2014届上海市十二校高三12月联考理科数学试卷及答案

合集下载

上海市十二校高三数学上学期12月联考试题 理(含解析)苏教版

上海市十二校高三数学上学期12月联考试题 理(含解析)苏教版

2013学年第一学期十二校联考高三数学(理)考试试卷一、填空题(每题4分,满分56分,将答案填在答题纸上)1.【题文】已知全集U {}5,4,3,2,1=,A {}3,1=,B {}4,3,2=,那么=⋃)(B C A U __.【结束】2.【题文】函数)12arcsin(-=x y 的定义域为 .【结束】3.【题文】若数列{}n a 满足:111,2()n n a a a n N *+==∈,则前6项的和6S = .(用数字作答)【答案】63【解析】试题分析:要求数列的前n 项的和,一般先确定下这个数列是不是等差数列或者等比数列,或者是否能转化为等差(或等比)数列,例如本题中由12n n a a +=,110a =≠,故数列{}n a 是等比数列,公比2q =,因此66126312S -==-.考点:等比数列的定义与前n 项和.【结束】4.【题文】计算:2(1)(13)lim (2)(1)n n n n n n →∞+-=-++________.222322213(1)(13)321lim lim lim 12(2)(1)21n n n n n n n n n n n n n n n n n n→∞→∞→∞--++---+==-++-+++-+++0=. 考点:“∞∞”型极限问题. 【结束】5.【题文】集合{}12-<<=x x A ,{}0<-=a x x B ,若B A ⊆,则实数a 的取值范围是 .【结束】6.【题文】设()887872x a x a x -=++…10a x a +,则87a a ++…0a += . 【答案】83【解析】试题分析: 0128,,,,a a a a 中正负相间,当然我们可以通过令1x =±求出【结束】7.【题文】已知函数)(x f 有反函数)(1x f -,且[),,0,24)(1+∞∈-=+x x f x x 则=-)0(1f .【结束】8.【题文】已知袋中有大小相同的红球和白球若干个,其中红、白球个数的比为4:3.假设从袋中任取2个球,取到的都是红球的概率为413.那么袋中的红球有 __个.【结束】9.【题文】已知函数32tan sin )(x x x x f ++=,)1,1(-∈x ,则满足不等式0)12()1(<-+-a f a f 的实数a 的取值范围是 .【结束】10.【题文】已知x 是7,6,5,,3,2,1x 这7个数据的中位数,且y x -,,2,12这四个数据的平均数为1,则xy 1-的最小值为 .【结束】11.【题文】设ω>0,若函数)(x f = sin 2x ω cos 2x ω 在区间[-3π,4π]上单调递增,则ω的范围是_____________. 【答案】3(0,]2【结束】12.【题文】设正项数列}{n a 的前n 项和是n S ,若}{n a 和}{n S 都是等差数列,且公差相等,则1a =_______________.【结束】13.【题文】函数)(x f y =的图像与直线b x a x ==,及x 轴所围成图形的面积称为函数)(x f 在[]b a ,上的面积,已知函数nx y sin =在⎥⎦⎤⎢⎣⎡n π,0上的面积为)(2*∈N n n ,则函数1)3sin(+-=πx y 在⎥⎦⎤⎢⎣⎡34,3ππ上的面积为 . 【答案】23π+【结束】14.【题文】(理)函数)(x f 的定义域为A ,若A x x ∈21,且)()(21x f x f =时总有21x x =,则称)(x f 为单函数,例如,函数)(12)(R x x x f ∈+=是单函数.下列命题:①函数)()(2R x x x f ∈=是单函数;②指数函数)(2)(R x x f x ∈=是单函数;③若)(x f 为单函数,A x x ∈21,且21x x ≠,则)()(21x f x f ≠;④在定义域上具有单调性的函数一定是单函数;⑤若)(x f 为单函数,则函数)(x f 在定义域上具有单调性.其中的真命题是________.(写出所有真命题的编号)【答案】②③④【解析】试题分析:这类问题,就是要读懂新定义的知识,能用我们已学的知识理解新知识,并加以应用.如①中(1)1(1)f f -==,但11-≠,故)()(2R x x x f ∈=不是单函数;②指数【结束】二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15.【题文】命题:p 1a =;命题:q 关于x 的方程20x a -+=有实数解,则p 是q 的( ).(A) 必要不充分条件 (B) 充分不必要条件 (C)充要条件 (D)既不充分也不必要条件【结束】16.【题文】下列函数中,最小正周期为π的偶函数为( ) (A) )4cos()4sin(ππ++=x x y (B)xx y 2sin 2cos 1+= (C) x y 2tan 2= (D)x x y cos sin =【答案】A【结束】17.【题文】定义函数D x x f y ∈=),((定义域),若存在常数C ,对于任意D x ∈1,存在唯一的D x ∈2,使得C x f x f =+2)()(21,则称函数)(x f y =在D 上的“均值”为C .已知函数[]100,10,lg )(∈=x x x f ,则函数)(x f y =在[]100,10上的均值为( ) (A)101 (B)43 (C) 10 (D) 23【结束】18.【题文】某同学为了研究函数)10()1(11)(22≤≤-+++=x x x x f 的性质,构造了如图所示的两个边长为1的正方形ABCD 和BEFC ,点P 是边BC 上的一个动点,设x CP =,则PF AP x f +=)(.那么可推知方程222)(=x f 解的个数是………………………………( )(A )0. (B )1. (C )2. (D )4.【结束】三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)19.【题文】(本题满分12分) 本题共有2个小题,第1小题满分4分, 第2小题满分8分. 在直三棱柱ABC-A 1B 1C 1中,∠AB C=90°, A B=BC=1.(1)求异面直线B 1C 1与AC 所成角的大小;(2)若该直三棱柱ABC-A 1B 1C 1的体积为22,求点A 到平面A 1BC 的距离.(2)∵ABC S ∆=12,三棱柱111ABC A B C -的体积1ABC V S AA ∆=⋅=∴11AA AB (2分)∵CB ⊥平面11ABB A 1,∴190ABC ∠=︒,1A BC S ∆=, 设点A 到平面A 1BC 的距离为h ,(4分) 三棱锥A 1-ABC 的体积V=113ABC S AA ∆⨯⨯=三棱锥A-A 1BC 的体积V=113A BC S h ∆⨯⨯,(6分)∴3h =.(8分) 考点:(1)异面直线所成的角;(2)点到平面的距离.20.【题文】(本题满分14分)本题共有2个小题,第一小题满分7分,第二小题满分7分.已知以角B 为钝角的的三角形ABC 内角C B A 、、的对边分别为a 、b 、c ,)sin ,3(),2,(A n b a m -== ,且m 与n 垂直.(1)求角B 的大小;(2)求C A cos cos +的取值范围∵0sin ≠A ,∴23sin =B ,(6分) 又∵∠B 是钝角,∴∠B 32π= (7分) (2))3sin(3sin 23cos 21cos )3cos(cos cos cos ππ+=++=-+=+A A A A A A C A (3分)由(1)知A ∈(0,3π),)32,3(3πππ∈+A , (4分) ]1,23()3sin(∈+πA ,(6分) ∴C A cos cos +的取值范围是]3,23( (7分) 考点:(1)向量的垂直,正弦定理;(2)三角函数的值域.21.【题文】(本题满分14分)本题共有2个小题,第一小题满分7分,第二小题满分7分).某企业生产某种商品x 吨,此时所需生产费用为(100001002+-x x )万元,当出售这种商品时,每吨价格为p 万元,这里b ax p +=(b a ,为常数,0>x )(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求b a ,的值.当且仅当100=x 时等号成立,(6分)【结束】22.【题文】(本题满分16分) 本题共有3个小题,第1小题满分4分, 第2小题满分6分,第,3小题满分8分. 已知函数R x b a x x x f ∈+-=,)(.(1)当0,1==b a 时,判断)(x f 的奇偶性,并说明理由;(2)当1,1==b a 时,若45)2(=x f ,求x 的值; (3)若0<b ,且对任何[]1,0∈x 不等式0)(<x f 恒成立,求实数a 的取值范围.试题分析:(1)0,1==b a 时,()1f x x x =-为确定的函数,要证明它具有奇偶性,必须按照定义证明,若要说明它没有奇偶性,可举一特例,说明某一对值()f m 与()f m -不相等(不是偶函数)也不相反(不是奇函数).(2)当1,1==b a 时,45)2(=x f 为(2)当1,1==b a 时,11)(+-=x x x f , 由45)2(=x f 得451122=+-x x (1分) 即⎪⎩⎪⎨⎧=+-<⎪⎩⎪⎨⎧=--≥0412)2(120412)2(1222x x x x x x 或 (3分) 解得212)(22122212=-=+=x x x ,或舍或 (5分) 所以1)21(log 221log 22-+=+=x 或1-=x (6分) (3)当0=x 时,a 取任意实数,不等式0)(<x f 恒成立,故只需考虑(]1,0∈x ,此时原不等式变为x b a x -<- (1分) 即xb x a x b x -<<+【结束】23.【题文】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.已知数列{}n a 具有性质:①1a 为整数;②对于任意的正整数n ,当n a 为偶数时, 12n n a a +=;当n a 为奇数时,112n n a a +-=. (1)若1a 为偶数,且123,,a a a 成等差数列,求1a 的值;(2)设123m a =+(3m >且m ∈N ),数列{}n a 的前n 项和为n S ,求证:123m n S +≤+;(3)若1a 为正整数,求证:当211log n a >+(n ∈N )时,都有0n a =.【答案】(1) 0或2;(2)证明见试题解析;(3)证明见试题解析.【解析】(3)由于1a 是正整数,要证明从某一项开始,数列各项均为0,这提示我们可首先证明n a 为非负(这可用数学归纳法加以证明),然后由于数列的关系,可见数列在出现0之前,是递减的,下面要考虑的是递减的速度而已.当n a 为偶数时,12n n a a +=;当n a 为奇数时,1122n n n a a a +-=<,因此对所有正整数n ,都有12n n a a +≤,依此类推有112n n a a -≤,只要1112n a -≤,则有0n a =. 试题解析:(1)∵1a 为偶数,∴可设12()Z a n n =∈,故122a a n ==, 若n 为偶数,则32n a =,由123,,a a a 成等差数列,可知2132a a a =+, 即522n n =,解得0n =,故10a =; (2分)若n 为奇数,则312n a -=,由123,,a a a 成等差数列,可知2132a a a =+, 即51222n n =-,解得1n =,故12a =; ∴1a 的值为0或2. (4分)(2)∵123(3,)N m a m m =+>∈是奇数,∴1121212m a a --==+, 223122m a a --==,33422m a a -==,依此类推, 可知341,,,m a a a +成等比数列,且有12m n n a -+=(31)n m ≤≤+,又0121m a +==,21102m a +-==,30m a +=,… ∴当1n m ≤+时,0n a >;当2n m ≥+时,都有0n a =. (3分)故对于给定的m ,n S 的最大值为121m m a a a a +++++123010(23)(21)222(222)4m m m m m m ----=+++++++=++++112142321m m ++-=+=+-,所以123m n S +≤+. (6分)。

上海市十二校高三12月联考数学(理)试题 Word版含答案

上海市十二校高三12月联考数学(理)试题 Word版含答案

上海市十二校2015届高三12月联考数学(理)试题学校:上海市朱家角中学学校:三林中学 南汇一中 2014年12月一、填空题 (本大题满分56分,每题4分)1.设集合21{|2},{1}2A x xB x x =-<<=≤,则A B =_______.2. 已知{}n a 为等差数列,1a +3a +5a =9,246a a a ++=15,则=+43a a .3.在行列式3541113a --中,元素a 的代数余子式值为 .4. 如果函数⎩⎨⎧<>-=)0( )()0( 32 x x f x x y 是奇函数,则=-)2(f5.设()f x 的反函数为1()f x -,若函数()f x 的图像过点(1,2),且1(21)1f x -+=,则x = .6.方程cos2x+sinx=1在),0(π上的解集是_______________.7.,侧棱长为1,则此三棱锥的体积为 . 8. 函数()x x x f 2cos 222cos 3-⎪⎭⎫ ⎝⎛-=π在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围是 .92, 与的夹角为3π,则+在上的投影为 .10. 在锐角ABC ∆中,角B 所对的边长10=b ,ABC ∆的面积为10,外接圆半径13=R ,则ABC ∆的周长为 .11. 已知等比数列{}n a 的首项11=a ,公比为)0(>q q ,前n 项和为n S ,若1lim1=+∞→nn n S S ,则公比q 的取值范围是 . 12.已知函数())(0)3f x x πωω=+>,若()(3)g x f x =在(0 )3π,上是增函数,则ω的最大值 .13. 记数列{}n a 是首项1a a =,公差为2的等差数列;数列{}n b 满足2(1)n n b n a =+,若对任意*n N ∈都有5n b b ≥成立,则实数a 的取值范围为 .14.若平面向量i a 满)4,3,2,1(1=i 且)3,2,1(01==⋅+i a a i i ,则32a a +++可能的值有 个.二、选择题(本大题满分20分,每题5分)15. 设,p q 是两个命题,1:0,:|21|1,x p q x p q x+≤+<则是 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16. 数列{a n }中,已知S 1 =1, S 2=2 ,且S n +1-3S n +2S n -1 =0(2≥n ,n ∈N*),则此数列为( ) A .等差数列 B .等比数列 C .从第二项起为等差数列 D .从第二项起为等比数列17.关于函数31)212()(x x f x x⋅-=和实数n m 、的下列结论中正确的是( )A .若n m <<-3,则)()(n f m f <B .若0<<n m ,则)()(n f m f <C .若)()(n f m f <,则22n m <D .若)()(n f m f <,则33n m < 18. 函数()⎩⎨⎧>≤+=0,ln 0,1x x x kx x f ,下列关于函数()[]1+=x f f y 的零点个数的判断正确的是( )A .无论k 为何值,均有2个零点B .无论k 为何值,均有4个零点C .当0k >时,有3个零点;当0k <时,有2个零点D .当0k >时,有4个零点;当0k <时,有1个零点三、简答题 (本大题满分74分)19.(本题满分12分) 本题共有2个小题,第1小题满分6分, 第2小题满分6分. 如图,四棱锥ABCD S -中,底面ABCD 为正方形,⊥SA 平面ABCD ,AB=3,SA=4 (1)求直线SC 与平面SAB 所成角;(2)求SAB ∆绕棱SB 旋转一圈形成几何体的体积。

2014上海市数学(理)卷文档版(有答案)-2014年普通高等学校招生统一考试

2014上海市数学(理)卷文档版(有答案)-2014年普通高等学校招生统一考试

2014年上海市高考数学试卷(理科)解析一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 函数212cos (2)y x =-的最小正周期是 .2. 若复数z=1+2i ,其中i 是虚数单位,则1()z z +z ⋅=___________.3. 若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.4. 设⎩⎨⎧+∞∈-∞∈=],,[,),,(,)(2a x x a x x x f 若4)2(=f ,则a 的取值范围为_____________.5. 若实数x,y 满足xy=1,则2x +22y 的最小值为______________.6. 若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).7. 已知曲线C 的极坐标方程为1)sin 4cos 3(=-θθp ,则C 与极轴的交点到极点的距离是 .8. 设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .9. 若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 .10. 为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).11. 已知互异的复数a,b 满足ab ≠0,集合{a,b}={2a ,2b },则a b += .12. 设常数a 使方程s i n 3c o s x x a +=在闭区间[0,2π]上恰有三个解123,,x x x ,则123x x x ++= .13. 某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩游戏的得分.若()ξE =4.2,则小白得5分的概率至少为 .14. 已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.15. 设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件16. 如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,,...)2,1(=i P i 是上底面上其余的八个点,则...)2,1(=⋅→→i AP AB i 的不同值的个数为( )(A )1 (B)2 (C)4 (D)817. 已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解(C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解 18. ⎪⎩⎪⎨⎧>++≤-=,0,1,0,)()(2x a x x x a x x f 若)0(f 是)(x f 的最小值,则a 的取值范围为().(A)[-1,2] (B)[-1,0] (C)[1,2] (D) [0,2]三.解答题(本大题共5题,满分74分)19、(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面学科网展开图是三角形321p p p ,如图,求△321p p p 的各边长及此三棱锥的体积V .xkb120.(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分。

上海市十二校高三数学上学期12月联考试卷 理(含解析)

上海市十二校高三数学上学期12月联考试卷 理(含解析)

2015-2016学年上海市十二校高三(上)12月联考数学试卷(理科)一、填空题1.已知集合A={x|x<﹣1或2≤x<3},B={x|﹣2≤x<4},则A∪B=.2.计算: = .3.方程9x=3x+2的解为.4.若一元二次方程ax2+bx+c=0(a>0)无实数解,则ax2+bx+c<0的解集为.5.已知数列{a n}是公差不为零的等差数列,a1=1、若a1、a2、a5成等比数列,则a n=6.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+m,则f(﹣1)= .7.设函数f(x)的图象关于点(1,2)对称,且存在反函数f﹣1(x),f (4)=0,则f﹣1(4)= .8.已知sin2x﹣cos2x=2cos(2x﹣θ)(﹣π<θ<π),则θ=.9.在平面直角坐标系xOy中,已知∠α的顶点为原点O,其始边与x轴正方向重合,终边过两曲线y=和y=的交点,则cos2α+cot(+α)= .10.函数y=1+2x+4x a在x∈(﹣∞,1]上y>0恒成立,则a的取值范围是.11.在△A n B n C n中,记角A n、B n、C n所对的边分别为a n、b n、c n,且这三角形的三边长是公差为1的等差数列,若最小边a n=n+1,则C n= .12.定义一种新运算:a⊗b=,已知函数f(x)=(1+)⊗log2x,若函数g(x)=f(x)﹣k 恰有两个零点,则k的取值范围为.13.64个正数排成8行8列,如图所示:在符号a ij(1≤i≤8,1≤j≤8)中,i表示该数所在行数,j表示该数所在列数,已知每一行都成等差数列,而每一列都成等比数列(且每列公比都相等)若a11=,a24=1,a32=,则a ij= .14.定义:min{a1,a2,a3,…,a n}表示a1,a2,a3,…,a n中的最小值.若定义f(x)=min{x,5﹣x,x2﹣2x﹣1},对于任意的n∈N*,均有f(1)+f(2)+…+f(2n﹣1)+f(2n)≤kf(n)成立,则常数k的取值范围是.二、选择题15.已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件16.函数y=x+sin|x|,x∈[﹣π,π]的大致图象是()A.B.C.D.17.设锐角△ABC的三内角A、B、C所对边的边长分别为a、b、c,且 a=1,B=2A,则b的取值范围为()A.(,)B.(1,)C.(,2)D.(0,2)18.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={};②M={(x,y)|y=sinx+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x﹣2}.其中是“垂直对点集”的序号是()A.①② B.②③ C.①④ D.②④三、解答题19.集合A={x|≥1},函数f(x)=log的定义域为集合B;(1)求集合A和B;(2)若A⊂B,求实数a的取值范围.20.已知函数f(x)=sin cos+cos2.(1)求方程f(x)=0的解集;(2)如果△ABC的三边a,b,c满足b2=ac,且边b所对的角为x,求角x的取值范围及此时函数f (x)的值域.21.设甲乙两地相距100海里,船从甲地匀速驶到乙地,已知某船的最大船速是36海里/时:当船速不大于每小时30海里/时,船每小时使用的燃料费用和船速成正比;当船速不小于每小时30海里/时,船每小时使用的燃料费用和船速的平方成正比;当船速为30海里/时,它每小时使用的燃料费用为300元;其余费用(不论船速为多少)都是每小时480元;(1)试把每小时使用的燃料费用P(元)表示成船速v(海里/时)的函数;(2)试把船从甲地行驶到乙地所需要的总费用Y表示成船速v的函数;(3)当船速为每小时多少海里时,船从甲地到乙地所需要的总费用最少?22.已知二次函数f(x)=ax2+bx+1和g(x)=;(1)f(x)为偶函数,试判断g(x)的奇偶性;(2)若方程g(x)=x有两个不相等的实根,当a>0时判断f(x)在(﹣1,1)上的单调性;(3)若方程g(x)=x的两实根为x1,x2,f(x)=0的两根为x3,x4,求使x1<x2<x3<x4成立的a 的取值范围.23.已知等差数列{a n}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=a n与x轴和指数函数的图象分别交于点A n与B n(如图所示),记B n的坐标为(a n,b n),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形A n A n+1B n+1B n的面积为s n.(1)求证数列{s n}是公比绝对值小于1的等比数列;(2)设{a n}的公差d=1,是否存在这样的正整数n,构成以b n,b n+1,b n+2为边长的三角形?并请说明理由;(3)(理科做,文科不做)设{a n}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{s n}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.(参考数据:210=1024)2015-2016学年上海市十二校高三(上)12月联考数学试卷(理科)参考答案与试题解析一、填空题1.已知集合A={x|x<﹣1或2≤x<3},B={x|﹣2≤x<4},则A∪B={x|x<4} .【考点】并集及其运算.【分析】由于集合A,B都已给出,容易计算集合A∪B【解答】解:∵A={x|x<﹣1或2≤x<3},B={x|﹣2≤x<4},∴A∪B={x|x<4}.故答案为{x|x<4}.【点评】本题主要考查了集合的并运算,较为简单.2.计算: = .【考点】极限及其运算.【专题】计算题.【分析】分子分母同时除以3n,原式简化为,由此求出值即可.【解答】解:故答案为:.【点评】本题是一道基础题,考查函数的极限,解题时注意消除零因式.3.方程9x=3x+2的解为x=log32 .【考点】指数式与对数式的互化.【专题】计算题.【分析】由9x=3x+2,知(3x)2﹣3x﹣2=0,解得3x=﹣1(舍),或3x=2,由此能求出方程9x=3x+2的解.【解答】解:∵9x=3x+2,∴(3x)2﹣3x﹣2=0,解得3x=﹣1(舍),或3x=2,∴x=l og32.故答案为:x=log32.【点评】本题考查指数方程的解法和应用,解题时要认真审题,注意指数式与对数式的互化.4.若一元二次方程ax2+bx+c=0(a>0)无实数解,则ax2+bx+c<0的解集为∅.【考点】一元二次不等式的解法.【专题】转化思想;转化法;不等式的解法及应用.【分析】根据一元二次方程与对应二次函数和一元二次不等式的关系,即可得出解集.【解答】解:∵一元二次方程ax2+bx+c=0(a>0)无实数解,∴二次函数y=ax2+bx+c(a>0)的图象是抛物线,且开口向上,与x轴无交点,∴一元二次不等式ax2+bx+c<0的解集为∅.故答案为:∅.【点评】本题考查了一元二次方程与二次函数和一元二次不等式的应用问题,是基础题目.5.已知数列{a n}是公差不为零的等差数列,a1=1、若a1、a2、a5成等比数列,则a n= 2n﹣1【考点】等差数列的通项公式.【分析】设出公差,写出第一、二、五三项的表示式,由三项成等比数列,得到关于公差的方程,解方程,得到公差,写出等差数列的通项.【解答】解:设公差为d,则a2=1+d,a5=1+4d,则1×(1+4d)=(1+d)2,∴d=2,∴a n=2n﹣1,故答案为:2n﹣1.【点评】考查的是等差数列和等比数列的定义,把形式很接近的两个数列放在一起考查,同学们一定要分清两者,加以区别.6.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+m,则f(﹣1)= ﹣3 .【考点】函数奇偶性的性质.【专题】计算题.【分析】由奇函数的性质可得f(0)=0可求m,从而可求x≥0时的函数的解析式,再由f(﹣1)=﹣f(1)可求【解答】解:由函数为奇函数可得f(0)=1+m=0∴m=﹣1∵x≥0时,f(x)=2x+2x﹣1∴f(﹣1)=﹣f(1)=﹣3故答案为:﹣3【点评】本题主要考查了奇函数的定义f(﹣x)=﹣f(x)在函数求值中的应用,解题的关键是利用f(0)=0求出m.7.设函数f(x)的图象关于点(1,2)对称,且存在反函数f﹣1(x),f (4)=0,则f﹣1(4)= ﹣2 .【考点】反函数.【专题】计算题;压轴题.【分析】由于函数f(x)的图象关于点(1,2)对称,故可得f(1+x)+f(1﹣x)=4,用引恒等式建立相关的方程即可解出f﹣1(4)的值.【解答】解:由函数f(x)的图象关于点(1,2)对称,可得 f(x+1)+f(1﹣x)=4,对任何x 都成立在上式中,取x=3,得到 f(4)+f(﹣2)=4,又f (4)=0∴f(﹣2)=4∴f﹣1(4)=﹣2故应填﹣2【点评】本题考查函数的对称性与反函数的性质,知识性较强.8.已知sin2x﹣cos2x=2cos(2x﹣θ)(﹣π<θ<π),则θ=.【考点】两角和与差的余弦函数;三角函数中的恒等变换应用.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由条件利用两角和差的余弦公式,诱导公式可得cos(2x﹣)=cos(2x﹣θ),由此求得θ的值.【解答】解:∵sin2x﹣cos2x=2cos(2x﹣θ)(﹣π<θ<π),∴sin(2x﹣)=cos(2x ﹣θ),即 cos(2x﹣)=cos(2x﹣θ),∴θ=,故答案为:.【点评】本题主要考查两角和差的余弦公式,诱导公式的应用,属于基础题.9.在平面直角坐标系xOy中,已知∠α的顶点为原点O,其始边与x轴正方向重合,终边过两曲线y=和y=的交点,则cos2α+cot(+α)= ﹣+.【考点】二倍角的余弦;任意角的三角函数的定义.【专题】转化思想;综合法;三角函数的求值.【分析】由条件求得∠α的终边经过点P(﹣1,),利用任意角的三角函数的定义求得cosα、sinα、tanα的值,再利用二倍角的余弦公式、诱导公式,求得要求式子的值.【解答】解:∵两曲线y=和y=的交点为P(﹣1,),故∠α的终边经过点P(﹣1,),故cosα==﹣,sinα==,tanα=﹣,∴cos2α+cot(+α)=2cos2α﹣1﹣tanα=2•﹣1+=﹣+,故答案为:﹣ +.【点评】本题主要考查任意角的三角函数的定义,二倍角公式的余弦公式,诱导公式的应用,属于基础题.10.函数y=1+2x+4x a在x∈(﹣∞,1]上y>0恒成立,则a的取值范围是(﹣,+∞).【考点】指数型复合函数的性质及应用.【专题】函数的性质及应用.【分析】由题设条件可化为∴a>﹣在x∈(﹣∞,1]上恒成立,求出﹣在x∈(﹣∞,1]上的最大值即可.【解答】解:由题意,得1+2x+4x a>0在x∈(﹣∞,1]上恒成立,∴a>﹣在x∈(﹣∞,1]上恒成立.又∵t=﹣=﹣()2x﹣()x=﹣[()x+]2+,当x∈(﹣∞,1]时t的值域为(﹣∞,﹣],∴a>﹣;即a的取值范围是(﹣,+∞);故答案为:(﹣,+∞).【点评】本题考查了应用函数的性质将不等式恒成立转化为求函数值域的问题,是基础题.11.在△A n B n C n中,记角A n、B n、C n所对的边分别为a n、b n、c n,且这三角形的三边长是公差为1的等差数列,若最小边a n=n+1,则C n= .【考点】极限及其运算;等差数列的通项公式.【专题】计算题;分类讨论;等差数列与等比数列;解三角形.【分析】不妨设c n是边长最大的,即a n=n+1,b n=n+2,c n=n+3,再根据余弦定理得出Cn的表达式,最后求极限.【解答】解:因为最小的边长为n+1,且三边成公差为1的等差数列,所以,三边分别为n+1,n+2,n+3,不妨设c n是边长最大的,即a n=n+1,b n=n+2,c n=n+3,由余弦定理,cosC n=,整理得,cosC n=,又==,所以, cosC n=,若b n是最大的边,解法同上,结果一致,故填:.【点评】本题主要考查了运用余弦定理解三角形和等差数列的性质,以及数列极限的求解,涉及分类讨论思想,属于中档题.12.定义一种新运算:a⊗b=,已知函数f(x)=(1+)⊗log2x,若函数g(x)=f(x)﹣k恰有两个零点,则k的取值范围为(1,2).【考点】函数零点的判定定理;函数解析式的求解及常用方法.【专题】计算题;作图题;方案型;数形结合;函数的性质及应用.【分析】化简f(x)=(1+)⊗log2x=,从而作函数f(x)与y=k的图象,利用数形结合求解.【解答】解:由题意得,f(x)=(1+)⊗log2x=,作函数f(x)与y=k的图象如下,,结合图象可知,1<k<2,故答案为:(1,2).【点评】本题考查了分段函数的化简与应用,同时考查了数形结合的思想应用.13.64个正数排成8行8列,如图所示:在符号a ij(1≤i≤8,1≤j≤8)中,i表示该数所在行数,j表示该数所在列数,已知每一行都成等差数列,而每一列都成等比数列(且每列公比都相等)若a11=,a24=1,a32=,则a ij= .【考点】归纳推理.【专题】规律型;等差数列与等比数列;推理和证明.【分析】设第一行公差为d,第一列的公比为q,根据已知求出d,q利用等差数列与等比数列的通项公式即可得出;【解答】解:设第一行公差为d,第一列的公比为q,∵a11=,a24=1,a32=,∴,解出d=q=,则a ij==,故答案为:【点评】归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).14.定义:min{a1,a2,a3,…,a n}表示a1,a2,a3,…,a n中的最小值.若定义f(x)=min{x,5﹣x,x2﹣2x﹣1},对于任意的n∈N*,均有f(1)+f(2)+…+f(2n﹣1)+f(2n)≤kf(n)成立,则常数k的取值范围是.【考点】数列的求和.【专题】计算题;函数的性质及应用.【分析】依题意,对n=1,2,3,4,5,6,…的情况分别进行讨论,得到规律,即可求得常数k的取值范围.【解答】解:∵f(x)=min{x,5﹣x,x2﹣2x﹣1},∴当n=1时,f(1)=﹣2,f(2)=﹣1;∴f(1)+f(2)≤kf(1),即﹣3≤﹣2k,解得:k≤;当n=2时,f(3)=min{3,5﹣3,32﹣2×3﹣1}=2,f(4)=1,∴f(1)+f(2)+f(3)+f(4)≤kf(2),即﹣2﹣1+2+1≤k×(﹣1),解得:k≤0;当n=3时,f(5)=0,f(6)=﹣1,f(1)+f(2)+…+f(5)+f(6)=﹣1≤kf(3)=2k,解得:k≥﹣;同理可得,当n=4时,f(7)=﹣2,f(8)=﹣3,依题意,可解得k≥﹣6;当n=5时,f(9)=﹣4,f(10)=﹣5,同理解得k∈R;当n=6时,f(11)=﹣6,f(12)=﹣7,依题意得k≤15;…∵对于任意的n∈N*,均有f(1)+f(2)+…+f(2n﹣1)+f(2n)≤kf(n)成立,∴常数k的取值范围是[﹣,0].故答案为:[﹣,0].【点评】本题考查数列的求和,着重考查对函数概念的理解与综合应用,突出考查分类讨论思想与运算能力,属于难题.二、选择题15.已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据充分条件和必要条件的定义结合等比数列的定义进行判断即可.【解答】解:若a,b,c成等比数列,则b2=ac成立,若a=b=c=0,满足b2=ac,但a,b,c不能成等比数列,故“a,b,c成等比数列”是“b2=ac”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据等比数列的定义是解决本题的关键.16.函数y=x+sin|x|,x∈[﹣π,π]的大致图象是()A.B.C.D.【考点】函数的图象;正弦函数的图象.【专题】作图题;压轴题;分类讨论.【分析】本题考查的是函数的图象问题.在解答时,首先应将函数去绝对值转化为分段函数.再利用导数分析在不同区间段上的变化规律即可获得问题的解答.【解答】解:由题意可知:,当0≤x≤π时,∵y=x+sinx,∴y′=1+cosx≥0,所以函数y=x+sinx在[0,π]上为增函数;又由sinx≥0[0,π]上恒成立,故函数y=x+sinx[0,π]上在y=x的上方;当﹣π≤x<0时,∵y=x﹣sinx,∴y′=1﹣cosx≥0,所以函数y=x+sinx在[0,π]上为增函数;又由sinx≤0[﹣π,0]上恒成立,故函数y=x+sinx[﹣π,0]上在y=x的下方;又函数y=x+sin|x|,x∈[﹣π,π],恒过(﹣π,﹣π)和(π,π)两点,所以A选项对应的图象符合.故选A.【点评】本题考查的是函数的图象问题.在解答的过程当中充分体现了分类讨论的思想、导数的思想以及问题转化的思想.值得同学们体会和反思.17.设锐角△ABC的三内角A、B、C所对边的边长分别为a、b、c,且 a=1,B=2A,则b的取值范围为()A.(,)B.(1,)C.(,2)D.(0,2)【考点】正弦定理.【专题】解三角形.【分析】由题意可得0<2A<,且<3A<π,解得A的范围,可得cosA的范围,由正弦定理求得=b=2cosA,根据cosA的范围确定出b范围即可.【解答】解:锐角△AB C中,角A、B、C所对的边分别为a、b、c,B=2A,∴0<2A<,且B+A=3A,∴<3A<π.∴<A<,∴<cosA<,∵a=1,B=2A,∴由正弦定理可得: =b==2cosA,∴<2cosA<,则b的取值范围为(,).故选A【点评】此题考查了正弦定理,余弦函数的性质,解题的关键是确定出A的范围.18.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={};②M={(x,y)|y=sinx+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x﹣2}.其中是“垂直对点集”的序号是()A.①② B.②③ C.①④ D.②④【考点】命题的真假判断与应用.【专题】新定义.【分析】对于①利用渐近线互相垂直,判断其正误即可.对于②、③、④通过函数的定义域与函数的值域的范围,画出函数的图象,利用“垂直对点集”的定义,即可判断正误;【解答】解:对于①y=是以x,y轴为渐近线的双曲线,渐近线的夹角是90°,所以在同一支上,任意(x1,y1)∈M,不存在(x2,y2)∈M,满足好集合的定义;在另一支上对任意(x1,y1)∈M,不存在(x2,y2)∈M,使得x1x2+y1y2=0成立,所以不满足“垂直对点集”的定义,不是“垂直对点集”.对于②M={(x,y)|y=sinx+1},对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),满足“垂直对点集”的定义,所以M是“垂直对点集”;正确.对于③M={(x,y)|y=log2x},取点(1,0),曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以不是“垂直对点集”.对于④M={(x,y)|y=e x﹣2},如下图红线的直角始终存在,对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如取M(0,﹣1),则N(ln2,0),满足“垂直对点集”的定义,所以是“垂直对点集”;正确.所以②④正确.故选D.【点评】本题考查“垂直对点集”的定义,利用对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,是本题解答的关键,函数的基本性质的考查,注意存在与任意的区别.三、解答题19.集合A={x|≥1},函数f(x)=log的定义域为集合B;(1)求集合A和B;(2)若A⊂B,求实数a的取值范围.【考点】集合的包含关系判断及应用;函数的定义域及其求法.【专题】计算题;集合思想;综合法;函数的性质及应用;集合.【分析】(1)分别解不等式,即可求集合A和B;(2)若A⊂B,结合(1)求实数a的取值范围.【解答】解:(1)由≥1,可得A=[﹣,2);由>0,可得B=(﹣∞,a)∪(a2+1,+∞);(2)∵A⊂B,∴a>2.【点评】本题考查函数的定义域,考查集合的关系,考查学生分析解决问题的能力,属于中档题.20.已知函数f(x)=sin cos+cos2.(1)求方程f(x)=0的解集;(2)如果△ABC的三边a,b,c满足b2=ac,且边b所对的角为x,求角x的取值范围及此时函数f (x)的值域.【考点】余弦定理;三角函数中的恒等变换应用.【专题】计算题.【分析】(1)利用两种方法解:法1:令f(x)=0得到一个方程,将方程左边提取cos化为积的形式,利用两数相乘积为0,两因式中至少有一个为0转化为两个方程,利用余弦函数的图象与性质及正切函数的图象与性质分别求出x的范围,即可得到方程的解集;法2:将函数f(x)解析式第一项利用二倍角的正弦函数公式化简,第二项利用二倍角的余弦函数公式化简,整理后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,令f(x)=0,整理后利用正弦函数的图象与性质求出x的范围,即为方程的解集.(2)利用余弦定理表示出cosB,将已知的等式b2=ac代入,利用基本不等式变形得到cosB的范围,由B为三角形的内角,利用余弦函数的图象与性质得出此时B的范围,即为x的范围,将函数f(x)解析式第一项利用二倍角的正弦函数公式化简,第二项利用二倍角的余弦函数公式化简,整理后再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,由B的范围求出这个角的范围,利用正弦函数的定义域与值域即可求出f(x)的值域.【解答】解:(1)法1:由f(x)=0,得sin cos+cos2=cos(sin+cos)=0,由cos=0,得=kπ+,∴x=2kπ+π(k∈Z);由sin+cos=0,得tan=﹣,∴=kπ﹣,即x=2kπ﹣(k∈Z),则方程f(x)=0的解集为{x|2kπ+π或2kπ﹣(k∈Z)};法2:f(x)=sinx+(cosx+1)=sinx+cosx+=sin(x+)+,由f(x)=0,得sin(x+)=﹣,可得x+=kπ﹣(﹣1)k(k∈Z),即x=kπ﹣(﹣1)k﹣(k∈Z),则方程f(x)=0的解集为{x|x=kπ﹣(﹣1)k﹣(k∈Z)};(2)∵b2=ac,且a2+c2≥2ac(当且仅当a=c时取等号),∴由余弦定理得cosB==≥,又B为三角形的内角,∴0<B≤,由题意得x=B,即x∈(0,],f(x)=sinx+(cosx+1)=sinx+cosx+=sin(x+)+,∵x+∈(,],则此时函数f(x)的值域为[, +1].【点评】此题考查了余弦定理,二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,余弦、正切函数的图象与性质,以及基本不等式的运用,熟练掌握公式及定理是解本题的关键.21.设甲乙两地相距100海里,船从甲地匀速驶到乙地,已知某船的最大船速是36海里/时:当船速不大于每小时30海里/时,船每小时使用的燃料费用和船速成正比;当船速不小于每小时30海里/时,船每小时使用的燃料费用和船速的平方成正比;当船速为30海里/时,它每小时使用的燃料费用为300元;其余费用(不论船速为多少)都是每小时480元;(1)试把每小时使用的燃料费用P(元)表示成船速v(海里/时)的函数;(2)试把船从甲地行驶到乙地所需要的总费用Y表示成船速v的函数;(3)当船速为每小时多少海里时,船从甲地到乙地所需要的总费用最少?【考点】函数模型的选择与应用;函数解析式的求解及常用方法.【专题】应用题;分类讨论;函数的性质及应用;不等式的解法及应用.【分析】(1)分类讨论,当0<v≤30时,设P=kv,从而解得P=10v;再求当30≤v≤36时的解析式即可;(2)分类讨论求总费用Y的值,从而利用分段函数写出即可;(3)由分段函数讨论以确定函数的单调性,从而由单调性求最小值即可.【解答】解:(1)由题意,当0<v≤30时,设P=kv,由300=30k解得,k=10;故P=10v,当30≤v≤36时,设P=mv2,由300=302m解得,m=;故P=;(2)当0<v≤30时,Y=(10v+480)=1000+,当30≤v≤36时,Y=(v2+480)•=v+;故Y=;(3)当0<v≤30时,Y=1000+是减函数,当30≤v≤36时,Y=v+在[30,36]上是减函数;故Y在(0,36]上是减函数,故当x=36时,Y有最小值为×36+=(元).【点评】本题考查了分段函数在实际问题中的应用及函数的单调性的判断与应用.22.已知二次函数f(x)=ax2+bx+1和g(x)=;(1)f(x)为偶函数,试判断g(x)的奇偶性;(2)若方程g(x)=x有两个不相等的实根,当a>0时判断f(x)在(﹣1,1)上的单调性;(3)若方程g(x)=x的两实根为x1,x2,f(x)=0的两根为x3,x4,求使x1<x2<x3<x4成立的a 的取值范围.【考点】函数奇偶性的判断;函数单调性的判断与证明;根的存在性及根的个数判断.【专题】综合题;函数思想;综合法;函数的性质及应用.【分析】(1)根据f(x)为偶函数容易得到b=0,从而得到g(x)=,从而可判断出g(x)为奇函数;(2)由方程g(x)=x可以得到a2x2+bx+1=0,而根据该方程有两个不等实根便可得到b2>4a2,由a >0,便可得出b>2a,或b<﹣2a,进一步可以求出的范围,从而可判断出f(x)在(﹣1,1)上的单调性;(3)先得到,可设α为x1,x2中的一个数,从而可以得到,而根据便可得到.这时可讨论a,从而可以化简:a>0时会得到a﹣a2>0,可解出0<a<1;a<0时会得到a﹣a2<0,可以解出a<0,这样便可求出a的取值范围.【解答】解:(1)f(x)为偶函数;∴f(﹣x)=f(x);即ax2﹣bx+1=ax2+bx+1;∴b=0;∴;g(x)的定义域为{x|x≠0},且g(﹣x)=g(x);∴g(x)为奇函数;(2)由g(x)=x得,;整理得,a2x2+bx+1=0,该方程有两个不等实根;∴△=b2﹣4a2>0,a>0;∴b>2a,或b<﹣2a;∴;f(x)的对称轴为;∴b>2a时,f(x)在(﹣1,1)上单调递增,b<﹣2a时,f(x)在(﹣1,1)上单调递减;(3)由得,;设α为x1,x2中的一个数,则:;∵;∴;①若a>0,则;两式联立可得(a﹣a2)α2>0;∴a﹣a2>0;∴0<a<1;②若a<0,则;联立两式得(a﹣a2)α2<0;∴a﹣a2<0;∴a>1,或a<0;∴a<0;∴综上得,a的取值范围为(﹣∞,0)∪(0,1).【点评】考查偶函数、奇函数的定义及判断过程,一元二次方程实根的个数和判别式△的关系,以及二次函数的对称轴,二次函数的单调性及单调区间,韦达定理,解一元二次不等式.23.已知等差数列{a n}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=a n与x轴和指数函数的图象分别交于点A n与B n(如图所示),记B n的坐标为(a n,b n),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形A n A n+1B n+1B n的面积为s n.(1)求证数列{s n}是公比绝对值小于1的等比数列;(2)设{a n}的公差d=1,是否存在这样的正整数n,构成以b n,b n+1,b n+2为边长的三角形?并请说明理由;(3)(理科做,文科不做)设{a n}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{s n}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.(参考数据:210=1024)【考点】数列与函数的综合;归纳推理.【分析】(1)a n=p+(n﹣1)d,直角梯形A n A n+1B n+1B n的两底长度AnBn=f(a n),A n+1B n+1=f(a n+1).高为A n A n+1 =d,利用梯形面积公式表示出s n.利用等比数列定义进行证明即可.(2)a n=﹣1+(n﹣1)=n﹣2,bn=()n﹣2,以b n,b n+1,b n+2为边长能构成一个三角形,则b n+2+b n+1>b n考查次不等式解的情况作解答.(4)利用无穷等比数列求和公式,将S>2010 化简为 S=>2010,探讨p的存在性.【解答】解:(1)由等差数列通项公式可得a n=p+(n﹣1)d,…,对于任意自然数n, =,所以数列{s n}是等比数列且公比,因为d>0,所以|q|<1.…(写成,得公比也可)(2)a n=p+(n﹣1)=n+p﹣1,,对每个正整数n,b n>b n+1>b n+2若以b n,b n+1,b n+2为边长能构成一个三角形,则b n+2+b n+1>b n,即,令n=﹣1,得1+2>4,这是不可能的.所以对每一个正整数n,以b n,b n+1,b n+2为边长不能构成三角形.…(3)(理科做,文科不做),所以=如果存在p使得,即两边取对数得:p<﹣log21340,因此符合条件的p值存在,log21340≈10.4,可取p=﹣11等.…说明:通过具体的p值,验证也可.【点评】本题是函数与数列、不等式的结合.考查等比数列的判定,含参数不等式解的讨论.考查分析解决问题,计算,逻辑思维等能力。

2014年上海市高考数学卷(理)详解版

2014年上海市高考数学卷(理)详解版

2014年上海市数学高考真题(理)一、填空题(本大题共14小题,满分56分)1.函数212cos (2)y x =-的最小正周期是____________.2142T ππ== 2.若复数12z i =+,其中i 是虚数单位,则1·z z z ⎛⎫+= ⎪⎝⎭____________.6 3.若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为____________.2x =-4.设2,(,)(),[,)x x a f x x x a ∈-∞⎧=⎨∈+∞⎩若(2)4f =,则a 的取值范围为____________.(,2]-∞5.若实数,x y 满足1xy =,则222x y +的最小值为____________.22 6.若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为____________(结果用反三角函数值表示)1arccos3θ= 7.已知曲线C 的极坐标方程为(3cos 4sin )1ρθθ-=,则C 与极轴的交点到极点的距离是____________. 13ρ=8.设无穷等比数列{}n a 的公比为q ,若1a =34lim()n n a a a →∞+++,则q =_____.51q -= 9.若2132()f x x x-=-,则满足()0f x <的x 的取值范围是____________.(0,1)10.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则 选择的3天恰好为连续3天的概率是____________(结果用最简分数表示).11511.已知互异的复数,a b 满足0ab ≠,集合22{,}{,}a b a b =,则a b +=____________.-1 12.设常数a 使方程sin 3cos x x a +=在闭区间[0,2]π上恰有三个解123,,x x x ,则123x x x ++=____________.73π13.某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分. 若() 4.2E ξ=,则小白得5分的概率至少为____________.0.214.已知曲线2:4C x y =--,直线:6l x =. 若对于点(,0)A m ,存在C 上的点P 和l 上第6题图的Q 使得0AP AQ +=,则m 的取值范围为____________.[2,3] 二、选择题(本大题共4小题,满分20分)15.设,a b R ∈,则“4a b +>”是“2a >且2b >”的 ( B ) A .充分条件. B .必要条件.C .充分必要条件.D .既非充分又非必要条件.16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =是上底面上其余的八个点,则·(1,2,,8)i AB AP i =的不同值的个数为( A ) A .1. B .2.C .4.D .8.17.已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( B )A .无论12,,k P P 如何,总是无解.B .无论12,,k P P 如何,总有唯一解.C .存在12,,k P P ,使之恰有两解.D .存在12,,k P P ,使之有无穷多解.18.设2(),0()1,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围为 ( D ) A .[1,2]-.B .[1,0]-.C .[1,2].D .[0,2].三、解答题(本大题共有5小题,满分74分)19.底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图. 求123PP P 的各边长及此三棱锥的体积V .解:在123PP P 中,1323,P A P A P C PC ==, 所以AC 是中位线,故122 4.PP AC ==同理,23314, 4.P P P P ==所以123PP P 是等边三角形,各边长均为4.设Q 是ABC 的中心,则PQ ⊥平面ABC , 所以22223, 6.33AQ PQ AP AQ ==-=从而,122.33ABC V S PQ =⋅=20.设常数0a ≥,函数2()2x x af x a+=-.(1) 若4a =,求函数()y f x =的反函数1()y fx -=;(2) 根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由.解:(1)因为2424x x y +=-,所以4(1)2,1xy y +=-得1y <-1,y >且24(1)log 1y x y +=-. 因此,所求反函数为124(1)()log ,11x f x x x -+=<--1x > (2)当0a =时,()1f x =,定义域为R ,故函数()y f x =是偶函数;当1a =时,21(),21x xf x +=-定义域为(,0)(0,),-∞⋃+∞2121()()2121x x x x f x f x --++-==-=---,故函数()y f x =是奇函数;当0a >且1a ≠时,定义域22(,log )(log ,)a a -∞⋃+∞关于原点不对称, 故函数()y f x =既不是奇函数,也不是偶函数.21.如图,某公司要在A 、B 两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米. 设点,A B 在同一水平面上,从A 和B 看D 的仰角分别为α和β. (1) 设计中CD 是铅垂方向. 若要求2αβ≥,问CD 的长至多为多少(结果精确到0.01米)? (2) 施工完成后,CD 与铅垂方向有偏差.现在实测得38.12,18.45αβ︒︒==,求CD 的长(结果精确到0.01米).解:(1)记CD h =.根据已知得tan tan 20αβ≥>,tan ,tan 3580h h αβ==,所以22800,351()80hh h ⨯≥>-解得28.28h ≤≈.因此,CD 的长至多约为28.28米.(2)在ABD 中,由已知,56.57,115AB αβ︒+==,由正弦定理得sin sin()BD ABααβ=+,解得85.064.BD ≈在BCD 中,由余弦定理得2222cos ,CD BC BD BC BD β=+-⋅⋅ 解得26.93.CD ≈所以,CD 的长约为26.93米.22.在平面直角坐标系xOy 中,对于直线:0l ax by c ++=和点111222(,),(,)P x y P x y ,记1122()()ax by c ax by c η=++++. 若0η<,则称点12,P P 被直线l 分割. 若曲线C 与直线l没有公共点,且曲线C 上存在点12,P P 被直线l 分割,则称直线l 为曲线C 的一条分割线. (1) 求证:点(1,2),(1,0)A B -被直线10x y +-=分割;(2) 若直线y kx =是曲线2241x y -=的分割线,求实数k 的取值范围;(3) 动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E . 求证:通过原点的直线中,有且仅有一条直线是E 的分割线.解:(1)因为40,η=-<所以点,A B 被直线10x y +-=分隔.(2)直线y kx =与曲线2241x y -=有公共点的充要条件是方程组2241y kx x y =⎧⎨-=⎩有解,即1||.2k <因为直线y kx =是曲线2241x y -=的分隔线,故它们没有公共点,即1||2k ≥. 当1||2k ≥时,对于直线y kx =,曲线2241x y -=上的点(1,0)-和(1,0)满足20,k η=-<即点(1,0)-和(1,0)被y kx =分隔.故实数k 的取值范围是11(,][,).22-∞-⋃+∞(3)设M 的坐标为(,)x y ,则曲线E||1,x =即222[(2)] 1.x y x +-⋅=对任意的00,(0,)y y 不是上述方程的解,即y 轴与曲线E 没有公共点.又曲线E 上的点(1,2)-和(1,2)对于y 轴满足0,η<即点(1,2)-和(1,2)被y 轴分隔. 所以y 轴为曲线E 的分割线.若过原点的直线不是y 轴,设其为y kx =.由222[(2)]10y kx x y x =⎧⎨+-⋅-=⎩得222[(2)]10x kx x +-⋅-=, 令222()[(2)]1f x x kx x =+-⋅-,因为2(0)(2)(1)[16(1)15]0f f k ⋅=-⋅-+<,所以方程()0f x =有实数解, 即直线y kx =与曲线E 有公共点,故直线y kx =不是曲线E 的分隔线. 综上可得,通过原点的直线中,有且仅有一条直线是E 的分隔线.23.已知数列{}n a 满足*1113,,13n n n a a a n a +≤≤∈=N . (1) 若2342,,9a a x a ===,求x 的取值范围; (2) 设{}n a 是公比为q 的等比数列,12n n S a a a =+++. 若1133n n n S S S +≤≤,*n ∈N ,求q 的取值范围; (3) 若12,,,k a a a 成等差数列,且121000k a a a +++=,求正整数k 的最大值,以及k取最大值时相应数列12,,,k a a a 的公差.解:(1)由条件得263x ≤≤且933xx ≤≤,解得3 6.x ≤≤ 所以x 的取值范围是[3,6].(2)由133n n a a ≤,且110n n a a q -=≠,得0.n a >所以113n n S S +≤,又113,3n n n a a a +≤≤所以133q ≤≤ 当1q =时,1,1n n S n S n +==+,由13n n +≤得13n n S S +≤成立.当1q ≠时,1n n S S +≤即111311n nq q q q+--≤⋅-- ①若13q <≤,则(3) 2.nq q -≥由*,nq q n ≥∈N ,得(3)2q q -≥,所以12q <≤.②若113q ≤<,则(3) 2.n q q -≤ 由*,nq q n ≥∈N ,得(3)2q q -≤,所以11.3q ≤< 综上,q 的取值范围为1[,2].3(3)设数列12,,,k a a a 的公差为.d 由1133n n n a a a +≤≤,且11,a =得1[1(1)]13[1(1)],1,2,, 1.3n d nd n d n k +-≤+≤+-=-即(2+1)2,1,2,, 1.(23)2n d n k n d ≥-⎧=-⎨-≥-⎩当1n =时,223d -≤≤; 当2,3,,1n k =-时,由222123n n -->+-得22+1d n -≥, 所以22213d k -≥≥--. 所以1(1)(1)210002221k k k k ka d k k ---=+≥+⋅-,即2200010000k k -+≤, 得1999.k ≤所以k 的最大值为1999,1999k =时,12,,,k a a a 的公差为1.1999-。

2014年上海高考理科数学试题解析(完美WORD版)

2014年上海高考理科数学试题解析(完美WORD版)

2014年上海高考理科数学试题解析(完美WOR版)2014年全国普通高等学校招生统一考试上海数学试卷(理工农医类)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(2014)函数y 12COS2(2X)的最小正周期是 _________ .【解析】:原式=cos4x,T —4 2z【解析】:原式=Z z 1 z21 5 1 62 23.(2014)若抛物线y22px的焦点与椭圆x七1的右焦点重合,则该抛物线的准线方程为 .【解析】:椭圆右焦点为(2,0),即抛物线焦点,所以准线方程x 24.(2014)设f(x)x2 x ( ,a),若f(2) 4,则 a 的取x , x [a, ).值范围为____________ .【解析】:根据题意,2 [a, ),•. a 25.( 2014)若实数x,y满足xy 1,则x22y2的最小值2 (2014)若复数z 1 2i,其中i是虚数单位,则为 _________ .【解析】:x2 2y2 2 x V2y 2逅6.(2014)若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为______________ (结果用反三角函数值表示).【解析】:设圆锥母线长为R,底面圆半径为「,T S侧3S 底,・°・r R 3 r 2,即R 3r ,・°・cos ^ ,即母3线与底面夹角大小为arcco 百7. ( 2014)已知曲线C 的极坐标方程为(3cos 4sin ) 1,则C 与极轴的交点到极点的距离是 _________ .【解析】:曲线C 的直角坐标方程为3x 4y 1,与x 轴 的交点为(1,0),到原点距离为£33范围是图,可得X 的取值范围是(0,1)8. (2014) 设无穷等比数列a n的公比为q ,若lim a 3 a 4na n,则 q【解析】:a 12a ?a 〔q 1 q1 qq 宁,10 q 1,9. (2014)若 f(x)2 x 31X^,则满足f(x) 0的X 的取值【解析】:2 -3 XO\7 X1X?,结合幂函数图像,如下10.(2014)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示)•【解析】:P各丄Go 1511.( 2014)已知互异的复数a,b满足ab 0,集合a ,b a2, b2,贝a b ________________________ .【解析】:第一种情况:a a2,b b2, ■/ ab 0 , /. a b 1 , 与已知条件矛盾,不符;第——种情况:a b2,b a2,「・ a a4 a3 1 ,「・a2 a 1 0 , 即 a b 1 ;12.( 2014)设常数a使方程sinx T3cosx a在闭区间[0,2 ]上恰有三个解X1,X2,X3 ,贝【解析】:化简得2sin(x -) a,根据下图,当且仅3当a -.3时,恰有三个交点,艮卩X i X2 X3 0 23 313.( 2014)某游戏的得分为1,2,3,4,5,随机变量表示小白玩该游戏的得分•若E( ) 4.2,则小白得5分的概率至少为_____________ •【解析】:设得i分的概率为P i ,•••Pl 2p2 3p3 4p4 5p s 4.2 ,且P i P2 P3 P4 P5 1 ,・• 4 P i 4P2 4P3 4P4 4p§4,与前式相减得:T P i 0 ,・•3p 2P2 P3 P5 P5 ,即3p1 2P2 P3 P5 0.2 ,P5 0.214.(2014)已知曲线c:x 447,直线i:x 6.若对于点A(m,0),存在C上的点P和l上的Q使得AP牘0,则m的取值范围为_____________________ .【解析】:根据题意, A是PQ中点,即m x P 62二、选择题(本大题共有4题,满分20分)每 题有且只有一个正确答案,考生应在答题纸的相 应编号上,将代表答案的小方格涂黑,选对得 5分,否则一律得零分•15. ( 2014)设 a,b R ,则 “ b 4 ”是 “ 2 且 b 2”勺( ) (A)充分条件. (C)充分必要条件. 又非必要条件• 【解析】:B16. (2014)如图,四个棱长为1的正方体排成一个正 四棱柱,AB 是一条侧棱,(B)必要条件•(D)既非充分2 x p 0 ,.•. m [2,3]AP(i 1,2丄,8)是上底面上其余的八个点,则AB Ap (i 1, 2, K , 8)的不同值的个数为 ( )(A) 1. (B) 2.(C) 4. (D) 8.【解析】:根据向量数量积的几何意义,ABAP等于|A B乘以AP在AB方向上的投影,而AP在A B方向上的投影是定值,AB也是定值,••• AB AP为定值1, •••选A17. (2014)已知P i(a i,b i)与P2(a2,b2)是直线y kx 1 ( k为常数)上两个不同的点,则关于x和y的方程组a1Xb^y 1,的解的情况是()a2x Ry 1(A)无论k,R,P2如何,总是无解.(B) 无论k,R,P2如何,总有唯一解.(C)存在k,P,B,使之恰有两解.(D)存在k,P1,P2,使之有无穷多解•【解析】:由已知条件b1 ka1 1,b2 ka2 1,a ib 2 a ?b i a i (ka 2 1) a 2(ka i 1) a i a 2 0解,选B2、..(X a) , X 0,「 r 亠 jtf尸( t18. (2014)设 f (x ) i若 f (o )是 f (x )的最小x — a, x 0.x值,则a 的取值范围为()(A) [ 1, 2]. (B) [ 1,0].(C) [1,2].(D) [0,2].【解析】:先分析x 0的情况,是一个对称轴为x a 的二次函数,当a 0时,f(x)min f(a) f(0),不符合题意,排除AB 选项;当a 0 时,根据图像f(x)minf(0),即a 0符合题意,排除C 选项;.•.选D ;三、解答题(本大题共有5题,满分74分)解 答下列各题必须在答题纸相应编号的规定区域 内写出必要的步骤.19. (2014)(本题满分12分)a ibi a 2b2底面边长为2的正三棱锥P-ABC ,其表面展开图是三角形PP2P3,如图.求厶p i p2p3 的各边长及此三棱锥的体积V.【解析】:根据题意可得P,B,P2共线,,•* ABR BAR CBP2,ABC 60ABR BAR CBP2 60 ,P I 60,同理P2 P3 60 ,「.△ PP2P3是等边三角P ABC是正四面形,体,所以△ PP2P3边长为4;・・・V丄AB3口12 320. (2014)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.2x a(1)若 a 4,求函数y f(x)的反函数y f 1(x);⑵根据a的不同取值,讨论函数y f(x)的奇偶性,并说明理由._ _ X【解析】:(I): a 4,二f(x) 2__4 y,二2X,X log2 4y 4 ,y 1•彳4x 4・・ y f 1(x) log2 -------------------------- , x ( , 1) (1,)x 1(2) 若f(x)为偶函数,则f(x) f( X),・2X a 2 x a• • 2^,整理得a(2X 2X) 0 J. a 0,此时为偶函数若f(x)为奇函数,则f (x) f( X),・2X a 2 x a• • --------- -------------s X ?2 a 2 a整理得a2 1 0,: a 0 a 1,此时为奇函数当a (0,1) (1,)时,此时f(x)既非奇函数也非偶函数21. (2014)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米.设点A、B在同一水平面上,从A和B看D的仰角分别为和.(1)设计中CD是铅垂方向.若要求2,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差•现在实测得38.12 , 18.45 ,求CD的长(结果精确到0.01米).【解析】:(1)设CD的长为x米,则tan宕® 80 ,tan tan 2 tan 2 tan 1 tan226.93米题,第1小题满分3分,第2小题满分5分,第 3小题满分8分.在平面直角坐标系xOy 中,对于直线l :ax by c 0则称点只卫被直线l 分割.若曲线C 与直线l 没有公 共点,且曲线C 上存在点R,P 2被直线I 分割,则称 直线l 为曲线C 的一条分割线.(1)求证:点A(1,2), B( 1,0)被直线x y 1 0分割;的取值范围;⑶ 动点M 到点Q (0,2)的距离与到y 轴的距离之积ADB 180(2) 设 DB a, DA b, DC m123.43,则汙任,解得85.06,sin 123.43‘115sin 38.12 a・・ m . 802 a 2 160acos18.4526.93, /. CD 的长为22. (2014)(本题满分16分)本题共有3个小和点 R (X 1, %),巳区,y 2), 记(ax 1by 1c)(ax 2by ?c). 若0, ⑵若直线y kx是曲线x 24y 21的分割线,求实数k为1,设点M的轨迹为曲线E.求证:通过原点的直线中,有且仅有一条直线是E的分割线•【解析】:(1)将A(1,2),B( 1,0)分别代入x y 1,得(1 2 1) ( 1 1) 4 0・••点A(1,2), B( 1,0)被直线x y 1 0分割2 2(2)联立%4y k 1,得(1 4k2)x21,依题\ / y kx 7意,方程无解,• 1 4k2 0,二k 丄或k 1‘ 2 2(3)设M(x,y),贝V Jx2(y 2)2|x 1,•曲线E的方程为[x2 (y 2)2]x2 1①当斜率不存在时,直线x 0,显然与方程①联立无解,又P(1,2),F2( 1,2)为E上两点,且代入x 0,有 1 0,•x 0是一条分割线;当斜率存在时,设直线为y kx,代入方程得 : (k2 1)x4 4kx3 4x2 1 0,令f(x) (k2 1)x4 4kx3 4x2 1,贝y f(o) 1 ,2 2f(1) k 1 4k 3 (k 2) ,2 2f( 1) k 1 4k 3 (k 2),当k 2时,f(1) 0 , f (0) f (1) 0,即f(x) 0在(0,1)之间存在实根,••• y kx与曲线E有公共点当k 2时,f(0)f( 1) 0,即f(x) 0在(1,0)之间存在实根,•y kx与曲线E有公共点•直线y kx与曲线E始终有公共点,• 不是分割线,综上,所有通过原点的直线中,有且仅有一条直线x 0是E的分割线23. ( 2014)(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分.已知数列a”满足;a n a”’3a”, n N*,a, 1.3(1)若a2 2,a3 x,a4 9,求x的取值范围;⑵设a n是公比为q的等比数列,s n a1 a2 L a n . ^若1 * yS n S n 1 3S n,nN, 3求q的取值范围;(3)若…丄,a k成等差数列,且正整数k的最大值,以及k取最大值时相应数列【解析】:a1 a2 L a k 1000,(1)依题意, 1 —a2 a33 2 33a的公差.・236,又a4 3a…3 x 27,综上可得3 x(2)由已知得a n,又“1a2 3a1 ,当q 1时,S n n S, 3S n,即£3n,成立当1 q 3时,3S n ,n3^,q 1n 1-1 q ______ 1 3n3 q 1 此不等式即3q n n 1qq n23q n2二3q n 1 q n 2 q n(3q 1) 2 2q n 2 0 ,对于不等式q n1 3q n 2 0 ,令n 1 ,得2 c cq 3q 20,解得1q 2,又当1q 2时,q 3 0,•n 1… q3q n 2q n(q3) 2 q(q 3) 2 (q 1)(q 2) 0成立,• I 1 q2比1当1 q1时,S n1 q 1S1 q 3S 1 3S n,即1 1 q n 1n 1 . n q31 q,3 1 q 1 q 1 q即n 13qn 1 q n q3q n2 02 0 ‘3q10,q30• ••3q n1nq 2 q n(3q1)22q n20n 1q3q n2q n(q 3)2q(q3)2(q 1)(q 2) 0・•・J q 1时,不等式恒成立综上,q的取值范围为1 q 23(3)设公差为d,显然,当k 1000,d 0时, 是一组符合题意的解,二k max 1000 ,贝U由已知得1 (k 2)d31 (k 1)d 3[1 (k 2)d],整理人 谭峰2 x 80160x 35 , x 26400 x 2,6400 解得0 x 20、、2 28.28 ,・•・ CD 的长至多为28.28 米(爲d 2,当k 1000时,不等式即 「・d 2 , a 〔 a ?・・・a ,k(k 1)d “c k ' ) 1000, 2 ? 二 k 1000 时,d 2000 2k 2 解得 k(k 1) 2k 1 ? 1000 J999000 k 1000 J999000,•-・ k 1999 , 二k 的最大值为1999 ,此时公差 ,2000 2k 1998 1d k(k 1) 1999 19981999。

上海市十二校高三数学上学期12月联考试题 理 沪教版

上海市十二校高三数学上学期12月联考试题 理 沪教版

2012-2013学年上海市十二校高三(上)12月联考数学试卷(理科)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)(2012•黄浦区二模)函数f(x)=的定义域为(﹣,+∞).∴x>﹣的定义域为(﹣,+∞),+∞)2.(4分)已知角θ的终边过点P(﹣3,4),则sinθ+cosθ的值为.=,=+(﹣故答案为:.3.(4分)(2010•徐汇区二模)设集合,则A∪B={x|﹣1≤x<2}4.(4分)(2012•黄浦区二模)若π≤x≤,则方程2sinx+1=0的解x= .sin=≤x≤+故答案为:5.(4分)已知函数f(x)=ax2+(b﹣3)x+3,x∈[2a﹣3,4﹣a]是偶函数,则a+b= 2 .6.(4分)已知幂函数y=f(x)存在反函数,若其反函数的图象经过点(,9),则的值是 2 .,)),∴,即=,=27.(4分)若等差数列{a n}满足a n+1+a n=4n﹣3(n∈N*).则a1的值为﹣.﹣8.(4分)(2006•天津)某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x= 20 吨.则需要购买次,运费为万元,=160当且仅当9.(4分)函数(x∈[0,π])的值域是.)∈﹣,解:∵函数sinx﹣),∴x﹣∈﹣,﹣,)∈10.(4分)(2009•浦东新区一模)已知数列{a n}是等比数列,其前n项和为S n,若S2=12,S 3=a1﹣6,则= 16 .即可求出q=;所以=11.(4分)若存在实数x∈[1,2]满足2x2﹣ax+2>0,则实数a的取值范围是(﹣∞,5).12.(4分)在平面直角坐标系xOy中,函数f(x)=k(x﹣1)(k>1)的图象与x轴交于点A,它的反函数y=f﹣1(x)的图象与y轴交于点B,并且这两个函数的图象交于点P.若四边形OAPB的面积是3,则k= .,所以)得:故答案为13.(4分)(2011•浦东新区三模)已知数列{a n}是以3为公差的等差数列,S n是其前n项和,若S10是数列{S n}中的唯一最小项,则数列{a n}的首项a1的取值范围是(﹣30,﹣27).=n=n==<1014.(4分)(2012•松江区三模)对于定义域和值域均为[0,1]的函数f(x),定义f1(x)=f(x),f2(x)=f(f1(x)),…,f n(x)=f(f n﹣1(x)),n=1,2,3,….满足f n(x)=x的点x∈[0,1]称为f的n阶周期点.设则f的n阶周期点的个数是2n.]∈(]∈(,x=∈(,∈(x=二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生必须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.16.(5分)函数的图象如图所示,则y 的表达式为()..C..=﹣,再由ω=<=﹣,=×2+,﹣<)17.(5分)若,则该数列的前2012项=,则﹣﹣=18.(5分)(2009•海淀区一模)对于数列{a n},若存在常数M,使得对任意n∈N*,a n与a n+1三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)已知,且,A∪B=R,(1)求A;(2)实数a+b的值.)由分式不等式的解法,解>)根据题意,>,)∪(,+∞))可得20.(14分)在△ABC中,角A、B、C所对的边分别为a、b、c,且(1)求tanC的值;(2)若△ABC最长的边为1,求b.)由,得到)∵cosB=sinB=∴tanB=﹣,∴C=135°,∴sinC=21.(14分)若函数f(x)在定义域D内某区间I上是增函数,而在I上是减函数,则称y=f(x)在I上是“弱增函数”(1)请分别判断f(x)=x+4,g(x)=x2+4x+2在x∈(1,2)是否是“弱增函数”,并简要说明理由.(2)若函数(θ、b是常数)在(0,1]上是“弱增函数”,请求出θ及正数b应满足的条件.)上是增函数,但在()因为(在(﹣]=且22.(16分)已知(a∈R)的图象关于坐标原点对称(1)求a的值,并求出函数F(x)=f(x)+2x﹣﹣1的零点;(2)若函数在[0,1]内存在零点,求实数b的取值范围(3)设,若不等式f﹣1(x)≤g(x)在上恒成立,求满足条件的最小整数k的值.)函数)在上恒成立,利用基本不等式可求出=时函数在,显然,即23.(18分)已知数列{a n},如果数列{b n}满足满足,则称数列{b n}是数列{a n}的“生成数列”(1)若数列{a n}的通项为a n=n,写出数列{a n}的“生成数列”{b n}的通项公式.(2)若数列{c n}的通项为c n=An+B,(A.、B是常数),试问数列{c n}的“生成数列”{l n}是否是等差数列,请说明理由.(3)已知数列{d n }的通项为,设{d n }的“生成数列”为{p n }.若数列{L n }满足求数列{L n }的前n 项和T n .)),综合:。

2014年上海高考理科数学试题及答案

2014年上海高考理科数学试题及答案

2014年上海市高考数学试卷(理科)一、填空题(共14题,满分56分)1.(4分)(2014•上海)函数y=1﹣2cos2(2x)的最小正周期是_________.2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=_________.3.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为_________.4.(4分)(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为_________.5.(4分)(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为_________.6.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为_________(结果用反三角函数值表示).7.(4分)(2014•上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是_________.8.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=_________.9.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是_________.10.(4分)(2014•上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_________(结果用最简分数表示).11.(4分)(2014•上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=_________.12.(4分)(2014•上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3= _________.13.(4分)(2014•上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为_________.14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为_________.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)(2014•上海)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A . 充分非必要条件B . 必要非充分条件 C . 充要条件 D . 既非充分又非必要条件16.(5分)(2014•上海)如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,P i (i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为( )A . 1B . 2C . 3D . 4 17.(5分)(2014•上海)已知P 1(a 1,b 1)与P 2(a 2,b 2)是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组的解的情况是( )A . 无论k ,P 1,P 2如何,总是无解B . 无论k ,P 1,P 2如何,总有唯一解C . 存在k ,P 1,P 2,使之恰有两解 D . 存在k ,P 1,P 2,使之有无穷多解18.(5分)(2014•上海)设f (x )=,若f (0)是f (x )的最小值,则a 的取值范围为( )A . [﹣1,2]B . [﹣1,0]C . [1,2]D . [0,2]三、解答题(共5题,满分72分) 19.(12分)(2014•上海)底面边长为2的正三棱锥P ﹣ABC ,其表面展开图是三角形P 1P 2P 3,如图,求△P 1P 2P 3的各边长及此三棱锥的体积V .20.(14分)(2014•上海)设常数a ≥0,函数f (x )=.(1)若a=4,求函数y=f (x )的反函数y=f ﹣1(x );(2)根据a 的不同取值,讨论函数y=f (x )的奇偶性,并说明理由.21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.23.(16分)(2014•上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围.(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k 的公差.2014年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(共14题,满分56分)1.(4分)(2014•上海)函数y=1﹣2cos2(2x)的最小正周期是.2.(4分)(2014•上海)若复数z=1+2i,其中i是虚数单位,则(z+)•=6.3.(4分)(2014•上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为x=﹣2.4.(4分)(2014•上海)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2].5.(4分)(2014•上海)若实数x,y满足xy=1,则x2+2y2的最小值为2.6.(4分)(2014•上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos(结果用反三角函数值表示).7.(4分)(2014•上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.8.(4分)(2014•上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=.9.(4分)(2014•上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1).10.(4分)(2014•上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).11.(4分)(2014•上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=﹣1.12.(4分)(2014•上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.13.(4分)(2014•上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为0.2.14.(4分)(2014•上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)(2014•上海)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件解答:解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,若a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故选:B.16.(5分)(2014•上海)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,P i(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()解答:解:如图建立空间直角坐标系,则A(2,0,0),B(2,0,1),P1(1,0,1),P2(0,0,1),P3(2,1,1),P4(1,1,1),P5(0,1,1),P6(2,2,1),P7(1,2,1),P8(0,2,1),,=(﹣1,0,1),=(﹣2,0,1),=(0,1,1),=(﹣1,1,1),=(﹣2,1,1),=(0,2,1),=(﹣1,2,1),=(﹣2,2,1),易得•=1(i=1,2,…,8),∴•(i=1,2,…,8)的不同值的个数为1,故选A.17.(5分)(2014•上海)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x 和y的方程组的解的情况是()解答:解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①×b2﹣②×b1得:(a2b1﹣a1b2)x=b2﹣b1,即(a2﹣a1)x=b2﹣b1.∴方程组有唯一解.故选:B.18.(5分)(2014•上海)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()解答:解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a≤2+a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.点评:本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.三、解答题(共5题,满分72分)19.(12分)(2014•上海)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.解答:解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°,∴∠ABP1=∠BAP1=∠CBP2=60°,∴∠P1=60°,同理∠P2=∠P3=60°,∴△P1P2P3是等边三角形,P﹣ABC是正四面体,∴△P1P2P3的边长为4,V P﹣ABC==20.(14分)(2014•上海)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.解答:解:(1)∵a=4,∴∴,∴,∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪(1,+∞).(2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立,∴=,整理可得a(2x﹣2﹣x)=0.∵2x﹣2﹣x不恒为0,∴a=0,此时f(x)=1,x∈R,满足条件;若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立,∴=﹣,整理可得a2﹣1=0,∴a=±1,∵a≥0,∴a=1,此时f(x)=,满足条件;综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数.点评:本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题.21.(14分)(2014•上海)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).解答:解:(1)设CD的长为x米,则tanα=,tanβ=,∵0,∴tanα≥tan2β,∴tan,即=,解得0≈28.28,即CD的长至多为28.28米.(2)设DB=a,DA=b,CD=m,则∠ADB=180°﹣α﹣β=123.43°,由正弦定理得,即a=,∴m=≈26.93,答:CD的长为26.93米.22.(16分)(2014•上海)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.分析:(1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<0,得出结论.(2)联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围.(3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1 ①.由于y轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线.解答:(1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0,∴点(1,2)、(﹣1,0)被直线x+y﹣1=0分隔.(2)解:联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据题意,此方程无解,故有1﹣4k2≤0,∴k≤﹣,或k≥.(3)证明:设点M(x,y),则•|x|=1,故曲线E的方程为[x2+(y﹣2)2]x2=1①.y轴为x=0,显然与方程①联立无解.又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有η=1×(﹣1)=﹣1<0,故x=0是一条分隔线.若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx﹣2)2]x2=1,令f(x)=[x2+(kx﹣2)2]x2﹣1,∵f(0)f(2)<0,∴f(x)=0有实数解,即y=kx与E有公共点,∴y=kx不是E的分隔线.∴通过原点的直线中,有且仅有一条直线是E的分隔线.23.(16分)(2014•上海)已知数列{a n}满足a n≤a n+1≤3a n,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{a n}是公比为q的等比数列,S n=a1+a2+…a n,若S n≤S n+1≤3S n,n∈N*,求q的取值范围.(3)若a1,a2,…a k成等差数列,且a1+a2+…a k=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…a k的公差.分析:(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出S n分别代入不等式S n≤S n+1≤3S n,得到关于q的不等式组,解不等式组求出q的范围.(3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…a k的公差.解答:解:(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,S n=n,S n≤S n+1≤3S n,即,成立.当1<q≤3时,,S n≤S n+1≤3S n,即,∴不等式∵q>1,故3q n+1﹣q n﹣2=q n(3q﹣1)﹣2>2q n﹣2>0对于不等式q n+1﹣3q n+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴q n+1﹣3q n+2=q n(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,S n≤S n+1≤3S n,即,∴此不等式即,3q﹣1>0,q﹣3<0,3q n+1﹣q n﹣2=q n(3q﹣1)﹣2<2q n﹣2<0,q n+1﹣3q n+2=q n(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,上,q的取值范围为:.(3)设a1,a2,…a k的公差为d.由,且a1=1,得即当n=1时,﹣≤d≤2;当n=2,3,…,k﹣1时,由,得d≥,所以d≥,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…a k的公差为﹣.。

2014上海高考数学理科解答题含答案

2014上海高考数学理科解答题含答案

三.解答题(本大题共5题,满分74分)19、(本题满分12分)底面边长为2的正三棱锥, zxxk 其表面展开图是三角形,如图,求△的各P ABC -321p p p 321p p p 边长及此三棱锥的体积.V20.(本题满分14分)本题有2个小题,学科网第一小题满分6分,第二小题满分1分。

设常数,函数0≥a a a x f x x -+=22)((1)若=4,求函数的反函数;a )(x f y =)(1x fy -=(2)根据的不同取值,讨论函数的奇偶性,并说明理由.a )(x f y =21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在两地连线上的定点处建造广告牌,其中为顶端,长35A B 、C CD D AC 米,长80米,设在同一水平面上,从和看的仰角分别为.CB A B 、A B D βα和(1)设计中是铅垂方向,若要求,问的长至多为多少学科网(结果精确到CD βα2≥CD 0.01米)?(2)施工完成后.与铅垂方向有偏差,现在实测得zxxk 求的CD ,,45.1812.38==βαCD 长(结果精确到0.01米)?22(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系中,对于直线:和点记xoy l 0ax by c++=),,(),,(22211y x P y x P i 若<0,则称点被直线分隔。

若曲线C 与直线没有公1122)().ax by c ax by c η=++++、η21,P P l l 共点,且曲线C 上存在点被直线分隔,则称直线为曲线C 的一条分隔线.21P P ,l l ⑴ 求证:点被直线分隔;),(),(012,1-B A 01=-+y x ⑵若直线是曲线的分隔线,求实数的取值范围;kx y =1422=-y x k ⑶动点M 到点的距离与到轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明)(2,0Q y轴为曲线E 的分隔线.y 23.(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列满足.{}n a 1113,*,13n n n a a a n N a +≤≤∈=(1)若,求的取值范围;zxxk 2342,,9a a x a ===x (2)若是等比数列,且,求正整数的最小值,学科网以及取最小值时相应{}n a 11000m a =m m 的公比;{}n a (3)若成等差数列,求数列的公差的取值范围.12100,,,a a a 12100,,,a a a 19.解:∵由题得,三棱锥是正三棱锥P ABC -∴侧棱与底边所成角相同且底面是边长为2的正三角形ABC ∆∴由题得,,3ABC BCA CAB π∠=∠=∠=112233PBA P AB P BC P CB P AC PCA ∠=∠=∠=∠=∠=∠又∵三点恰好在构成的的三条边上,,A B C 123,,P P P 123PP P ∆∴1122333PBA P AB P BC P CB P AC PCA π∠=∠=∠=∠=∠=∠=∴1122332P A PB P B P C PC P A ======∴,三棱锥是边长为2的正四面1213234PP PP P P ===P ABC -体∴如右图所示作图,设顶点在底面内的投影为,连接,并延长交于P ABC O BO AC D ∴为中点,为的重心,底面D AC O ABC ∆PO ⊥ABC ∴,23BO BD ==PO=112232V =⋅⋅⋅=20.解:(1)由题得,248()1(,1)(1,)2424x x x f x +==+∈-∞-+∞-- ∴,121()2log 1x f x x -+⎛⎫=+ ⎪-⎝⎭(,1)(1,)x ∈-∞-+∞ (2)∵且2()2x x a f x a +=-0a ≥∴①当时,,0a =()1,f x x R =∈∴对任意的都有,∴为偶函数x R ∈()()f x f x =-()y f x =②当时,,,1a =21(),021x x f x x +=≠-2112()2112x x x x f x --++-==--∴对任意的且都有,∴为奇函数0x ≠x R ∈()()f x f x =--()y f x =③当且时,定义域为,0a ≠1a ≠{2log ,}x x a x R ≠∈∴定义域不关于原定对称,∴为非奇非偶函数()y f x =21.解:(1)由题得,∵,且,2αβ≥022πβα<≤<tan tan 2αβ∴≥即,解得,,∴米2403516400CD CD CD ≥-CD ≤28.28CD ≈(2)由题得,,18038.1218.45123.43ADC ∠=--= ∵,∴米3580sin123.43sin18.45AD += 43.61AD ≈∵,∴米22235235cos38.12CD AD AD =+-⋅⋅⋅ 26.93CD ≈22.证明:(1)由题得,,∴被直线分隔。

2014上海高考理科数学试卷详解版

2014上海高考理科数学试卷详解版

2014年全国普通高等学校招生统一考试上海数学试卷(文史类)试题分析考生注意:1.本试卷共4页,23道题,满分150分,考试时间120分钟.2.本考试分设试卷和答题纸,试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.函数212cos (2)y x =-的最小正周期是__________. 【参考答案】π2【测量目标】考查二倍角公式,三角函数的周期【试题分析】2212cos (2)(2cos (2)1)cos 4y x x x =-=--=-,所以2ππ=.42T = 2.若复数12i z =+,其中i 是虚数单位,则__1z z z ⎛⎫ ⎪+⋅= ⎪⎝⎭__________.【参考答案】6【测量目标】考查复数代数形式的四则运算,共轭复数的概念 【试题分析】_2_11(1+2i)(1-2i)+1=1-4i +1=6.z z z z z -⎛⎫ ⎪+⋅=⋅+= ⎪⎝⎭3.若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为__________.【参考答案】2x =-【测量目标】考查抛物线的准线方程,椭圆的焦点 【试题分析】椭圆22195x y +=的右焦点右焦点为2,0(),故22p =,故该抛物线的准线方程为 2.2px =-=-4.设2,(,)(),[,)x x a f x x x a ∈-∞⎧=⎨∈+∞⎩,若(2)4f =,则a 的取值范围为__________. 【参考答案】(,2]-∞【测量目标】考查分段函数【试题分析】若2a >,则(2)2f =,不合题意,舍去;若2a …,2(2)24f ==,符合题意,故a 的取值范围是(,2]-∞.5.若实数,x y 满足1xy =,则222x y +的最小值为__________. 【参考答案】22【测量目标】考查基本不等式【试题分析】由基本不等式可得222222 2.x y xy +=…故222x y +的最小值为22. 6.若圆锥的侧面积是底面积的三倍,则其母线与底面所成的角大小为__________(结果用反三角函数值表示). 【参考答案】1arccos 3【测量目标】考查圆锥的侧面积公式,线面角【试题分析】由题意可得,2π3πrl r =,解得3l r =,记母线与底面所成的角为θ,则1cos 3r l θ==,即1arccos 3θ=. 7.已知曲线C 的极坐标方程为(3cos 4sin )1ρθθ-=,则C 与极轴的交点到极点的距离是__________.【参考答案】13【测量目标】 考查极坐标方程【试题分析】曲线C 的直角坐标方程为341x y -=, 与x 轴的交点为1(,0)3,到原点距离为13. 8.设无穷等比数列{}n a 的公比为q ,若134(),lim n n a a a a →∞=+++则q =__________.【参考答案】51.2- 【测量目标】考查数列极限【试题分析】因为无穷等比数列{}n a 的极限存在,所以||1q <,又因为134(),lim n n a a a a →∞=+++即2211(1)1lim n n a q q a q -→∞-=-,解得51.2q -=9.若2132()f x x x -=-,则满足()0f x <的x 的取值范围是__________. 【参考答案】(0,1)【测量目标】考查幂函数的性质【试题分析】函数()f x 的定义域为(0,)+∞,()0f x <即2132x x-<,在同一坐标系中作出2132x x -、(0x >)的图象(如图),由图象可知,当(0,1)x∈时,2132x x-<.故满足()0f x<的x的取值范围是(0,1).SHWK2第9题图10.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是__________(结果用最简分数表示).【参考答案】115【测量目标】考查运用组合数求古典概型【试题分析】记“选择的3天恰好为连续3天”的概率为P,从10天中选择3天共有310C种方法,从10天中选择连续的3天有8种选择方法,故310881.12015CP===11.已知互异的复数,a b满足0ab≠,集合22{,}{,}a b a b=,则a b+=__________.【参考答案】1-【测量目标】考查集合间的相等关系,集合的互异性【试题分析】(1)当22,a ab b==时,,a b可看作是2x x=的根,此时0ab=与0ab≠矛盾,故舍去;(2)当22,a b b a==时,可得22a b b a+=+,(*)因为2,a b=所以24a b=,所以(*)即为224b b b b+=+,即3(1)0b b-=,所以301b b==或,此时130,1,i22b b b===-±或或;①当0b=时,0a=,0ab=与0ab≠矛盾且不满足集合的互异性,故舍去;②当1b=时,1,0a ab=≠,但此时不能满足集合的互异性,故舍去;③当13i22b=-+时,13i22a=--,0ab≠且满足集合的互异性,符合题意,此时1a b+=-;④当13i22b=--时,13i22a=-+,0ab≠且满足集合的互异性,符合题意,此时1a b+=-;综上所述, 1.a b+=-12.设常数a使方程s i n3c o sx x a+=在闭区间[0,2π]上恰有三个解123,,x x x,则123x x x++=__________.【参考答案】7π3【测量目标】考查三角函数的图像与性质【试题分析】sin3cosx x a+=化简得π2sin()3x a+=,如图,当且仅当3a=时,恰有三个交点,即123π7π0++2π=33x x x ++=.SHWK8第12题图13.某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若() 4.2E ξ=,则小白得5分的概率至少为__________.【参考答案】0.2【测量目标】考查离散型随机变量的期望与概率【试题分析】设得i 分的概率为i p ,∴123452345 4.2p p p p p ++++=,(*)且123451p p p p p ++++=,∴12345444444p p p p p ++++=,与(*)式相减得:1235320.2p p p p ---+=,∵0i p …,∴1235532p p p p p ---+…,即50.2p ….14.已知曲线2:4C x y =--,直线:6l x =.若对于点(,0)A m ,存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为__________.【参考答案】[2,3]【测量目标】考查向量的坐标运算,向量在平面几何中的应用 【试题分析】由题意可设2(4,),(6,)p p Q P y y Q y --(22Py -剟),又因为0AP AQ +=,所以点P 、A 、Q 在一条直线上,且A 点 为线段PQ 的中点.所以,2246P m y =--+,又22Py -剟,所以[2,3]m ∈.二、填空题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.设,a b ∈R ,则“4a b +>”是“2a >且2b >”的 ( ) A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件 【参考答案】B【测量目标】考查充分、必要条件【试题分析】由4a b +>不能推出2a >且2b >,如1,6a b ==满足4a b +>,但不能满足2a >且2b >;如果2a >且2b >,由不等式的性质可得4a b +>;故“4a b +>”是“2a >且2b >”的必要非充分条件.16.如图,四个棱长为1的正方形排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =是上底面上其余的八个点,则(1,2,,8)i AB AP i ⋅=的不同值的个数为 ( )A .1 B.2 C.4D.8SHWK7第16题图 解法一:【参考答案】A【测量目标】考查空间直角坐标系,空间向量的坐标运算【试题分析】如图,以A 点为坐标原点建议空间直角坐标系A xyz -,则12345678(0,0,0),(0,0,1),(0,1,1),(0,2,1),(1,0,1),(1,1,1),(1,2,1),(2,0,1),(2,1,1),(2,2,1)A B P P P P P P P P ,则(0,0,1)AB =,1(0,1,1)AP =,2(0,2,1)AP =,3(1,0,1)AP =,4(1,1,1)AP =,5(1,2,1)AP =,6(2,0,1)AP =,7(2,1,1)AP =,8(2,2,1)AP =,经计算,可知(1,2,,8)i AB AP i ⋅=的值均为1,故选A.SHWK9第16题图 解法二:【参考答案】A【测量目标】考查向量数量积及其几何意义【试题分析】根据向量数量积的几何意义,i AB AP ⋅等于AB 乘以i AP 在AB 方向上的投影,而i AP 在AB 方向上的投影是定值,AB 也是定值,∴i AB AP ⋅为定值1,故选A 17.已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是 ( )A.无论12k P P 、、如何,总是有解B.无论12k P P 、、如何,总有唯一解C.存在12k P P 、、,使之恰有两解D.存在12k P P 、、,使之有无穷多解 解法一:【参考答案】B【测量目标】考查两条直线间的位置关系【试题分析】由已知得112211ka b ka b +=⎧⎨+=⎩,代入112211a x b y a x b y +=⎧⎨+=⎩得1122(1)1(1)1a x ka y a x ka y ++=⎧⎨++=⎩解得1x ky =-⎧⎨=⎩,即直线111a x b y +=与221a x b y +=恒交于点(,1)k -(k 为常数).解法二:【参考答案】B【测量目标】考查利用行列式判断线性方程组的解的情况 【试题分析】由已知条件111b ka =+,221b ka =+,11122122a b D a b a b a b ==-122112(1)(1)0a ka a ka a a =+-+=-≠,∴有唯一解,选B.18.设2(),0()1,0x a x f x x a x x ⎧-⎪=⎨++>⎪⎩…,若(0)f 是()f x 的最小值,则a 的取值范围为 ( )A.[1,2]-B.[1,0]-C.[1,2]D.[0,2]【参考答案】D【测量目标】考查分段函数,函数的最值【试题分析】解法一:①当0a <时,(0)()f f a >,不是最小值,不合题意,舍去; ②当0a =时,易知(0)f 是()f x 的最小值;③当0a >时,当0x …时,2min ()(0)f x f a ==,当0x >时,min ()(1)2f x f a ==+,要使(0)f 是()f x 的最小值,必须22a a +…,解得12a-剟,又0a >,所以02a <…;综上可知,a 的取值范围为[0,2].解法二:(排除法)先分析0x …的情况,是一个对称轴为x a =的二次函数,当0a <时,min ()()(0)f x f a f =≠,不符合题意,排除A 、B 选项;当0a =时,根据图像min ()(0)f x f =,即0a =符合题意,排除C 选项;故选D.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 19.(本题满分12分)底面边长为2的正三棱锥P ABC -, 其表面展开图是三角形123P P P ,如图.求△123P P P 的各边长及此三棱锥的体积V .SHWK4第19题图【测量目标】考查棱锥的体积,由展开图还原实物图 【试题分析】在△123P P P 中,1323,P A P A P C P C ==, 所以AC 是中位线,故122 4.PP AC ==同理,23314, 4.P P P P ==所以△123P P P 是等边三角形,各边长均为4. 设Q 是△ABC 的中心,则PQ ⊥平面ABC , 所以22223, 6.33AQ PQ AP AQ ==-= 从而,122.33ABC V S PQ =⋅=△ 20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.设常数0a …,函数2()2x x af x a+=-(1)若a =4,求函数()y f x =的反函数1()y f x -=;(2)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由. 【测量目标】考查求反函数,判断函数的奇偶性【试题分析】(1)因为2424x x y +=-,所以4(1)2,1x y y +=-得11,y y <->或且24(1)log 1y x y +=-.因此,所求反函数为124(1)()log ,1 1.1x f x x x x -+=<->-或 (2)当0a =时,()1f x =,定义域为R ,故函数()y f x =是偶函数;当1a =时,21(),21x x f x +=-定义域为(,0)(0,),-∞+∞2121()()2121x x x x f x f x --++-==-=---,故函数()y f x =是奇函数;当01a a >≠且时,定义域22log )(log ,)a a ∞+∞(-,关于原点不对称, 故函数()y f x =既不是奇函数,也不是偶函数.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 如图,某公司要在A B 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设A B 、在同一水平面上,从A 和B 看D 的仰角分别为αβ和.(1)设计中CD 是铅垂方向,若要求2αβ…,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD 与铅垂方向有偏差,现在实测得38.12,18.45αβ==,求CD的长(结果精确到0.01米).第21题图【测量目标】考查正弦定理、余弦定理的实际应用,解三角形 【试题分析】(1)记CD h =.根据已知得tan tan 20αβ>…,tan ,tan 3580h hαβ==,所以22800,351()80hh h ⨯>-…解得20228.28h ≈….因此,CD 的长至多约为28.28米. (2)在△ABD 中,由已知,56.57,115AB αβ+==,由正弦定理得sin sin()BD ABααβ=+,解得85.064.BD ≈在△BCD 中,由余弦定理得2222cos ,CD BC BD BC BD β=+-⋅⋅解得26.93.CD ≈所以,CD 的长约为26.93米.22.(本题满分16分)本题共有3小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系xOy 中,对于直线l :0ax by c ++=和点111222(,),(,)P x y P x y ,记1122()()ax by c ax by c η=++++,若η<0,则称点12,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点12,P P 被直线l 分隔,则称直线l 为曲线C 的一条分隔线. ⑴ 求证:点(1,2),(1,0)A B -被直线10x y +-=分隔;⑵若直线y kx =是曲线2241x y -=的分隔线,求实数k 的取值范围;⑶动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E ,求证:通过原点的直线中,有且仅有一条直线是E 的分隔线. 【测量目标】考查直线与曲线的位置关系【试题分析】(1)证明:因为40,η=-<所以点,A B 被直线10x y +-=分隔. (2)解:直线y kx =与曲线2241x y -=有公共点的充要条件是方程组2241y kxx y =⎧⎨-=⎩有解,即1||.2k <因为直线y kx =是曲线2241x y -=的分隔线,故它们没有公共点,即1||2k ….当1||2k …时,对于直线y kx =,曲线2241x y -=上的点(1,0)-和(1,0)满足20,k η=-<即点(1,0)-和(1,0)被y kx =分隔.故实数k 的取值范围是11(,][,).22-∞-+∞(3)证明:设M 的坐标为(,)x y ,则曲线E 的方程为22222(2)||1,[(2)] 1.x y x x y x +-⋅=+-⋅=即 对任意的00,(0,)y y 不是上述方程的解,即y 轴与曲线E 没有公共点.又曲线E 上的点(1,2)(1,2)-和对于y 轴满足0,η<即点(1,2)(1,2)-和被y 轴分隔. 所以y 轴为曲线E 的分割线.若过原点的直线不是y 轴,设其为y kx =. 由222[(2)]10y kx x y x =⎧⎨+-⋅-=⎩得222[(2)]10x kx x +-⋅-=, 令222()[(2)]1f x x kx x =+-⋅-,因为2(0)(2)(1)[16(1)15]0f f k ⋅=-⋅-+<,所以方程()0f x =有实数解, 即直线y kx =与曲线E 有公共点,故直线y kx =不是曲线E 的分隔线. 综上可得,通过原点的直线中,有且仅有一条直线是E 的分隔线.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分7分,第3小题满分8分.已知数列{}n a 满足*1113,, 1.3n n n a a a n a +∈=N 剟(1)若2342,,9a a x a ===,求x 的取值范围; (2)设{}n a 是公比为q 的等比数列,12.n n S a a a =+++若*113,3n n n S S S n +∈N 剟,求q 的取值范围.(3)若12,,,k a a a 成等差数列,且 121000k a a a +++=,求正整数k 的最大值,以及k 取最大值时相应数列12,,,k a a a 的公差.【测量目标】考查等差数列、等比数列的性质 【试题分析】(1)由条件得263x剟且933x x 剟,解得3 6.x 剟所以x 的取值范围是[3,6].(2)由133n n a a …,且110n n a a q -=≠,得0.n a >所以113n n S S +…,又113,3n n n a a a +剟所以133q 剟当1q =时,1,1n n S n S n +==+,由13n n +…得13n n S S +…成立.当1q ≠时,13n n S S +…即111311n nq q q q+--⋅--… ①若13q <…,则(3) 2.n q q -…由*,n q q n ∈N …,得(3)2q q -…,所以12q <…. ②若113q <…,则(3) 2.n q q -…由*,n q q n ∈N …,得(3)2q q -…,所以11.3q <…综上,q 的取值范围为1[,2].3(3)设数列12,,,k a a a 的公差为.d 由1133n n n a a a +剟,且11,a =得1[1(1)]13[1(1)],1,2,, 1.3n d nd n d n k +-++-=-剟即(2+12,1,2,, 1.(23)2n d n k n d -⎧=-⎨--⎩)……当1n =时,223d-剟;当2,3,,1n k =-时,由222123n n -->+-得22+1d n -…, 所以22213d k ---厖. 所以1(1)(1)210002221k k k k ka d k k ---=++⋅-…,即2200010000k k -+…, 得1999.k …所以k 的最大值为1999,1999k =时,12,,,k a a a 的公差为1.1999-。

2014年高考理科数学上海卷(含答案解析)

2014年高考理科数学上海卷(含答案解析)

数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前2014年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数212cos (2)y x =-的最小正周期是 .2.若复数12i z =+,其中i 是虚数单位,则1(z )z z+= .3.若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为 .4.设2,(,),(),[,),x x a f x x x a ∈-∞⎧=⎨∈+∞⎩若(2)4f =,则a 的取值范围为 .5.若实数x ,y 满足1xy =,则222x y +的最小值为 .6.若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为 (结果用反三角函数值表示).7.已知曲线C 的极坐标方程为(3cos 4sin )1ρθθ-=,则C 与极轴的交点到极点的距离是 .8.设无穷等比数列{}n a 的公比为q .若134lim()n n a a a a →∞=+++,则q = .9.若2132()f x x x =-,则满足()0f x <的x 的取值范围是 .10.为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是 (结果用最简分数表示). 11.已知互异的复数a ,b 满足0ab ≠,集合22{,}{,}a b a b =,则a b += . 12.设常数a使方程sin x x a =在闭区间[0,2π]上恰有三个解1x ,2x ,3x ,则123x x x ++= .13.某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分.若() 4.2E ξ=,则小白得5分的概率至少为 .14.已知曲线C:x =,直线l :6x =.若对于点(,0)A m ,存在C 上的点P 和l 上的点Q 使得AP AQ +=0,则m 的取值范围为 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.设,a b ∈R ,则“4a b +>”是“2a >且2b >”的( ) A .充分条件 B .必要条件C .充分必要条件D .既非充分又非必要条件16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =是上底面上其余的八个点,则(1,2,,8)i AB AP i =的不同值的个数为( )A .1B .2C .4D .817.已知111(,)P a b 与222(,)P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组11221,1,a x b y a x b y +=⎧⎨+=⎩的解的情况是 ( )A .无论k ,1P ,2P 如何,总是无解B .无论k ,1P ,2P 如何,总有唯一解姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)C .存在k ,1P ,2P ,使之恰有两解D .存在k ,1P ,2P ,使之有无穷多解18.设2(),0,()1,0,x a x f x x a x x ⎧-⎪=⎨++⎪⎩≤>若(0)f 是()f x 的最小值,则a 的取值范围为 ( )A .[1,2]-B .[1,0]-C .[1,2]D .[0,2]三、解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 19.(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形123PP P ,如图.求123PP P △的各边长及此三棱锥的体积V .20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.设常数0a ≥,函数2()2x x af x a+=-.(Ⅰ)若4a =,求函数()y f x =的反函数1()y f x -=;(Ⅱ)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A ,B 两地连线上的定点C 处建造广告牌,其中D 为顶端,AC 长35 米,CB 长80 米.设点A ,B 在同一水平面上,从A 和B 看D 的仰角分别为α和β.(Ⅰ)设计中CD 是铅垂方向,若要求2αβ≥,问CD 的长至多为多少(结果精确到0.01 米)?(Ⅱ)施工完成后,CD 与铅垂方向有偏差.现在实测得38.12α=,18.45β=,求CD 的长(结果精确到0.01 米).22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系xOy 中,对于直线l :0ax by c ++=和点111(,)P x y ,222(,)P x y ,即1122()(c)ax by c ax by η=++++.若0η<,则称点1P ,2P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点1P ,2P 被直线l 分隔,则称直线l 为曲线C 的一条分隔线.(Ⅰ)求证:点(1,2)A ,(1,0)B -被直线10x y +-=分隔;(Ⅱ)若直线y kx =是曲线2241x y -=的分隔线,求实数k 的取值范围;(Ⅲ)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E .求证:通过原点的直线中,有且仅有一条直线是E 的分隔线.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1133n n n a a a +≤≤,*n ∈N ,11a =. (Ⅰ)若22a =,3a x =,49a =,求x 的取值范围; (Ⅱ)设{}n a 是公比为q 的等比数列,12n n S a a a =+++,1133n n n S S S +≤≤,*n ∈N ,求q 的取值范围;(Ⅲ)若1a ,2a ,⋅⋅⋅,k a 成等差数列,且121000k a a a +++=,求正整数k 的最大值,以及k 取最大值时相应数列1a ,2a ,⋅⋅⋅,k a 的公差.数学试卷 第5页(共14页) 数学试卷 第6页(共14页)1(1z z z ⎫=+=+⎪⎭【提示】把复数代入表达式,利用复数代数形式的混合运算化简求解即可),n a ++即【提示】由已知条件推导出a ,由此能求出数学试卷 第7页(共14页) 数学试卷 第8页(共14页)【提示】要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连33π⎛⎫【解析】解:设小白得5分的概率至少为x ,则由题意知小白得1,2,3,4分的概率为1x -,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,() 4.2E ξξ=,∴4(1)5 4.2x x -+=,解得0.2x =.,又因为0AP AQ +=,数学试卷 第9页(共14页) 数学试卷 第10页(共14页)【提示】通过曲线方程判断曲线特征,通过0AP AQ +=,说明23568(0,0,1)(0,1,1)(0,2,1)(1,0,1)(1,1,1)(1,2,1)(2,0,1)(2,2,1)B P P P P P ,,,,,,,,,,则(0,0,1)AB =,1(0,1,1)AP =,2(0,2,1)AP =,3(1,0,1)AP =(1,1,1)AP =5(1,2,1)AP =,(2,0,1)AP =7(2,1,1)AP =8(2,2,1)AP =i(i 1,2,,8)AB AP =的值均为1,故选A.根据向量数量积的几何意义,i AB AP 等于AB 乘以i AP 在AB 方向上的投影,而AP 在AB 方向上的投影是定值,||AB 也是定值,∴i AB AP 为定值【提示】建立空适当的间直角坐标系,利用坐标计算可得答案.数学试卷 第11页(共14页) 数学试卷 第12页(共14页)223ABC PQ =【提示】利用侧面展开图三点共线,判断,0)(0,),+∞2)(log ,)a +∞关于原点不对称,)根据反函数的定义,即可求出cos BC BD β,【提示】(1)利用三角函数的关系式建立不等式关系即可得到结论.1,2⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭2(2)||1y x +-=,即2]1x =)不是上述方程的解,即1,2)(1,2)-和2]10x -=得2]10x -=,21-,2(0)(2)(1)[16(1)15]0f k =--+<,所以方程与曲线E 有公共点,故直线综上可得,通过原点的直线中,有且仅有一条直线是【提示】(1)把A.B 两点的坐标代入η,再根据0η<,得出结论. (2)联立直线y kx =与曲线2241x y -=可解.2]1x =数学试卷 第13页(共14页) 数学试卷 第14页(共14页)131nq q-- ,,k a 的公差为(1)]1,2,,1n d k -≤-.1,2,,1k -2,3,,1k -时,由1(1)221k k ka k -=+-,即12,,,k a a a 的公差为的范围(3)依题意得到关于k 的不等式,得出k 的最大值,并得出k 取最大值时12,,,k a a a 的公差.【考点】等比数列的性质,数列的求和。

上海市十二校2014届高三12月联考数学(理)试卷--含答案

上海市十二校2014届高三12月联考数学(理)试卷--含答案

2013学年第一学期十二校联考高三数学(理)考试试卷一、填空题 (本大题满分56分,每题4分)1.已知全集U {}5,4,3,2,1=,A {}3,1=,B {}4,3,2=,那么=⋃)(B C A U __. 2.函数)12arcsin(-=x y 的定义域为 .3.若数列{}n a 满足:111,2()n n a a a n N *+==∈,则前6项的和6S = .(用数字作答)4. 计算:2(1)(13)lim(2)(1)n n n n n n →∞+-=-++________.5.集合{}12-<<=x x A ,{}0<-=a x x B ,若B A ⊆,则实数a 的取值范围是 . 6. 设()887872x a x a x -=++…10a x a +,则87a a ++…0a += .7. 已知函数)(x f 有反函数)(1x f -,且[),,0,24)(1+∞∈-=+x x f x x则=-)0(1f .8. 已知袋中有大小相同的红球和白球若干个,其中红、白球个数的比为4:3.假设从袋中任取2个球,取到的都是红球的概率为413.那么袋中的红球有 __个. 9. 已知函数32tansin )(x xx x f ++=,)1,1(-∈x ,则满足不等式0)12()1(<-+-a f a f 的实数a 的取值范围是 .10. 已知x 是7,6,5,,3,2,1x 这7个数据的中位数,且y x -,,2,12这四个数据的平均数为1,则xy 1-的最小值为 .11.设ω>0,若函数)(x f = sin 2x ω cos 2x ω 在区间[-3π,4π]上单调递增,则ω的范围是_____________.12. 设正项数列}{n a 的前n 项和是n S ,若}{n a 和}{n S 都是等差数列,且公差相等,则1a =_______________.13.函数)(x f y =的图像与直线b x a x ==,及x 轴所围成图形的面积称为函数)(x f 在[]b a ,上的面积,已知函数nx y sin =在⎥⎦⎤⎢⎣⎡n π,0上的面积为)(2*∈N n n ,则函数1)3sin(+-=πx y 在⎥⎦⎤⎢⎣⎡34,3ππ上的面积为 .14.(理)函数)(x f 的定义域为A ,若A x x ∈21,且)()(21x f x f =时总有21x x =,则称)(x f 为单函数,例如,函数)(12)(R x x x f ∈+=是单函数.下列命题: ①函数)()(2R x x x f ∈=是单函数;②指数函数)(2)(R x x f x ∈=是单函数;③若)(x f 为单函数,A x x ∈21,且21x x ≠,则)()(21x f x f ≠; ④在定义域上具有单调性的函数一定是单函数;⑤若)(x f 为单函数,则函数)(x f 在定义域上具有单调性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013学年第一学期十二校联考高三数学(理)考试试卷一、填空题 (本大题满分56分,每题4分)1.已知全集U {}5,4,3,2,1=,A {}3,1=,B {}4,3,2=,那么=⋃)(B C A U __. 2.函数)12arcsin(-=x y 的定义域为 .3.若数列{}n a 满足:111,2()n n a a a n N *+==∈,则前6项的和6S = .(用数字作答)4. 计算:2(1)(13)lim(2)(1)n n n n n n →∞+-=-++________.5.集合{}12-<<=x x A ,{}0<-=a x x B ,若B A ⊆,则实数a 的取值范围是 .6. 设()887872x a x a x -=++…10a x a +,则87a a ++…0a += .7. 已知函数)(x f 有反函数)(1x f -,且[),,0,24)(1+∞∈-=+x x f x x 则=-)0(1f .8. 已知袋中有大小相同的红球和白球若干个,其中红、白球个数的比为4:3.假设从袋中任取2个球,取到的都是红球的概率为413.那么袋中的红球有 __个. 9. 已知函数32tansin )(x xx x f ++=,)1,1(-∈x ,则满足不等式0)12()1(<-+-a f a f 的实数a 的取值范围是 .10. 已知x 是7,6,5,,3,2,1x 这7个数据的中位数,且y x -,,2,12这四个数据的平均数为1,则xy 1-的最小值为 .11.设ω>0,若函数)(x f = sin 2x ω cos 2x ω 在区间[-3π,4π]上单调递增,则ω的范围是_____________.12. 设正项数列}{n a 的前n 项和是n S ,若}{n a 和}{n S 都是等差数列,且公差相等,则1a =_______________.13.函数)(x f y =的图像与直线b x a x ==,及x 轴所围成图形的面积称为函数)(x f 在[]b a ,上的面积,已知函数nx y sin =在⎥⎦⎤⎢⎣⎡n π,0上的面积为)(2*∈N n n ,则函数1)3sin(+-=πx y 在⎥⎦⎤⎢⎣⎡34,3ππ上的面积为 .14.(理)函数)(x f 的定义域为A ,若A x x ∈21,且)()(21x f x f =时总有21x x =,则称)(x f 为单函数,例如,函数)(12)(R x x x f ∈+=是单函数.下列命题: ①函数)()(2R x x x f ∈=是单函数;②指数函数)(2)(R x x f x ∈=是单函数;③若)(x f 为单函数,A x x ∈21,且21x x ≠,则)()(21x f x f ≠; ④在定义域上具有单调性的函数一定是单函数;⑤若)(x f 为单函数,则函数)(x f 在定义域上具有单调性。

其中的真命题是________.(写出所有真命题的编号) 二、选择题(本大题满分20分,每题5分)15. 命题:p 1a =;命题:q 关于x 的方程20x a -+=有实数解,则p 是q 的 ( ).(A) 必要不充分条件 (B) 充分不必要条件 (C)充要条件 (D)既不充分也不必要条件 16.下列函数中,最小正周期为π的偶函数为( ) (A) )4cos()4sin(ππ++=x x y (B)xxy 2sin 2cos 1+=(C) x y 2tan 2= (D)x x y cos sin =17. 定义函数D x x f y ∈=),((定义域),若存在常数C ,对于任意D x ∈1,存在唯一的D x ∈2,使得C x f x f =+2)()(21,则称函数)(x f y =在D 上的“均值”为C 。

已知函数[]100,10,lg )(∈=x x x f ,则函数)(x f y =在[]100,10上的均值为 ( )(A)101 (B)43 (C) 10 (D) 23 18.某同学为了研究函数)10()1(11)(22≤≤-+++=x x x x f 的性质,构造了如图所示的两个边长为1的正方形ABCD 和BEFC ,点P 是边BC 上的一个动点,设x CP =,则PF AP x f +=)(.那么可推知方程222)(=x f 解的个数是………………………………………………………( )(A )0. (B )1. (C )2. (D )4.三、简答题 (本大题满分74分)19.(本题满分12分) 本题共有2个小题,第1小题满分4分, 第2小题满分8分.在直三棱柱ABC-A 1B 1C 1中,∠ABC=90°, AB=BC=1. (1)求异面直线B 1C 1与AC 所成角的大小; (2)若该直三棱柱ABC-A 1B 1C 1的体积为22,求点A 到 平面A 1BC 的距离.20.(本题满分14分)本题共有2个小题,第一小题满分7分,第二小题满分7分).已知以角B 为钝角的的三角形ABC 内角C B A 、、的对边分别为a 、b 、c ,)sin ,3(),2,(A n b a m -==,且m 与n 垂直。

(1)求角B 的大小;(2)求C A cos cos +的取值范围. 21.(本题满分14分)本题共有2个小题,第一小题满分7分,第二小题满分7分).某企业生产某种商品x 吨,此时所需生产费用为(100001002+-x x )万元,当出售这种商品时,每吨价格为p 万元,这里b ax p +=(b a ,为常数,0>x )(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求b a ,的值.22. (本题满分16分) 本题共有3个小题,第1小题满分4分, 第2小题满分6分,第,3小题满分8分.已知函数R x b a x x x f ∈+-=,)(.(1)当0,1==b a 时,判断)(x f 的奇偶性,并说明理由; (2)当1,1==b a 时,若45)2(=xf ,求x 的值;(3)若0<b ,且对任何[]1,0∈x 不等式0)(<x f 恒成立,求实数a 的取值范围。

23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,第3小题满分6分.已知数列{}n a 具有性质:①1a 为整数;②对于任意的正整数n ,当n a 为偶数时,12n n a a +=;当n a 为奇数时,112n n a a +-=. (1)若1a 为偶数,且123,,a a a 成等差数列,求1a 的值;(2)设123m a =+(3m >且m ∈N),数列{}n a 的前n 项和为n S ,求证:123m n S +≤+; (3)若1a 为正整数,求证:当211log n a >+(n ∈N)时,都有0n a =.2013学年第一学期十二校联考高三数学(理)考试答案命题人:赵荣 学校:上海市朱家角中学审题人:蒲红军 周建国 学校:三林中学 南汇一中 2013年12月一、填空题 (本大题满分56分,每题4分)1、{}531、、2、[]1,03、634、05、[)∞+,16、83 7、1 8、89、(0,32) 10、323 11、(0,32 ] 12、4113、32+π 14、②③④二、选择题(本大题满分20分,每题5分)15、B 16、A 17、D 18、 C三、简答题 (本大题满分74分)19.(本题满分12分) 本题共有2个小题,第1小题满分4分, 第2小题满分8分.解:(1)∵BC ∥B 1C 1,∴∠ACB 为异面直线B 1C 1与AC 所成角(或它的补角),(2分) ∵∠ABC=90°,AB=BC=1, ∴∠ACB=45°,∴异面直线B 1C 1与AC 所成角为45°。

(4分)(2)∵S △ABC =21,三棱柱ABC- A 1B 1C 1的体积V=S △ABC ×AA 1=22∴AA 1=2,A 1B=3(2分)∵CB ⊥平面ABB 1A 1,∴∠A 1BC=90°,S △A1BC =23设点A 到平面A 1BC 的距离为h ,(4分)三棱锥A 1-ABC 的体积V=31×S △ABC ×AA 1=三棱锥A-A 1BC 的体积V=31×S △A1BC ×h (6分)∴h=36(8分)20.(本题满分14分)本题共有2个小题,第一小题满分7分,第二小题满分7分). 解:(1)∵m 垂直n,∴0sin 23=⋅-A b a (2分)由正弦定理得0)sin 2(sin 2)sin 2(3=-B R A A R (4分)∵0sin ≠A ,∴23sin =B ,(6分) 又∵∠B 是钝角,∴∠B 32π= (7分)(2))3sin(3sin 23cos 21cos )3cos(cos cos cos ππ+=++=-+=+A A A A A A C A (3分) 由(1)知A ∈(0,3π),)32,3(3πππ∈+A , (4分) ]1,23()3sin(∈+πA ,(6分) ∴C A cos cos +的取值范围是]3,23( (7分)21.(本题满分14分)本题共有2个小题,第一小题满分7分,第二小题满分7分). 解:(1)设生产平均费用为y 元,(1分)由题意可知y=10010010000100001002≥-+=+-xx x x x ;(5分) 当且仅当100=x 时等号成立,(6分)所以这种商品的产量应为100吨。

(7分)(2)设企业的利润为S 元,有题意可知(7分)10000100)(2-+-+=x x x b ax S =10000)100()1(2-++-x b x a (3分)12022100=---=a b x 又由题意可知120160=+b a (5分)∴⎩⎨⎧=+=+160120140240b a a b (6分) ⎪⎩⎪⎨⎧=-=∴18061b a (7分) 22. (本题满分16分) 本题共有3个小题,第1小题满分4分, 第2小题满分6分,第,3小题满分6分.解:(1)当0,1==b a 时,1)(-=x x x f 既不是奇函数也不是偶函数(2分))1()1(),1()1(,0)1(,2)1(f f f f f f -≠-≠-∴=-=-所以)(x f 既不是奇函数,也不是偶函数 (4分) (2)当1,1==b a 时,11)(+-=x x x f , 由45)2(=xf 得451122=+-xx (1分) 即⎪⎩⎪⎨⎧=+-<⎪⎩⎪⎨⎧=--≥0412)2(120412)2(1222xx x x x x 或 (3分) 解得212)(22122212=-=+=x x x,或舍或 (5分) 所以1)21(log 221log 22-+=+=x 或1-=x (6分) (3)当0=x 时,a 取任意实数,不等式0)(<x f 恒成立, 故只需考虑(]1,0∈x ,此时原不等式变为xba x -<- (1分) 即xb x a x b x -<<+故(]1,0,)()(min max ∈-<<+x xbx a x b x 又函数x b x x g +=)(在(]1,0上单调递增,所以b g x bx +==+1)1()(max ;(2分)对于函数(]1,0,)(∈-=x xbx x h①当1-<b 时,在(]1,0上)(x h 单调递减,b h xbx -==-1)1()(min ,又b b +>-11,所以,此时a 的取值范围是)1,1(b b -+(3分) ②当01<≤-b ,在(]1,0上,b xbx x h -≥-=2)(, 当b x -=时,b xbx -=-2)(min ,此时要使a 存在,必须有32210121-<≤-⎩⎨⎧<≤--<+b b bb 即,此时a 的取值范围是)2,1(b b -+(4分) 综上,当1-<b 时,a 的取值范围是)1,1(b b -+ 当3221-<≤-b 时,a 的取值范围是)2,1(b b -+; 当0322<≤-b 时,a 的取值范围是φ (6分)23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 解:(1)∵1a 为偶数,∴可设12()Z a n n =∈,故122a a n ==, 若n 为偶数,则32na =,由123,,a a a 成等差数列,可知2132a a a =+, 即522n n =,解得0n =,故10a =; (2分) 若n 为奇数,则312n a -=,由123,,a a a 成等差数列,可知2132a a a =+, 即51222n n =-,解得1n =,故12a =; ∴1a 的值为0或2. (4分)(2)∵123(3,)N m a m m =+>∈是奇数,∴1121212m a a --==+, 223122m a a --==,33422m a a -==,依此类推, 可知341,,,m a a a +成等比数列,且有12m n n a -+=(31)n m ≤≤+,又0121m a +==,21102m a +-==,30m a +=,…∴当1n m ≤+时,0n a >;当2n m ≥+时,都有0n a =. (3分) 故对于给定的m ,n S 的最大值为121m m a a a a +++++123010(23)(21)222(222)4m m m m m m ----=+++++++=++++ 112142321m m ++-=+=+-,所以123m n S +≤+. (6分) (3)当1a 为正整数时,n a 必为非负整数.证明如下:当1n =时,由已知1a 为正整数, 可知1a 为非负整数,故结论成立; 假设当n k =时,n a 为非负整数,若0n a =,则10n a +=;若n a 为正偶数, 则12nn a a +=必为正整数;若n a 为正奇数,则112n n a a +-=必为非负整数.故总有n a 为非负整数. (3分)当n a 为奇数时, 1122n n n a a a +-=<;当n a 为偶数时,12n n aa +=. 故总有12n n a a +≤,所以12121222n n n n a a a a ---≤≤≤≤, 当211log n a >+时,n a ≤21log 1111111()()122a n a a a a -<==,即1n a <.( 6分)又n a 必为非负整数,故必有0n a =. (8分)【另法提示:先证“若k a 为整数,且122(*)N t t k a t +≤<∈,则1k a +也为整数,且1122t t k a -+≤<”,然后由1a 是正整数,可知存在正整数s ,使得1122s s a -≤<,由此推得1s a =,10s a +=,2s a +及其以后的项均为0,可得当211log n a >+()N n ∈时,都有0n a =】。

相关文档
最新文档