第7讲 分式方程及其应用
第7课 分式方程
2 x- 3
3 x
变形为( D ) A.2+(x+2)=3(x﹣1) B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)
x +2 + 1- x
=3时,去分母后
首页
末页
2 5 3.(2015•酒泉)分式方程 x = x + 3 的解是
A.5000 = 8000 x - 600 x
5000 8000 = C. x + 600 x
5000 8000 B. x = x + 600
5000 8000 D. x = x - 600
首页
末页
5.(2016•贵州)为加快“最美毕节”环境建设,某园 林公司增加了人力进行大型树木移植,现在平均每天比 原计划多植树30棵,现在植树400棵所需时间与原计划植 树300棵所需时间相同,设现在平均每天植树x棵,则列 出的方程为( A )
1 1 A. = - 5 3x 8 x 1 C. = 8 x - 5 3x
1 1 B. = + 5 3x 8 x 1 = 8x + 5 D. 3x
首页
末页
二、填空题
7.(2016•广州)分式方程 x=﹣1 .
1 2 = 2x x - 3
的解是
4 1 - =0 8.(2016•泸州)分式方程 x- 3 x x=﹣1 .
x- 2 2- x
3 2 = x +1 x 的解是
解:方程两边同乘x﹣2,得1﹣3(x﹣2) =﹣(x﹣1), 即1﹣3x+6=﹣x+1, 解得:x=3, 经检验x=3是原方程的解, ∴原方程的解为x=3.
分式方程及其应用ppt
溶液平衡
分式方程可以描述溶质在溶液中的溶解平衡,为 分离和提纯提供理论指导。
环境化学
分式方程可以描述污染物在环境中的迁移和转化 ,为环境保护和污染治理提供依据。
04
分式方程与因式分解的联系
分式方程转化为整式方程
通过因式分解将分式方程转化为整式方程,可以简化计算, 提高解题效率。
分式方程的分类
简单的分式方程
只包含一个分式的方程,如 y = 5/x。
复杂的分式方程
包含多个分式的方程,如 (x² - 4)/(x² + x - 2) = 3。
分式方程的解法
转化成整式方程
通过数学方法将分式方程转化成整 式方程,然后求解未知数。
观察法
对于简单的分式方程,可以通过观 察分式的规律来求解。
验根的方法
将所求解代入最简公分母中,若最简公分母的值为0,则说明该解为增根,需要舍去;若 最简公分母的值为非0,则说明该解为有效解,保留。
注意分式方程的增根问题
增根的产生原因
分式方程求解时,若去分母后所得整式方程无解,或者求解 后所得的解代入最简公分母中使得最简公分母的值为0,则会 产生增根。
增根的解决方法
代数式的化简
分式可以用于代数式的化简,通过分式化简可以将复杂的 代数式化为简单的形式。
分式的化简方法包括约分、通分、分式的加减法等,可以 根据不同情况选择合适的方法进行化简。
方程组的解法
分式方程可以用于求解方程组,通过将方程组中的各个方程都转化为分式方程, 可以方便地求出方程组的解。
分式方程组的解法包括克莱姆法则、高斯消元法等,可以根据不同情况选择合适 的方法进行求解。
2014中考数学复习课件7分式方程及应用-第一轮复习第二单元方程(组)和不等式(组)
(2) 该工程由甲、乙两队合作完成,所需时间为 1 1 1÷( + )=18(天); 30 1.5×30 该 工 程 施 工 费 用 是 18×(6 500 + 3 500) = 180 000(元). 答:该工程的施工费用是 180 000 元.
考点训练
一、选择题(每小题 3 分,共 30 分) 1 1.分式方程 =1 的解为( A 2x-3 A.x=2 C.x=-1 B.x=1 D.x=-2 )
x 6 1 5.解方程: + 2 = . x+3 x -9 x-3 解:方程两边都乘(x+3)(x-3),得 x(x-3)+6=x+3. 化简整理,得 x -4x+3=0.
2
解得 x= 1 或 3. 经检验,当 x= 3 时, x- 3= 0. 所以 x= 3 是分式方程的增根. 所以原分式方程的解是 x= 1.
7.下列四个结论中,正确的是( D
)
1 A.方程 x+ =-2 有两个不相等的实数根 x 1 B.方程 x+ =1 有两个不相等的实数根 x 1 C.方程 x+ =2 有两个不相等的实数根 x 1 D.方程 x+ =a(其中 a 为常数,且|a|>2)有两个 x 不相等的实数根
x2+2x+1 1 解析:由 x+ =-2,得 =0,解得 x1= x x x2-x+1 1 x2=-1,∴A 项错误;由 x+ =1,得 =0, x x 令 x2-x+1=0.∵Δ=(-1)2-4×1×1=-3<0,∴B x2-2x+1 1 项错误; 由 x+ =2, 得 =0, 解得 x1=x2=1, x x
根据题意可得方程为( B 2 300 2 300 A. + =33 x 1.3x 2 300 4 600 C. + =33 x x+1.3x
) 2 300 2 300 B. + =33 x x+1.3x 4 600 2 300 D. + =33 x x+1.3x
人教版初三数学下册中考知识点梳理:第7讲分式方程
第7讲分式方程一、知识清单梳理中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,65,AFD CD EB ∠=︒∕∕,则B 的度数为( )A .115°B .110°C .105°D .65°【答案】A【解析】根据对顶角相等求出∠CFB =65°,然后根据CD ∥EB ,判断出∠B =115°. 【详解】∵∠AFD =65°, ∴∠CFB =65°, ∵CD ∥EB ,∴∠B =180°−65°=115°, 故选:A . 【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键.2.如图,矩形ABCD 中,AB=8,BC=1.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .6【答案】C【解析】试题分析:连接EF 交AC 于点M ,由四边形EGFH 为菱形可得FM=EM ,EF ⊥AC ;利用”AAS 或ASA”易证△FMC ≌△EMA ,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=45,且tan ∠BAC=12BC AB =;在Rt △AME 中,AM=12AC=25,tan ∠BAC=12EM AM =可得EM=5;在Rt △AME 中,由勾股定理求得AE=2.故答案选C .考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.3.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2. 下列判断: ①当x >2时,M=y 2; ②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在; ④若M=2,则x=" 1" . 其中正确的有A .1个B .2个C .3个D .4个【答案】B【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 22x 22=+=-,(舍去). ∴使得M=2的x 值是1或22+.∴④错误. 综上所述,正确的有②③2个.故选B .4.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =55,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处【答案】D 【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin 5A =, ∴545DC AC AC ==,∴AC=45, ∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C =228445+=,故答案为D. 5.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位【答案】D【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意; B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意; C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意; D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意; 故选D.6.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,若∠C =65°,则∠P 的度数为( )A .65°B .130°C .50°D .100°【答案】C【解析】试题分析:∵PA 、PB 是⊙O 的切线,∴OA ⊥AP ,OB ⊥BP ,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C . 考点:切线的性质.79153 ) A .2到3之间 B .3到4之间 C .4到5之间 D .5到6之间【答案】D915335,∵253,∴355到6之间.故选D . 【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键. 8.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-. 【答案】C【解析】直接利用反比例函数的性质分别分析得出答案. 【详解】A 、关于反比例函数y=-4x,函数图象经过点(2,-2),故此选项错误; B 、关于反比例函数y=-4x ,函数图象位于第二、四象限,故此选项错误; C 、关于反比例函数y=-4x ,当x >0时,函数值y 随着x 的增大而增大,故此选项正确;D 、关于反比例函数y=-4x,当x >1时,y >-4,故此选项错误;故选C . 【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.9.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .16【答案】C【解析】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°. 所以AFI BGC DHE GHI 、、、都是等边三角形.所以31AI AF BG BC ====,. 3317GI GH AI AB BG ∴==++=++=, 7232DE HE HI EF FI ==--=--=, 7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15; 故选C .10.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35C .43D .45【答案】D【解析】如图,连接AB ,由圆周角定理,得∠C=∠ABO ,在Rt △ABO 中,OA=3,OB=4,由勾股定理,得AB=5, ∴4cos cos 5OB C ABO AB =∠==. 故选D .二、填空题(本题包括8个小题)11.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____.【答案】72°【解析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键12.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.【答案】20 cm.【解析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得2222''++(cm).A B A D BD121620故答案为:20cm. 【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.13.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长____cm .【答案】13【解析】试题解析:因为正方形AECF 的面积为50cm 2, 所以25010AC cm =⨯=, 因为菱形ABCD 的面积为120cm 2, 所以21202410BD cm ⨯==, 所以菱形的边长22102413.22cm ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭故答案为13.14.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为4时,阴影部分的面积为_____.【答案】4π﹣1【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解. 详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是AB 的中点,∴∠COD=45°, ∴OC=2CD=42,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积 =22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.15.如图所示,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △BDE :S 四边形DECA 的值为_____.【答案】1:1【解析】根据题意得到BE :EC=1:3,证明△BED ∽△BCA ,根据相似三角形的性质计算即可. 【详解】∵S △BDE :S △CDE =1:3, ∴BE :EC=1:3, ∵DE ∥AC , ∴△BED ∽△BCA , ∴S △BDE :S △BCA =(BE BC)2=1:16, ∴S △BDE :S 四边形DECA =1:1, 故答案为1:1. 【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键. 16.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 【答案】13.【解析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是2163=. 故答案为13【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.17.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)【答案】12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1, ∴当x>1时,y 随x 的增大而增大. ∴若x 1>x 2>1 时,y 1>y 2 . 故答案为>18.如图,△ABC 中,AB =BD ,点D ,E 分别是AC ,BD 上的点,且∠ABD =∠DCE ,若∠BEC =105°,则∠A 的度数是_____.【答案】85°【解析】设∠A=∠BDA=x ,∠ABD=∠ECD=y ,构建方程组即可解决问题. 【详解】解:∵BA =BD ,∴∠A =∠BDA ,设∠A =∠BDA =x ,∠ABD =∠ECD =y ,则有21802105x y y x ︒︒⎧+=⎨+=⎩, 解得x =85°, 故答案为85°. 【点睛】本题考查等腰三角形的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本题包括8个小题)19.已知关于x 的方程220x ax a ++-=.当该方程的一个根为1时,求a 的值及该方程的另一根;求证:不论a 取何实数,该方程都有两个不相等的实数根.【答案】(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.20.如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线.交BC 于点E .求证:BE=EC 填空:①若∠B=30°,AC=23,则DE=______;②当∠B=______度时,以O ,D ,E ,C 为顶点的四边形是正方形.【答案】(1)见解析;(2)①3;②1.【解析】(1)证出EC 为⊙O 的切线;由切线长定理得出EC=ED ,再求得EB=ED ,即可得出结论; (2)①由含30°角的直角三角形的性质得出AB ,由勾股定理求出BC ,再由直角三角形斜边上的中线性质即可得出DE ;②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【详解】(1)证明:连接DO .∵∠ACB=90°,AC为直径,∴EC为⊙O的切线;又∵ED也为⊙O的切线,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,3∴3∴22AB AC,∵AC为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=12BC=3,故答案为3;②当∠B=1°时,四边形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO 是矩形,∵OD=OC ,∴矩形DECO 是正方形.故答案为1.【点睛】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21.解方程组4311,213.x y x y -=⎧⎨+=⎩①② 【答案】53x y =⎧⎨=⎩ 【解析】将②×3,再联立①②消未知数即可计算. 【详解】解:②3⨯得:6339x y += ③①+③得:1050x =5x =把5x =代入③得10339y +=3y =∴方程组的解为53x y =⎧⎨=⎩【点睛】本题考查二元一次方程组解法,关键是掌握消元法.22.春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率. 【答案】小王在这两年春节收到的年平均增长率是【解析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x )元,在2018年的基础上再增长x ,就是2019年收到微信红包金额400(1+x )(1+x )元,由此可列出方程400(1+x )2=484,求解即可. 【详解】解:设小王在这两年春节收到的红包的年平均增长率是. 依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【点睛】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.23.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.【答案】(1)证明见解析;(2)1.【解析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面积为:12AC•BD=12×1×2=1,故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.24.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【答案】(1)0.3 ,45;(2)108°;(3)16.【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人).故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【答案】(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.26.若关于x的方程311x ax x--=-无解,求a的值.【答案】1-2a=或【解析】分析:该分式方程311x ax x--=-无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+1=x2-x,移项合并得:(a+2)x=1.(1)把x=0代入(a+2)x=1,∴a无解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,当a+2=0时,0×x=1,x无解即a=-2时,整式方程无解.综上所述,当a=1或a=-2时,原方程无解.故答案为a=1或a=-2.点睛:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【答案】C【解析】∵DG是AB边的垂直平分线,∴GA=GB,△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,∴△ABC的周长=AC+BC+AB=51cm,故选C.2.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【答案】B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考点:角度的计算3.已知a35a等于()A.1 B.2 C.3 D.4【答案】B351,进而得出答案.【详解】∵a35∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.4.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【答案】B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.5.实数21-的相反数是()A.21--B.21+C.21--D.12【答案】D【解析】根据相反数的定义求解即可.【详解】21-的相反数是-21+,故选D.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.6.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm【答案】A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.如图,AB切⊙O于点B,OA=23,AB=3,弦BC∥OA,则劣弧BC的弧长为()A.33πB.32πC.πD.32π【答案】A【解析】试题分析:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=23,∠A=30°,∴OB=3,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC长为6033 1803ππ⨯=.故选A.考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.8.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c【答案】C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.9.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C .22D.52【答案】C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG=22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.10.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,33),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为()A.(32,332) B.(2,332) C.(332,32) D.(32,3﹣332)【答案】A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×33=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=332,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,332).故选A.二、填空题(本题包括8个小题)11.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.【答案】1 4【解析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形,∴针头扎在阴影区域内的概率为14;故答案为:14.【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.12.如图,点A 是反比例函数y=﹣4x(x<0)图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.【答案】4﹣π【解析】由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.【详解】由题意可以假设A(-m,m),则-m2=-4,∴m=≠±2,∴m=2,∴S阴=S正方形-S圆=4-π,故答案为4-π.【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题13.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是___.【答案】12【解析】根据图象可知点P 在BC 上运动时,此时BP 不断增大,而从C 向A 运动时,BP 先变小后变大,从而可求出线段长度解答.【详解】根据题意观察图象可得BC=5,点P 在AC 上运动时,BP ⊥AC 时,BP 有最小值,观察图象可得,BP 的最小值为4,即BP ⊥AC 时BP=4,又勾股定理求得CP=3,因点P 从点C 运动到点A ,根据函数的对称性可得CP=AP=3,所以ABC ∆的面积是13+342⨯⨯()=12. 【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型. 14.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .【答案】.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5, ∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.15.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则菱形的边长____cm .【答案】13【解析】试题解析:因为正方形AECF的面积为50cm2,所以25010AC cm=⨯=,因为菱形ABCD的面积为120cm2,所以21202410BD cm⨯==,所以菱形的边长22102413.22cm ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭故答案为13.16.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=_______.【答案】1.5【解析】在Rt△ABC中,225AC=AB+BC=,∵将△ABC折叠得△AB′E,∴AB′=AB,B′E=BE,∴B′C=5-3=1.设B′E=BE=x,则CE=4-x.在Rt△B′CE中,CE1=B′E1+B′C1,∴(4-x)1=x1+11.解之得32x=.17.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为___________元.【答案】28【解析】设标价为x元,那么0.9x-21=21×20%,x=28.18.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.【答案】30【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.考点:折叠图形的性质三、解答题(本题包括8个小题)19.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.求y 与x 之间的函数关系式,并写出自变量x 的取值范围;求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【答案】(1)()401016y x x =-+≤≤ (2)()225225x --+,16x =,144元 【解析】(1)利用待定系数法求解可得y 关于x 的函数解析式;(2)根据“总利润=每件的利润⨯销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.【详解】(1)设y 与x 的函数解析式为y kx b =+,将()10,30、()16,24代入,得:10301624k b k b +=⎧⎨+=⎩, 解得:140k b =-⎧⎨=⎩, 所以y 与x 的函数解析式为()y x 4010x 16=-+;(2)根据题意知,()()()2W x 10y x 10x 40x 50x 400=-=--+=-+- ()2x 25225=--+, a 10=-<,∴当x 25<时,W 随x 的增大而增大,10x 16,∴当x 16=时,W 取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【点睛】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.20.省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?【答案】(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图21.某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B 与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG 为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)。
分式方程及其应用课件
分式方程在科研中的应用
01
生物学
分式方程可以描述基因表达、细胞增殖等生物学过程,帮助生物学家
研究生命的本质。
02
物理学
分式方程在物理学研究中广泛应用于量子力学、相对论和复杂系统等
领域,帮助科学家探索物理世界的奥秘。
03
化学
分式方程可以描述化学反应的动态过程,帮助化学家研究新的化学反
应路径和优化化学反应条件。
助工程师设计高效的机械设备。
分式方程在日常生活中的应用
物理学
分式方程可以描述物体的运动规律,例如加速度、速度和位移之间的关系,帮助我们解决 日常生活中的力学问题。
医学
分式方程可以描述生理参数之间的关系,例如药物在人体内的吸收、分布和代谢情况,帮 助医生制定更有效的治疗方案。
经济学
分式方程可以描述经济变量之间的关系,例如消费、投资和经济增长之间的关系,帮助政 策制定者制定有效的经济政策。
验根
通过代入法,验证方程的根是否正 确。
分式方程的局限性
适用范围有限
分式方程适用于可以化成分母 中含未知数的形式的问题,但 有些问题不适合使用分式方程
。
解法有限
分式方程的解法有限,没有通 用的解法,需要根据具体问题
选择合适的解法。
精度有限
分式方程的精度有限,无法得 到高精度的解。
分式方程的应用前景
分式方程及其应用课件
xx年xx月xx日
目录
• 分式方程的基本概念 • 分式方程的应用 • 分式方程的注意事项 • 分式方程的练习题及解答 • 分式方程的应用实例
01
分式方程的基本概念
分式方程的定义
1
分式方程是一种描述两个变量之间关系的数学 模型
中考复习第7课时分式方程课件
当堂检测
第7课时 点 聚 焦
考点1 分式方程的解法
2 1 1.把分式方程 = 转化为一元一次方程时,方程两 x+4 x 边需同乘( D ) A.x B.2x C.x+4 D.x(x+4) 1 2 2.方程 - =0的根是( D ) x- 2 x- 1 A.x=-3 B.x=0 C.x=2 D.x=3 x+m 2 3.若关于x的方程 + =2有增根,则m的值 x-2 2-x 是 0 .
考点聚焦 豫考探究 当堂检测
第7课时┃ 分式方程
解 析
(1)相等关系:甲工程队铺设350米所用的天数=乙
工程队铺设250米所用的天数;(2)不等关系:完成该项工程 的工期不超过10天.
解
(1)设甲工程队每天能铺设x米,则乙工程队每天
能铺设(x-20)米. 350 250 根据题意得 x = ,解得x=70. x-20 经检验x=70是原分式方程的解. 答:甲、乙工程队每天分别能铺设70米和50米.
完成此项工程需1.5x天. 1 1 1 根据题意,得x+ = , 1.5x 36 解得x=60, 经检验,知x=60是方程的解且符合题意. 1.5x=90. 故甲、乙两公司单独完成此项工程,各需60天,90天.
考点聚焦
豫考探究
当堂检测
第7课时┃ 分式方程
变式题 [2011· 济宁] 某市在道路改造过程中,需要铺设 一条长为1000米的管道,决定由甲、乙两个工程队来完成这 一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工 程队铺设350米所用的天数与乙工程队铺设250米所用的天数 相同. (1)甲、乙工程队每天各能铺设多少米? (2)如果要求完成该项工程的工期不超过10天,那么为两 工程队分配工程量(以百米为单位)的方案有几种?请你帮助 设计出来.
中考数学第7 讲 分式方程及其应用
解:(1)设 A 种茶叶每盒进价为 x 元,则 B 种茶叶每盒进价为 1.4x 元,依题意,得:814.40x0 -40x00 =10,解得:x=200,经检验,x =200 是原方程的解,且符合题意,∴1.4x=280. 答:A 种茶叶每盒进价为 200 元,B 种茶叶每盒进价为 280 元;
(2)设第二次购进 A 种茶叶 m 盒,则购进 B 种茶叶(100-m)盒,
1. (2019·淄博)解分式方程1x--x2 =2-1 x -2 时,去分母变形正确的是
(D) A.-1+x=-1-2(x-2) B.1-x=1-2(x-2) C.-1+x=1+2(2-x) D.1-x=-1-2(x-2)
2. (2020·杭州)若分式x+1 1 的值等于 1,则 x=___0_.
例5 (2019·阜新)节能又环保的油电混合动力汽车,既可以用油做动力行 驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地, 若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用 为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元. (1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千 米? (2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元, 则至少需要用电行驶多少千米?
(1)甲、乙两公司各有多少人? (2)现甲、乙两公司共同使用这笔捐款购买A,B两种防疫物资,A种防 疫物资每箱15000元,B种防疫物资每箱12000元.若购买B种防疫物资 不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A, B两种防疫物资均需购买,并按整箱配送).
解:(1)设甲公司有 x 人,则乙公司有(x+30)人, 依题意,得:100x000 ×76 =1x4+003000 ,解得:x=150, 经检验,x=150 是原方程的解,且符合题意, ∴x+30=180.答:甲公司有 150 人,乙公司有 180 人;
备战九年级中考数学一轮复习第7课 分式方程的解法及应用(全国通用)
(1+50%)x km/h,依题意,得:25
解得 x=50,
x
x
30
50%
x
6 60
经检验,x=50是原方程的解,且符合题意, ∴(1+50%)x=75.
答:走路线B的平均速度为75 km/h.
A组 10.(202X·南京)方程 x x 1 的解是__x___14___.
x 1 x 2
11.(202X·广州)方程
1
2
4 x2
4
1.
解:方程两边都乘(x2-4),得 x+2-4=x2-4, 解得x1=2,x2=-1 检验:当x=2时,x2-4=0, ∴x=2不是原分式方程的解 当x=-1时,x2-4≠0, ∴原分式方程的解为x=-1.
考点2 分式方程的应用
8.【例4】(广东中考)某品牌瓶装饮料每箱价格26元,某商店
2.(202X·抚顺)随着快递业务的发展,某快递公司为快递员更换
了快捷的交通工具,公司投递快件的能力由每周3 000件提高到
4 200件,平均每人每周比本来多投递80件,若快递公司的快递
员人数不变,求本来平均每人每周投递快件多少件?设本来平
均每人每周投递快件x件,根据题意可列方程为( D )
A.3000 4200 x x 80
50%)x元/件,
依题意,得: 7200
1+50%
x
3200 x
40,
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
∴(1+50%)x=60,32x0080, Nhomakorabea7200
1 50%
x
120
答:甲商品的进价为60元/件,乙商品的进价为40元/件,购
进甲商品120件,购进乙商品80件.
第1部分 第2章 第7讲 分式方程及其应用(3分)
A.1 600 元
B.1 800 元
C.2 000 元
D.2 400 元
命题点一 解分式方程
1.解分式方程2xx-1-3=1-22x时,去分母正确的是( B )
A.x-3=-2
B.x-3(2x-1)=-2
C.x-3(2x-1)=2
D.x-6x-3=-2
2.方程x2-x2=x-2+x-4 2的解为( C )
A.11.250x0-1 5x00=20
B.1 5x00-11.250x0=20
C.1 5x00=20-11.250x0
D.1 2x00-11.550x0=20
10.(2020·鞍山)甲、乙两人加工某种机器零件,已知每小时甲比乙少
加工 6 个这种零件,甲加工 240 个这种零件所用的时间与乙加工 300 个这
题为背景,依据题目中的等量 关系列出分式方程,若在解答 题中考查,应注意增根的问题, 在求解后应检验所求结果是否 为原分式方程的根. 实例链接 见 P27,例 3.
序号 中考年份 命题点 1 2017 年 解分式方程(4)
标“ ”题解题指导见 P206 编者按:典型试题给出思维模型,使思维可视化,利用通性通法突破 此类试题.
A.2
B.2 或 4
C.4
D.无解
3.若方程x-x 4=2+x-a 4有增根,则 a 的值为( B )
A.-4
B.4
C.3
D.2
4.解方程: (1)x-x 1+x3-x1=4. 解:方程两边同乘 x(x-1),得(x-1)(x-1)+3x2=4x(x-1), 化简,得 2x+1=0,解得 x=-12. 检验:当 x=-12时,x(x-1)≠0. ∴原分式方程的解为 x=-12.
第7讲 分式方程的应用
第7讲分式方程的应用一、学习目标1.能列分式方程解决实际问题.2.能根据实际意义检验解的合理性.考情分析分式方程是作为某些类型问题的数学模型,具有整式方程不可替代的特殊作用,也是中考考查的重要知识点,在中考中,一般在解答题中单独考查,有时也在选择题中考查列分式方程的能力.二、基础知识·轻松学列分式方程解应用题同列整式方程解应用题的步骤一样,有以下几步:1.审. 即审题. 弄清题意及已知量和未知量,找出题中的等量关系,明确涉及的基本数量关系.2.设. 即设未知数. 选择一个适当的未知量设为未知数,并用次要等量关系或基本数量关系用含未知数的代数式表示其它未知量.3.列. 即列方程.根据题中的主要等量关系列出分式方程.4.解.即解方程.其过程可以省略.5.验.即检验.首先检验所得的解是不是所列分式方程的解;再检验所得方程的解是否符合题意(即是否符合实际意义).6.答.即写答案.注意答案中要写出单位名称.三、重难疑点·轻松破1.列分式方程解应用题列分式方程解应用题的关键是寻找等量关系,一般涉及几种未知量就从这几种未知量方面依次寻找等量关系. 如涉及“单价,数量,总价”,若单价、数量未知,就分别从单价、数量方面寻找等量关系.设未知数时,一般以题目所求的量方面的等量关系为依据设未知数,以其它等量关系为依据列方程. 如问题求甲、乙的单价,可设甲的单价,并利用单价方面的等量关系表示出乙的单价,再利用数量方面的等量关系列方程. 当然也应具体问题,具体分析.将等量关系(文字等式)译为数学符号的过程即为列方程,在列分式方程的过程中,一般用基本数量关系将各个量沟通,如甲的数量=甲的总价甲的单价. 注意量之间的对应关系,不要混淆.例1 上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元. 求两批水果共购进了多少千克?解析:存在两个等量关系“第二批购进水果的重量=第一批的2.5倍”,“第二批单价=第一批单价+1元”. 由于问题所求为两批水果的重量,因此可利用重量方面的第一个等量关系设未知数,利用第二个等量关系列方程.设第一次购进水果x千克,则第二次购进水果2.5x千克,依题意得:55002000-=.12.5x x去分母,得5500-5000=2.5x.解之得:x=200.经检验x=200是原方程的解.所以x+2.5x=700.答:这两批水果共购进700千克.点评:列分式方程解应用题要做到认真审题,理解题意,会找等量关系,能够根据列方程的需要或直接或间接设未知数,能够根据基本数量关系列代数式表示出各个未知量,从而快捷列出分式方程.变式1:某商店经销一种泰山旅游纪念品,4月的营业额为2000元,为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.(1)求该种纪念品4月份的销售价格;(2)若4月份销售这种纪念品获利800元,5月份销售这种纪念品获利多少元?2.行程问题行程问题涉及的基本数量关系是:路程=速度×时间,一般地,由题意可找到速度、时间两方面的等量关系. 若问题所求的量是速度,则可利用速度方面的等量关系设未知数,并利用时间方面的等量关系列分式方程;若问题所求的量是时间,则可利用时间方面的等量关系设未知数,并利用速度方面的等量关系列分式方程.例2小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.解析:由题意可找到下面两个等量关系:从速度看:去时的速度=回时速度×1.2,从时间看:去时的时间=回时的时间+20分钟.可据时间方面的等量关系列方程解决问题.设小丽所乘汽车返回的平均速度是x千米/时,根据题意得:844520-=.1.260x x解这个方程,得x=75.经检验,x=75是所列方程的解.答:小丽所乘汽车返回时的速度是75千米/时.变式2:甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?四、课时作业·轻松练A.基础题组1. 某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为()A.108010801215x x=+-B.108010801215x x=--C.108010801215x x=-+D.108010801215x x=++2. 小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是()A.40340204x x=⨯+B.40340420x x=⨯+C.40140204x x+=+D.40401204x x=-+3. 商店里有甲、乙两种笔,甲种笔的价格比乙种笔的价格每枝贵6元,90元买甲种笔与60元买乙种笔的枝数相等,则甲种笔每枝________元.4.冬冬全家周末一起去南部山区参加采摘节,他们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,采摘油桃和樱桃分别用了80元,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?5. 某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个. 求第一次每个书包的进价是多少元?6. 为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种13,结果提前4天完成任务.原计划每天种多少棵树?B.提升题组7. 某商店销售一种休闲上装,9月份的营业额为5000元.为了扩大销售,在10月份将每件上装按原价的8折销售,销售量比9月份增加了20件,营业额比9月份增加了600元.设9月份每件上装的售价为x元,则可列方程为()A.50005000600200.8x x--= B.50006005000200.8x x+-=C.50006005000200.8x x+=- D.50006005000200.8x x+-=8. 李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?9.铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?10.某公司需在一个月(31天)内完成新建办公楼装修工程.如果由甲、乙两队合做,12天可以完成;如果由甲、乙两队单独做,甲队单独完成所用的时间是乙队单独完成所用时间的23.(1)求甲、乙两队单独完成此工程所需的时间.(2)若请甲队施工,公司每日需付费用2000元;若请乙队施工,公司每日需付费用1400元.在规定时间内,有下列三种方案;方案一:请甲队单独施工完成此工程;方案二:请乙队单独施工完成此工程;方案三:甲、乙两队合做完成此工程.以上三种方案哪一种费用最少?中考试题初体验11. (2013广东深圳)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.1440144010100x x-=-B.1440144010100x x=++C.1440144010100x x=+-D.1440144010100x x-=+12.(2013北京)列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.13. (2013湖南郴州)乌梅是郴州的特色时令水果.乌梅一上市,水果店的小李就用3000元购进了一批乌梅,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不太好,于是果断地将剩余乌梅以低于进价20%的价格全倍售出,前后一共获得750元.求小李所进乌梅的数量.五、我的错题本参考答案:变式1:解:(1)设该种纪念品4月份的销售价为x 元,根据题意得209.070020002000-+=x x 解之得x = 50经检验x=50是所得方程的解所以该种纪念品4月份的销售价格是50元. (2)由(1)知4月份销售件数为502000= 40件,所以4月份每件盈利40800= 20元 5月份销售件数为40 + 20 = 60件,且每件售价为50 × 0.9 = 45,每件比4月份少盈利5元,为15元,所以5月份销售这种纪念品获利60 × 15 = 900元.变式2:解:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, 根据题意,得60606501.2x x ⎛⎫++= ⎪⎝⎭, 解得x =2.5.经检验,x =2.5是方程的解,且符合题意. 所以甲同学所用的时间为:606261.2x+=(秒), 乙同学所用的时间为:6024x=(秒). 因为26>24,所以乙同学获胜.课时作业·轻松练 A.基础题组1. B 解析:从题中可找到等量关系:单独使用B 型包装箱的数量=单独使用A 型包装箱的数量—12个,据此可列方程:108010801215x x =--. 2. A 解析:从题中可找到等量关系:乘出租车返回的时间=乘公交车去时的时间×34,可列方程40340204x x=⨯+. 3. 18 解析:设甲种笔的单价为x 元,则据题意,得90606x x =-. 解得x =18. 经检验x =18是所列方程的解. 所以甲种笔每枝18元.4.解:设油桃每斤x 元,则樱桃每斤2x 元,由题意得80802x x-=5 解这个方程得,x =8经检验,x =8是所列方程的解. 2x =16(元)答:油桃每斤8元,则樱桃每斤16元.5.解:设第一次每个书包的进价是x 元,则第二次进价为 1.2x 元,据题意,得3000240020 1.2x x -=. 解得x =50.经检验x =50是所列方程的根. 答:一次每个书包的进价是50元.6.解:设原计划每天种x 棵树,实际每天种树113x ⎛⎫+ ⎪⎝⎭棵.根据题意,得4804804113x x -=⎛⎫+ ⎪⎝⎭. 解这个方程,得x =30.经检验x =30是原方程的解且符合题意. 答:原计划每天种树30棵. B.提升题组7. D 解析:从题中可找到等量关系:10月份的销售量—9月份的销售量=20件. 由此可列方程:50006005000200.8x x+-=.8.解:(1)设明步行的速度是x 米/分,21002100203x x -=. 解x =70.答:李明步行的速度是70米/分. (2)因为210021001414270370++=<´. 所以李明能在联欢会开始前赶到学校.9.解:(1)设试销时这种苹果的进货价是每千克x 元,依题意,得11000500020.5x x =⨯+. 解之,得 x =5经检验,x =5是原方程的解. (2)试销时购进苹果的数量为:500010005= (千克) 第二次购进苹果的数量为:2×1000=2000(千克) 盈利为: 2600×7+400×7×0.7-5000-11000=4160(元)答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元. 10.解:(1)设乙队单独完成此工程所需的时间为x 天. 根据题意,得1112123x x +=. 解这个方程得x =30.经检验,x =30是所列方程的根.22302033x ==×(天). 所以,甲队单独完成此工程所需时间为20天,乙队单独完成此工程所需的时间为30天.(2)方案一,费用为2000×20=40000(元); 方案二,费用为1400×30=42000(元);方案三,费用为(2000+1400)×12=40800(元). 所以,方案一费用最少. 中考试题初体验11. B 解析:从题中可找到等量关系:爸爸走的时间+10分=小朱走的时间. 据此可列方程:1440144010100x x =++. 12.解:设每人每小时的绿化面积为x 平方米.则有 18018036(62)x x-=+ 解得x =2.5.经检验x =2.5是所列分式方程的解. 答:每人每小时的绿化面积为2.5 平方米.13.解:本例用思路1求解:设小李进了xkg 乌梅,依题意,得3000300040%15020%(150)750x x x ⨯⨯-⨯⨯-= 解得x =200经检验x =200是方程的解 答:小李所进乌梅的数量是200kg .。
分式方程及其应用教案
分式方程及其应用教案一、教学内容本节课的教学内容选自教材第十二章第一节《分式方程及其应用》。
具体内容包括分式方程的定义、分式方程的求解方法以及分式方程在实际问题中的应用。
二、教学目标1. 理解分式方程的概念,掌握分式方程的求解方法。
2. 能够运用分式方程解决实际问题,提高数学应用能力。
3. 培养学生的逻辑思维能力和团队协作能力。
三、教学难点与重点教学难点:分式方程的求解方法,特别是涉及复杂分式的方程求解。
教学重点:分式方程的定义,以及如何将实际问题转化为分式方程。
四、教具与学具准备教具:黑板、粉笔、教学PPT。
学具:学生用书、练习本、计算器。
五、教学过程1. 实践情景引入(5分钟)通过一个关于速度、时间和路程的问题,引导学生思考如何用数学方法解决问题。
例:小明的速度是每小时5公里,他走了3小时,求小明走了多少路程?2. 分式方程概念讲解(10分钟)根据上述问题,引出分式方程的概念,讲解分式方程的定义及特点。
3. 分式方程求解方法(15分钟)以例题的形式,讲解如何求解分式方程,包括交叉相乘法、代入法等。
例题:求解方程 3/x = 4/54. 随堂练习(10分钟)让学生独立完成几道分式方程的练习题,巩固所学知识。
5. 分式方程在实际问题中的应用(10分钟)讲解如何将实际问题转化为分式方程,并通过例题进行演示。
例题:某班有40名学生,一次数学考试的平均分为75分。
如果去掉一个最高分和一个最低分,平均分提高到77分。
求这个班的最高分和最低分。
6. 小组讨论与展示(15分钟)将学生分成小组,讨论并解决一个关于分式方程的实际问题,然后进行展示。
对学生的解答进行点评,强调解题方法和注意事项。
六、板书设计1. 分式方程的定义2. 分式方程求解方法3. 实际问题转化为分式方程的方法4. 典型例题及解答七、作业设计1. 作业题目:(1)求解分式方程:2/(x+3) = 3/(x2)(2)某商店举行打折活动,原价为200元,打8折后价格为160元。
分式方程应用课件
03
分式方程在化学中的应用
Chapter
化学反应速率问题
第一季度
第二季度
第三季度
第四季度
总结词
化学反应速率问题主要 涉及反应速度与反应物 浓度的关系,分式方程 可以用来描述这种关系 。
详细描述
在化学反应中,反应速 率与反应物的浓度有关 。分式方程可以用来描 述反应速率与反应物浓 度的关系,帮助我们理 解反应过程和预测反应
结果。
公式展示
v = k [C]^m [D]^n, 其中v是反应速率,k 是反应常数,[C]和[D] 是反应物的浓度,m和
n是反应级数。
实例分析
例如,对于一个二级反 应,其分式方程可以表
示为 -d[C]/dt = k [C]^2,其中[C]是反应 物的浓度,t是时间,k
是反应常数。
溶液浓度问题
总结词
复利计算
利用分式方程,可以计算出在固定年 利率下,未来某一时刻的投资本息总 额,这在长期投资规划中非常有用。
消费物价指数(CPI)问题
CPI计算
消费物价指数是反映一篮子商品和服务价格水平变化的指标 ,分式方程可以用来计算CPI,通过将各种商品和服务的价格 变化代入方程,可以得到整体的物价变化趋势。
通货膨胀率计算
利用CPI和GDP平减指数,可以计算出通货膨胀率,这对于货 币政策制定和投资决策具有重要意义。
供需关系中的分式方程
供需平衡
在市场经济中,分式方程可以用来描 述供需关系的变化,通过建立需求和 供应函数,可以分析市场均衡时的价 格和数量。
市场调整
当市场出现供不应求或供过于求的情 况时,分式方程可以用来分析价格变 动对供需关系的影响,以及市场调整 的过程。
详细描述
分式方程及其应用课件
密度与质量的关系
总结词
通过已知密度和质量,求体积
详细描述
密度是物质的质量除以其体积,可以用以下方程表示:密度 = 质量 / 体积。 已知密度和质量,就可以求出体积。例如,已知水的密度是1克/立方厘米, 质量为100克的水,其体积是100立方厘米。
效率与成本的关系
总结词
通过已知效率和成本,求产量或收益
示例
例如,x/3=2就是一个简单的分式方程,其中x是未知数,3 是分母。
分式方程的分类
简单分式方程
只有一个分式和一个未知数,且未知数在分母中。
复杂分式方程
包含多个分式和未知数,或者未知数在分子或分母中。
分式方程的解法
1 2
转化法
将分式方程转化为整式方程,求解整式方程得 到未知数的值。
图像法
画出分式方程对应的函数图像,通过交点或切 线求解未知数。
运动学问题
在物理学中,分式方程也经常用来解决运动学问题,例如计算物体的速度和 加速度。
在化学中的应用
化学反应速率
在化学反应中,分式方程可以用来描述化学反应的速率,以及反应物和生成物之 间的比例关系。
溶液浓度问题
在化学中,分式方程也经常用来解决溶液的浓度问题,例如计算溶液的渗透压等 。
在工程中的应用
例子
解分式方程 $x+1\div x-1=3$,通过建立方程 $(x+1)(x1)=3$,解决了问题。
分类讨论思想
分类讨论思想
对于一些未知数的取值范围不明确的问题,需要分类讨论。
例子
解分式方程 $\frac{x}{x-1}-\frac{3}{x}=1$,需要考虑 x 的取值范围,当 x<0 时,方程无解;当 0<x<1 时,方程的解为 x=3-2\sqrt{2};当 x>1 时,方程的解为 x=3+2\sqrt{2}。
拔高专题7-分式方程及其应用(含答案)
拔高专题7-分式方程及其应用(含答案)培优训练8、分式方程及其应用姓名:学号:时间:【知识精读】1.解分式方程的基本思想:把分式方程转化为整式方程。
2.解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
3.列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
下面我们来学习可化为一元一次方程的分式方程的解法及其应用。
【分类解析】例1.解方程:分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。
解:原方程变形为:方程两边通分,得例2.解方程某1某6某2某5某2某7某3某6分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现的值相差(某6)与(某7)、(某2)与(某3)1,而分子也有这个特点,因此,可将某6某5某2某1某7某6某3某211(某6)(某7)(某2)(某3)所以(某6)(某7)(某2)(某3)即8某369某292某21某1某1分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以(,得某1)(某1)经检验:原方程的根是某例3.解方程:某2(某1)(某1)(某1),即某22某某212,某2121某0323某4242某316某1943某89某87某45某分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。
323经检验:某是原方程的根。
2解:由原方程得:312214344某38某98某74某5-1-培优训练8、分式方程及其应用姓名:学号:时间:即22228某98某68某108某7注:分式方程命题中一般渗透不等式,恒等变形,因式分解等知识。
人教版数学九年级上册第7课时分式方程及其应用(ppt版)-课件
A的总价 A的单价
+ B的总价 B的单价
=总数量
(2)行程问题
路程 =时间, 同一路程 - 同一路程 =时间差(A速度
速度
A速度
B速度
<B速度)
(2)工程问题
工作总量
=工作完成时间,
工作效率
1
特别地,当工作总量看做“1”时,工作时间 =工作效率
【注意】双检验:(1)检验是否为原方程的解;(2)检验
120300120 15, x x(120%)
解得x=18, 经检验x=18是原方程的根,且符合题意. 答:原计划每天铺设管道18米.
练习 已知某项工程由甲、乙两个施工队共同完成,乙
队先单独做2天后,再由两队合作10天完成全部工程.已
知乙队单独完成此项工程所需天数是甲队单独完成此项 工程所需天数的 4 ,求甲、乙两个施工队单独完成此项 工程各需几天? 5
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may rise tomorrow.
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
【名师提醒】解分式方程时一定要验根,否则有可能造
成某些方程产生增根.
提分必练
1.解方程: 5 3 . x4 x
2.解方程: x-3 = 4 . x-2 3 x
3.解方程:xx11(x32).
x 1 2