XX大学模拟电子技术课件-第三章

合集下载

模拟电子技术(江晓安)(第三版)第3章

模拟电子技术(江晓安)(第三版)第3章

根据同样的道理,从c、e向左看,流入Cμ的电流为
U ce U b'e I 1 j C
''
1 U c e (1 ) U ce K 1 1 1 K jC j ( )C K

(3-17)
此即表明,从c、e两端看进去,Cμ的作用和一个并联在c、e
1 K 两端,而电容值为 C 的电容等效。 K 这样,图3-7(b)即可用图3-7(c)等效。
Aus1

Ausm f1 1 f
2
(3-22)
f1 180 arctan f
(3-23)
根据公式(3 - 22)画对数幅频特性, 将其取对数, 得
Gu 20Ig Aus1 201g Ausm

f1 201g 1 f
第三章 放大电路的频率特性
图3 – 7 Cμ的等效过程
第三章 放大电路的频率特性
图3-7(b)中,从b′、e两端向右看,流入Cμ的电流为
U b'e U ce I 1 jC K,则
'
'


U b'e (1

U ce U b' e


)

U ce Ube
'

1 jC
(3-9)
(1 0 ) f
比较式(3-8)和(3-9),可得
f a (1 0 ) f
一般β0>>1,所以
(3-10)
f a 0 f fT
(3-11)
第三章 放大电路的频率特性
3.2.4 三极管混合参数π型等效电路

模拟电子技术基础第三章

模拟电子技术基础第三章

1.阻容耦合
Rb1
RS
Cb+1
+
+
us
ui
-
-
Rc1
+
Cb 2
Rb2
T1
+ UCC
R
c2
+
Cb3
T2
+
RL uo
-
信号源US经耦合电容Cb1与第一级的输入电阻 Ri1联系起来,经第一级放大后的信号又经耦合电 容Cb2与第二级的输入电阻Ri2联系起来,信号是通 过电阻和电容的连接进行传递的,这种方式为阻 容耦合方式。
3.1.1 模拟集成电路特点
模拟集成电路一般是由一块厚约0.2- 0.25mm的P型硅片制成,这种硅片是集成电 路的基片。它上面可以做出包含有几十个或 者更多的BJT或FET、电阻和连接电路。和分 立元件相比,模拟集成电路有如下几个方面 的特点:
(1)电路结构与元件参数具有对称性。
(2)电阻和电容值不易做太大,电路结构上采 用直接耦合方式。
Rc1
T1
+UCC
R c2
T2
Re2
R c1
T1
R c2
+UCC
T2
D1
D2
D3 D4
(a)利用电阻Re提高射极电位 (b)利用二极管提高射极电位
(2)零点漂移问题 如果将直接耦合放大电路的输入端短路,其输出
端应有一固定的直流电压,即静态输出电压。但是, 实际输出电压将随时间变化而偏离初始值作缓慢的随 机波动,这种现象称为零点漂移,简称零漂。
U CC R
I REF R
2IB
IC1
T1
U CC
RC
IC 2

华科模拟电子技术第三章课件

华科模拟电子技术第三章课件

IR 2 0
30
40
iD / A
图2.2.3 锗二极管2AP15的伏安特性
2 半导体二极管及其应用电路
2.1 PN结的基本知识
2.1.3 PN结及其单向导电性
2.2 半导体二极管
2.2.2 二极管的伏安特性 2.2.3 二极管的主要参数 2.2.4 二极管模型
2.3 二极管应用电路
2.3.1 整流电路 2.3.2 限幅电路
▪ 目的2: 判断二极管D是否安全。
(2) 二极管电路的直流分析
(a) 图解分析法
(b) 等效电路(模型)分析法
(3) 二极管电路的交流分析 — 大信号
(4) 二极管电路的交流分析 — 小信号
整流 D
限幅 R
R
+
vI
iD
R vO
vI
iD
例2-2-1和图2-3-1
+
+
+
D
vO
vi
vO
VREF
图2-3-3(习题2-15,16,17)
原子结构
简化模型
+4
温度 光照
掺杂
本征 激发
少子
电子 空穴
复合
N型- 5价 P型- 3价
多子-电子 多子-空穴
空间电荷
半导体: 导电特性介于导体和绝缘体之间 典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。
导电的 1、本征 — 容易受环境因素影响 (温度、光照等) 2个特点 2、掺杂 — 可以显著提高导电能力
2.4 特殊二极管
2.4.1 稳压二极管 击穿特性
• 原理:多子扩散和少子漂移的动态平衡
问题1:二极管(PN结)主要特性是? 其工程描述方法?

【2024版】模拟电子技术课件第三章

【2024版】模拟电子技术课件第三章

60A
此区域中 : 2
40A
IB=0 , IC=ICEO ,
1
20A
VBE<死区电
IB=0
压,称为截止 3 6 9 12 VCE(V)
区。
输出特性三个区域的特点: (1) 放大区: BE结正偏,BC结反偏, IC=IB , 且 IC = IB
(2) 饱和区: BE结正偏,BC结正偏 , 即VCEVBE , IB>IC,VCE0.3V
1、晶体管必须偏置在放大区。发射结正 偏,集电结反偏。
2、正确设置静态工作点,使整个波形处 于放大区。
3、输入回路将变化的电压转化成变化的 基极电流。
4、输出回路将变化的集电极电流转化成 变化的集电极电压,经电容滤波只输 出交流信号。
放大 电路 分析
放大电路的分析方法
静态分析
估算法 图解法
小信号模型分析法
vi=0时
入时
RL IE=IB+IC
基本放大电路的工作原理
静态工作点
RB
RC
C1
IB
(IB,VBE)
VBE
+VCC
IC C2
T VCERL
( IC,VCE )
(IB,VBE) 和( IC,VCE )分别对应于输入输 出特性曲线上的一个点称为静态工作点。
IB
IC
IB
Q
IC
VBE VBE
Q IB
VCE VCE
共射直流电流放大倍数:
___
IC
IB
工作于动态的三极管,真正的信号
是叠加在直流上的交流信号。基极
电流的变化量为IB,相应的集电 极电流变化为IC,则交流电流放 大倍数为:

模拟电子技术第3章0753006936-文档资料

模拟电子技术第3章0753006936-文档资料
2019/3/7 5
3.9.2 多级放大电路的增益(续)
2. 电压增益的计算方法
RS
+ VS + Vi Ri1 Vo1 Ro1 +
+
+
Ri2 Vo2
Ro2 +
+
+
Ri3 Vo3
+
Ro3 -
+
-
-
Vo1 Vi2
-
-
-
Vo2 Vi3 - -
RL Vo -
Av =Vo/Vi =Vo1/ViVo2/Vi2Vo/Vi3 = Av1 Av2 Av3
3.9 多级放大电路及组合放大单元
引 言 (1) 什么是多级放大电路? (2) 什么叫耦合? (3) 对耦合的要求 各级有合适的工作点 前级输出信号顺利加到后级的输入端 (4) 三种耦合方式 C Ⅰ 阻容耦合 变压器耦合 T Ⅰ 直接耦合 便于集成 fL=0 Ⅰ 前后级工作点不独立
2019/3/7 4
3.9.2 多级放大电路的增益
Ri1 RS Ro1 Ri2 Ro2 Ⅱ
+
Ri3
Ro3
+ VS
-
+ Vi

+
+
-
+
-
+
-
+
-

+
+ RL Vo -
Vo1 Vi2
Vo2 Vi3
-
Vo1
Vo2
Vo3
图 3.9.4
1. 级间的相互影响 后级是前级的负载:RL1=Ri2; RL2=Ri3 前级是后级的信号源: Vs2=Vo1,RS2=Ro1;Vo1=Vi2 ; Vs3=Vo2 , RS3=Ro2 ;Vo2=Vi3 。

模拟电子第三章

模拟电子第三章
带缓冲级的CMOS与非门
37
2.CMOS 或非门 (1)电路结构 两个反相器的负载管串联,驱动管并联。 (2)工作原理
带缓冲级的CMOS或非门
CMOS电路举例-4
38
3.CMOS双向传输门 (1)电路结构 NMOS、PMOS管并联互补。 (2)工作原理 CMOS电路举例-5
39
作业题 3.1 (a) 3.4 3.9 3.2 3.5 3.11 3.3 3.6 3.16
30
(4)OC门的应用 ①线与 ②用于接口电路,实现TTL ③作驱动器
CMOS 电平转换
31
4.三态输出TTL门(TS门) (1)三态输出与非门组成及工作原理 (2)典型用途 ①构成总线结构 ②双向数据传输 三态门应用举例-1 三态门应用举例-2
32
第四节 CMOS门电路
CMOS门电路的特点: ①制作工艺简单,集成度高; ②工作电源允许的变化范围大,功耗低; ③输入阻抗高,扇出系数大; ④抗干扰能力强。 CMOS反相器(串联互补)、CMOS传输门(并 联互补)是CMOS集成电路的基本组件。
(2)降低电阻的阻值 提高了三极管的开 关速度使tpd ↓。 tpd ≈6ns,但加大了 电路的静态功耗。
(1)输出级采用 达林顿结构三极管; 减小了门电路输出高电平时的输出电阻。 图3.2.13 54H/74H系列与非门(54H/74H00)的电路结构
22
2. 54S/74S系列
(2)引入有源泄放电路。
数据信号 I 控制信号 C
&
O
5
二、数字集成电路的分类
SSI
1.按集成度
MSI LVSLISI
6
54/74 54/74H
54/74S

模拟电子技术基础简明教程第三版第三章PPT课件

模拟电子技术基础简明教程第三版第三章PPT课件
上页 下页 首页
四、 波特图
根据电压放大倍数与频率之间关系的表达式, 可以画出放大电路的频率特性曲线。 在实际工作中,应用比较广泛的是对数频率特性。 这种对数频率特性又称为波特图。 所谓对数频率特性是指: 绘制频率特性时基本上采用对数坐标。 幅频特性的横坐标和纵坐标均采用对数坐标。 相频特性的横坐标采用对数坐标,纵坐标不取对数。
上页 下页 首页
五、 高通电路和低通电路
1. RC高通电路的波特图
Au = R+
R 1
jωC
1
=
1
+
1 jωRC
C
+
+
Ui
R Uo
令 fL =
1 2πτL
=1 2πRC
1
Au = 1+
1
jωτL
1
= 1 -j
fL
f
-
-
RC 高通电路
时间常数τL = RC
上页 下页 首页
2l0 g A u 2l0 g1fLf2
φ
f
0
0.1fH fH 10fH f
-450
-450/十倍频 -900
最大误差 5.710
上页 首页
第二节 三极管的频率参数
共射截止频率 特征频率 共基截止频率
下页 总目录
三极管的频率参数描述三极管的电流放大系数对高频信 号的适应能力。
在中频时, 一般认为三极管的β基本上是一个常数。
当频率升高时,由于存在极间电容,三极管的电流放大 作用将被削弱,
-20dB/十倍频
特征频率是三极管的一个重要参数, O
当f > fT 时,三极管已失去放大作用, φβ
所以,不允许三极管工作在如此高的 O 频率范围。

模拟电子技术第三章教案PPT课件

模拟电子技术第三章教案PPT课件
36
为什么
负载电阻的中点电位在差 模信号作用下不变,相当 于接“地”。
37
38
4. 电压传输特性
放大电路的输出电压和输入电压之间的关系曲线。
uo uo = f( uI )
如改变uI的极性,可
uI
得另一条图中虚线所
示的曲线,它与实线
完全对称。
39
三、 差分放大电路的四种接法
“单端”的情况,还具有共模抑制能力吗?
具体计算时,有时它们不仅仅决定于本级参数,也与
后级或前级的参数有关。
14
15
例:1 如图所示的两级电压放大电路,
已知β1= β2 =50, T1和T2均为3DG8D。
计算前、后级放大电路的静态值(UBE=0.6V)
及电路的动态参数。
+24V
+
U i

RB1 1M
C1
+
T1
RE1 27k
RB 1
82k
be
bb'
I
EQ
R
A
c
97
d
r
(1
)
R W
be
2
R 2r (1 )R 20.4k
i
be
W
67
P182 3.7
解: 双入单出差分放大电路
u IC
u I1 u I2 2
15 mV
u Id u I1 u I2 10 mV
Ad
Rc
2 rbe
67
u O A d u Id 0 . 67 V
图 3.1.2 阻容耦合放大电路
有零点漂移吗?
特点:静态工作点相互独立,在分立元件电路中广 泛使用,但不能放大缓慢变化的信号。

模拟电子技术第三章第四节幻灯片

模拟电子技术第三章第四节幻灯片

模拟电子技术基础 半导体三极管及放大电路
电子信息工程系
厚德博学 求实创新
BJT的小信号建模 3.4.1 BJT的小信号建模
1. H参数的引出 参数的引出
对于BJT双口网络,我们已经知道 输入输出特性曲线如下:
c + vBE

ib→ b →
iB=f(vBE) vCE=const iC=f(vCE) iB=const
∂vBE ∂v 用小信号交流分量表示 ⋅ diB + BE I B ⋅ dvCE VCE ∂iB ∂vCE vbe= hieib+ hrevce ∂i ∂i diC = C VCE ⋅ diB + C I B ⋅ dv CE ic= hfeib+ hoevce ∂i B ∂v CE ∂v h ie = BE VCE 输出端交流短路时的输入电阻; 其中: ∂iB ∂i h fe = C VCE 输出端交流短路时的正向电流传输比或电流放大系数; ∂iB ∂vBE 输入端交流开路时的反向电压传输比 h re = IB ∂vCE dvBE =
@2006 fÅtÜàVÉÅ
模拟电子技术基础 半导体三极管及放大电路
电子信息工程系
厚德博学 求实创新
4.求输入电阻 4.求输入电阻
Ii
Vi
Ri ·
5. 求输出电阻
V R i = · i = R b // r be Ii
· 令 Vi = 0 所以
@2006 fÅtÜàVÉÅ
· Ib = 0 Ro = Rc
β · Ib= 0
电子信息工程系
·
模拟电子技术基础 半导体三极管及放大电路
厚德博学 求实创新
-VCC
电路如图所示。 电路如图所示。试画出其 小信号等效模型电路。 小信号等效模型电路。

模拟电子技术 第三章

模拟电子技术 第三章

输入电阻
.
Au
A n .
j1 uj
R1=Ri1
输出电阻 R0=Ron
uo RL
解: (1)求解Q点,第一级为共射放大电路
U BQ1

Rb 2 Rb1 Rb2
VCC
I BQ1

U BQ1 U BEQ1
(1 )Re1
I CQ1 I BQ1
U CQ1 VCC (I CQ1 I BQ2 )Rc1 VCC I R CQ1 c1
共模信号:大小相等,极性相同。
差模信号:大小相等,极性相反.
典型电路:长尾式差分放大电路
一.结构: 对称性结构
+VCC
即:1=2=
Rc
Rc
UBE1=UBE2= UBE rbe1= rbe2= rbe RC1=RC2= RC Rb1=Rb2= Rb
I BQ1 I BQ2 I BQ ICQ1 ICQ2 ICQ I EQ1 I EQ2 I EQ U CQ1 U CQ2 U CQ uO U CQ1 U CQ2 0
• 1979年:Intel推出5MHz 8088微处理器,之 后,IBM基于8088推出全球第一台PC。折 合25560.8元人民币
• 1988年:16M DRAM问世,1平方厘米大小 的硅片上集成有3500万个晶体管,标志着 进入超大规模集成电路(VLSI)阶段
• 。我国集成电路发展历史
• 我国集成电路产业诞生于六十年代,共经历了三个发展 阶段:
• 1965年-1978年:以计算机和军工配套为目标,以开发 逻辑电路为主要产 品,初步建立集成电路工业基础及 相关设备、仪器、材料的配套条件
• 1978年-1990年:主要引进美国二手设备,改善集成电 路装备水平,在“治散治乱”的同时,以消费类整机作 为配套重点,较好地解决了彩电集成电路的国产化

模拟电子技术 第3章ppt课件

模拟电子技术 第3章ppt课件

空穴
+4
+4
自在电子
温度升 高
+4
+4
本征激发
束缚电子
由于温度上升,电子获得能量后,少数共价键中 的束缚电子挣脱束缚成为自在电子,留下空穴, 称为本征激发,又称为热激发。
半导体中的两种载流子:
共价键的 空位,称 为空穴
+4
+4
+4
+4
不受束缚的电 子,称为自在 电子
摆脱束缚
束缚电子
半导体中的两种载流子: 由于自在电子与空穴的有序挪动将产生电流,因此 称自在电子与空穴为半导体中的两种载流子;
结论
• 本征半导体外层电子构成稳定的共价键构 造,使原子规那么陈列,构成晶体。
• 在本征激发下,能产生少量的载流子,具 有微弱的导电作用。
• 其导电性能具有热敏性,温度越高,载流 子的浓度越高,导电才干越强。
二、杂质半导体 半导体具有掺杂性,假设在本征半导体中掺
入微量杂质,那么导电性能大为改观,掺入百万分 之一的杂质,载流子浓度添加1百万倍。
N型半导体可简化成
+
图2-3
2. P型半导体
构成
本征掺杂: 本征半导体 硼(3价)
得到大量空穴 〔无自在电子〕
本征激发:得到少量电子空穴对
特点
a. 空穴为多数载流子 〔多子〕 自在电子为少数载流子〔少子〕;
b. 硼原子被称为受主杂质,本身因 获得电子而成为负离子。
P型半导体可简化成 -
图2-5
结论
7.反相恢复时间 8.最高任务频率等
例、设整流电路的电路如下图,从表中选择适宜的二极 管,其中,
vi 4s0i nt)(V ()

精品课件-模拟电子技术及应用-第3章

精品课件-模拟电子技术及应用-第3章

U
在图3-2(b)中,
i
,U输i 入U电f ,压Ii 发 I生i ,了输变Ui入化电,Ui流故, I发为i 生串Ii了联 变反If 化馈,;
故为并联反馈。
7
图3-2
8
串联反馈与并联反馈的判别方法是:根据反馈网络与放
大电路的连接关系来判别。即除了公共接地端外,若反馈网
络的另一个端子与放大电路输入信号 则为并联反馈,否则,为串联反馈。
13
判别正反馈与负反馈的方法是瞬时极性法。其具体方法
是:先断开反馈网络与放大电路输入端的连接,然后设定输
入信号有一个正极性的变化(增大),再根据放大电路和反馈
网络信号的传输路径,逐级推出反馈信号的极性(增大或减
小),最后根据反馈信号与输入信号的极性,观察反馈信号与
输入信号叠加后使净输入信号增大了还是减小了,若净输入
称为“取样”;把原输入信号 与反馈信号 X i 的叠加过
程称X为f “比较”。
数,其这为里定无义反几馈个时新放的大参电数路:的放A大倍X数o /;X
i
称为开环放大倍 称为反馈
系数;
称为闭环放大倍数。
F Xf / Xo
Af X o / X i
3
图3-1
4
3.1.2 反馈的类型及判别 1.直流反馈与交流反馈 如果反馈量f中仅含有直流成分,则称为直流反馈。在图
的输U i入端子相连接,
9
3.电压反馈与电流反馈
电压反馈和电流反馈是按取样方式的不同来定义的,即
根据反馈信号 X与f 输出信号 X的o关系来确定。若反馈信
号 与X输f 出电压 成U比o 例,则为电压反馈;若反馈信号
与输出电X流f 成比例,I则o 为电流反馈。如图3-3(a)所示,

模拟电子技术第3章 (2) 28页

模拟电子技术第3章 (2) 28页

场效应管及其应用
(4) 在使用场效应管时, 要注意漏源电压、 漏源 电流及耗散功率等, 不要超过规定的最大允许值。
场效应管及其应用
3.2 场效应管及其放大电路
与三极管一样, 根据输入、 输出回路公共端选 择不同, 将场效应管放大电路分成共源、 共漏和共 栅三种组态。 本节主要介绍常用的共源和共漏两种 放大电路。
2. 图3.8为N沟道耗尽型场效应管的结构图。 其结构与增 强型场效应管的结构相似, 不同的是这种管子在制造时, 就在二氧化硅绝缘层中掺入了大量的正离子。
场效应管及其应用
s
g
d
+++++++++++
N+
N+
P型硅衬底
d
g s
d
g s
衬底引线
(a)
(b)
(c)
图3.8耗尽型MOS (a) N沟道结构图; (b) N沟道符号; (c) P沟道符号
g 栅极
场效应管及其应用
d 漏极 耗尽层
d
P
P
N
g
g
s
s 源极
(a)
(b)
图 3.1
(a) 结构; (b) N沟道结型场效应管符号; (b) (c) P沟道结型场效应
d s (c)
场效应管及其应用
2) 图3.2表示的是结型场效应管施加偏置电压后的接 线图。
2. 特性曲线 场效应管的特性曲线分为转移特性曲线和输出特 性曲线。
3
uDS =1 2 V 2
1 U GS(off)
-4 -3 -2 -1 0
uGS /V
图3.3 N沟道结型场效应管转移特性曲线
场效应管及其应用
在UGS(off)≤uGS≤0的范围内, 漏极电流iD与栅极电
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档