量子力学的诞生
量子力学发展及成就.docx
量子力学发展及成就量子力学量子力学(英语:Quantum Mechanics,或称量子论)是描述微观物质(原子,亚原子粒子)行为的物理学理论,量子力学是我们理解除万有引力之外的所有基本力(强相互作用,电磁相互作用,弱相互作用,引力相互作用)的基础。
量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。
量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。
量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱。
量子力学是许多物理学分支的基础,包括电磁学,粒子物理,凝聚态物理,以及宇宙学的部分内容。
量子力学也是化学键理论(因此也是整个化学的基础),结构生物学以及电子学,信息技术,纳米技术等学科的基础。
一个世纪以来的实验和实际应用已经充分证明了量子力学的成功和实用价值。
1.关键现象1.1光与物质的相互作用1.1.1黑体辐射E= nhνn这里n是一个整数,h是一个自然常数。
(后来证明正确的公式,应该以n+ 1 / 2 来代替n,参见零点能量)。
1900年,普朗克在描述他的辐射能量子化的时候非常地小心,他仅假设被吸收和放射的辐射能是量子化的。
今天这个新的自然常数被称为普朗克常数来纪念普朗克的贡献。
其值为Js 。
1.1.2光电效应在光电效应中这个能量被用来将金属中的电子射出(功函数)E w和加速电子(动能):这里m是电子的质量,v是其速度。
假如光的频率太小的话,那么它无法使得电子越过逸出功,不论光强有多大。
照射时间有多长,都不会发生光电效应,而入射光的频率高于极限频率时,即使光不够强,当它射到金属表面时也会观察到光电子发射.1.2原子结构20世纪初卢瑟福模型是当时被认为正确的原子模型。
这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的原子核运转。
第二章 波函数
单值函数
' 1' (a) 2 (a)
4.波函数及其各级微商要具有连续性
1 (a) 2 (a),
m
* 1
* m2
四 态叠加原理—量子力学第二个基本原理
定义:若 1 , 2 是体系可能状态, 则它们的线性 组合 = C11+C22 也是该体系的一个可能的状态。 其中C1 , C2 为复常数
k 2
A cos(k r t )
t )]
2
2 德布罗意自由粒子的平面波
利用de Broglie物质波的概念,我们可以得到量子力学中自由 粒子平面波的表达式
2i ( x, t ) A exp[ ( p x x Et )] h
2p x k h 2
(3) 原子光谱 原子只有在两个定态间跃迁时才发射或吸收电磁波 Em-En=hν 能量量子化,轨道角动量的量子化条件 (4)Compton 散射 光子与电子的碰撞,动量能量守恒 光的粒子性的实验证实
outline
黑体辐射 Planck假设
En nh
光电效应
Einstein假说
p
h
Compton 散射 Bohr理论
可见
ˆ p i
i E t
动量算符
另,由
ˆ i E t
能量算符
由此派生的经典动能T与算符的对应关系为
p2 2 2 ˆ T 2m 2m
哈密顿(Hamilton)量 对应的算符为 于是薛定谔方程可简写成
2 2 ˆ T V ˆ ˆ H U (r ) 2m
即 其中
2 2 2 p2 ( 2 2 2 ) 2 x y z
量子力学理论的历史与发展
量子力学理论的历史与发展量子力学是20世纪物理学中最重要的一门学科,曾被喻为“现代物理学的基石”。
它的发展经历了一个漫长而又曲折的历史过程。
本文将从量子力学的起源、基本原理、实验验证、建立标准模型等方面来进行详细的讲述,以探究其历史和发展。
一、量子力学的起源与基本原理量子力学的起源始于1900年左右,当时德国物理学家普朗克在研究黑体辐射时,提出了一个假设:辐射在吸收和发射时的能量不是连续的,而是由一个一个被称为“量子”的能量单位构成的。
随着后来的研究,这个假设得到了证明,被称为“普朗克能量子”。
1905年爱因斯坦发表了光电效应理论,提出光子假说,即光是由一些分散的、能量离散的粒子组成的。
这一理论的确立,在量子力学发展中也起到了至关重要的作用。
随着科学家们在研究中发现更多的证据,量子力学逐渐奠定了与经典物理截然不同的基础。
基于量子力学,许多热门领域得以诠释和解释。
其最基本的原理是能量和物质的离散化,即能量存在于基本单元中,同时它也支持了一系列前所未有的量子效应,如量子隧道效应、量子纠缠、量子力学的不确定性原理等。
二、量子力学的实验验证理论的建立离不开实验的验证。
20世纪初,随着量子力学的发展,越来越多的实验被提出来,用来验证和探究这个新兴的物理学体系。
以双缝实验为例,它是探究光子与物质之间相互作用的重要手段之一。
在双缝实验中,以光子为例,它通过两个狭缝进行干涉,最终形成了干涉条纹,这种形象的结果直接说明了粒子波粒二象性的存在。
除此之外,狄拉克提出的“反粒子”假说也成功得到验证,情况是那么普遍,以至于最基本和常见的物理机制都可以在实验验证中得到印证。
三、标准模型的建立随着量子力学的逐步发展和实验验证,标准模型逐渐建立起来。
标准模型是一个涉及量子力学、相对论和各种粒子的理论框架,旨在对基本相互作用和基本粒子的特性进行描述。
它由强相互作用、弱相互作用和电磁相互作用三部分组成。
标准模型虽是一个与实验结果吻合度非常好的理论框架,但仍存在一些问题和挑战。
量子力学_第一章_周世勋
1864年 光和电磁现象之间的联系 光的波动性
(二)经典物理学的困难
20世纪初 经典理论遇到了一些严重的困难 (1)黑体辐射问题 (2)光电效应 (3)氢原子光谱
黑体辐射
黑体:能完全吸收一切频率入射电磁 波 (广义光波) 的物体
能 量 密 度
黑体辐射:由这样的空腔小孔发 出的辐射就称为黑体辐射。
h 6.62606896 1034 J s
基于上述假定,普朗克得到了与实验符合很好的黑体辐射公式:
能 量 密 度
8hv3 v dv c3 Planck 线
1 e
hv 1 K BT
dv
吸收或发射电磁能量的不连续概念,经典力学是无法理解的 当时并未引起较多人的注意 用量子假设解决经典困难的是A. Einstein
3. v v0
光愈强,单位时间产生的光电子愈多
光的本性认识:1. Maxwell, Hertz等人工作,肯定了光是电磁波 2. 光电效应,黑体辐射,体现了光的粒子性
光是粒子性和波动性的统一体
• 虽然爱因斯坦对光电效应的解释是对Planck量 子概念的极大支持,但是Planck不同意爱因斯坦的 光子假设,这一点流露在Planck推荐爱因斯坦为普 鲁士科学院院士的推荐信中。 “ 总而言之,我们可以说,在近代物理学结出 硕果的那些重大问题中,很难找到一个问题是爱因 斯坦没有做过重要贡献的,在他的各种推测中,他 有时可能也曾经没有射中标的,例如,他的光量子 假设就是如此,但是这确实并不能成为过分责怪他 的理由,因为即使在最精密的科学中,也不可能不 偶尔冒点风险去引进一个基本上全新的概念 ”
20 sin
2
2
其中 称为电子的Compton波长。
量子力学简史--超详细的发展介绍
量子力学简史--超详细的发展介绍量子力学的创立是一段充满传奇英雄和故事的令人心潮澎湃的历史,其中的每个人物都值得我们每代人去颂扬,每个突破都值得我们去细细回味。
让我们记住这些英雄的名字:普朗克、爱因斯坦、玻尔、德·布罗意、海森堡、泡利、狄拉克、费米、玻恩、玻色、薛定谔......他们中的每个人及其取得的成就都值得我们用书、音乐、电影、互联网等所有可能的传媒来记录、传播。
他们和他们的科学超越国界,属于我们整个人类。
由于篇幅的限制,笔者在这里只能做简短的介绍。
1、量子的诞生普朗克(Max Planck, 1858-1947 ) 从任何角度看都是一个典型的知识分子。
他1858年出生于一个知识分子家庭,曾祖父和祖父都是神学教授,父亲则是法学教授。
他从小受到了优良的教育,他会包括钢琴、管风琴和大提琴在内的多种乐器,会作曲和写歌,但他最终选择了物理。
普朗克事业非常顺利,21岁获得博士学位,随后开始在研究上取得进展,27岁成为基尔( Kiel )大学的副教授,31岁继任基尔克夫( Gustav Robert Kirchhoff, 1824-1887)在柏林大学的位置,3年后成为柏林大学的正教授。
他为人正直、诚实,没有任何怪癖和奇闻异事。
如果没有发现“量子”,他可能也会和其他典型的知识分子、名牌大学教授一样埋没在历史的尘埃里。
1894年普朗克做了个改变整个物理史的决定,他开始研究黑体辐射。
黑体是一种能够吸收所有入射光的物体,远处建筑物上黑洞洞的窗户就是黑体。
黑体在吸收所有入射光的同时也会向外辐射光。
最早研究黑体辐射的正是普朗克的前任基尔克夫。
前期的研究表明黑体辐射和构成黑体的具体材料无关,是普适的。
后来维恩(Wilhelm Wien, 1864-1928 )发现了一个公式,表明黑体的辐射功率和辐射频率之间有一个普适的关系。
从1894年开始,在接下来的五年左右时间里,普朗克在黑体辐射方面发表了一系列文章,但没有实质性的突破。
量子力学
黑体辐射的普朗克公式
8 h 3 d c3 1 e
h kT
d
c ——光速 k —玻尔兹曼恒量
1
h—普朗克常数
h 6.63 10 34 J s
与实验结果符合的很好。 dv是黑体内频率在v到 v+dv之间的辐射 能量密度,T是黑体的绝对温度.
黑体辐射的普朗克公式讨论 1、当频率较低时,即当 h kT 时, e 上式变为瑞利—金斯公式; 2、当频率较高时,即当 h kT 时, e
量子力学
量子力学是现代物理学的理论基础之一,是研 究微观粒子运动规律的科学,使人们对物质世界的 认识从宏观层次跨进了微观层次。 综观其发展史可谓是群星璀璨、光彩纷呈。它不 仅较大地推动了原子物理、原子核物理、光学、固 体材料、化学等科学理论的发展,还引发了人们对 哲学意义上的思考。
早期量子论
普朗克能量量子化假说 爱因斯坦光子假说 康普顿效应 玻尔的氢原子理论 德布罗意实物粒子波粒二象性 薛定谔方程 波恩的物质波统计解释 海森伯的测不准关系 狄拉克把量子力学与狭义 相对论相结合
由能量守恒: mc 2 h h 0 m0c 2
h h 0 n0 n mv 由动量守恒: c c
h n c
h 0 n0 c
v 1 2 c 2h 2 康普顿散射公式 0 sin m0 c 2
量子力学参考书很多,较适中的有:
参考书:
曾谨言 《量子力学教程》 曾谨言 《量子力学》卷1、2 张永德 《量子力学》 习题 钱伯初《量子力学习 题精选与剖析》 J.J.Sakurai: <Modern Quantum Mechanics>
量子力学应用到的数学知识:分离变量法解微分方 程;线性代数(矩阵的定义和运算,行列式,向量 ,本征值);高等数学中的微积分 数学准备见附录与教案 矩阵:
量子力学基础教程
量子力学基础教程量子力学是一门研究微观世界的物理学科,它描述了微观粒子的行为和性质。
本文将为读者介绍量子力学的基础知识,帮助大家对这一领域有一个初步的了解。
第一章:量子力学的起源量子力学起源于20世纪初,当时科学家们发现传统物理学无法解释一些实验现象,例如黑体辐射和光电效应。
为了解决这些难题,一些科学家开始重新思考物质和能量的本质。
这些思考最终导致了量子力学的诞生。
第二章:波粒二象性量子力学的核心概念之一是波粒二象性。
在经典物理学中,我们认为光可以被看作是一种波动现象。
然而,量子力学揭示了光既可以表现出波动性,又可以表现出粒子性。
这种奇妙的特性不仅出现在光中,也出现在其他微观粒子(如电子和中子)中。
第三章:不确定性原理不确定性原理是量子力学的另一个重要概念。
它指出,在测量某个粒子的位置和动量时,我们无法同时获得精确的结果。
这意味着,我们无法完全预测微观粒子的行为。
不确定性原理的提出颠覆了经典物理学中确定性的观念,揭示了微观世界的混沌和难以捉摸的一面。
第四章:量子态和波函数量子态是描述微观粒子状态的数学概念。
它可以用波函数来表示,波函数是一个复数函数,描述了粒子的概率分布。
通过对波函数的测量,我们可以获得粒子的位置、动量等信息。
波函数的演化由薛定谔方程描述,它是量子力学的基本方程之一。
第五章:量子力学的应用量子力学在物理学和工程学的许多领域都有广泛的应用。
例如,它在原子物理学中用于解释原子的结构和性质;在材料科学中用于研究材料的电子结构和导电性;在量子计算中用于开发新型的计算机技术等等。
量子力学的应用正在不断拓展,为人类的科技发展带来了巨大的潜力。
结语:量子力学是一门复杂而奇妙的学科,它颠覆了传统物理学的观念,揭示了微观世界的独特规律。
本文介绍了量子力学的起源、波粒二象性、不确定性原理、量子态和波函数以及量子力学的应用。
希望通过这篇文章,读者对量子力学有了初步的了解,并能进一步探索这一神秘的学科。
量子力学发展史详细
量子力学发展史详细量子力学是一门研究微观世界中微观粒子行为的科学。
它的发展历程可以追溯到19世纪末和20世纪初。
1897年,英国物理学家汤姆孙发现电子,并确定其具有粒子性质。
几年后,他提出了原子的模型,即“面包糠模型”,将电子沿轨道分布在原子核周围。
1913年,丹麦物理学家玻尔提出了原子的第一个量子理论,即玻尔模型。
他指出,电子只能沿特定的轨道运动,并具有特定的能量级。
这些轨道和能量级被称为量子态。
1924年,法国物理学家德布罗意提出了粒子具有波动性的假设,即德布罗意波。
他认为,所有物质都具有波粒二象性,没有完全的粒子性和波动性之分。
这为后来量子力学的建立做出了贡献。
1926年,德国物理学家薛定谔发表了量子力学的基本方程,即薛定谔方程。
这个方程描述了微观粒子的运动方式,通过求解薛定谔方程,可以得出粒子的能量和波函数。
1927年,丹麦物理学家卡尔·逻辑提出了量子力学的基本原则,即哥本哈根解释。
这个解释指出,测量结果是随机的,而波函数则代表了系统的概率分布。
20世纪上半叶,许多科学家在量子力学的基础上进行了深入研究。
其中,保罗·狄拉克提出了狄拉克方程,描述了电子的相对论性运动。
此外,玻恩、海森堡、狄拉克等人还对量子力学的理论框架进行了修正和发展,建立了量子场论。
随着时间的推移,量子力学在理论和实验上取得了许多重要的突破。
例如,量子电动力学的建立、量子力学的统计解释、量子纠缠和量子计算等。
总之,量子力学的发展历史是一部充满探索和突破的故事。
通过科学家们的努力和不断的研究,量子力学为我们理解微观世界的规律提供了重要的理论基础。
海森堡
海森堡海森堡(Werner Heisenberg,1901年-1976年),德国著名物理学家,量子力学的创立人。
他于20世纪20年代创立的量子力学,可用于研究电子、质子、中子以及原子和分子内部的其它粒子的运动,从而引发了物理界的巨大变化,开辟了20世纪物理时代的新纪元。
为此,1932年,他获得诺贝尔物理奖,成为继爱因斯坦和波尔之后的世界级的伟大科学家。
海森堡出生于德国的维尔茨堡,在慕尼黑长大,父亲是一名普通的希腊语教师。
早在中学时海森堡就已展现出了他的天赋,老师曾评价说:他能看到事物的本质,而不仅仅拘泥于表象和细节。
后来,海森堡成为慕尼黑的马克斯米里扬天才基金会成员。
“世界只在两件事情上还会想到我:一是我于1941年到哥本哈根拜访过尼尔斯·玻尔,二是我的则不准原理”。
这是海森堡经常挂在嘴边的话。
的确,由海森堡创立的理论奠定了现代量子物理的基础,它可通过数学计算将每个物理问题转化成实实在在的、可以测量的量;它阐明了由量子力学解释的理论局限性;它指出某些成双的物理变量如位置和动量永远是相互影响的,虽可测量,但其有效性不可能同时测出精确值等。
他的主要贡献,是帮助科学家更深入地了解世界。
海森堡曾在自传中说,1925年5月,他在哥廷根给马克斯伯尔恩当助手时,开始酝酿他的理论。
当时,这位23岁的年轻科学家正患枯草热,医生建议他到赫尔戈兰岛休息两周,他就是利用这段时间完成了自己的事业。
他说,那时他根本就不想睡觉,每天用1/3的时间来计算量子力学、1/3的时间攀岩,余下的时间背诵近东国家的诗集。
他当时的想法,就是要让旧理论完全让位于新理论。
除散步外,他一直在思考解决问题的数学方式,几天后他终于搞明白,在物理中所观察到的量应当起作用,它可取代传统理论中的量子条件。
海森堡的理论公布之后,曾遭到纳粹的猛烈批判。
当时的德国结束了其科学黄金时代,最为惨烈的是大批犹太科学家被迫害,致使德国的科学和文化从一流下降到了五流水平,因此海森堡的理论也不断遭到攻击。
量子力学入门概念
量子力学入门概念1. 量子力学的起源20世纪初,人们对微观世界的探索逐渐深入,经典物理学无法完全解释微观粒子的行为。
在这个时候,量子力学诞生了。
量子力学是研究微观粒子的理论物理学分支,奠定了整个现代物理学的基础。
它的诞生标志着经典物理学迈向现代物理学的新纪元。
2. 波粒二象性在量子力学中最重要的概念之一就是波粒二象性。
根据波粒二象性,微观粒子既可以表现出粒子的性质,又可以表现出波的性质。
例如,光既可以被看作是一束光子(粒子),也可以被看作是一束电磁波(波)。
这种波粒二象性颠覆了人们对物质本质的传统认识,是量子力学理论的核心之一。
3. 不确定性原理量子力学引入了著名的海森堡不确定性原理。
该原理指出,在测量一个微观粒子的位置和动量时,无法同时准确知道它们的数值。
换言之,在量子尺度上,测量过程会对系统本身造成干扰,从而导致位置和动量无法同时确定。
这种不确定性原理挑战了经典物理学对测量过程的传统理解。
4. 玻恩统计与费米-狄拉克统计玻恩和费米、狄拉克分别提出了两种描述微观粒子行为的统计方法:玻恩统计和费米-狄拉克统计。
其中,玻恩统计适用于玻色子(如光子),而费米-狄拉克统计适用于费米子(如电子)。
这些统计方法为我们解释微观世界中粒子组成和行为提供了重要参考。
5. 薛定谔方程薛定谔方程是量子力学中最基本的方程之一,描述了微观粒子的运动规律。
通过求解薛定谔方程,我们可以得到微观粒子的波函数,从而推断出其在空间中的分布和运动状态。
薛定谔方程的提出极大地推动了人们对微观世界的认识和探索。
6. 量子纠缠量子纠缠是量子力学中一个令人费解但又不可忽视的现象。
当两个量子系统发生纠缠后,它们之间将建立一种特殊的联系,即使它们在空间上相隔甚远,改变一个系统中粒子的状态都会立刻影响到另一个系统中相关粒子的状态。
这种非局域关联关系挑战了我们对现实世界本质的理解。
7. 量子力学在科技领域应用除了在基础物理学中具有重要地位外,量子力学还在科技领域有着广泛应用。
量子力学之父——马克斯·普朗克
普朗克(1858.04.23~1947.10.04.),德国物理学家,全名马克斯·卡尔·恩斯特·路德维希·普朗克(德文名字:Max Karl Ernst Ludwig Planck)。
普朗克于量子力学,我们都说他是“量子力学之父”。
普朗克1858年4月23日,马克斯·普朗克在德国的石勒苏益格—荷尔斯泰因州的基尔市出生了。
1867年普朗克全家去了慕尼黑,9岁的普朗克也因此就读于马克西米利安文理中学,在那里他受到数学家奥斯卡·冯·米勒也就是后来的德意志博物馆的创始人的启发,也就是米勒那里普朗克学到了生平的第一个原理——能量守恒。
1874年,16岁的普朗克完成了中学学业,并且在这一年他考取了慕尼黑大学理学院,开始了他的物理学学习。
1887年到1888年,普朗克在柏林大学学习,师从物理学家赫尔曼·冯·亥姆霍兹和古斯塔夫·罗伯特·基尔霍夫以及数学家卡尔·魏尔施特拉斯。
1878年10月,普朗克在慕尼黑完成了教师资格考试。
学生时代的普朗克1879年2月,普朗克完成了他的博士论文《论热力学第二定律》,在慕尼黑大学取得了博士学位。
1880年6月,完成了论文《各向同性物质在不同温度下的平衡态》,获得了在大学的任教资格。
1880年到1885年,普朗克在慕尼黑大学任教。
1885年4月,普朗克被基尔大学聘为副教授。
1889年1月,普朗克前往柏林大学任副教授。
1892年,普朗克升为教授。
1894年,普朗克被选为普鲁士科学院院士。
普朗克在书房查找资料1896年,普朗克着手对热辐射进行系统的研究。
1897年,哥廷根大学哲学系授奖给普朗克的专著《能量守恒原理》(Das Prinzip der Erhaltung der Energie,1897年)。
1899年5月,普朗克推出了与维恩公式类似的公式。
1900年10月19日,普朗克在《论维恩定律的改善》中,公布了他的新公式——普朗克辐射公式。
量子力学的诞生
d C1 e
3 C2 / T
d
即随着温度升高,热辐射峰值向短波高频方向移动。 瑞利(Rayleigh)和金斯(Jeans)根据经典电 动力学和统计物理学也得到一个黑体辐射能量分布 公式,瑞利—金斯公式:
C1 2 8 kT 2 d T d 3 d C2 C
1899年开尔文在欧洲科学家新年聚会的贺词中说: 物理学晴朗的天空上, 飘着几朵令人不安的乌云
迈克尔逊 —莫雷实验
光电效应 黑体辐射
固体比热
氢原子光谱
狭义相对论
量子力学
(1)迈克耳逊—莫雷实验
十八十九世纪时,人们认为“真空”中 存在着一种无所不在的物体称为“以太”, 光波应该通过以太传播 。 1887年,阿尔贝特· 迈克尔逊和爱德华· 莫 雷在克里夫兰的卡思应用科学学校进行了测量 以太速度的实验。但结果一无所获,从而证明 了以太不存在,说明了光速在真空中的不变性。
里兹并合原理: 光谱中有 , 线,则 ,或 | 1 2 | 1 2 1 2
也为可能的谱线。
经典的电磁理论认为若体系发出频率为
的谱线,则也可以发射其谐波
n
而实验上并没有观测到。
b)卢瑟福原子模型:
1911年卢瑟福根据 alpha 粒子散射实验提出了 原子有核模型。原子的质量 几乎集中于带正电的原子核, 而核的半径只占整个原子半 径的万分之一至十万分之一; 带负电的电子散布在核的外 围。卢瑟福的原子有核模型 成功地解释了a 粒子散射实 验。
(c)只有当入射光频率 大于一定的频率0才会产 生光电效应
(d)光电效应是瞬时发生的:驰豫时间不超过10-9s, 根据经典的电磁波理论能量的积累时间大约为80s
上述四点中,(a)可以用经典的理论解释,(b) (c) (d)却无法用经典理论解释。
量子力学_第四版_卷一_(曾谨言_著)习题答案
第一章量子力学的诞生1.1设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用)]([2,,2,1,x V E m p n nh x d p -===⋅⎰Λ )(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(a m x V E a x ω===。
a - 0 a x 由此得 2/2ωm E a =, (2)a x ±=即为粒子运动的转折点。
有量子化条件h n a m a m dx x a m dx x m E m dx p aaaa==⋅=-=-=⋅⎰⎰⎰+-+-222222222)21(22πωπωωω得ωωπm nm nh a η22==(3) 代入(2),解出 Λη,3,2,1,==n n E n ω (4)积分公式:c au a u a u du u a ++-=-⎰arcsin 22222221.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅Λ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,Λ,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x ηπΛ,3,2,1,,=z y x n n n1.3设一个平面转子的转动惯量为I ,求能量的可能取值。
格里菲斯 量子力学
格里菲斯量子力学(原创实用版)目录1.引言:介绍格里菲斯及其对量子力学的贡献2.格里菲斯的生平简介3.量子力学的发展背景4.格里菲斯的量子力学研究成果5.格里菲斯在量子力学中的地位与影响6.结论:总结格里菲斯对量子力学的贡献正文1.引言格里菲斯(David J.Griffiths)是一位杰出的物理学家,他在量子力学领域取得了举世瞩目的成就。
本文将重点介绍格里菲斯及其对量子力学的贡献,让我们更好地了解这位科学巨匠的生平及其在量子力学发展史上的重要地位。
2.格里菲斯的生平简介格里菲斯出生于英国,他在剑桥大学接受物理学教育,并取得了博士学位。
毕业后,他先后在美国、英国等多所知名高校从事教学与研究工作,为量子力学的发展做出了巨大贡献。
3.量子力学的发展背景量子力学是 20 世纪物理学的重要发展方向,它的诞生解决了经典力学在微观领域遇到的困难。
量子力学的发展经历了多个阶段,包括波函数力学、矩阵力学等。
4.格里菲斯的量子力学研究成果格里菲斯在量子力学领域的研究涉及多个方面,其中最著名的是他对量子纠缠现象的研究。
他首次提出了量子纠缠的概念,并揭示了其在量子信息处理中的潜在应用。
此外,格里菲斯还对量子力学的数学基础进行了深入研究,为量子力学的发展奠定了坚实的理论基础。
5.格里菲斯在量子力学中的地位与影响格里菲斯在量子力学领域具有举足轻重的地位,他的研究成果为量子力学的发展指明了方向。
他的学术著作《量子力学》被誉为经典教材,广泛应用于全球高校的物理教学中。
格里菲斯的研究不仅推动了量子力学的发展,还为量子信息科学、量子计算等领域的兴起奠定了基础。
6.结论总的来说,格里菲斯是一位杰出的物理学家,他在量子力学领域的贡献将永载史册。
生僻知识点总结
生僻知识点总结量子力学是20世纪最重要的科学理论之一,在物理学、化学、材料科学和信息技术等领域取得了巨大的成就。
本文将对量子力学的基本概念、发展历程以及应用进行系统的总结。
一、量子力学的基本概念1. 波粒二象性20世纪早期,科学家们发现了微粒在一些实验中表现出波动性质,而在另一些实验中表现出粒子性质。
经典力学无法解释这种现象,因此量子力学提出了波粒二象性概念,即微粒既可以表现为粒子,也可以表现为波动。
2. 不确定性原理根据量子力学的不确定性原理,无法准确测定微观粒子的位置和动量。
即使在完美的实验条件下,我们也无法同时准确测定一个粒子的位置和动量,这是量子世界的固有特性。
3. 波函数在量子力学中,波函数是描述微观粒子状态的数学工具。
波函数的平方代表了粒子出现在某一位置的概率,而波函数本身则包含了粒子的全部信息。
波函数的演化遵循薛定谔方程,描述了粒子在外势场中的运动规律。
4. 波粒对应量子力学中,波动方程和粒子方程之间存在着对应关系,即波动方程描述了粒子的波动性质,而粒子方程描述了粒子的运动规律。
薛定谔方程就是典型的波动方程,描述了微观粒子的波动性质;而德布罗意方程则是粒子方程,描述了波粒二象性中粒子的动力学特性。
二、量子力学的发展历程1. 量子力学的萌芽量子力学的开始可以追溯到19世纪末的黑体辐射问题。
玻尔基于普朗克的量子假设对黑体辐射的能量分布进行了解释,提出了能级分立的概念,为量子力学的诞生奠定了基础。
2. 波恩和海森堡的矩阵力学1925年,波恩和海森堡分别提出了矩阵力学和矩阵力学的基本原理。
他们认为运动的粒子是不能同时具有确定的位置和动量的,而是以一种非常规的方式运动。
这两种力学的理论形式不同,但给出的结果是等价的,进一步推动了量子力学的发展。
3. 薛定谔的波动力学1926年,薛定谔提出了波动力学,这被认为是现代量子力学的基石。
他通过薛定谔方程描述了微观粒子的波动性质,成功解释了原子的能级结构和光谱现象,为量子力学的发展奠定了坚实的理论基础。
量子力学发展历史论文
量子力学发展历史论文摘要:尽管量子理论几乎完全使古老的经典物理理论失去了光彩,但我们仍旧在日常的地面运动甚至空间运动中运用牛顿力学,仍旧在古老而熟悉的观点和新的革命性的观点之间寻找着最合适的理论解释。
1 量子理论发展史量子力学是经典物理学在微观领域的一次革命。
自1900年普朗克提出光量子假说起,量子力学的创立已经经过了一百多年,它使得人们对微观世界运动的规律有了基本正确的、革命性的理解,成为人类认识世界过程的一个伟大里程碑。
爱因斯坦、海森堡、波尔、薛定谔、狄拉克等人都对其理论发展做出了重要贡献。
1.1 量子理论与经典物理学的矛盾量子力学是对牛顿物理学的根本否定。
牛顿认为物质是由粒子组成的,粒子是一个实体,而量子力学认为不能把微观体系看成是由可以分开的部分组成的。
牛顿认为宇宙是可以预言的,而量子力学认为,自然界在微观层次上是由随机性和机遇支配的。
牛顿认为自然界的变化是连续的,量子力学则认为自然界的变化是以不连续的方式发生的。
1.2 量子力学的中心思想量子理论的中心思想是:一切东西都由不可预言的粒子构成,但这些粒子的统计行为遵循一种可以预言的波动图样。
德国物理学家海森堡发现,微观世界具有一种内禀的、可以量化的不确定性。
他设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△x就越小,所以△x∝λ。
但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△p∝1/λ。
经过一番推理计算,海森堡得出:△q*△p≥h/2π。
因此,动量和坐标不能被同时测准。
除了不确定原理外,量子力学还有诸多特征,如非定域性、相干性等,由此又引发许多物理学家对此做出相关的研究。
但是,一个理论的正确与否必须通过实验加以检验。
量子力学的研究需要继承,更需要批判和发展。
2 Matlab在量子力学中的应用薛定谔方程是量子力学中最基本的方程,也是量子力学的一个基本假定。
普朗克常数
第二十四章早期量子论和量子力学的诞生电磁波的能量的量子化.1900年, 普朗克提出黑体辐射公式; 1905年, 爱因斯坦解释光电效应.原子中电子轨道的角动量和能量的量子化.1913年, 玻尔给出了关于氢原子中的电子轨道的理论,很好地解释了氢原子的光谱.量子力学的诞生1924年, 德布罗意提出物质波的概念; 1925年, 海森堡提出矩阵力学; 1925年, 薛定谔得到薛定谔方程.黑体辐射的实验结果1881年,美国人兰利发明了热辐射计. 1886年他测到了相当精确的热辐射的能量分布曲线.德国人维恩领导的实验室对黑体辐射做了系统的研究.1995年维恩和卢梅尔建议用加热的空腔代替涂黑的铂片来代表黑体.随后卢梅尔和普林舍母用专门设计的空腔进行实验.后来普朗克成了这个实验组的理论核心人物.•他认为可以将构成黑体腔壁的物质看做带电的线性谐振子,它们和腔内的电磁场交换能量(辐射或吸收能量)。
而这些微观谐振子只能处于某些特定的状态,在这些状态中它们的能量是最小能量的整数倍。
它辐射或吸收能量时只能由一个可能状态跃迁到另一可能状态,即能量只可一份一份地改变,而不能连续地变化。
这最小能量称为量子,它与振子的振动频率成正比,比例系数就是(又称普朗克常数),。
根据这些假设可以成功地导出普朗克黑体辐射公式。
0E 0E νh E =0νh 理想气体中原子间没有相互作用, 这种条件下才可以导出麦克斯韦分布. 有相互作用时, 不满足麦克斯韦分布, 一个明显的例子是液体.黑体能吸收和发射所有频率的电磁波, 这种条件下才能导出黑体辐射. 一般的物质不满足这一点.实际物体的单色辐射能力随波长及温度的变化是不规则的,并不服从普朗克定律。
灰体及黑度A.实际物体的单色辐射能力与同温度下黑体单色辐射能力之比为该物体的单色发射率或叫单色黑度以表示。
则B.实际物体的辐射能力与同温度下黑体辐射能力之比称为该物体的发射率或叫黑度以表示。
则C.若某一物体,其单色黑度不随波长而变化,则该物体被称为灰体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
里兹并合原理: 光谱中有 , 线,则 ,或 | 1 2 | 1 2 1 2
也为可能的谱线。
经典的电磁理论认为若体系发出频率为
的谱线,则也可以发射其谐波
n
而实验上并没有得到。
b)卢瑟福原子模型:
1911年卢瑟福根据 alpha 粒子散射实验提出了 原子有核模型。原子的质量 几乎集中于带正电的原子核, 而核的半径只占整个原子半 径的万分之一至十万分之一; 带负电的电子散布在核的外 围。卢瑟福的原子有核模型 成功地解释了a 粒子散射实 验。
巴耳末 系
赖曼系
5.0
4.0 红
3.0
外
2.0
1.0 线
m m 波长0.8
0.6 0.4 0.2 m m 可 见 光 紫外线
从1885年至1924年科学家们先后在可见光、 紫外和红外区发现了氢原子的光谱线系列,并 得到普遍的实验规律。
巴尔末公式:
n>k,n,k取整数
R称为氢原子的里德伯常量 谱线的波长 的倒数称为波数
维恩(Wien)由热力学的讨论,加上一些特殊 的假设得出一个分布公式,维恩公式:
d C1 e
3 C2 / T
d
即随着温度升高,热辐射峰值向短波高频方向移动。 瑞利(Rayleigh)和金斯(Jeans)根据经典电 动力学和统计物理学也得到一个黑体辐射能量分布 公式,瑞利—金斯公式:
8 h 3 d 3 C
表示为
1
或用 λ
e
h kT
d
1
M ( , T )
2 ch
5
e
1
hc kT
1
普朗克发现要解释上列公式,需要作三个假设: (1)辐射黑体中分子和原子的振动可视为线性谐振 子,这些线性谐振子可以发射和吸收辐射能。这 些谐振子只能处于某些分立的状态,在这些状态 下,谐振子的能量不能取任意值,只能是某一最 小能量 的整数倍: , 2 ,3 n (2)谐振子吸收或发射的能量正比于 (3)吸收或发射频率为 的常数倍
太不存在,说明了光速在真空中的不变性。
(2)固体比热 固体的低温热容量,根据杜隆—泊替定律,能 量均分定理,每一个自由度, 1mol固体的热容量 为: kT/2 因此固体的定容mol比热为:3R 与温度T无 关。 但,实验仅在室温以上成立,低温时CV(T)下 降,与 T 有关。
C =3Nk B=3R V
瑞利--金斯线
o
1
2
3
4
5
6
7
8
e
h kT
/μm
1 1 d
下面我们将说到普朗克公式
8 h 3 d 3 C
m
(4)光电效应
光的照射下, 金属中的电子吸收 光能而逸出金属表 面的现象称为光电 效应。 爱因斯坦于 1905年提出光量子 (光子)理论,成 功解释光电效应。
A
O O O O O O
的电磁辐射,只能以h
2、爱因斯坦公式 爱因斯坦从普朗克的能量 子假设中得到启发,他假定光 在空间传播时,也具有粒子性, 想象一束光是一束以c 运动 的粒子流,这些粒子称为光量 子,现在称为光子,每一光子 的 能量为 hv ,光的能流密 度决定于单位时间内通过该 单位面积的光子数。
根据光子理论,光电效应可解释如下:当金属 中一个自由电子从入射光中吸收一个光子后 , 就 获得能量 , 如果 大于电子 h h 从金属表面逸出时所需的逸出功 A , 这个电 子就从金属中逸出。从而得出爱因斯坦方程:
一、经典物理学的困难
1、20世纪初之前的物理学的成就 a.机械运动——牛顿力学 b.热运动——热力学和统计物理学 c.电磁现象——麦克斯韦方程组 d.光学现象——波动光学
2、世纪之交实验物理学对理论物理学的挑战
1899年开尔文在欧洲科学家新年聚会的贺词中说: 物理学晴朗的天空上, 飘着几朵令人不安的乌云
C1 2 8 kT 2 d T d 3 d C2 C
可以看出这个公式对高频无效,因为此时能 量密度趋于无限大,这就是著名的紫外灾难。
M 0 (T )
实验值
紫 外 普 灾 朗 难 克 线 维恩线
d C1 3eC / T d
2
d
C1 2 8 kT 2 T d d 3 C2 C
然而,根据经典的电磁学理论,绕核 运动的电子不断辐射电磁波,轨道半经随 能耗而连续变小,最终应落到原子核中来, 另外,其光谱应是连续变化的带状光谱, 而实验所得到的是分立谱。 这让人感到无法理解。
二、早期量子论(1900——1924)
1、普朗克公式和普朗克假设 普朗克用插值方法试图调 和维恩公式和瑞利—金斯 公式,得到 :
1 2 ekν eU mVm 0 2
(c)只有当入射光频率 大于一定的频率时0才会 产生光电效应
(d)光电效应是瞬时发生的:驰豫时间不超过10-9s, 根据经典的电磁波理论能量的积累时间大约为80s
上述四点中,(a)可以用经典的理论解释,(b) (c) (d)却无法用经典理论解释。
(5)光谱实验和原子模型 a)氢原子谱线 普芳德系 布喇开系 帕邢系
迈克尔逊 —莫雷实验
光电效应
黑体辐射
康普顿效应
氢原子光谱
狭义相对论
量子力学
(1)迈克耳逊—莫雷实验 十八十九世纪时,人们认为“真空”中存在 着一种无所不在的物体称为“以太”,光波应 该通过以太传播 。 1887年,阿尔贝特·迈克尔逊和爱德华·莫 雷在克里夫兰的卡思应用科学学校进行了测量以 太速度的实验。但结果一无所获,从而证明了以
K
G
V B
O
O
光电效应实验装置图
由光电效应得到四条规律:
(a)单位时间内逸出的光电子数与入射光的强度成 正比:dN I
dt
(b)光电子的初动能W随入射光的频率ν线性增加, 而与入射光的强度无关: W
1 2 W mv eUa e kν U 0 2黑体辐射 一个物体能全部吸 收透射在它上面的辐射 而无反射,这种物体称 为绝对黑体。
绝对黑体的空腔模型
在一定温度下,当空腔与内部的辐射 处于平衡时,腔壁单位面积所发出的辐射能 量与其吸收的辐射能量相等,实验测出平衡 时辐射能量密度按波长分布的曲线,其形状 和位置只与黑体的温度有关与空腔材料或形 状无关。