《常微分方程》(第三版)高等教育出版社共100页

合集下载

常微分方程第三版习题答案

常微分方程第三版习题答案

常微分方程第三版习题答案常微分方程是数学中的一个重要分支,它研究的是描述自然界中变化规律的方程。

在学习常微分方程的过程中,习题是非常重要的一部分,通过解习题可以加深对理论知识的理解和应用能力的培养。

本文将为大家提供《常微分方程第三版》习题的部分答案,希望能对大家的学习有所帮助。

1. 习题一1.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2y + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

令$y = u(t)e^{2t}$,则$\frac{dy}{dt} = \frac{du}{dt}e^{2t} + 2ue^{2t}$将上述结果代入原方程,得到:$\frac{du}{dt}e^{2t} + 2ue^{2t} = 2(u(t)e^{2t}) + t^2$化简得到:$\frac{du}{dt}e^{2t} = t^2$两边同时除以$e^{2t}$,得到:$\frac{du}{dt} = t^2e^{-2t}$对上式两边同时积分,得到:$u = -\frac{1}{4}t^2e^{-2t} + C$将$u$代入$y = u(t)e^{2t}$,得到最终的解:$y = (-\frac{1}{4}t^2e^{-2t} + C)e^{2t}$1.2 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = \frac{t}{y}$这是一个一阶可分离变量的常微分方程,我们可以通过分离变量来求解。

将方程变形,得到:$ydy = tdt$对上式两边同时积分,得到:$\frac{1}{2}y^2 = \frac{1}{2}t^2 + C$解得:$y^2 = t^2 + C$由于题目中给出了初始条件$y(0) = 1$,将初始条件代入上式,得到:$1 = 0 + C$解得:$C = 1$将$C$代入$y^2 = t^2 + C$,得到最终的解:$y^2 = t^2 + 1$2. 习题二2.1 解:首先,我们根据题意列出方程:$\frac{dy}{dt} = 2ty + t^2$这是一个一阶线性常微分方程,我们可以使用常数变易法来求解。

常微分方程第三版全文

常微分方程第三版全文
设镭的衰变规律与该时刻现有的量成正比, 且已知t 0时, 镭元素的量为R0克,试确定在 任意t时该时镭元素的量.
解 设t时刻时镭元素的量为R(t),
依题目中给出镭元素的衰变律可得 :
dR dt
kR,
R(0) R0
这里k 0,是由于R(t)随时间的增加而减少.
解之得 :
例2 RLC电路
如图所示的R-L-C电路. 它包含电感L,电阻R,电容C及电源 e(t). 设L,R,C均为常数,e(t)是时间t的已知函数.试求当 开关K合上后,电路中电流强度I与时间t之间的关系.
沃特拉把所有的鱼分为两类:被食鱼 与捕食鱼,设t时刻被食鱼的总数为x(t),而 捕食鱼的总数为y(t).

Volterra
dx
被捕食-捕食模型:
dt dy
x(a by), y(c dx)
dt
Volterra
dx
模型:
dt dy
x(a bx cy), y(d ex fy)
dt
欧拉 (1707 – 1783)
瑞士数学家. 他写了大量数学经典 著作, 如《无穷小分析引论 》, 《微 分学原理 》, 《积分学原理》等, 还 写了大量力学, 几何学, 变分法教材. 他在工作期间几乎每年都完成 800 页创造性的论文. 他的最大贡献是扩展了微积分的领域, 为分析学的重 要分支 (如无穷级数, 微分方程) 与微分几何的产生和 发展奠定了基础. 在数学的许多分支中都有以他的名 字命名的重要常数, 公式和定理.
一、什么是微分方程?
方程对于学过中学数学的人来说是比较熟悉的; 在初等数学中就有各种各样的方程,比如线性方 程、二次方程、高次方程、指数方程、对数方程、 三角方程和方程组等等。这些方程都是要把研究 的问题中的已知数和未知数之间的关系找出来, 列出包含一个未知数或几个未知数的一个或者多 个方程式,然后取求方程的解。

常微分方程第一章绪论

常微分方程第一章绪论

拉格朗日 (1736 – 1813)
法国数学家. 他在方程论, 解析函数论, 及数论方面都作出了重要的贡献, 近百 余年来, 数学中的许多成就都直接或间 接地溯源于他的工作, 他是对分析数学 产生全面影响的数学家之一.
例3 R-L-C电路问题。
如图所示,R-L-C电路是由电阻R、电感 L、电容C和电源E串联组成的电路。其中, R、L、C常数,电源电动势是时间t的已知 函数:E=e(t)。试建立当开关K合上后电流 I(t)应满足的微分方程。
例4 单摆运动问题 单摆是一根长为l的线段的上端固定而
下端系一质量为m的摆锤的简单机械装置。 开始时将单摆拉开一个小角度φ0,然后放 开,使其在摆锤的重力作用下在垂直平面 上摆动。试建立单摆的运动方程。
2u x2
2u y2
2u z2
0
1 )如果微分方程中未知数只依赖于一个自变量,
称为常微分方程。例如:
xky0,
xx2 sint,
2 )如果微分方程中未知数依赖于两个或更多的自 变量,称为偏微分方程。例如:
v v v, t s
2u x2
2u y2
2u z2
0
注:我们不特别声明,就称常微分方程为微分方程或方程。
若存在 (x,c1,,cn) 的一个邻域,使得
,
, ,
c1
c2
cn
, c1
, c2
,
cn 0
(n1) ,
(n1) ,
,
(n1)
c1
c2
cn
则称 y(x,c1,,cn) 含有n个相互独立的常数。
例:yc1cox sc2sixn是 yy0的通解。 因为 y c1sixn c2co x而s
§ 1.1 微分方程的概念

常微分方程第三版答案.doc

常微分方程第三版答案.doc

1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c-另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

/5.(y+x )dy+(x-y)dx=0 解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -》则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 3》2 ex3-3e2y -=c.(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令xy=u ,则dx dy =u+ x dx duu+ xdx du=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- ,e y=cex11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+carctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21u、u-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 :dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) (2)y(1+x 2y 2)dx=xdy3) y x dx dy =2222x -2 y x 2y +证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

《常微分方程》(第三版)

《常微分方程》(第三版)

常微分方程2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123 yxy dx dyxy 321++=解:原式可化为:x x y xx y x yx yyxyc c c c x dx x dy y yx ydxdy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy yydx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsinln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx c x x xyc x x u dx xx du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分方程(王高雄)第三版 3.3

常微分方程(王高雄)第三版 3.3
初值问题
dy f ( x, y ) , dx y ( x0 ) y0 (3.1) '
的解y ( x, x0 , y0 )都在区间 [a, b]上存在, 并且 ( x, x0 , y0 ) ( x, x0 , y0 ) , x [a, b] 则称初值问题(3.1) '的解y ( x, x0 , y0 )在点( x0 , y0 )
前提 解存在唯一
y0 ( x0 , x, y )
证明 在(3.1)满足y ( x0 ) y0的解存在区间内任取一值x1 ,
y1 ( x1 , x0 , y0 ), 则由解的唯一性知, (3.1)过点( x1 , y1 )与过点( x0 , y0 )的解是同一条积分曲线 , 即此解也可写成: y ( x, x1 , y1 ), 且显然有: y0 ( x0 , x1 , y1 ),
2 定理1 (解对初值的连续依赖性定理)
方程 条件: I. f ( x , y ) 在G内连续且关于 y满足局部Lips.条件;
dy f ( x, y) , dx ( x, y) G R2 (1)
II. y ( x , x0 , y0 ) 是(1)满足( x0 , y0 ) G 的解,定义
C 时,有 S G G 覆盖定理,存在N,当G i i 1 对 0 ,记 y , S ), min , / 2 d (G
N
Ci
G
L max L1,, LN 则以 为半径的圆,当其圆心从S的
G
左端点沿S 运动到右端点时,扫过 的区域即为符合条件的要找区域D
0
义, 其中 a x0 b, 则对 0, ( , a, b) 0, 使当

常微分方程.第3版

常微分方程.第3版

常微分方程.第3版
出版社高等教育出版社
《常微分方程(第三版)》是由王高雄、周之铭、朱思铭、王寿松编,朱思铭、王寿松、李艳会修订,高等教育出版社2006年出版的“十一五”国家级规划教材、“十二五”普通高等教育本科国家级规划教材。

该书可作综合大学和师范院校数学与应用数学专业,以及师范专科学校数学系常微分方程课程的教材和各高校数学模型课程的参考资料。

全书共分七章,主要包括一阶微分方程、高阶微分方程、线性微分方程组、非线性微分方程、一阶线性偏微分方程、边值问题等内容。

最新常微分方程第三版1.1

最新常微分方程第三版1.1
dt
R(0) R0
这里 k0,是由R于 (t)随时间的增加.而减 解之得:
例2 RLC电路
如图所示的R-L-C电路. 它包含电感L,电阻R,电容C及电源 e(t). 设L,R,C均为常数,e(t)是时间t的已知函数.试求当 开关K合上后,电路中电流强度I与时间t之间的关系.
电路的基尔霍夫(Kirchhoff)第二定律: 在闭合回路中,所有支路上的电压的代数和为零. 设当开关K合上后, 电路中在时刻t的电流强度为I(t), 则电 流 经过电感L, 电阻R和电容的电压降分别为 L dI,RI, Q,
二、微分方程的研究内容
1、利用初等函数或初等函数的积分形式来导出微分方程的通 解,常微分方程的解包括通解和特解。能用初等积分求通解
的是非常少的,因此,人们转而研究特解的存在性问题。
2、利用数学分析或非线性分析理论来研究微分方程解的存在
性、延展性、解对初值的连续性和可微性问题。
3、微分方程解析理论 由于绝大多数微分方程不能通过求积分得到,而理论上又证
进 入 夏 天 ,少 不了一 个热字 当头, 电扇空 调陆续 登场, 每逢此 时,总 会想起 那 一 把 蒲 扇 。蒲扇 ,是记 忆中的 农村, 夏季经 常用的 一件物 品。 记 忆 中 的故 乡 , 每 逢 进 入夏天 ,集市 上最常 见的便 是蒲扇 、凉席 ,不论 男女老 少,个 个手持 一 把 , 忽 闪 忽闪个 不停, 嘴里叨 叨着“ 怎么这 么热” ,于是 三五成 群,聚 在大树 下 , 或 站 着 ,或随 即坐在 石头上 ,手持 那把扇 子,边 唠嗑边 乘凉。 孩子们 却在周 围 跑 跑 跳 跳 ,热得 满头大 汗,不 时听到 “强子 ,别跑 了,快 来我给 你扇扇 ”。孩 子 们 才 不 听 这一套 ,跑个 没完, 直到累 气喘吁 吁,这 才一跑 一踮地 围过了 ,这时 母 亲总是 ,好似 生气的 样子, 边扇边 训,“ 你看热 的,跑 什么? ”此时 这把蒲 扇, 是 那 么 凉 快 ,那么 的温馨 幸福, 有母亲 的味道 ! 蒲 扇 是 中 国传 统工艺 品,在 我 国 已 有 三 千年多 年的历 史。取 材于棕 榈树, 制作简 单,方 便携带 ,且蒲 扇的表 面 光 滑 , 因 而,古 人常会 在上面 作画。 古有棕 扇、葵 扇、蒲 扇、蕉 扇诸名 ,实即 今 日 的 蒲 扇 ,江浙 称之为 芭蕉扇 。六七 十年代 ,人们 最常用 的就是 这种, 似圆非 圆 , 轻 巧 又 便宜的 蒲扇。 蒲 扇 流 传 至今, 我的记 忆中, 它跨越 了半个 世纪, 也 走 过 了 我 们的半 个人生 的轨迹 ,携带 着特有 的念想 ,一年 年,一 天天, 流向长

常微分方程第三版1

常微分方程第三版1

所以每天共有 Ns(t)个健康者被感染.
于是病人增长率为
N di Nsi,
dt
又因s(t) i(t) 1,再由初始条件得
di i(1 i)
dt
i(0) i0
思索与练习
1.曲线上任一点旳切线与两坐标轴所围成旳三角形
旳面积都等于常数 a2 ,求该曲线所满足旳微分方程.
解: 过点(x, y)的切线的横截距与纵截距分别为:
第一章 绪论
常微分方程是当代数学旳一种主要分支,是人们处理多 种实际问题旳有效工具,它在几何,力学,物理,电子技术,自 动控制,航天,生命科学,经济等领域都有着广泛旳应用,本 章将经过几种详细例子,粗略地简介常微分方程旳应用,并 讲述某些最基本概念.
§1.1 微分方程模型
微分方程:
联络着自变量,未知函数及其导数旳关系式.
假设在疾病传播期内所考察地区的总人数N不变, 时间以天为计量单位, 假设条件为 :
(1)在时刻t人群中易感染者(健康)和已感染者 (病人)在总人数中所占比例分别为s(t)和i(t).
(2)每个病人每天有效接触的平均人数是, 称日接触率.
解: 根据题设,每个病人每天可使
s(t)个健康者变为病人.
因为病人总人数为 Ni(t),
物体旳温度与其所在旳介质旳温度之差成正比.
解: 设物体在时刻 t 旳温度为 u(t). 根据导数旳物理意义, 则
温度旳变化速度为 du . 由Newton冷却定律, 得到 dt
du dt
k (u
ua ),
其中 k 0 为百分比系数. 此数学关系式就是物体冷却过程旳
数学模型.
u 注意:此式子并不是直接给出 和 t 之间旳函数关系,而只是
解: 设t时该时镭元素的量为R(t),

常微分方程第三版答案.doc

常微分方程第三版答案.doc

习题1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。

解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x +y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为:y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dxdy =-y x y x +- 令x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2xy . 6. x dx dy -y+22y x -=0解:原方程为: dx dy =x y +x x ||-2)(1x y- 则令x y =u dx dy =u+ x dx du211u - du=sgnx x 1dx arcsin x y=sgnx ln|x|+c7. tgydx-ctgxdy=0解:原方程为:tgy dy =ctgx dx两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x ccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c. 8 dx dy +y e xy 32+=0解:原方程为:dx dy =y e y 2e x32 e x 3-3e 2y -=c.(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln x y令x y =u ,则dx dy =u+ x dxdu u+ x dxdu =ulnu ln(lnu-1)=-ln|cx| 1+ln x y =cy. 10. dxdy =e y x - 解:原方程为:dx dy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dxdu -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15: dxdy =(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dx dy =(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dx dy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2y x 2y +证明: 令xy=u,则x dx dy +y=dx du则dx dy =x 1dx du -2x u,有: u x dx du=f(u)+1 )1)((1+u f u du=x 1dx所以原方程可化为变量分离方程。

常微分方程第三版课后答案

常微分方程第三版课后答案

3t15t=e ( e +c)5=c e 3t +15e 2t 是原方程的解ds 13. =-s cost + sin2tdt 2cos tdt 13dt解:s=e ( sin2t e dt c )=esint( sin t coste sin t dt c) sin tsint sint= e( sin tee c )常微分方程 习题 2.2求下列方程的解1. dy = y sin x dx解: y=e ( sinxe dx c)x1 x=e x [- e x (sinx cos x )+c]= ce sint sint 1 是原方程的解。

4.dy xy e x x n,n 为常数. dx n解:原方程可化为:dy xy e x x n dx n方程的解。

=c e(sinx cos x )是原yendxx x ( e x x e n n dx n xdx c)2.dx+3x=e 2tnxx (ec)dt 解:原方程可化为:dx=-3x+edt是原方程的解 .所以:3dtx=ee2te 3dt5.dy +1 22x y 1=0 dx x 2dt c)ds23P(x) ,Q(x) (x 1)3 x1P(x)dxee=(x+1) 2((x 21) c)即: 2y=c(x+21+)(x+14) 为方程的通解。

8.d dy x =x y y 33dx x+y 1 2 解: xy 2dy y yP(y)dy P(y)dy( e Q(y)dy c) =y( 1*y 2dy c)y3= y cy23即 x=y +cy 是方程的通解 ,且 y=0也是方程的解。

2解:原方程可化为:dy dx1x 22xy 1x7.dy 2y (x 1)3dx x 1 解:dy 2y(x 1)3 dx x 1 (x 1)2(ln x 2e方程的通解为:ln x 2 1( e x dx c)1= x 2(1 ce x )P(x)dx P(x)dxy=e ( e Q(x)dx c) =(x+1)(=(x+1)((x 11)2 *(x+1)3dx+c) (x+1)dx+c) 是原方程的解.x=edx c )2则P(y)=y 1,Q(y) y 2方程的通解9. dy ay x 1,a 为常数 dx x x解:(P x) a ,Q(x) x 1xP(x )dxeedx方程的通解为:y=(x)dx P (x)dx(e Q(x)dx=xa(1 x+1dx+c)x a时,x 方程的通解为11.dy xy x 3y 3 dx 解:dy xyx 3y 3dx 两边除以3y c)d 3y xy 2 x 3 ydxdy2( xy 2 x 3)y=x+ln/x/+c当 y=cx+xln/x/-1当 a 1时, 方程 的通解为a 0,1时,方程的通解为y=cxa x 1 +-1- a adx 令y 2 z dz 2( xz x 3) dx P(x) 2x,Q(x) 2x 3 epx dx e2xdxe x 2 方程的通解为:z= e dx( e dxQ(x)dx c)10.x d d x y y x 3解:d dy x 1x y x 3P(x) 1,Q(x) x =e =xx(e x (2x 3)dx c) 22ce x1故方程的通解为y :2(x 2 ce x 1) 1,且y 0也是方程的解。

常微分方程(第三版)课件第一章

常微分方程(第三版)课件第一章
2u 2u 2u 8. 2 2 4 xy y
§1.1 Sketch of ODE n阶隐式方程 n阶显式方程 方程组
偏微分方程 偏微分方程 不是微分方程
9. f 2 ( x) sin x
§1.1 Sketch of ODE
微分方程模型举例/Modeling of ODE/
CH.1 Introduction
本章要求/Requirements/
能快速判断微分方程的类型;
掌握高阶微分方程及其初值问题的一般形式;
理解微分方程解的意义。
§1.1 Sketch of ODE
§ 1.1 微分方程概述/ Sketch of ODE/
微分方程理论起始于十七世纪末,是研究自然现象强有 力的工具,是数学科学联系实际的主要途径之一。
§ 1.2 基本概念/Basic Conception/
1. 常微分方程和偏微分方程 2. 一阶与高阶微分方程 3. 线性和非线性微分方程 4. 解和隐式解 5. 通解和特解 6. 积分曲线和积分曲线族 7. 微分方程的几何解释-----方向场
§1.2 Basic Conception
常微分方程与偏微分方程/ODE and PDE/
电子课件
常微分方程
Ordinary differential equation
王高雄 周之铭 朱思铭 王寿松编
常微分方程
Ordinary differential equation
• • • • • • • 第一章 第二章 第三章 第四章 第五章 第六章 第七章 绪 论 一阶微分方程的初等解法 一阶微分方程的解的存在定理 高阶微分方程 线性微分方程组 定性理论初步1 2 一阶线性偏微分方程
常微分方程的解的表达式中,可能包含一个或者几个常

高等数学(第三版)课件:常微分方程的基本概念

高等数学(第三版)课件:常微分方程的基本概念

y 1 (e2x e2x ). 4
y' |xx0 y'0 , 或 y'(x0 ) y'0 , 其中x0 , y0 , y'0都是已知值. 一般地,对于n阶微分方程需给出n个初值条件:
y(x0 ) y0,y'(x0 ) y'0 ,,y(n1) (x0 ) y0(n1) .
4.微分方程的解的几何意义 微分方程的解的图形称为微分方程的积分曲线.通
(11)
的特解.
解 将函数y C1e2x C2e2x分别求一阶及二阶导数, 得 y' 2C1e2x 2C2e2x,
y" 4C1e2x 4C2e2x,
把它们代入微分方程(10)的左端,得
y" 4 y 4C1e2x 4C2e2x 4C1e2x 4C2e2x 0
所以函数y C1e2x C2e2x是所给微分方程(10)的解. 又因这个解中含有两个独立的任意常数,任意常数
微分方程的基本概念
一、引例 二、微分方程的一般概念
一、引例
例1 一曲线通过点 (1,2),且该曲线上任意点P(x,y)处的切
线斜率等于该点的横坐标平方的3倍,求此曲线的方程.
解 设所求曲线的方程为y y(x).由导数的几何意义得
dy 3x2 , d(1,2),故y y(x)应满足条件:
解 设物体在时刻t所经过的路程为s s(t), 根据牛顿 第二定律可知,作用在物体上的外力mg(重力) 应等于物体的质量m 与加 速度的乘积,于是得
m d2s mg,即 d2s g
(5)
dt 2
dt 2
其中g是重力加速度.
将上式改写为
d dt
ds dt
g,
因此可得

常微分方程_高教出版社_第三版

常微分方程_高教出版社_第三版

第一章 绪论微分方程: 联系自变量、未知函数以及它的导数间的关系式。

自变量只有一个的称为常微分方程.§1.1 常微分方程模型例1 RLC 电路包括电感L , 电阻R 和电容C 及电源的电路称为RLC电路. 电流I 流经R,L,C 的电压降分别是RI, d d I Lt , Q C,其中Q 为电量, 它与电流的关系为d d QI t =. 基尔霍夫第二定律: 闭合回路中, 所有支路上的电压的代数和为零.如图所示的 RL 电路, 电感L , 电阻R 和电源电压E 为常数.设0t =时, 电路中没有电流. 开关S 合上后电流应满足的微分方程d 0d I E L RI t--=, 即d d I R E I t L L +=, 求出的()I t 应满足: 0t =时, 0I =.如果在0t t =时, 0I I =, 电源E 突然短路, 则E 变为0并且此后一直保持为0, 则电流I 满足方程d 0d I RI t L +=, 及条件0t t =时, 0I I =.再看如图所示的RLC 电路, 电阻R, 电感L 和电容C 都是常数. 电源()e t 是时间t 的已知函数.开关S 合上后, 电流I 应满足的微分方程()d d I Qe t L RI t C=++, 微分上式可得()22d d d 1d d d e t I R I I t L t LC L t++=, 如果()e t =常数, 则有22d d 10d d I R I t L t LC++=. 如果电阻R =0, 则有22d 10d I t LC+= 例2 数学摆解 设摆在铅垂线右边时所成夹角ϕ为正. 质点M 沿圆周切向速度v 可表示为d d v l tϕ=. 重力mg 沿圆周切向的分力为MP, 数值为sin mg ϕ-, 于是摆的运动方程为 d sin d vmmg tϕ=-, 即22d sin d gt l ϕϕ=-. 如果是微小振动, 即ϕ比较小时, 可取sin ϕϕ≈, 于是微小振动方程为22d 0d gt lϕϕ+=. 如果摆在一个粘性介质中运动, 设阻力系数为μ, 则摆的运动方程为22d d 0d d gt m t lϕμϕϕ++=. 如果沿摆的运动方向恒有一个外力()F t 作用于它, 则称受迫微小振动, 方程为()22d d 1d d g F t t m t l mlϕμϕϕ++=.摆的初始条件为0t =时, 0ϕϕ=,0d d tϕω=. 例3 人口模型Malthus 假定: 人口出生率是常数r , 则从t 到t t +∆这段时间人口数量()N t 的增长量为()()()N t t N t rN t t +∆-=∆于是人口数量满足d d NrN t = 改写为d d Nr t N= 两边积分可得ln N rt c =+ 这里c 为任意常数, 上式又可变形为rt N ce =这里c c e =, 注意0N =也是解, 所以c 可以是任意常数. 如果设初值条件为0t t =时, ()0N t N =代入上式可得00rt c N e -=, 即方程满足此初始条件的解为()()00r t t N t N e -=.Logistic 模型: 引入环境最大容纳量m N , 假定净相对增长率为()1m N t r N ⎛⎫- ⎪⎝⎭, 则人口模型变为d 1d m N N r N t N ⎛⎫=- ⎪⎝⎭. 例4 传染病模型设某地区在某种传染病传播期间总人数保持不变, 为常数n . 开始感染人数为0x , 在t 时刻的健康人数为()y t ,染病人数为()x t , 则有()()x t y t n +=设单位时间内一个病人能传染的人数和当时健康人数成正比, 比例常数为k , 称之为传染系数, 于是()()()d d x t ky t x t t= 注意到总人数不变, 可得()()0d ,0d xkx n x x x t=-= 此模型称为SI 模型, 即Susceptible, Infective.对无免疫性的疾病, 病人治愈后会再次感染. 设单位时间治愈率为μ, 则SI 模型应修正为 ()()()()()0d ,0d x t ky t x t x t x x tμ=-=, 即()()0d 1,0d x kx n x x kx n x x x t μσ⎛⎫=--=--= ⎪⎝⎭这个称为SIS 模型. 其中1μ是这个传染病的平均传染期,kσμ=是整个传染期内每个病人有效接触的平均人数(接触数).对于免疫性很强的疾病, 病人治愈后不会再被感染, 即在t 时刻的治愈后免疫人数为()r t , 称为移除者(Removed), 设治愈率l 为常数, 即()()d d r t lx t t= 注意到总人口不变, ()()()x t y t r t n ++=, 我们得到d d d d xkxy lx ty kxy t⎧=-⎪⎪⎨⎪=-⎪⎩这个模型称为SIR 模型.例5 两生物种群生态模型某环境中有两种鱼: 被食鱼与捕食鱼. 设t 时刻被食鱼的总数为()x t , 捕食鱼的总数为()y t , 如果没用捕食鱼, 则被食鱼的增长规律为d d xax t=, 设捕食率为b , 则有d d xax bxy t=- 而捕食鱼有一个自然减少率c , 被食鱼供养捕食鱼的能力为d , 则有d d ycy dxy t=-+ 这个称之为Volterra 捕食-被捕食模型.其更一般的模型为()()d d d d d xx a bx cy ty y ex fy t⎧=++⎪⎪⎨⎪=++⎪⎩ 从数学的角度归类:d d I R E I t L L +=, d d N rN t =可以写为d d yay c t+=. 而 ()22d d d 11d d d e t I R I t L t LC L t++= 和()22d d 1d d g F t t m t l ml ϕμϕϕ++= 可以写为()22d d d d y yb cy f t t t++=.§1.2 基本概念和常微分方程的发展历史1.2.1 常微分方程的基本概念(1) 常微分方程和偏微分方程如果在微分方程中自变量的个数只有一个, 则称为常微分方程; 自变量的个数多于一个的微分方程则称为偏微分方程.第一节中的例子都是常微分方程. 以下是偏微分方程2222220T T Tx y z ∂∂∂++=∂∂∂,224T Tx t∂∂=∂∂. 阶数: 微分方程中出现的最高阶导数的阶数称为微分方程的阶数. 一般的n 阶常微分方程具有如下形式:d d ,,,,0d d n n y y F x y x x ⎛⎫= ⎪⎝⎭ ,这里F 是d d ,,,,d d n n y y x y x x 的表达式, 且必含有d d n n yx, y 是未知函数, x 是自变量.此书中常微分方程也简称为微分方程或方程. (2) 线性和非线性如果方程d d ,,,,0d d n n y y F x y x x ⎛⎫= ⎪⎝⎭ 左端为y 及d d ,,d d n n y yx x的一次有理整式, 则称方程为n 阶线性微分方程. 一般n 阶线性微分方程的形式为()()()()1111d d d d d d n n n n n n y y ya x a x a x y f x x x x---++++= , 这里()()()1,,,n a x a x f x 是x 的已知函数.不是线性方程的方程统称为非线性方程. 例如22d sin d gt lϕϕ=- 是二阶非线性方程.(3) 解和隐式解如果函数()y x ϕ=代入方程d d ,,,,0d d n n y y F x y x x ⎛⎫= ⎪⎝⎭ 后能使它变为恒等式, 则称()y x ϕ=为方程的解. 如果关系式(),0x y Φ=决定的隐函数()y x ϕ=是方程的解, 则称(),0x y Φ=为方程的隐式解.例: 一阶微分方程d d y xx y=-的有解y =y =则关系式221x y +=就是此方程的隐式解.解和隐式解统称为方程的解而不加以区别. (4) 通解和特解含有n 个独立的任意常数12,,,n c c c 的解()12,,,,n y x c c c ϕ=称为方程d d ,,,,0d d n n y y F x y x x ⎛⎫= ⎪⎝⎭ 的通解. 同样可定义隐式通解. 它们统称为方程的通解而不加以区分. 为了确定微分方程一个特解所需的条件称为定解条件. 常见的定解条件是初始条件, 方程d d ,,,,0d d n n y y F x y x x ⎛⎫= ⎪⎝⎭ 的初始条件是指当0x x =时, ()()1110001d d ,,,d d n n n y y y y y y x x---=== ,()()110000,,,,n x y y y - 是给定的n +1个常数.求微分方程满足定解条件的解, 就是定解问题. 当定解条件为初始条件时, 称为初值问题, 这也是本书讨论的主要内容.满足初始条件的解称为微分方程的特解. 初始条件不同, 特解也不同.例: 人口模型的解rt N ce =含有一个任意常数c , 所以是d d NrN t=的通解, 而()()00r t t N t N e -=就是满足初始条件0t t =时, ()0N t N =的特解, 它可在通解中令00rt c N e-=得到.例: 二阶微分方程22d d 540d d y yy x x++= 的通解为412x x y c e c e --=+,这里12,c c 是任意常数, 满足初始条件()()d 002,1d y y x== 的特解为43x x y e e --=-. 5) 积分曲线和方向场 一阶微分方程()d ,d yf x y x= 的解()y x ϕ=代表xy 平面上一条曲线, 称为微分方程的积分曲线. 而通解(),y x c ϕ=则对应一族曲线, 称为积分曲线族.满足初始条件()00y x y =的解就是过点()00,x y 的积分曲线. 积分曲线上每一点(),x y 的切线斜率正好就是(),f x y . 反之, 如果有某条曲线, 它在点(),x y 的切线斜率是(),f x y , 则它就是一条积分曲线.方向场: 设(),f x y 的定义域为D , 在每个(),x y D ∈上画一个方向, 此方向的斜率等于(),f x y , 这种带有方向的区域称为方程()d ,d yf x y x=确定的方向场. 等斜线: 在方向场中, 方向相同的点的轨迹称为等斜线. ()d ,d yf x y x =的等斜线方程为(),f x y k =,其中k 是参数.例 d 1d yxy x=+. 利用Maple 模拟出的此方程的方向场:6) 微分方程组用两个及两个以上的关系式表示的涉及多个函数的导数的微分方程称为微分方程组.第二章 一阶微分方程的初等解法初等解法: 即将微分方程的求解问题转化为积分问题 注1 不一定要求用初等函数表示积分.注2 并不是所有的微分方程都有初等解法. §2.1 变量分离方程与变量变换2.1.1 变量分离方程形如()()d d y f x y x ϕ= 的方程, 称为变量分离方程, 这里()f x 和()y ϕ分别是x,y 的连续函数.解法: 如果()0y ϕ≠, 则方程可改写为()()d d y f x x y ϕ=, 两边积分, 得到()()d d y f x x c y ϕ=+⎰⎰,其中c 是任意常数, 而()d y y ϕ⎰和()d f x x ⎰则分别表示()1y ϕ和()f x 的一个原函数. 容易验证方程()()d d y f x x c y ϕ=+⎰⎰所确定的隐函数(),y y x c =就是原微分方程的通解.如果存在0y 使得()00y ϕ=, 则0y y =也是原方程的解, 它不包含的通解中, 须补上.例1 求解方程d d y x x y=-. 解 分离变量, 可得d d y y x x =-,两边积分 2222y x c =-+, 化简可得通解为22x y c +=.例2 求解两种群模型 ()()d d d y c x y x x a by -+=-, 0,0x y ≥≥. 解 分离变量 d d d c a x b y x y ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭, 积分得 ln ln c x dx a y by k -=-++化简为d c x a by xe y e k --=±考虑条件0,0x y ≥≥以及0y =是解, 可得方程的通解为 d c x a by x e y e k --=这里0k ≥是任意常数.例3 求解Logistic 模型 ()()00d 1,,0d m N N r N N t N N t t N ⎛⎫=-=≥ ⎪⎝⎭. 解 分离变量()d d d d m m m N N N N r t N N N N N N ==+--积分可得()ln ln m rt c N N N +=-- 其中c 为任意常数, 化简 ()1rt c m N e N-+=- 即 1m rtN N ce -=+ 这里c c e -=, 代入初值得 001rt m N ce N -=- 最后得到 ()()0011mN r t t mN N N e --=+-.例4 求方程()d d y P x y x=的通解, 其中()P x 是x 的连续函数. 解 分离变量 ()d d y P x x y=, 两边积分()ln d y P x x c =+⎰ , 即()d P x x c y e +⎰= , 于是()d P x x c y e e ⎰=±⋅ ,令c c e =± , 于是()d P x x y ce ⎰=. 此外0y =也是方程的解, 但它已包括在上述解中. 故通解为()d P x x y ce ⎰=, 其中c 为任意常数.2.1.2 可化为变量分离方程的类型介绍两种简单情形:1) 形如 d d y y g x x ⎛⎫= ⎪⎝⎭的方程称为齐次方程, 这里()g u 是u 的连续函数.求解方法: 作变量变换 y u x= 于是 d d d d y u x u x x=+, 将上两式代入原方程可得 ()d d u x u g u x+=, 整理后可得 ()d d g u u u x x-=, 这是一个关于u,x 的变量分离方程, 可求解, 再代回原来的变量即可.例5 求解方程d tan d y y y x x x=+. 解 这是齐次方程, 令y u x =, d d d d y u x u x x =+, 代入原方程d tan d u x u u u x +=+, 即d tan d u u x x=, 分离变量 d cot d x u u x=, 两边积分 ln sin ln u x c=+ , c 是任意常数, 整理可得sin c u e x =±⋅ ,令c c e =± , 可得sin u cx =, 此外方程还有解tan 0u =, 此解已包括在上式中, 故通解为sin u cx =, c 是任意常数, 代回原来的变量可得到原方程的通解为 sin y cx x=, c 是任意常数. 例6求解方程()d 0d y x y x x+=<. 解 将方程改写为d d y y x x= ()0x <, 这是齐次方程, 令y u x =, d d d d y u x u x x =+, 代入原方程得d d u xx=分离变量d x x =, 两边积分()ln x c =-+, 即()()()2ln ln 0u x c x c =-+-+>⎡⎤⎣⎦,这里c 是任意常数, 此外0u =也是方程的解, 它不包括在通解中.代回原来的变量, 得到原方程的通解为()()()2ln ln 0y x x c x c =-+-+>⎡⎤⎣⎦及0y =.或者也可将方程的解表示为 ()()()2ln ,ln 0,0,ln 0.x x c x c y x c ⎧-+-+>⎡⎤⎪⎣⎦=⎨-+≤⎪⎩2) 形如111222d x a x b y c =++ 的方程也可化为变量分离方程. 分三种情形讨论.(1) 120c c ==的情形此时方程可化为 11112222d d yx y x a b a x b y y y g x a x b y x a b ++⎛⎫=== ⎪++⎝⎭ , 从而变为一个齐次方程求解. (2) 11220a b a b =, 即1122a b a b =的情形. 设上面的比值为k , 即1122a b k a b ==, 则方程可写为 ()()22122222d d k a x b y c y f a x b y x a x b y c ++==+++, 令22a x b y u +=, 则有()22d d u a b f u x=+, 这是一个关于u , x 的变量分离方程, 可求解. (3) 11220a b a b ≠, 及1c , 2c 不全为零的情形. 此时方程组11122200a x b y c a x b y c ++=⎧⎨++=⎩ 有解, 设解为(),αβ. 显然()(),0,0αβ≠, 否则与1c , 2c 不全为零矛盾.可通过坐标平移将原点移至(),αβ, 可令,X x Y y αβ=-⎧⎨=-⎩, 从而原方程化为1122d X a X b Y=+, 又转化为情形(1). 对于方程111222d d a x b y c y f x a x b y c ⎛⎫++= ⎪++⎝⎭, 也可用同样方法求解.此外, 下面各种方程也可通过适当的变量变换化为变量分离方程求解.()d d y f ax by c x =++ 令ax by c u ++=. 则()d d d d u y a b a bf u x x=+=+ ()()d d 0yf xy x xg xy y +=令xy u =, 则 ()()()()d d 11d d f u f u u y u y x y x x g u x g u ⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. ()2d d y x f xy x= 令xy u =, 则 ()()()d d 11d d u y y x y f u u f u x x x x=+=+=+. 2d d y y xf x x ⎛⎫= ⎪⎝⎭令2y u x =. ()2d d 2d d y u xu x xf u x x=+=, 方程变为()2d d f u u u x x-= ()()()(),d d ,d d 0M x y x x y y N x y x y y x ++-=, 其中M, N 为x, y 的齐次函数. 令y u x =. d d d d y u u x x x=+,方程变为12d d 10d d y y y y y y g g x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫++-= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 代入可得()()12d d 10d d u u g u u u x g u u x u x x ⎛⎫⎛⎫⎛⎫++++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 整理可得()()()()()21121d d u g u u x x ug u g u +=-+ 例7 求解方程d 1d 3y x y x x y -+=+-. 解 解方程组1030x y x y -+=⎧⎨+-=⎩, 解得1,2x y ==, 令12X x Y y =-⎧⎨=-⎩原方程变为 d d Y X Y X X Y-=+ 再令 Y u X=, 即 Y uX = 方程又变为 d 1d 1u u u X X u-+=+, 分离变量得 2d 1d 12X u u X u u+=-- 两边积分 22ln ln 21X u u c=-+-+ 整理得 ()2221c X u u e +-=±令1c c e =± , 则有()22121X u u c +-=代回原变量2212Y XY X c +-=, ()()()()22122121y x y x c -+----= 又2210u u +-=也是原方程的解, 故整理上式可得原方程的通解为22262y xy x y x c +---=这里c 为任意常数.2.1.3 应用举例例7 电容器的充电和放电如图所示的R-C 电路, 开始电容C 没有电荷, 其两端电压为零, 开关合上1后, 电容开始充电, 电压逐渐升高, 充电完毕后, 合上开关2, 电容开始放电, 求充放电过程中电容C 两端的电压c u 随时间t 的变化规律.解 对充电过程, 由基尔霍夫第二定律c u RI E +=,由于c Q Cu =, 微分得到 d d d d c u Q I C t t==, 代入可得d d c c u RC u E t+=, 这是c u 满足的微分方程, 分离变量 d d c c u t u E RC=-- 两边积分 11ln c u E t c RC-=-+ 即 1112RC RC t t c c u E e e c e ---=±=,代入初始条件0,0c t u ==可得2c E =-, 于是 ()11RC t c u E e -=-.函数图象如下放电过程类似可讨论.例8 探照灯反射镜面的形状.探照灯要求将点光源射出的光线平行反射出, 求反射镜面的形状.解 将点光源设为坐标原点, 设所求曲面为曲线 ()0y f x z =⎧⎪⎨=⎪⎩绕x 轴旋转而成的. 下面求曲线()f x , 如图.过曲线()y f x =上任一点(),M x y 做切线NT , 由反射定律可得12αα=从而 OM ON =切线斜率为 2d tan d y MP x NPα==,又OP x =, MP y =, OM =可得()y f x =满足的微分方程d d y x = 此为齐次方程, 可令y u x =进行求解. 此外, 齐次方程还可令x v y=, 此时x yv =, 微分可得d d d d x v v y y y=+ 代入方程得到d sgn d v v y v y y+=+整理可得d sgn y y y =ln x c ⎛⎫=+ ⎪⎝⎭ 注意到0y >, 可解得(y c v = 代入x v y =可得2y cx =+,整理得 ()22y c c x =+, c 为任意常数.此曲线为抛物线, 反射镜面即为旋转抛物面()222y z c c x +=+.§2.2 线性方程与常数变易法一阶线性微分方程()()()d 0d y a x b x y c x x ++= 当()0a x ≠时可写为 ()()d d y P x y Q x x=+, 下面主要讨论这种形式, 这里()P x 和()Q x 都是连续函数.当()0Q x =时, 方程 ()d d y P x y x= 称为一阶齐线性方程. 若()0Q x ≠称为一阶非齐线性方程.一阶齐线性方程为变量分离方程, 上节例3已求得其通解为()d P x x y ce ⎰=, 其中c 为任意常数.下面讨论一阶非齐线性方程的求解问题. 设想两种方程( 齐次与非齐次) 的解必有某种联系或者形式上的相似. 但是()d P x x y ce ⎰=必不可能是一阶非齐线性方程的解. 设想c 不是常数, 而是一个关于x 的函数()c x , 这是一个待定的函数. 于是, 将()()d P x x y c x e ⎰=代入到一阶非齐线性方程: ()()()()()()()()()d d d d d P x x P x x P x x c x e c x P x e P x c x e Q x x⎰⎰⎰+=+ 即()()()d d d P x x c x Q x e x-⎰= 积分后可得()()()d d P x x c x Q x e x c -⎰=+⎰ 代入得到()()()d d d P x x P x x y e Q x e x c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 这就是非齐线性方程的通解. 此法称为常数变易法.例1 求方程()()1d 11d n x y x ny e x x++-=+的通解, 其中n 为常数.解 将方程改写为 ()d 1d 1n x y n y e x x x =+++, 先求对应的齐次方程 d d 1y n y x x =+ 的通解, 由公式可知通解为()1n y c x =+.下面应用常数变易法, 令 ()()1n y c x x =+ 微分之可得()()()()1d d 11d d n n c x y x n x c x x x-=+++ 代入原方程()d d x c x e x= 积分可得()x c x e c=+ 因此非齐次方程的通解为()()1n x y x e c =++ 其中c为任意常数. 例2 求方程2d d 2y y x x y =-的通解. 解 将方程改写为 d 2d x x y y y=-, 这是一个关于未知函数x 的非齐线性方程.其对应的齐次方程 d 2d x x y y= 的通解是2x cy =.应用常数变易法, 令()2x c y y =并代入方程可得 ()d 1d c y y y=- 积分可得()ln c y y c=-+ 从而原方程的通解为()2ln x y c y =- 这里c是任意常数. 伯努利方程:()()d d n y P x y Q x y x=+ 这里()(),P x Q x 都是连续函数, 且0,1n ≠.可以利用变量变换将伯努利方程化为线性方程. 当0y ≠时, 用n y -乘方程两边()()1d d n n y y y P x Q x x --=+, 令1n z y -=可得 ()d d 1d d n z y n y x x-=- 于是原方程化为 ()()()()d 11d z n P x z n Q x x=-+- 这是一个关于z,x 的线性方程, 可求通解. 此外方程还有解0y =.例3 求方程2d 6d y y xy x x=-的通解. 解 这是2n =时的伯努利方程. 令1z y -=可得 2d d d d z y y x x-=- 代入原方程 d 6d z z x x x=-+, 这是线性方程, 它的通解为 268c x z x =+ 代回原变量y 得到2618c x y x =+ 或688x x c y -= 这里c 是任意常数, 此外方程还有解0y =.§2.3 恰当方程与积分因子2.3.1 恰当方程将一阶方程 ()d ,d y f x y x= 写成微分形式(),d d 0f x y x y -=或写成具有对称形式的一阶微分方程()(),d ,d 0M x y x N x y y +=, 这里假设M, N 是x, y 的连续函数, 且具有连续的一阶偏导数.如果方程左端恰好是某个二元函数(),u x y 的全微分, 即()()(),d ,d d ,d d u u M x y x N x y y u x y x y x y ∂∂+≡≡+∂∂ 则称为恰当方程.恰当方程的通解是(),u x y c =, c 是任意常数.下面将解决两个问题(1) 如何判定方程是恰当方程?(2) 如果方程是恰当方程, 如何求出函数(),u x y ? 分析:如果()(),d ,d 0M x y x N x y y +=是恰当方程, 则有 ,u u M N x y ∂∂==∂∂,上两式对y, x 分别再求偏导 22,u M u N y x y x y x∂∂∂∂==∂∂∂∂∂∂ 由假设上面的混合偏导相等, 于是 M N y x∂∂=∂∂ 这是恰当方程的必要条件. 下证这也是恰当方程的充分条件, 即证明当方程满足此条件时能找到函数(),u x y 满足 ,u u M N x y∂∂==∂∂. 首先积分u M x ∂=∂, 得到 ()(),d u M x y x y ϕ=+⎰这里()y ϕ是y 的任意可微函数, 现在选择()y ϕ使u 能满足u N y∂=∂, 即 ()()d ,d d y M x y x N y yϕ∂+=∂⎰, 所以 ()()d ,d d y N M x y x y yϕ∂=-∂⎰. 上式右端与x 无关, 事实上右端对x 的偏导数()()(),d ,d ,d 0N N M x y x M x y x x y x x y N M x y x x y x N M x y ⎡⎤⎡⎤∂∂∂∂∂-=-⎢⎥⎢⎥∂∂∂∂∂⎣⎦⎣⎦∂∂∂⎡⎤=-⎢⎥∂∂∂⎣⎦∂∂=-≡∂∂⎰⎰⎰ 这样()y ϕ就可以积分得到()(),d d y N M x y x y y ϕ⎡⎤∂=-⎢⎥∂⎣⎦⎰⎰ 即求得()(),d ,d d u M x y x N M x y x y y ⎡⎤∂=+-⎢⎥∂⎣⎦⎰⎰⎰, 于是恰当方程的通解即为()(),d ,d d M x y x N M x y x y c y ⎡⎤∂+-=⎢⎥∂⎣⎦⎰⎰⎰ 这里c 是任意常数.例1 求()()222336d 64d 0x xy x x y y y +++=的通解.解 这里2236M x xy =+, 2364N x y y =+ 12,12M N xy xy y x∂∂==∂∂ 所以这是一个恰当方程.现求u 使得它同时满足 2236u x xy x∂=+∂ 和 2364u x y y y ∂=+∂ 积分上面第一式可得()3223u x x y y ϕ=++再对y 求导 ()223d 664d y u x y x y y y yϕ∂=+=+∂ 所以()3d 4d y y y ϕ= 积分可得()4y y ϕ=所以得到32243u x x y y =++ 方程的通解为32243x x y y c ++=,这里c 是任意常数.恰当方程可以采用”分项组合”的方法. 此法须熟记一些已知的二元函数的全微分, 如()d d d y x x y xy += 2d d d y x x y x y y ⎛⎫-= ⎪⎝⎭2d d d y x x y y x x -+⎛⎫= ⎪⎝⎭ d d d ln y x x y x xy y ⎛⎫-= ⎪⎝⎭22d d d arctan y x x y x x y y ⎛⎫-= ⎪+⎝⎭ 22d d 1d ln 2y x x y x y x y x y ⎛⎫--= ⎪-+⎝⎭例2 用”分项组合”的办法求例1. 解 分组23223d 4d 6d 6d 0x x y y xy x x y y +++= 即342222d d 3d 3d 0x y y x x y +++=再写成()3422d 30x y x y ++= 于是通解为34223x y x y c ++= 这里c 是任意常数.例3 求解方程211cos d d 0x x x y y y y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭. 解 因为2211,M N y y x y ∂∂=-=-∂∂, 故方程是恰当方程, 分项组合:211cos d d d d 0x x x y x y y y y ⎛⎫++-= ⎪⎝⎭ 即2d d dsin d ln 0y x x y x y y -++= 或 d sin ln 0x x y y ⎛⎫++= ⎪⎝⎭ 所以方程的通解是 sin ln x x y c y ++= 这里c 是任意常数.2.3.2 积分因子这一部分介绍如何将一个非恰当方程转化为恰当方程.如果存在连续可微的函数(),0x y μ≠使得()()()(),,d ,,d 0x y M x y x x y N x y y μμ+= 成为一个恰当方程, 则称(),x y μ为方程()(),d ,d 0M x y x N x y y +=的积分因子.注: 理论上微分方程有解必存在积分因子且不唯一, 从而通解也可能有不同形式.(),x y μ成为方程()(),d ,d 0M x y x N xy y +=的积分因子的充要条件是()()M N y xμμ∂∂=∂∂ 即 M N N M x y y x μμμ⎛⎫∂∂∂∂-=- ⎪∂∂∂∂⎝⎭这是一个关于μ的一阶线性偏微分方程, 事实上, 解这个方程可能会比解原方程更困难. 但对于特殊形式的μ求解会相对容易许多.如果方程存在只与x 有关的积分因子()x μμ=, 则0yμ∂=∂, 这时上述关于μ的一阶线性偏微分方程变为d d M N N x y x μμ⎛⎫∂∂=- ⎪∂∂⎝⎭ 即 d d M N y x x Nμμ⎛⎫∂∂- ⎪∂∂⎝⎭= 于是方程有只与x 有关的积分因子的充要条件是 ()M N y x x Nψ∂∂-∂∂= 这里()x ψ是仅为x 的函数, 如果此条件成立, 则可积分求得方程的一个只与x 有关的积分因子()d x x e ψμ⎰=.同样, 方程有只与y 有关的积分因子的充要条件是 ()M N y x y Mϕ∂∂-∂∂=- 积分可求得方程的一个只与y 有关的积分因子 ()d y y e ϕμ⎰=.例4 试用积分因子法解一阶线性方程.解 将一阶线性方程改写为()()d d 0P x y Q x x y +-=⎡⎤⎣⎦设()()(),M x y P x y Q x =+, (),1N x y =-, 计算可得()M N y x P x N ∂∂-∂∂=- 因此方程有只与x 有关的积分因子()d P x x e μ-⎰=, 用它乘以方程两边得()()()()()d d d d d d 0P x x P x x P x x P x e y x e y Q x e x ---⎰⎰⎰-+= 即()()()()d d d d d d 0P x x P x x P x x y e e y Q x e x ---⎰⎰⎰+-=或()()()d d d 0P x x P x x ye Q x e --⎛⎫⎰⎰-= ⎪⎝⎭⎰ 故通解为()()()d d d P x x P x x ye Q x e x c --⎰⎰-=⎰或改写为()()()d d d P x x P x x y e Q x e x c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰. 例5求解方程d d y x x y =-+()0y >.解 改写方程d d x x y y x +=即 ()221d 2x y x +=容易看出此方程有积分因子μ=, 用它乘以方程两边22d d x y x +=或写为d x =故通解为x c =+ 或()22y c c x =+.例6 求解方程()d d 0y x y x y +-=解 设M y =, N y x =-,1M y ∂=∂, 1N x ∂=-∂, 此方程不是恰当方程.方法1 因为2M N y x M y∂∂-∂∂=--, 故方程有只与y 有关的积分因子 ()2d 2ln 21y y y e e y μ--⎰=== 用它乘以方程的两边得到211d d d 0x x y y y y y+-= 或 2d d d 0y x x y y y y -+= 故通解为 ln x y c y+=. 方法2 将方程改写为d d d y x x y y y -=-由公式知左端有多种积分因子, 其中只和y 有关的积分因子有21y μ=, 用它乘以方程两边可得同样结果. 方法3 改写方程为 d d y y x x y=- 这是一个齐次方程, 令y u x =可求解. 方法4 改写方程为 d 1d x x y y=-这是一个x 作为未知函数的线性方程, 直接用公式可求解. §2.4 一阶隐方程与参数表示一阶隐微分方程的一般形式(),,0F x y y '=如果能够解出y ', 则方程可以采用前面介绍的方法处理. 如果不能解出y '或者解出后形式太复杂, 则可考虑利用变量变换将其变为导数解出的方程. 本节主要介绍一下四种类型1) (),y f x y '= 2) (),x f y y '= 3) (),0F x y '= 4) (),0F y y '=.2.4.1 可以解出y (或x )的方程1) 先讨论形如 d ,d y y f x x ⎛⎫= ⎪⎝⎭的方程, 假设f 有连续偏导数. 引进参数d d y p x =, 则方程变为 (),y f x p =两边对x 求导可得 d d f f p p x p x∂∂=+∂∂ 这是关于p 的导数解出的方程, 若已求得其通解为 (),p x c ϕ=则原方程的通解为()(),,y f x x c ϕ=.若求得通解为 (),x p c ψ=,则原方程的通解为如下参数形式()()(),,,x p c y f p c p ψψ=⎧⎪⎨=⎪⎩若求得通解为(),,0x p c Φ=,则原方程的通解为()(),,0,x p c y f x p Φ=⎧⎪⎨=⎪⎩ 其中p 是参数, c 是任意常数.例1 求方程3d d 20d d y y x y x x ⎛⎫+-= ⎪⎝⎭的解. 解 解出y , 并令d d y p x =, 得到 32y p xp =+两边对x 求导 2d d 322d d p p p p x p x x=++ 整理得23d 2d d 0p p x p p x ++=当0p ≠时, 用p 乘以方程两边3223d d d 0p p x p p x ++=即 423d 04p xp ⎛⎫+= ⎪⎝⎭ 故通解为 4234p xp c += 解出x 并代入32y p xp =+可得 ()43342c p y p p -=+ 因此原方程的参数式的通解为22334212c x p p c y p p ⎧=-⎪⎪⎨⎪=-⎪⎩ 0p ≠ 当0p =时, 直接计算可知0y =也是原方程的解.例2 求方程22d d d d 2y y x y x x x ⎛⎫=-+ ⎪⎝⎭的解. 解 令d d y p x =, 得到 222x y p xp =-+ 两边对x 求导 d d 2d d p p p p x p x x x=--+ 即()d 120d p p x x ⎛⎫--= ⎪⎝⎭ 由d 10d p x-= 解得p x c =+, 并得到原方程的通解 222x y cx c =++ 又20p x -=可解得2x p =, 代入后可解得原方程的另一个解 24x y = 此解和通解中每一条曲线相切, 称之为奇解, 下一章将详细介绍.2) 形如 d ,d y x f y x ⎛⎫= ⎪⎝⎭的方程解法与1)类似. 引入参数d d y p x =, 方程变为 (),x f y p =两边对y 求导再以d 1d x y p=代入得 1d d f f p p y p y∂∂=+∂∂ 此为关于p 的导数解出方程, 可求解, 设通解为 (),,0y p c Φ=则原方程的通解为()(),,,0x f y p y p c =⎧⎪⎨Φ=⎪⎩ 例3 求解例1中的方程3d d 20d d y y x y x x ⎛⎫+-= ⎪⎝⎭. 解 解出x , 并以d d y p x =代入 ()3,02y p x p p-=≠ 两边对y 求导()()232d d d d 1312p p y y p p y p p p ---= 即3d d 2d 0p y y p p p ++=积分可得42yp p c +=因而 42c p y p-= 代入得 4234c p x p -=, 于是原方程的通解为424342c p x p c p y p ⎧-=⎪⎪⎨-⎪=⎪⎩ 此外还有0y =.2.4.2 不显含y (或x )的方程3) 形如(),0F x y '=的方程, 可令d d y p y x'==, 则(),0F x p =代表xp 平面上一条曲线, 设这条曲线有参数式 ()(),x t p t ϕψ==因为d d y p x =, 代入上面的参数式可得()()d d y t t t ψϕ'=积分可得()()d y t t t c ψϕ'=+⎰ 于是原方程的参数式通解为()()(),d .x t y t t t c ϕψϕ=⎧⎪⎨'=+⎪⎩⎰ 例4 求解方程3330x y xy ''+-=.解 令y p tx '==, 方程变为333230x t x x t +-=可得 331t x t =+ 从而2331t p t =+ 于是()()3233912d d d 1t t y tx x t t -==+积分可得()32331421t y c t +=++ 因此原方程的通解为 ()332331314.21t x t t y c t ⎧=⎪+⎪⎨+=+⎪⎪+⎩4) 形如(),0F y y '=可采用同样方法求解. 令p y '=, 将(),0F y p =表示为参数式()(),y t p t ϕψ==由d d y p x =可得()()d d t t t x ϕψ'=, 所以()()d d t x t t ϕψ'=积分得()()d t x t c t ϕψ'=+⎰于是原方程的通解为()()()d .t x t c t y t ϕψϕ'⎧=+⎪⎨⎪=⎩⎰ 此外若(),00F y =有实根y k =, 则y k =亦是原方程的解.例5 求解方程()()2212y y y ''-=-. 解 令2y yt '-=, 代入原方程得 ()2221y yt y t -=即 1y t t=+故21y t '=-所以2d 1d d y x t y t==-', 积分得1x c t=+于是原方程的通解为11x c ty t t ⎧=+⎪⎪⎨⎪=+⎪⎩此外0y '=时原方程变为24y =, 所以2y =±也是原方程的解.§2.5 习题选讲1. 求下列方程的解(1) d sin cos 1d yy x x x+= 解 方程变形为sin d cos d d y x x x y x +=, 左端寻找只和x 有关的积分因子2cos x -, 积分可得2cos d tan cos yx x c x c x-=+=+⎰. (2) 2d d d y x x y x y y -=. 解 方程两边同乘以21x , 可得 2d d d y x x yy y x -=,即d d y y y x ⎛⎫-= ⎪⎝⎭, 通解为212y y c x +=. (3)d 4sin 1d y ye x x-=- 解 方程变为()4sin d d 0y yx e x e y --=, 因为1M Ny x N∂∂-∂∂= 故方程有积分因子x e , 用x e 乘以方程两边可得4sin d d d 0x y x x y e x x e e x e e y --=,即 4sin d x y xe e e x x c =+⎰,所以通解为()2sin cos y x e x x ce -=-+.(5) 22d d 0xxy y xye y x x e y ⎛⎫+-= ⎪⎝⎭解 方程可变形为齐次方程22d d xyxyy xye y x x e+=. 令x u y=, 则x uy =, d d d d x u u y y y =+,代入方程可得2d d 1u uu u e u y y ue +=+, 化简并且变量分离1d d u y e u u y ⎛⎫+=- ⎪⎝⎭, 两边积分可得 ln ln uu e y c +=-+代入原来的变量ln x yex c +=.(6) ()1d d 0xy y x x y +-= 解 方程改写为2d d d xy x x y y x =-容易看出有积分因子2y -.(7) ()()221d 2d 0x y x x y y +-++-= 解 令u x y =+d d d u x y =+, 方程化为()()()()()()()21d 2d 21d 2d d 1d 2d 0u x u yu x u u x u x u u -+-=-+--=++-= 当1u ≠-时, 变量分离可得2d d 1u u x u -=-+, 积分可得3ln 1u u x c -+=-+, ()31u x c e u +-=+代入u 得到方程通解()321x y x y ce +++=,另外1u =-即1x y +=-也是解, 包含于通解中.(8) 23d d y y y x x x=+(伯努利方程)(9)d 32d yy x x=+-(线性方程) (10) 2d d 1d d y y x x x ⎛⎫=+ ⎪⎝⎭(x 可解出的隐方程) (11)2d 1d 3y x y x x y -+=++ 解 方程化为()()21d 3d 0x y x x y y -+-++=,可验证M Ny x∂∂=∂∂, 此为恰当方程. (12) d 1d y x y e xe x -⎛⎫+=⎪⎝⎭解 方程变形为d d d y y xe x e x xe x --+=容易看出方程有积分因子x e -.(13) ()22d 2d 0x y x xy y +-=(14)d 1d yx y x=++ (15) d d yx y y e x x=+(16) ()d 112d y yx e x-++= 解 方程变形为()()12d 1d 0ye x x y --++=方程有只和y 有关的积分因子.(17) ()()2d 1d 0x y x y x y -++=解 方程改写为1d 1d 11y x y y x x x -=-++ 此为1n =-的伯努利方程.(18) ()2234d 21d 0x y x x y y +-=提示: 寻找只和y 有关的积分因子.22M Nx y y x∂∂-=∂∂, 12M Ny x M y∂∂-∂∂=--,方程有积分因子12y -.(19) 2d d 240d d y y x y x x x ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭. (20) 22d 11d y y x ⎡⎤⎛⎫-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦解 令sin y p t '==, 代入得sec y t =±, 由d sin d yt x=可得 sec tan d sin d t t t t x ±=, 整理得2sec d d t t x ±=, 积分得tan x t c =±+消去参数可得()221y x c =++, 此外还有解1y =±.第三章 一阶微分方程的解的存在定理在实际应用当中, 如果能够找出方程的通解表达式, 则可以通过它了解和掌握所研究对象的性质. 但是, 很多一阶方程并不能用初等解法求出通解, 而且实际问题中很多情况下都是要求满足初始条件的解, 因此研究初值问题的解的存在和唯一性具有重要的地位.反例 解存在而不唯一的例子, 方程d d yx=()0,0的解不止一个,0y =和2y x =都是解.解的存在唯一性的意义: 在解的近似计算中提供的理论依据. 在初值问题中对初值测量偏差所产生的影响.§3.1 解的存在唯一性定理与逐步逼近法3.1.1 存在唯一性定理1) 先考虑导数解出的一阶微分方程()d ,d yf x y x= 这里(),f x y 定义在矩形域00:,R x x a y y b -≤-≤上的连续函数.利普希兹条件 如果存在常数0L >使得不等式()()1212,,f x y f x y L y y -≤-对所有()()12,,,x y x y R ∈都成立, 则称函数(),f x y 在R 上满足利普希兹条件, L 成为利普希兹常数.定理1 如果(),f x y 在R 上连续且关于y 满足利普希兹条件, 则方程()d ,d yf x y x=存在唯一的解()y x ϕ=, 定义于区间0x x h -≤上, 连续且满足初始条件()00x y ϕ=这里()(),min ,,max ,x y Rbh a M f x y M∈⎛⎫== ⎪⎝⎭. 证明思路 皮卡逐步逼近法 首先将为微分方程转化为积分方程()00,d xx y y f x y x =+⎰再任取一个连续函数()0x ϕ代入上面积分方程右端的y , 得到()()()0100,d xx x y f x x x ϕϕ≡+⎰,则()1x ϕ也是连续函数, 如果()()10x x ϕϕ≡, 则()0x ϕ就是积分方程的解, 否则继续把()1x ϕ代入积分方程右端的y ,()()()0201,d xx x y f x x x ϕϕ≡+⎰如果()()21x x ϕϕ≡, 则()2x ϕ就是积分方程的解, 否则可以继续此步骤从而得到一个连续函数列()()()01,,,,n x x x ϕϕϕ可以证明上面的函数列有极限函数()x ϕ, 而它正是积分方程的解. 函数列中的第n 项称为n 次近似解.命题 1 设()y x ϕ=是方程()d ,d yf x y x=的定义于区间00x x x h ≤≤+上, 且满足初始条件()00x y ϕ=的解, 则()y x ϕ=是积分方程()00,d xx y y f x y x =+⎰定义于区间00x x x h ≤≤+上的连续解, 反之亦然.取()00x y ϕ=, 构造皮卡逐项逼近函数列()()()()00001,d x nn x x y x y f ϕϕξϕξξ-⎧=⎪⎨=+⎪⎩⎰ 命题 2 对所有的n , 上式中的()n x ϕ在[]00,x x h +上有定义、连续且满足不等式()0n x y b ϕ-≤.命题3 函数列(){}n x ϕ在[]00,x x h +上是一致收敛的.设()()lim n n x x ϕϕ→∞=, 则()x ϕ连续且()0x y b ϕ-≤. 命题 4 ()x ϕ是积分方程()00,d xx y y f x y x =+⎰定义于[]00,x x h +上的连续解.命题 5 设()x ψ是积分方程()00,d xx y y f x y x =+⎰定义于[]00,x x h +上的一个连续解, 则()()x x ϕψ≡.命题1——5即为定理1的证明.注1 利普希兹条件常用(),f x y 在R 上有对y 的连续偏导代替. 此时, 在R 上,fL y∂≤∂,()()()()212121212,,,f x y y y f x y f x y y y yL y y θ∂+--=-∂≤-注 2 对于线性方程()()d d yP x y Q x x=+, 当()P x 和()Q x 都连续时, 则定理条件就能满足.2) 现在考虑一阶隐方程(),,0F x y y '=根据隐函数定理, 如果在()000,,x y y '的某一邻域内F连续且()000,,0F x y y '=, 而0Fy∂≠'∂, 则y '必可唯一的看成是x, y 的函数(),y f x y '=且导数f FFy y y∂∂∂=-'∂∂∂ 也是连续有界的, 这样(),f x y 即满足利普希兹条件, 于是可得到下面定理.定理2 如果在()000,,x y y '的某一邻域中: 1. (),,F x y y '对所有变元连续, 且存在连续偏导数;2. ()000,,0F x y y '=;3.()000,,0F x y y y '∂≠'∂ 则方程(),,0F x y y '=存在唯一解()0,y y x x x h =-≤满足初始条件()()0000,y x y y x y ''==. 3.1.2 近似计算和误差估计§3.2 解的延拓上节中解的存在唯一性定理是局部性的, 即解只在初值附近较小领域存在. 本节讨论如何延拓解的区间至最大范围.解的延拓定理 如果方程()d ,d yf x y x=右端的函数(),f x y 在有界区域G 中连续, 且在G 内关于y 满足局部利普希兹条件, 那么此方程通过G 内任何一点()00,x y 的解()y x ϕ=可以延拓, 直到点()(),x x ϕ任意接近区域G 的边界.推论 如果G 是无界区域, 在上面解的延拓定理的条件下, 方程通过点()00,x y 的解()y x ϕ=可以延拓, 以向x 增大的方向来说, 有两种情况: (1) 解()y x ϕ=可以延拓到区间0[,)x +∞;(2) 解()y x ϕ=只可以延拓到区间0[,)x m , m 为有限数,则当x 趋向于m 时, 或者y 无界, 或者()(),x x ϕ趋向于区域的边界.如果函数(),f x y 在整个xy 平面上定义、连续且有界, 同时存在关于y 的一阶连续偏导数, 则方程()d ,d yf x y x=的任一解可以延拓到区间x -∞<<+∞.§3.3 解对初值的连续性和可微性方程()d ,d yf x y x=的解经过初值()00,x y 是唯一的,当初值()00,x y 变化时,解也随之变化. 因此可以把方程的解看成是三元函数()00,,y x x y ϕ=满足()0000,,y x x y ϕ=.解关于初值的对称性 设方程()d ,d yf x y x=的经过初值()00,x y 的解是唯一的, 记为()00,,y x x y ϕ=, 则此表达式中(),x y 和()00,x y 可以对调位置, 即成立()00,,y x x y ϕ=。

常微分方程第三版答案.doc

常微分方程第三版答案.doc

常微分方程第三版答案.d o c本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March习题1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。

解:ydy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e特解:y=|)1(|ln 1+x c 3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0解:原方程为: y y -1dy=-xx 1+dx 两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +- 令xy =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu即 ln(y 2+x 2)=c-2arctg2x y . 6. x dxdy -y+22y x -=0 解:原方程为:dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x 1dx arcsinxy =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0解:原方程为:dx dy =ye y 2e x 3 2 e x 3-3e 2y -=c.(lnx-lny)dy-ydx=0解:原方程为:dx dy =x y ln xy 令xy =u ,则dx dy =u+ x dx duduu+ x=ulnudxln(lnu-1)=-ln|cx| 1+ln xy =cy. 10. dxdy =e y x - 解:原方程为:dxdy =e x e y - e y =ce x 11 dxdy =(x+y)2 解:令x+y=u,则dx dy =dx du -1 dxdu -1=u 2 211u +du=dx arctgu=x+carctg(x+y)=x+c 12. dx dy =2)(1y x + 解:令x+y=u,则dx dy =dx du -1dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13. dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dxxdy+ydx-(2y-1)dy-(2x+1)dx=0dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c 14: dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dxxdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15:dxdy =(x+1) 2+(4y+1) 2+8xy 1 解:原方程为:dx dy =(x+4y )2+3令x+4y=u 则dx dy =41dx du -41 41dx du -41=u 2+3 dxdu =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1). 16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则xdx dy +y=dx du 则dx dy =x 1dx du -2x u ,有: u x dxdu =f(u)+1 )1)((1+u f u du=x1dx 所以原方程可化为变量分离方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常微分方程课后习题答案详解习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++ 解:原方程为:dxdy =y y 21+31x x +y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0 解:原方程为:dxdy=-y x y x +- 令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy . 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnx x1dxarcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c. 8dx dy +ye xy 32+=0解:原方程为:dx dy =ye y 2e x32 e x 3-3e 2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln x y 令xy=u ,则dx dy =u+ x dx duu+ x dxdu=ulnuln(lnu-1)=-ln|cx| 1+ln xy=cy. 10.dxdy=e y x - 解:原方程为:dxdy=e x e y - e y =ce x11dxdy=(x+y)2 解:令x+y=u,则dx dy =dxdu -1 dx du-1=u 2 211u+du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu-1dx du -1=21uu-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c 14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15:dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1) y(1+x2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则xdx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

1) 令xy=u 则dx dy =x 1dx du -2x u(1) 原方程可化为:dx dy =xy[1+(xy )2] (2)将1代入2式有:x 1dx du -2x u =xu(1+u 2)u=22+u +cx17.求一曲线,使它的切线坐标轴间的部分初切点分成相等的部分。

解:设(x +y )为所求曲线上任意一点,则切线方程为:y=y ’(x- x )+ y则与x 轴,y 轴交点分别为: x= x 0 -'y y y= y 0 - x 0 y’ 则 x=2 x 0 = x 0 -'y y 所以 xy=c 18.求曲线上任意一点切线与该点的向径夹角为0的曲线方程,其中α=4π。

解:由题意得:y ’=xyy 1dy=x 1 dxln|y|=ln|xc| y=cx.α =4π则y=tg αx 所以 c=1 y=x. 19.证明曲线上的切线的斜率与切点的横坐标成正比的曲线是抛物线。

证明:设(x,y)为所求曲线上的任意一点,则y ’=kx 则:y=kx 2 +c 即为所求。

习题2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==,0)1(.22=++dy x dx y 并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,11123yxy dx dy x y 321++=解:原式可化为:x x y xx y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+•+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y ydx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dx dy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dxx x du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e ee x y uu xy x u u x yxyy x xx+===+=+-===-•-=--+-=-=+-===-=+•=+•=•=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

代回原变量得:则有:令解:方程可变为:解:变量分离,得两边积分得:解:变量分离,得::也是方程的解。

另外,代回原来变量,得两边积分得:分离变量得:则原方程化为:解:令:。

两边积分得:变量分离,得:则令解:cx y x arctg cx arctgt dx dt dx dt dx dt dx dy t y x dxdy cdx dy dxdy tt y x e e e e e x yxyyx +=++==++=+==+=+===+-)(,11111,.11222)(代回变量得:两边积分变量分离得:原方程可变为:则解:令两边积分得:解:变量分离,12.2)(1y x dx dy += 解c x y x arctg y x c x arctgt t dx dt t t tdx dt dx dt dx dy t y x +=+-++=-=++=-==+)(1111222,代回变量,两边积分变量分离,原方程可变为,则令变量分离,则方程可化为:令则有令的解为解:方程组U U dX dU X U X Y Y X YX dX dY Y y X x y x y x y x y x y x dx dy U 21222'22,31,3131,31;012,0121212.132-+-==--=+=-==-==+-=--+---=.7)5(72177217)7(,71,1,525,14)5(22c x y x cx t dx dt t t tdx dt dx dt dx dy t y x y x y x dx dy y x t +-=+--+-=----=--===---+-=+-代回变量两边积分变量分离原方程化为:则解:令15.18)14()1(22+++++=xy y x dx dy原方程的解。

,是,两边积分得分离变量,,所以求导得,则关于令解:方程化为c x y x arctg dx du u u dx du dx du dx dy x u y x y x xy y y x x dxdy+=++=++==+=+++++=+++++++=6)383232(941494141412)14(1818161222222 16.2252622yx xy x y dx dy +-= 解:,则原方程化为,,令u y xxy x y dx dy x xy y x y dx dy =+-==+-=32322332322232]2)[(32(2)( 126326322222+-=+-=xu x u xxu x u dx du ,这是齐次方程,令cx x y x y c x y x y c x x y x y c x z z dx x dz dz z z z z x y x y z z z z z z z dx dz x dx dz x z z z dx dz x z dx du z x u 15337333533735372233222)2()3(023)2()3,)2()3112062312306)1.(..........1261263=+-=-===+-=+-=--+≠---==-===--+--=+=+-+==的解为时。

相关文档
最新文档