基本规律
放射性强度:单位时间内物质发生衰变的原子核数
放射性衰变及衰变方程式课件
在医学领域的应用
放射性同位素标记
放射成像技术
利用放射性同位素标记生物体内的物 质,如示踪剂,以研究生物体内物质 代谢和功能机制。
利用放射性同位素产生的辐射信号, 如X射线、核磁共振等,进行医学影 像诊断。
放射性药物
利用放射性同位素制备的药物,如放 射性核素标记的肿瘤诊断和治疗药物 ,用于诊断和治疗肿瘤等疾病。
详细描述
幂律衰变方程式是描述放射性衰变物质随时 间按幂次方减少的数学模型,其形式为
N(t)=N0(1-λt)^n,其中 N(t) 表示经过时 间 t 后的剩余放射性物质的量,N0 是初始 量,λ 是衰变常数,t 是时间,n 是幂次方 。该方程表示放射性物质的量随时间呈幂次
方方式减少。
03 放射性衰变的实际应用
放射性衰变及衰变方程式课件
目录
CONTENTS
• 放射性衰变简介 • 放射性衰变的方程式 • 放射性衰变的实际应用 • 放射性衰变的影响因素 • 放射性衰变的未来发展
01 放射性衰变简介
CHAPTER
放射性衰变的定义
01
02
03
放射性衰变
是指放射性核素自发地转 变成另一种核素,同时释 放出射线的过程。
详细描述
指数衰变方程式是描述放射性衰变物质随时间减少的数学模型,其形式为 N(t)=N0e^(-λt),其中 N(t) 表示经过 时间 t 后的剩余放射性物质的量,N0 是初始量,λ 是衰变常数,t 是时间。该方程表示放射性物质的量随时间呈 指数方式减少。
线性衰变方程式
总结词
描述放射性衰变物质随时间线性减少的规律。
详细描述
线性衰变方程式是描述放射性衰变物质随时间线性减少的数学模型,其形式为 dN/dt = -λN,其中 dN/dt 表示放射性物质随时间的变化率,λ 是衰变常数,N 是当前放射性物质的量。该方程表示放射性物质的量随时间呈线性方式减少。
放射性衰变-三种衰变
Z+A1Y+
0 -1
e
(3)衰变: 总是伴随衰变或衰变产生
3. 原子核的衰变 • 定义:原子核放出 粒子、β粒子,变成另一种
原子核
• 衰变原则: 质量数守恒,电荷数守恒。 • 这种变化可用核反应方程来表示。
• 衰变及衰变方程
A Z
X
Y A4
Z 2
4 2
He
U 238
92
23940Th
4 2
He
23900Th ?
U 238
92
23900Th
226 88
Ra
三种放射性衰变
1. 天然放射性 • Z≥83的所有元素,都能自发的放出射线,Z<83的
元素,有的也具有放射性—天然放射性.
施 加 磁 场
穿透力实验
2. 三种放射性的特征
射线种类 组成物质 速率 贯穿本领 电离本领
射线 射线 射线
氦核
4 2
He
电子 01e
光子
1 10
c
接近c
c
最弱 较弱 最强
最强 较弱 最弱
4 2
He
4 2
He
23940Th
• 衰变及衰变方程
A Z
X
Z
A1Y
0 1
e
反电子中微子
0
0e
β粒子
0 -1
e
23940Th
234 91
Pa
01e
23940Th
239 92
U
?
U 239 92
239 93
Np
01 e
24 11
Na
?
24 11
Na
放射源衰变计算公式
放射源衰变计算公式
放射源的衰变可以通过放射性衰变定律来计算,该定律描述了放射性物质的衰变速率。
放射性衰变定律可以用以下公式表示:
N(t) = N0 e^(-λt)。
在这个公式中,N(t)代表时间t时刻剩余的放射性核数,N0代表初始的放射性核数,λ代表衰变常数,t代表时间,e代表自然对数的底数。
衰变常数λ可以通过放射性物质的半衰期T来计算,公式为:
λ = ln(2) / T.
在这个公式中,ln(2)代表以e为底数的对数,T代表半衰期。
因此,放射源的衰变计算公式可以综合表示为:
N(t) = N0 e^(-t/ T)。
这个公式可以用来计算任意时间t时刻放射源的剩余核数,从而可以帮助我们了解放射性物质的衰变规律和放射性物质的放射性强度随时间的变化情况。
放射性衰变过程详解
放射性衰变的产物是多种多 样的,取决于衰变过程中释
放出的射线类型和能量
放射性衰变的速率由衰变常 数决定,与温度、压力等因
素无关
放射性衰变的类型
α衰变
β衰变
γ衰变
其他类型的衰变(如 内转换、核子衰变等)
放射性衰变的特点
原子核自发放射出粒子
生成另一种原子核
伴随能量释放
不可逆过程
放射性衰变的物理机 制
原子核自旋和磁矩 放射性衰变的过程 波函数的概念和性质 薛定谔方程的推导和应用
原子核的衰变与量子隧穿效应
放射性衰变是原子核自发地放射出各种射线而发生的核转变 量子隧穿效应是一种量子特性,电子等微观粒子能够穿过它们本来无法通过的“墙壁” 衰变过程中,原子核的能量必须低于某个阈值,否则量子隧穿效应将失效 核子的自旋与动量决定了它们能否发生衰变,并影响衰变的产物和质量
原子核的自旋与磁矩
原子核自旋概念
核磁矩定义
核磁矩与自旋的关 系
核磁矩在磁场中的 行为
核的电离能与结合能
核的电离能:原子核从外部吸收能量后,其内部的质子和中子会分离,产 生电离现象
核的结合能:质子和中子结合成原子核时释放出的能量,称为结合能
电离能和结合能的关系:电离能越大,原子越稳定;结合能越大,原子越 不稳定
放射性衰变过程详解
汇报人:
目录
放射性衰变的基本 概念
放射性衰变的物理 机制
放射性衰变的量子 力学解释
放射性衰变的应用
放射性衰变的危害 与防护
未来发展趋势与展 望
放射性衰变的基本概 念
放射性衰变的定义
放射性衰变是自发进行的, 不受外界环境的影响
放射性衰变是原子核自发地 放射出射线而转变为另一种 原子核的过程
∝衰变和阝衰变方程式
∝衰变和衰变方程式当一个放射性核素经历α衰变时,它的原子核会失去两个质子和两个中子,从而转变成一个新的核素。
α衰变是由于原子核内部的不稳定性而发生的,通过释放一个α粒子来减少核的质量和电荷,以达到更稳定的状态。
在α衰变中,α粒子由两个质子和两个中子组成,类似于氦核。
因此,α粒子的质量数为4,电荷数为+2。
当一个放射性核素发生α衰变时,可以使用下面的方程式表示:核素A(Z,A) -> 核素B(Z-2,A-4) + α粒子(2,4)其中,核素A是发生衰变的放射性核素,具有原子序数Z和质量数A。
核素B是衰变产物,其原子序数减少2个,质量数减少4个。
α粒子是由核素A放射出来的,其原子序数为2,质量数为4。
举例来说,铀-238(U-238)经历α衰变变为钍-234(Th-234)。
α衰变方程式可以写为:U-238(92,238) -> Th-234(90,234) + α粒子(2,4)在这个方程式中,铀-238核的质子数减少2个,中子数减少2个,转变为钍-234核,并放射出一个α粒子。
β衰变是指放射性核素中的原子核转变为一个新核素,并释放出一个β粒子。
β粒子可以是电子(β-粒子)或正电子(β+粒子)。
β衰变通常发生在核素内部的中子和质子之间的转换,以达到更稳定的核结构。
在β-衰变中,一个中子转变为一个质子,同时释放出一个负电荷的β粒子(电子)。
这导致核内的质子数增加1,而中子数减少1。
β-衰变方程式的一般形式为:核素A(Z,A) -> 核素B(Z+1,A) + β-粒子(-1,0)其中,核素A是发生衰变的放射性核素,具有原子序数Z和质量数A。
核素B是衰变产物,其原子序数增加1,质量数保持不变。
β-粒子是由核素A放射出来的,其原子序数为-1,电荷数为0。
例如,钴-60(Co-60)经历β-衰变转变为镍-60(Ni-60)。
β-衰变方程式可以写为:Co-60(27,60) -> Ni-60(28,60) + β-粒子(-1,0)在这个方程式中,钴-60核的一个中子转变为一个质子,转变为镍-60核,并释放出一个β-粒子(电子)。
放射性元素的衰变 课件
一、原子核的衰变
阅读教材“原子核的衰变”,理解衰变类型及其规律。
1.衰变的定义是什么?
答案:原子核放出α粒子或β粒子,变成另一种原子核的过程。
2.衰变有几种类型?写出其衰变规律。
-4
答案:(1)α 衰变: X→-2 Y+42 He(新核的质量数减少 4,电荷数减
少 2)。
2
92
-1
22
归纳总结衰变次数的判断方法
(1)衰变过程遵循质量数守恒和电荷数守恒。
(2)每发生一次α衰变质子数、中子数均减少2。
(3)每发生一次β衰变中子数减少1,质子数增加1。
对半衰期的理解及有关计算
问题导引
右图为氡衰变剩余质量与原有质量比值示意图。
纵坐标表示的是任意时刻氡的质量m与t=0时的质量m0的比值。
关键。
原子核衰变时电荷数和质量数都守恒。
典例剖析
238
206
【例题 1】 92 U 核经一系列的衰变后变为 82 Pb 核,问:
(1)一共经过几次 α 衰变和几次 β 衰变?
(2)206
Pb
82
238
与 92 U 相比,质子数和中子数各少了多少?
(3)写出这一衰变过程的方程。
【思考问题】 原子核衰变时遵循什么规律?
3.写出半衰期公式
答案:N 余=N 原
1
2
,m 余=m 原
1
2
,其中 τ 为半衰期。
1.思考辨析。
(1)由原子核发生β衰变时放出的β粒子是电子,可知原子核内一定
存在着电子。 (
)
解析:原子核内并不含电子,但在一定条件下,一个中子可以转化
a衰变和b衰变的方程式
a衰变和b衰变的方程式A衰变和B衰变是核物理学中两种常见的衰变过程,具有重要的理论和实践应用价值。
本文将介绍A衰变和B衰变的方程式,并探讨其特点与应用。
A衰变是指一些原子核放射出一个α粒子的过程,其中α粒子是由两个质子和两个中子组成的氦核。
A衰变的方程式可以表示为:X(A,Z)→Y(A-4,Z-2)+α(4,2)其中X和Y分别表示原子核的起始和结束状态,A和Z分别表示核的质量数和原子序数。
以锎-252(Cf-252)的衰变为例,其衰变方程式为:Cf-252→Es-248+α(4,2)这个方程式表示每个锎-252原子核发生衰变时将放射出一个α粒子,产生锿-248(Es-248)原子核。
B衰变是指一些原子核放射出一个β粒子的过程,其中β粒子是电子(β-衰变)或正电子(β+衰变)。
B衰变的方程式可以表示为:X(A,Z)→Y(A,Z±1)+β±(0,±1)+ν(0,0)其中X和Y分别表示原子核的起始和结束状态,A和Z分别表示核的质量数和原子序数,β±表示带正负电荷的核子,而ν表示中微子(无电荷粒子)。
以钴-60(Co-60)的衰变为例,其衰变方程式为:Co-60→Ni-60+β-(0,-1)+ν(0,0)这个方程式表示每个钴-60原子核发生衰变时将放射出一个负电β粒子,产生镍-60(Ni-60)原子核。
A衰变和B衰变的方程式反映了原子核的物质和能量转化过程,具有以下特点与应用:1.放射性衰变:A和B衰变都是放射性衰变的过程,通过放射性衰变,原子核的结构得以调整,以达到更稳定的状态。
这对于研究原子核稳定性、放射性同位素的性质、核反应等具有重要意义。
2.放射性示踪:放射性同位素的α和β衰变为核物理学的实验研究提供了极为重要的工具。
通过追踪放射性同位素的衰变过程,可以研究示踪剂在生物体内的代谢过程、物质的迁移、环境监测等。
3.放射治疗:放射性同位素的衰变释放的能量有助于治疗一些疾病,例如在肿瘤治疗中,通过向肿瘤部位注射放射性同位素来杀灭癌细胞,达到治疗肿瘤的效果。
第三章---放射性衰变及衰变方程式PPT课件
原子核提供了大致相同的稳定性。
.
9
放射性衰变通常由下式描述:
A B x E
能量是以放出的粒子或量子的动能形式出现的。 在放射性衰变时释放的能量称作Q值,它是由衰 变前后处于基态的核的质量差得出。
Q m 2 c (m A m B m x)c 2
.
10
❖ The mode of radioactive decay is dependent upon the particular nuclide involved. The radioactive decay can be characterized by α-,β-,andγ-radiation.
Alpha-decay(α衰变) is the emission of helium nuclei.
Beta-decay (β衰变)is the creation and emission of either
electrons or positrons, or the process of electron capture.
A mode of radioactive decay which is observed only in the
heaviest nuclei is that of spontaneous fission(自发裂变) in which
the nucleus dissociates spontaneously into two roughly equal
.
6
对稳定的核素标绘出中子数N与质子数Z的关系,就会发现对于轻元素 (A<40)的稳定核,中子数近似的等于质子数,即N/Z=1;对于A>40, Z>20 的元素,稳定核中的中子、质子数比从1逐步增加到铋(83)元素的 N/Z=1.518。对于原子序数Z>83的元素,都是放射性衰变核素。 • 稳定核的N/Z比随着原子质量数A的增加而增加。原子核中,中子不 带电,质子带正电,原子核中的质子都要受到一种库仑斥力。随着原子 序数Z的增加,原子核中每个质子所受的库仑斥力随之而增加。要继续 保持稳定性就只能使N/Z比增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter3 Unstable nuclei and Radioactive decay
第三章 放射性衰变及衰变方程式
杨金玲
❖ Radioactive decay is a spontaneous nuclear transformation that has been shown to be unaffected by pressure, temperature, chemical form, etc (except a few very special cases). This insensitivity to extranuclear conditions allows us to characterize radioactive nuclei by their decay period and their mode and energy of decay without regard to their physical or chemical condition.
• 人们把稳定核的中子/质子数 比进行标绘,得到通常称之为 稳定线的图,如右面的图所示。 纵坐标是中子数N,横坐标是质 子数Z。 • 位于稳定线左上方的核素是丰 中子核,它们的N/Z要比稳定核 素要求的N/Z大;
• 位于稳定线右下方的核是缺中子核,也叫丰质子核,它们的N/Z
要比稳定核素要求的N/Z小 。
稳定核中:
偶-偶核占了约60%;
剩下的40%中:
偶-奇核和奇-偶核几乎各占一半;
奇-奇核很少,只有6种:2 1
H
N 6
3
LiBiblioteka 10 5B14 7
V 50
23
180 73
Ta
• 质子数和中子数都是偶数的核最稳定。因为相同核子成对时最稳定
• 稳定核中偶-奇核和奇-偶核数目大致相等,说明质子成对和中子成对时
原子核提供了大致相同的稳定性。
放射性衰变通常由下式描述:
A B x E
能量是以放出的粒子或量子的动能形式出现的。 在放射性衰变时释放的能量称作Q值,它是由衰 变前后处于基态的核的质量差得出。
Q mc 2 (mA mB mx )c2
❖ The mode of radioactive decay is dependent upon the particular nuclide involved. The radioactive decay can be characterized by α-,β-,andγ-radiation.
对稳定的核素标绘出中子数N与质子数Z的关系,就会发现对于轻元素 (A<40)的稳定核,中子数近似的等于质子数,即N/Z=1;对于A>40, Z>20 的元素,稳定核中的中子、质子数比从1逐步增加到铋(83)元素的 N/Z=1.518。对于原子序数Z>83的元素,都是放射性衰变核素。 • 稳定核的N/Z比随着原子质量数A的增加而增加。原子核中,中子不 带电,质子带正电,原子核中的质子都要受到一种库仑斥力。随着原子 序数Z的增加,原子核中每个质子所受的库仑斥力随之而增加。要继续 保持稳定性就只能使N/Z比增大。
❖ The time dependence of radioactive decay is expressed in terms of the half-life (t1/2 ), which is the time required for one-half of the radioactive atoms in a sample to undergo decay. In practice this is the time for the measured radioactive intensity (or simply, radioactivity of a sample) to decrease to one-half of its previous value
❖ 10-18s, 1015y
❖ Radioactive decay involves a transition from a definite quantum state of the original nuclide to a definite quantum state of the product nuclide. The energy difference between the two quantum levels involved in the transition corresponds to the decay energy. This decay energy appears in the form of electromagnetic radiation and as the kinetic energy of the products, see Element and Nuclide Index for decay energies.
Alpha-decay(α衰变) is the emission of helium nuclei. Beta-decay (β衰变)is the creation and emission of either electrons or positrons, or the process of electron capture. Gamma-decay(γ跃迁) is the emission of electromagnetic radiation where the transition occurs between energy levels of the same nucleus. An additional mode of radioactive decay is that of internal conversion in which a nucleus loses its energy by interaction of the nuclear field with that of the orbital electrons, causing ionization of an electron instead of γ-ray emission. A mode of radioactive decay which is observed only in the heaviest nuclei is that of spontaneous fission(自发裂变) in which the nucleus dissociates spontaneously into two roughly equal parts.
❖ 地球上存在的各种同位素中,天然存在的约500多种。其中,稳定的约200种, 放射性的有300多种。加上人工合成的同位素,大约共有有3100多种,其中绝 大部分是放射性同位素。 ❖ 稳定同位素是指核结构不会自发的发生改变的核素;放射性同位素是不稳定核 素,它们能通过自发的发射出各种射线,转变成另外一种核素。 ❖ 衰变产生的子体核素可能是稳定的,也可能是放射性的。如果衰变后生成的子 核是放射性的核素,它们还要继续发生衰变,直到最终变成稳定的核素为止。