三角恒等变换---最全的总结_-学生版
初中数学三角恒等变换知识总结
初中数学三角恒等变换知识总结三角恒等变换是初中数学中非常重要的知识点之一。
通过学习和掌握三角恒等变换,我们可以简化和转换三角函数的表达式,从而更方便地计算和解决与三角函数相关的问题。
本文将对初中数学中常用的三角恒等变换进行总结。
首先,让我们回顾一下三角函数的基本定义。
在一个直角三角形中,正弦函数(sin)、余弦函数(cos)和正切函数(tan)分别表示:- 正弦函数:$\sin A = \frac{{\text{对边}}}{{\text{斜边}}}$- 余弦函数:$\cos A = \frac{{\text{邻边}}}{{\text{斜边}}}$- 正切函数:$\tan A = \frac{{\text{对边}}}{{\text{邻边}}}$一个重要的三角恒等变换是诱导公式,用于描述同一角的三角函数之间的关系。
这些公式有助于简化和转换三角函数的表达式。
以下是一些常见的三角诱导公式:1. 正弦诱导公式:$\sin (A \pm B) = \sin A \cdot \cos B \pm \cos A \cdot \sin B$2. 余弦诱导公式:$\cos (A \pm B) = \cos A \cdot \cos B \mp \sin A \cdot \sin B$3. 正切诱导公式:$\tan (A \pm B) = \frac{{\tan A \pm \tan B}}{{1 \mp \tan A\cdot \tan B}}$以上是加减角的诱导公式,接下来是倍角和半角的诱导公式:4. 正弦倍角公式:$\sin(2A) = 2\sin A \cdot \cos A$5. 余弦倍角公式:$\cos(2A) = \cos^2 A - \sin^2 A$6. 正切倍角公式:$\tan(2A) = \frac{{2\tan A}}{{1 - \tan^2 A}}$对于半角,有以下的诱导公式:7. 正弦半角公式:$\sin\left(\frac{A}{2}\right) = \sqrt{\frac{{1 - \cos A}}{2}}$8. 余弦半角公式:$\cos\left(\frac{A}{2}\right) = \sqrt{\frac{{1 + \cos A}}{2}}$9. 正切半角公式:$\tan\left(\frac{A}{2}\right) = \frac{{\sin A}}{{1 + \cos A}}$此外,还有两个重要的三角恒等变换,它们是三角函数之间的倒数关系:10. 正余弦倒数公式:$\sin\left(\frac{\pi}{2} - A\right) = \cos A$11. 余切正切倒数公式:$\tan\left(\frac{\pi}{2} - A\right) = \frac{1}{\tan A}$通过掌握这些三角恒等变换,我们可以更加灵活地处理复杂的三角函数表达式。
专题07 三角恒等变换(学生版)
1.例题
【例
1】已知 0
2
, cos(
) 4
5. 5
(1)求 tan( ) 的值; 4
(2 )求 sin(2 ) 的值. 3
【例 2】已知△ABC 中, sin A cos A 7 ,则 tanA=
【例 2】已知函数 f(x)=
3sin
2x-π 6
+2sin2
x- π 12
(x∈R).
(1)求函数 f(x)的最小正周期;
(2)求使函数 f(x)取得最大值的 x 的集合.
2.巩固提升综合练习
【练习 1】当函数 y cos x 3 sin x 取得最大值时, tan x 的值是______
【练习 2】如果 f x sin x 2 cos(x ) 是奇函数,则 tan =
cos(α+β)=cosα cosβ-sinα sinβ.
sin(α-β)=sinα cosβ-cosα sinβ.
tan(α-β)= tan α-tan β(α,β,α-β均不等于 kπ+π(k∈Z)).
1+tan αtan β
2
2.二倍角公司
sin 2α=2sinα cosα; cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; tan 2α= 2tan α . 1-tan2α
y0
为_____.
12.若
7
cos
2
cos
,则
tan
2
(
)
13.已知 cos( ) 6 ,则 sin 2 的值为
。
三角恒等变换知识点总结详解
三角恒等变换知识点总结详解三角恒等变换是数学中一个非常重要的概念,它涉及到三角函数之间的相互关系。
在三角恒等变换中,通过对三角函数的特性、性质和运算进行分析和推导,可以得到一系列具有等价关系的三角函数等式。
这些等式在解决各种三角函数问题时起到了重要的作用。
1.互余关系:在一个直角三角形中,正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数之间存在互余关系。
例如,正弦函数和余弦函数之间的互余关系可以表示为:sin(x) = cos(π/2 - x),cos(x) = sin(π/2- x)。
通过这种互余关系,可以将一个三角函数的计算问题转化为另一个三角函数的计算问题,从而更加方便地求解。
2.双替换关系:在三角恒等变换中,有些等式可以通过同时替换角度的正弦函数和余弦函数、正切函数和余切函数、正割函数和余割函数进行变换。
例如,sin(x) = cos(π/2 - x),cos(x) = sin(π/2 - x)就是一个双替换关系。
通过双替换关系,可以将三角函数等式从一个角度扩展到整个角度范围内。
3.平方和差关系:三角恒等变换中的平方和差关系利用了三角函数的平方和差公式。
根据平方和差公式,可以将一个三角函数的平方表示为其他三个三角函数的和或差。
例如,sin²(x) + cos²(x) = 1就是一个平方和关系。
通过平方和差关系,可以将一个三角函数的计算问题转化为其他三角函数的计算问题,从而更加方便地求解。
4.倍角关系:在三角恒等变换中,倍角关系是指利用三角函数的倍角公式将一个三角函数的角度扩展为原来的两倍。
例如,sin(2x) = 2sin(x)cos(x),cos(2x) = cos²(x) - sin²(x)。
通过倍角关系,可以将一个角度的问题扩展为两倍角度的问题,从而更加方便地求解。
5.三角和差关系:三角恒等变换中的三角和差关系利用了三角函数的和差公式。
三角恒等变换高考数学中的关键知识点总结
三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。
在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。
本文将对三角恒等变换中的关键知识点进行总结。
一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。
通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。
2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。
3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。
二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。
1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。
(完整word版)三角恒等变换知识总结
三角恒等变换知识点总结2014/10/24一、基本内容串讲1. 两角和与差的正弦、余弦和正切公式如下:sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=对其变形:tan α+tan β=tan(α+β)(1— tan αtan β),有时应用该公式比较方便。
2. 二倍角的正弦、余弦、正切公式如下:sin 2sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-。
要熟悉余弦“倍角”与“二次”的关系(升角-降次,降角-升次).特别注意公式的三角表达形式,且要善于变形, 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式常用。
3.辅助角公式:sin cos4x x x π⎛⎫+=+ ⎪⎝⎭cos 2sin 6x x x π⎛⎫±=± ⎪⎝⎭()sin cos a x b x x ρ+=+。
4。
简单的三角恒等变换(1)变换对象:角、名称和形式,三角变换只变其形,不变其质.(2)变换目标:利用公式简化三角函数式,达到化简、计算或证明的目的。
(3)变换依据:两角和与差的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式。
(4)变换思路:明确变换目标,选择变换公式,设计变换途径. 5。
常用知识点:(1)基本恒等式:22sin sin cos 1,tan cos ααααα+==(注意变形使用,尤其‘1’的灵活应用,求函数值时注意角的范围);(2)三角形中的角:A B C π++=,sinA sin(B ),cosA cos(B C)C =+=-+; (3)向量的数量积:cos ,a b a b a b =,1212a b x x y y =+,12120a b x x y y ⊥⇔+=1221//0a b x y x y ⇔-=;二、考点阐述考点1两角和与差的正弦、余弦、正切公式1、sin 20cos 40cos 20sin 40+的值等于( )2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) 3、若3,4παβ+=则(1tan )(1tan )αβ--的值是________. 4、(1tan1)(1tan 2)(1tan3)(1tan 44)(1tan 45)+︒+︒+︒+︒+︒=_______________。
初中数学知识归纳三角恒等变换
初中数学知识归纳三角恒等变换初中数学知识归纳——三角恒等变换三角恒等变换是初中数学中的重要内容之一,它是解决三角函数相关题目的基础。
在数学学习中,了解并熟练掌握三角恒等变换对于提高解题效率、拓宽思维方式、加深对三角函数的理解都具有重要作用。
本文将对三角恒等变换进行归纳总结,帮助读者更好地理解和应用。
一、基本概念在开始具体介绍三角恒等变换之前,我们首先需要了解一些基本概念。
三角恒等变换是指通过等式变换的方式,将一个三角函数表达式转化为相等的另一个三角函数表达式。
在这个过程中,我们需要用到一些基本的三角函数关系,如正弦函数、余弦函数、正切函数等。
二、常见恒等变换下面我们将重点介绍一些常见的三角恒等变换,对于初中数学学习而言,这些恒等变换是必须要熟练掌握的。
这些恒等变换可以帮助我们简化计算、拓宽解题思路、提高解题速度。
1. 余弦函数的恒等变换(1)余弦函数和正弦函数之间的关系:cos^2θ + sin^2θ = 1(2)余弦函数的偶性:cos(-θ) = cosθ(3)余弦函数的倒数:1/cosθ = secθ2. 正弦函数的恒等变换(1)正弦函数和余弦函数之间的关系:sin^2θ + cos^2θ = 1(2)正弦函数的奇性:sin(-θ) = -sinθ(3)正弦函数的倒数:1/sinθ = cscθ3. 正切函数的恒等变换(1)正切函数和余切函数之间的关系:tanθ = sinθ/cosθ(2)正切函数的奇性:tan(-θ) = -tanθ(3)正切函数的倒数:1/ta nθ = cotθ4. 其他特殊变换(1)和差角公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinB(2)倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = 2tanθ / (1 - tan²θ)三、应用举例为了更好地理解和应用三角恒等变换,我们可以通过一些具体的例子来加深印象。
三角恒等变换---最全的总结_-学生版
三角恒等变换---完整版三角函数 —— 三角恒等变换公式:升幂公式- 21+cos = 2 cos —21-cos =2 sin 221 ± sin =( sin—22cos — )22 21=sin + cossin =2 sincos22降幂公式.21 cos 2cos 21 cos 2sin 22+ cos=1sin221 .sin cos = —sin 22考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。
“互补两角正弦相等,余弦互为相反数。
互余两角的正余弦相等。
”(2) 二倍角公式的灵活应用,特别是降幕、和升幕公式的两角和与差的三角函数关系sin( 1 )=sin cos cos sincos()=cos cos sin sin■丄 .、 tantantan( )’1 tan tan倍角公式sin2 =2sin cos 22cos2 =cos-sin=2cos 2 -1=1-2sin 2tan 22ta n 1 tan 2sin — 2 i1 cos1 cos\ 2 ,c °s2 : 2tan — 21 cos _ 1 cos sin \ 1 cos sin 1 cos:cosGi HJ"I"UffTI!! I I ! I ■— —«■应用。
(3)结合同角三角函数,化为二次函数求最值一求二(7)辅助角公式逆向应用 (4)角的整体代换(5)弦切互化 (6 )知半角公式平方关系2 2sin + cos =1 ,商数关糸sin -------- =ta n(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。
互余两 角的正余弦相等。
”快速进行逻辑判断。
注意构造两角和差因子9、(构造两角和差因子 +两边平方)【2015高考四川,理12】sin15 10、(逆向套用公式)tan 23 ° + tan 37 °+ ■. 3tan 23 °an 37。
高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧
高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧在高中数学中,三角函数是一个重要的概念,而三角恒等变换则是在解决三角函数方程和简化三角函数式子时经常用到的重要工具。
本文将总结常用的三角恒等变换公式,并介绍其应用技巧。
一、基本恒等变换公式1. 余弦函数的基本恒等变换(1) 余弦函数的平方形式:cos²θ + sin²θ = 1(2) 二倍角公式:cos2θ = cos²θ - sin²θ(3) 余弦函数的和差角公式:cos(θ ± φ) = cosθcosφ - sinθsinφ2. 正弦函数的基本恒等变换(1) 正弦函数的平方形式:sin²θ + cos²θ = 1(2) 二倍角公式:sin2θ = 2sinθcosθ(3) 正弦函数的和差角公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ3. 正切函数的基本恒等变换(1) 正切函数的平方形式:tan²θ + 1 = sec²θ1 + cot²θ = cosec²θ(2) 二倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)二、常用恒等变换公式1. 互余公式:sin(π/2 - θ) = cosθcos(π/2 - θ) = sinθtan(π/2 - θ) = cotθ2. 余角公式:sin(π - θ) = sinθcos(π - θ) = -cosθtan(π - θ) = -tanθ3. 倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)4. 积化和差公式:sinθsinφ = (1/2)[cos(θ - φ) - cos(θ + φ)]cosθcosφ = (1/2)[cos(θ - φ) + cos(θ + φ)]sinθcosφ = (1/2)[sin(θ + φ) + sin(θ - φ)]三、恒等变换的应用技巧1. 解三角函数方程:利用恒等变换可以将复杂的三角函数方程转化为简单的等式,从而更容易求解。
(完整版)三角恒等变换知识总结及基础训练
第四讲 三角恒等变形一、三角恒等变形知识点总结1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos(μ=±;tan tan tan()1tan tan αβαβαβ±±=m 。
2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。
3.三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos 2αα+=。
(2)辅助角公式()sin cos sin a x b x x ϕ+=+,sin cos ϕϕ==其中4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
三角恒等变换知识点总结
第三章 三角恒等变换一、知识点总结1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).2、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-. 3、⇒(后两个不用判断符号,更加好用)4、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。
()sin cos αααϕA +B =+,其中tan ϕB=A. 5.(1)积化和差公式sin α·cos β=21[sin(α+β)+sin(α-β)] cos α·sin β=21[sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)] sin α·sin β= -21[cos(α+β)-cos(α-β)](2)和差化积公式 sin α+sin β=2cos2sin2βαβα-+sin α-sin β=2sin2cos2βαβα-+ααααααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos :+-±=-±=+±=2tan 12tan 1 cos ;2tan 12tan2sin :222αααααα万能公式+-=+=cos α+cos β=2cos2cos2βαβα-+ cos α-cos β= -2sin2sin2βαβα-+tan α+ cot α=ααα2sin 2cos sin 1=⋅ tan α- cot α= -2cot2α 1+cos α=2cos 22α 1-cos α=2sin22α1±sin α=(2cos2sinαα±)26。
三角恒等变换知识点总结
)sin(cos sin 22ϕωωω++=+=x x b x a y b a ;的取值范围为;其中22-tan πϕπϕϕ≤≤=a b 一、知识点总结1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=- ⑶22tan tan 21tan ααα=-. 3、辅助角公式:把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 bx a y ++=)sin(ϕω形式。
4、 5、(1)升幂公式 1+cos α=2cos 22α1-cos α=2sin 22α1±sin α=(2cos 2sin αα±)21=sin 2α+ cos 2α sin α=2cos 2sin2αα (2)降幂公式sin 2α22cos 1α-= cos 2α22cos 1α+= sin 2α+ cos 2α=1 sin α·cos α=α2sin 21 7、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的差, 倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍; ②ββαα-+=)(;④)4(24αππαπ--=+; ③)4()4()()(2απαπβαβαα--+=-++=;2tan 12tan 1 cos ;2tan 12tan 2 sin :222αααααα万能公式+-=+=必修4:第三章 三角恒等变换知识点总结⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。
高一必修4数学三角恒等变换知识点总结
高一必修4数学三角恒等变换知识点总结
高一必修4数学三角恒等变换知识点
三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果.化简三角函数式的基本要求是:(1)能求出数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;(3)分式中的分母尽量不含根式等.
1.求值中主要有三类求值问题:
(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看
是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,
要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角
的三角函数而得解.
(2)“给值求值”:给出某些角的三角函数式的值,求另外一些
角的三角函数值,解题关键在于“变角”,使其角相同或具有某种
关系.
(3)“给值求角”:实质是转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单
调区间求得角.
2.三角恒等变换的常用方法、技巧和原则:
(1)在化简求值和证明时常用如下方法:切割化弦法,升幂降幂法,和积互化法,辅助元素法,“1”的代换法等.
(2)常用的拆角、拼角技巧如:2α=(α+β)+(α-β),
α=(α+β)-β,α=(α-β)+β,α+β2=α-β2+β-α2,α2是
α4的二倍角等.
(3)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式.
(4)消除差异:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构等方面的差异.。
三角函数恒等变换知识点总结
三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。
若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ; (5)由α的终边所在的象限,通过 来判断2α所在的象限。
来判断3α所在的象限 (6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl =||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。
注意钟表指针所转过的角是负角。
(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αsin ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ;如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。
注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(π∈x ,x sin ,x tan ,x 的大小关系: 。
三角恒等变换公式总结
三角恒等变换公式总结1. 引言三角恒等变换公式,这个听起来有些复杂的名字,实际上就像是数学里的“调味料”,能让我们在解决各种问题时,轻松又有趣。
想象一下,生活中的各种角度和三角形,不论是你在量房子的时候,还是在看风景时,三角函数都在悄悄发挥着作用。
今天就带大家轻松了解这些公式,保证让你有种“豁然开朗”的感觉!2. 基本三角恒等式2.1 正弦与余弦的关系首先,咱们得从最基础的说起,正弦(sin)和余弦(cos)。
你知道吗?它们就像是一对好朋友,总是形影不离。
基本恒等式之一就是sin²x + cos²x = 1。
简单来说,就是不论你选择哪个角度,它们俩加起来永远都是1。
这就像生活中的一种平衡,太多或太少都不行!2.2 正切的神奇接下来,咱们聊聊正切(tan)。
正切其实是余弦和正弦的比值,公式就是 tanx = sinx/cosx。
想象一下,这就好比你在餐厅里点了一份大餐,正弦是主菜,余弦是配菜,而正切就是你整个用餐体验的完美比例,缺一不可!3. 重要的三角恒等式3.1 角度和的公式说到三角恒等变换公式,角度和的公式可得好好聊聊。
比如说,sin(a + b) = sin a * cos b + cos a * sin b。
这就像是两个不同口味的冰淇淋,混合在一起后,产生了新鲜的口感,意外的美味总是让人惊喜。
而 cos(a + b) = cos a * cos b sin a * sin b,则是让人感觉有点酸酸甜甜的感觉,确实让人难忘!3.2 角度差的公式当然,除了和,角度差的公式也很有意思。
sin(a b) = sin a * cos b cos a * sin b。
这个公式就像是两位舞者,偶尔要展示一下各自的魅力,虽有些抵触,却又能擦出火花。
cos(a b) = cos a * cos b + sin a * sin b,则让人觉得温暖,像是朋友间的默契配合。
4. 应用实例4.1 解决实际问题学习这些公式,关键还是要知道如何运用。
三角函数、三角恒等变换与解三角形(学生版)
三角函数、三角恒等变换与解三角形根据近几年的高考情况,三角函数、三角恒变换与解三角形是高考必考点。
虽然九省联考中调整了试题顺序,但今年高考仍有可能在解答中考查这部分内容。
在高考中,主要考查正余弦定理解三角形及三角函数与解三角形的综合问题,转化为三角函数的图象及其性质进行求解。
还考察把实际应用问题转化为解三角形的问题,体现数学与实际问题的结合.题型一:三角恒等变换与三角函数1(2024·福建福州·统考模拟预测)已知函数f x =sin ωx -π4 (0<ω<3),x =π8是f x 的零点.(1)求ω的值;(2)求函数y =f x -π8 +f 12x +π8的值域.此类题型考察恒等变形和三角函数函数性质,涉及到三角恒等变形的公式比较多。
1、首先要通过降幂公式降幂,二倍角公式化角:(1)二倍角公式:sin 2α=2sin αcos α(S 2α);cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α(C 2α)(2)降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2,2、再通过辅助角公式“化一”,化为y =A sin (ωx +φ)+B3、辅助角公式:a sin α+b cos α=a 2+b 2sin (α+φ),其中tan φ=ba.4、最后利用三角函数图象和性质,求解计算:一般将ωx +ϕ看做一个整体,利用换元法和数形结合的思想解题。
与三角函数相关的方程根的问题(零点问题),通常通过函数与方程思想转化为图象交点问题,再借助图象进行分析。
2(2024·北京海淀·高三首都师范大学附属中学校考开学考试)已知函数f (x )=(1+3tan2x )cos2x .(1)求函数f (x )在区间-π6,5π24上的最大值和最小值;(2)求方程f (x )=3的根.3(2022·全国·高三校联考阶段练习)已知函数f (x )=3sin2ωx +cos2ωx +1ω>0 的最小正周期为T .若π≤T <4π,且y =f (x )的图象关于直线x =π6对称.(1)求函数f x 的单调增区间;(2)求函数f x 在区间0,π3上的最值.题型二:正余弦定理解三角形的边与角4(2024·浙江·高三浙江金华第一中学校考开学考试)记△ABC的内角A,B,C的对边分别为a,b,c,已知A=π3,a=2.(1)若sin B+sin C=2sin A,求△ABC的面积;(2)若sin B-sin C=34,求b.利用正、余弦定理求解三角形的边角问题,实质是实现边角的转化,解题的思路是:1、选定理.(1)已知两角及一边,求其余的边或角,利用正弦定理;(2)已知两边及其一边的对角,求另一边所对的角,利用正弦定理;(3)已知两边及其夹角,求第三边,利用余弦定理;(4)已知三边求角或角的余弦值,利用余弦定理的推论;(5)已知两边及其一边的对角,求另一边,利用余弦定理;2、巧转化:化边为角后一般要结合三角形的内角和定理与三角恒等变换进行转化;若将条件转化为边之间的关系,则式子一般比较复杂,要注意根据式子结构特征灵活化简.3、得结论:利用三角函数公式,结合三角形的有关性质(如大边对大角,三角形的内角取值范围等),并注意利用数形结合求出三角形的边、角或判断出三角形的形状等。
专题18 三角恒等变换 (学生版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】高中数学53个题型归纳与方法技巧总结篇专题18三角恒等变换知识点一.两角和与差的正余弦与正切①sin()sin cos cos sin αβαβαβ±=±;②cos()cos cos sin sin αβαβαβ±= ;③tan tan tan()1tan tan αβαβαβ±±=;知识点二.二倍角公式①sin 22sin cos ααα=;②2222cos 2cos sin 2cos 112sin ααααα=-=-=-;③22tan tan 21tan ααα=-;知识点三:降次(幂)公式2211cos 21cos 2sin cos sin 2;sin ;cos ;222ααααααα-+===知识点四:半角公式sin22αα==sin 1cos tan.21cos sin aαααα-==+知识点五.辅助角公式)sin(cos sin 22ϕααα++=+b a b a (其中abb a a b a b =+=+=ϕϕϕtan cos sin 2222,,).【方法技巧与总结】1.两角和与差正切公式变形)tan tan 1)(tan(tan tan βαβαβα ±=±;1)tan(tan tan )tan(tan tan 1tan tan ---=++-=⋅βαβαβαβαβα.2.降幂公式与升幂公式ααααααα2sin 21cos sin 22cos 1cos 22cos 1sin 22=+=-=;;;2222)cos (sin 2sin 1)cos (sin 2sin 1sin 22cos 1cos 22cos 1αααααααααα-=-+=+=-=+;;;.3.其他常用变式αααααααααααααααααααsin cos 1cos 1sin 2tan tan 1tan 1cos sin sin cos 2cos tan 1tan 2cos sin cos sin 22sin 222222222-=+=+-=+-=+=+=;;.3.拆分角问题:①=22αα⋅;=(+)ααββ-;②()αββα=--;③1[()()]2ααβαβ=++-;④1[()()]2βαβαβ=+--;⑤()424πππαα+=--.注意特殊的角也看成已知角,如()44ππαα=--.【题型归纳目录】题型一:两角和与差公式的证明题型二:给式求值题型三:给值求值题型四:给值求角题型五:正切恒等式及求非特殊角【典例例题】题型一:两角和与差公式的证明例1.(2022·山西省长治市第二中学校高一期末)(1)试证明差角的余弦公式()C αβ-:cos()cos cos sin sin αβαβαβ-=+;(2)利用公式()C αβ-推导:①和角的余弦公式()C αβ+,正弦公式()S αβ+,正切公式()T αβ+;②倍角公式(2)S α,(2)C α,(2)T α.例2.(2022·云南·昭通市第一中学高三开学考试(文))已知以下四个式子的值都等于同一个常数22sin 26cos 3426cos34+ ;22sin 39cos 2139cos 21+ ;()()22sin 52cos 11252cos112-+- ;22sin 30cos 3030cos30+ .(1)试从上述四个式子中选择一个,求出这个常数.(2)根据(1)的计算结果,推广为三角恒等式,并证明你的结论.例3.(2022·陕西省商丹高新学校模拟预测(理))如图带有坐标系的单位圆O 中,设AOx α∠=,BOx β∠=,AOB αβ∠=-,(1)利用单位圆、向量知识证明:cos()cos cos sin sin αβαβαβ-=+(2)若π,π2α⎛⎫∈ ⎪⎝⎭,π0,2β⎛⎫∈ ⎪⎝⎭,4cos()5αβ-=-,5tan 12α=-,求cos β的值例4.(2022·全国·高三专题练习)如图,考虑点(1,0)A ,1(cos ,sin )P αα,2(cos ,sin )P ββ-,(cos(),sin())P αβαβ++,从这个图出发.(1)推导公式:cos()cos cos sin sin αβαβαβ+=-;(2)利用(1)的结果证明:1cos cos [cos()cos()]2αβαβαβ=++-,并计算sin 37.5cos37.5︒︒⋅的值.【方法技巧与总结】推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路.题型二:给式求值例5.(2022·全国·高三专题练习)已知sin α=()cos αβ-=且304πα<<,304πβ<<,则sin β=()ABCD例6.(2020·四川·乐山外国语学校高三期中(文))已知sin 15tan 2102α⎛⎫︒-=︒ ⎪⎝⎭,则()sin 60α︒+的值为()A .13B .13-C .23D .23-例7.(2020·全国·高三专题练习)若7cos(2)38x π-=-,则sin()3x π+的值为().A .14B .78C .14±D .78±(多选题)例8.(2022·全国·高三专题练习)设sin()sin 6πββ++=sin()3πβ-=()AB .12C .12-D.例9.(2022·全国·模拟预测(文))已知,0,2παβ⎛⎫∈ ⎪⎝⎭,3cos 25β=,()4cos 5αβ+=,则cos α=___________.例10.(2022·上海静安·模拟预测)已知sin 4πα⎛⎫+= ⎪⎝⎭sin 2α的值为_____________.例11.(2022·江苏泰州·模拟预测)若0θθ=时,()2sin 2cos f θθθ=-取得最大值,则0sin 24πθ⎛⎫+= ⎪⎝⎭______.【方法技巧与总结】给式求值:给出某些式子的值,求其他式子的值.解此类问题,一般应先将所给式子变形,将其转化成所求函数式能使用的条件,或将所求函数式变形为可使用条件的形式.题型三:给值求值例12.(2022·福建省福州第一中学三模)若3sin 5α=-,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα-=+()A .12B .12-C .2D .-2例13.(2022·湖北武汉·模拟预测)已知1sin 64x π⎛⎫-= ⎪⎝⎭,则cos 23x π⎛⎫-= ⎪⎝⎭()A .78-B .78C .D 例14.(2022·湖北·模拟预测)已知,22ππα⎛⎫∈- ⎪⎝⎭,且1cos 42πα⎛⎫-= ⎪⎝⎭,则cos2α=()A .B .C .12D 例15.(2022·全国·模拟预测)已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫-= ⎪⎝⎭()A .2325B .2325-C D .例16.(2022·黑龙江·哈师大附中三模(文))已知()3sin 455α︒+=,45135α︒<<︒,则cos 2=α()A .2425B .2425-C .725D .725-例17.(2022·广东茂名·模拟预测)已知1sin 62πθ⎛⎫-= ⎪⎝⎭,则cos 3πθ⎛⎫+= ⎪⎝⎭()A .B .12-C .12D(多选题)例18.(2022·江苏·高三专题练习)已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()αβ+=则()A .cos α=B .sin cos αα-=C .34πβα-=D .cos cos αβ=【方法技巧与总结】给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系,解题的基本方法是:①将待求式用已知三角函数表示;②将已知条件转化而推出结论,其中“凑角法”是解此类问题的常用技巧,解题时首先要分析已知条件和结论中各种角之间的相互关系,并根据这些关系来选择公式.题型四:给值求角例19.(2022·全国·模拟预测)已知263ππα<<,sin 4sin cos tan 15315315πππππαα⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭则α=______.例20.(2022·河南·南阳中学高三阶段练习(文))已知3sin 44ππαβ⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭3,,0,444πππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,求αβ-的值为_____.例21.(2022·河北石家庄·一模)已知角π0,2α⎛⎫∈ ⎪⎝⎭,πsin sinπ12tan π12cos cos 12αα-=+,则α=______.例22.(2022·上海市大同中学高三开学考试)若()0,απ∈,且cos 2sin 4παα⎛⎫=- ⎪⎝⎭,则α的值为___________.例23.(2022·全国·高三专题练习)若sin 2α=()sin βα-=且ππ,42α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+的值是______.例24.(2022·吉林·延边州教育学院一模(理))若sin 2α=,()sin βα-=且π,π4α⎡⎤∈⎢⎥⎣⎦,3π,π2β⎡⎤∈⎢⎥⎣⎦,则αβ+=()A .7π4B .π4C .4π3D .5π3例25.(2022·上海交大附中高三开学考试)已知α、β都是锐角,且223sin 2sin 1αβ+=,3sin 22sin 20αβ-=,那么α、β之间的关系是()A .4παβ+=B .4αβ-=πC .24παβ+=D .22παβ+=例26.(2022·江苏省江阴高级中学高三开学考试)已知11tan ,tan ,37αβ==-且,(0,)αβπ∈,则2αβ-=()A .4πB .4π-C .34π-D .34π-或4π【方法技巧与总结】给值求角:解此类问题的基本方法是:先求出“所求角”的某一三角函数值,再确定“所求角”的范围,最后借助三角函数图像、诱导公式求角.题型五:正切恒等式及求非特殊角例27.(2022·湖北·襄阳四中模拟预测)若角α的终边经过点()sin 70,cos70P ︒︒,且tan tan 2tan tan 2m αααα++⋅=,则实数m 的值为()A.B.CD例28.(2021·重庆八中高三阶段练习)sin10︒︒=()A .14B C .12D例29.(2020·=()A .1BC D .例30.(2022·全国·高三专题练习)()tan 30tan 70sin10︒+︒︒=___________.例31.(2022·江苏南通·高三期末)若11sin α=,则α的一个可能角度值为__________.例32.(2022·江苏扬州·模拟预测)1tan 751tan 75-︒=+︒___________.例33.(2022·贵州黔东南·一模(文))若()1tan 3αβ+=,()1tan 6a β-=,则tan 2α=___________.例34.(2022·山东·青岛二中高三开学考试)tan10tan 35tan10tan 35︒+︒+︒︒=______.【方法技巧与总结】正切恒等式:当A B C k π++=时,tan tan tan tan tan tan A B C A B C ++=⋅⋅.证明:因为tan tan tan()1tan tan A BA B A B++=-,tan tan ()C A B =-+,所以tan tan tan (1tan tan )A B C A B +=--故C B A C B A tan tan tan tan tan tan ⋅⋅=++.【过关测试】一、单选题1.(2022·四川省泸县第二中学模拟预测(文))已知角α与角β的顶点均与原点O 重合,始边均与x 轴的非负半轴重合,它们的终边关于x 轴对称.若3cos 5α=,则()()cos cos αβαβ+-=()A .725-B .15C .15-D .7252.(2022·全国·模拟预测(理))已知sin cos 1αβ+=,cos sin αβ+=,则cos()αβ-=()A .0B .12C D .13.(2022·青海·大通回族土族自治县教学研究室三模(文))已知πtan 34α⎛⎫+= ⎪⎝⎭,()1tan 3αβ+=,则tan β=()A .17-B .17C .1D .2或64.(2022·湖北·黄冈中学模拟预测)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为2sin18m =︒,若24m n +=,=()A .-4B .-2C .2D .45.(2022·山东烟台·三模)若21π2cos cos 23αα⎛⎫-=+ ⎪⎝⎭,则tan 2α的值为()A .BC .D 6.(2022·全国·模拟预测(文))设角α,β的终边均不在坐标轴上,且()tan tan tan αββα-+=,则下列结论正确的是()A .()sin 0αβ+=B .()cos 1αβ-=C .22sin sin 1αβ+=D .22sin cos 1αβ+=7.(2022·河南·通许县第一高级中学模拟预测(文))已知15αβ+= ,则1tan tan tan tan 1tan tan tan tan αβαβαβαβ++-=---()A .BC .1D8.(2022·全国·高三专题练习)若10,0,cos ,cos 224342ππππβαβα⎛⎫⎛⎫<<-<<+=-= ⎪ ⎪⎝⎭⎝⎭cos 2βα⎛⎫+=⎪⎝⎭()A B .C D .二、多选题9.(2022·海南海口·二模)已知(),2αππ∈,tan sin tan 22αβα==,则()A .tan α=B .1cos 2α=C .tan β=D .1cos 7β=10.(2022·河北邯郸·二模)下列各式的值为12的是().A .sin17π6B .sinπ12cos π12C .22cossin 121π2-πD .2πtan 8π1tan 8-11.(2022·重庆·西南大学附中模拟预测)已知α,β,0,2πγ⎛⎫∈ ⎪⎝⎭,且2παβγ++=,则()A.若sin cos αα+=,则tan 1α=B .若tan 2α=,则sin()βγ+=C .tan α,tan β可能是方程2670x x -+=的两根D .tan tan tan tan tan tan 1αββγβα++=12.(2022·重庆巴蜀中学高三阶段练习)已知()4cos cos 25αβα+==-,其中,αβ为锐角,则以下命题正确的是()A .3sin 25α=B .()cos αβ-=C.cos cos αβ=D .1tan tan 3αβ=三、填空题13.(2022·浙江·高考真题)若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.14.(2022·山东师范大学附中模拟预测)已知ππ0sin 24αα⎛⎫<<-= ⎪⎝⎭sin 1tan αα=+________.15.(2022·3cos()cos()12παπα-++=-,则cos(23α2π-=_____________.16.(2022·陕西·宝鸡中学模拟预测)()()()sin 75cos 4515θθθ++++=__________.四、解答题17.(2022·江苏南京·模拟预测)已知02πα<<,1cos 43πα⎛⎫+= ⎪⎝⎭.(1)求sin α的值;(2)若02πβ-<<,cos 24βπ⎛⎫-= ⎪⎝⎭αβ-的值.18.(2022·江西·高一期中)已知角α为锐角,2πβαπ<-<,且满足1tan23=α,()sin βα-=(1)证明:04πα<<;(2)求β.19.(2022·河南·唐河县第一高级中学高一阶段练习)(1)已知tan 2θ=-,求sin (1sin 2)sin cos θθθθ++的值;(2)已知1tan()2αβ-=,1tan 7β=-,且α,(0,)βπ∈,求2αβ-.20.(2022·江西·高一阶段练习)在①4tan 23α=,②sin α补充到下面的问题中,并解答.已知角α是第一象限角,且.(1)求tan α的值;(2)求()π3πsin 2cos πcos 22ααα⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭的值.注:如果选择两个条件分别解答,按第一个解答计分.21.(2022·北京市第九中学高一期中)已知1tan 2α=,π0,2α⎛⎫∈ ⎪⎝⎭,π,π2β⎛⎫∈ ⎪⎝⎭,求(1)求sin α的值;(2)求()()()2212sin πcos 2π5πsin sin 2αααα+---⎛⎫--- ⎪⎝⎭的值;(3)若()sin αβ+cos β的值.22.(2019·黑龙江·哈尔滨三中高三阶段练习(文))()1的值;()2已知30,,,242ππαβπ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,()1tan 2αβ-=,17tan β=-,求2αβ-的值.23.(2020·全国·高三专题练习)在ABC ∆中,满足222sin cos sin cos A B A B C -=-.(1)求C ;(2)设()()2cos cos cos cos cos A B A B ααα++=,tan α的值.。
三角恒等式知识点总结
三角恒等式知识点总结在三角函数的学习中,我们经常会遇到各种各样的三角恒等式。
三角恒等式是指在三角函数中相等的关系式。
掌握并理解三角恒等式对于解题和推导三角函数公式非常重要。
本文将对常见的三角恒等式进行知识点总结。
一、倒数公式1. 正弦和余弦的倒数关系:sin(-θ) = -sin(θ)cos(-θ) = cos(θ)2. 正切的倒数关系:tan(-θ) = -tan(θ)二、四象限的关系1. 正弦和余弦在四个象限的关系:在第一象限:sinθ > 0, cosθ > 0在第二象限:sinθ > 0, cosθ < 0在第三象限:sinθ < 0, cosθ < 0在第四象限:sinθ < 0, cosθ > 02. 正切在四个象限的关系:在第一象限:tanθ > 0在第二象限:tanθ < 0在第三象限:tanθ > 0在第四象限:tanθ < 0三、和差公式1. 正弦的和差公式:sin(A ± B) = sinA·cosB ± cosA·sinB2. 余弦的和差公式:cos(A ± B) = cosA·cosB ∓ sinA·sinB3. 正切的和差公式:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA·tanB)四、倍角公式1. 正弦的倍角公式:sin(2θ) = 2sinθ·cosθ2. 余弦的倍角公式:cos(2θ) = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ3. 正切的倍角公式:tan(2θ) = 2tanθ / (1 - tan²θ)五、半角公式1. 正弦的半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]2. 余弦的半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]3. 正切的半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]六、欧拉公式欧拉公式是指e^ix的展开形式,其中e是自然对数的底数,i是虚数单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档三角恒等变换---完整版三角函数 —— 三角恒等变换公式:升幂公式- 21+cos = 2 cos —21-cos =2 si n 221 ± sin =( sin —2 2cos — ) 22 21=sin + cossin =2 sincos22降幂公式.21 cos 2cos 21 cos 2sin 22+ cos=1sin221 .sin cos = —sin 22考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。
“互补两角正弦相等,余弦互为相反数。
互余两角的正余弦相等。
”(2) 二倍角公式的灵活应用,特别是降幕、和升幕公式的两角和与差的三角函数关系sin( 1 )=sin cos cos sincos()=cos cos sin sin■丄 .、 tantantan()’1 tan tan倍角公式sin2 =2sin cos 22cos2 =cos-sin=2cos 2 -1=1-2sin 2tan 22ta n 1 tan 2sin — 2 i1 cos1 cos\ 2 ,c °s2 : 2tan — 21 cos _ 1 cos sin \ 1 cos sin 1 cos:cosGi HJ"I"UffTI!! I I ! I ■— —«■应用。
(3)结合同角三角函数,化为二次函数求最值一求二(7)辅助角公式逆向应用 (4)角的整体代换(5)弦切互化 (6 )知半角公式平方关系2 2sin + cos =1,商数关糸sin -------- =ta n(1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。
互余两 角的正余弦相等。
”快速进行逻辑判断。
注意构造两角和差因子A. 2sin15°cos15°B. cos 215o sin 215° C - 2sin 215o1D. sin 215° cos 215o(2008 六校联考)(sin 75o sin 15o )(cos15o cos75o )的值是9、(构造两角和差因子 +两边平方)【2015高考四川,理12】sin15 10、(逆向套用公式) tan 23 °+ tan 37 °+ 3tan 23 °an 37。
的值是1、(二倍角公式) (2007重庆文) F 列各式中,值为3的是(22、(二倍角公式+平方差公式)3、 4. A. 1(两角和差公式 1A•— 2(两角和差公式) +诱导公式) B. C 」2(2009 四校联考)sin 36 cos6F 列各式中值为 A. s in45 ° cos15 ° +cos45 □的是2sin15 D.sin54 cos84等于C. cos75 ° cos30 ° +sin75 sin30D 边 2D 2sin45 ° cos15 ° - t-HtanCO 4 t anW 6(拆角+两角和差公式)(佛山一中2014届高三10月段考数学(理)试题)化简三角式2cos55. 3sin 5(cos5B. 1C. 26、 A.(补全公式) 1 B. 148cos20 ° • cos40 ° • cos60 ° • cos80° =((2013六校联考回归课本题) 1 1D.常见变式:计算 sin 10 ° in 30 °si n 50 °s in 70 °的=16 32C.7、 (构造两角和差因子 +两式平方后相加) 若sin a — sin 3= ? , cos1a — cos 3= 2,贝U cos( a — ® 的值为8. A.)A.1B. 23)2 2C.43D . 1 4(诱导公式)【2015广东东莞高一期末】sin 163 ° sin223+ sin 253sin313。
等于BB. D.sin 75C. ).D.cos45 °sin1511ii .(特殊值化特殊角处理)化简tan 105 °的值为 ________________12.(特殊值化特殊角处理) 1 - tan 75 1 + tan 75 13、(tan 45 =tan(20 °+ 25 °+ 多项式展开)若 a= 20°, 3= 25°,贝U (1 + tan M (1 + tan 3)的值为 ______ 14、(合理组合,多项式乘法展开)(1 + tan 21 °(1 + tan 22 °(1 + tan 23 °(1 + tan 24 ° 的值为 ________ 15、(逆向套用公式)tan 10 °tan 20 °+ tan 20 °tan 60 + tan 60 °tan 10 答案: BDBCB CAB 9、 10 、 3 11 、-3312、- 3313 、 2 14 、 3 15 、 1例如: 22, 1、 2、 A. 3. (角的整体相减) (两角互补) (诱导公式) A.1 3 4.(两角相减) sin( 75 ) 5、(两角相加) 则 tan2(2011汕头期末)已知tan ( C.•【山西大学附中 2014-2015 13 22年高三月考】【湛江一中14年期末考试】如果sin(B.-1 3C.U 3【江西省九江外国语学校2013-2014 CO S (15 )(B.■ C.D..【2013-2014学年陕西省咸阳市高2 1 -,tan( ) 一,则 tan( 5 4 43 18 4)等于( D. 学年高 1 3,那么 1 3,则cos(3)的值为3cos 「2 )的值为(下学期第一次月考数学试题】 已知(下)期末数学试卷】若tan ()3, tan(9、(互补两角余弦互为相反数)J35 cos(6)三,则cos(610.(两角整体相减)若sin(x),则cos(x )6532sin(亍)2 )注意分母还原sin 2 + cos 2 =1,然后分子分母同时除以cos 2 ,即可化为正切3 )注意期间学会使用解方程的思想4 )遇到部分 Asin a + Bcos a 之类求正切.4 B.4-1[来源 :学* 科 *网D.1A.—C.-- 772Z*X*X*K]26.(特殊角三角函数值)【浙江省桐乡一中学等四校 2015届高三上学期期中联考,理14】已知sincos( )1,贝U sin(2 n7、(两角整体相减)【江苏省泰兴市 2015届高三(上)期中,理 2】若sin ( + — ) 127 n. cos ( +——)12& (互余两角正余弦互换)【四川雅安中学2014 — 2015学年上期 9月试题,理11】1 r rsin( ) ,贝 V cos (―3 4 6 11、(两角整体相减)【2015重庆高一期末】 若sin (5,且13(2,),则12•(两角整体相减)【2015江苏高考,8】已知tan2, tan-,则tan 的值为713、(两角整体相减)(中山市2014届高三上学期期末考试) 已知014、(两角相减)【2015湖南浏阳高期末】 已知 cos1 ,cos(2 ,cos(6))寻且0142,则卩12 1312、 3 13 、4 103.3 14、(3)弦切互化:1 )、分子分母同时除以 cos 答案:BDACB 6、的,注意先两边平方后再进行相切互化sin (— ) cos ()1.(诱导公式+同时除以cos )(2007韶关一模文)已知tan 2 ,「si n () sin ( )2(A )2(B ) - 2 (C )0(D )-32、 (同角三角函数弦化切) (2013肇庆统考)已知a 为锐角,sin a=则tan ( a —》等于sin 22~3、(简单弦化切)(2011福建文3)若tan=3,则COS a 的值等于A. 2 B . 3C. 4D. 64.(分子分母同时除以 cos)(2012咼考江西文4)若 sincos 1 则 tan2 a =sincos 2A 33 44A.-B.c.-D.44335、(分母还原 1+同时除以cos 2)(2009辽宁卷文)已知tan2, 2则sinsin cos 2cos 26.(分母还原1+同时除以cos 2 )【淄博实验中学 2015届高三,理5】已知tan 2,则sin sin cos 的值是()22A . —B •— C .2 D . 25 53 - 4z(\5 - 4B)z(\4 - 3(唐山市2014-2015学年度高三年级第一次模拟考试 7).已知2s in 21 cos2,则 tan2() 44 4亠A.B .C •或 0 D.—或03 3338 (两边平方在弦切互化) 【成都七中2015届数学阶段性测试,理8】已知a R,2sincos107.(移项后两边平方在弦切互化)19答案:BCDBD ADBCA CA 13、乍 14、-2(4):结合完全平方公式和平方差公式的作用。
最经典的莫过于sin cos , sin cos , sin2者知一求二:(sin cos )2 1 sin2 ;则 tan(24)()431A.—B. 7CD34.73sin-,(一 5 2),且 sin() cos ,贝V tan()=()A. 1B. 2C. - 2D.825Afl3 r4 3 4A .BC .—D434311、(两边平方在弦切互化)(省实验中学2014届咼三 上学期期中考试)已知 sin cos一2,0,则tan 等于()A .二B .丄C. 122D. 11 ,sin21tan 亠 1,则为3tanA 5B 、-1C 、6D 、一613、(分母还原1+同时除以cos 2)已知tan2 22,贝V sin sin cos 2cos3的值为14、(二倍角+分母还原1 +同时除以cos 2 )若cos1是第三象限的角,则-tan —1 tan —29、(解方程组+同角三角函数的快速弦切互化)【2015安徽滁州高一期末】 已知已知 2sin a + costan2 a =10、(两边平方在弦切互化)(洛阳市2014届高三12月统考)12、(解方程组再弦切互化)【2015福建晋江高一期末】若 sin2. (两边平方+象限定号)(2012全国卷)已知a 为第二象限角,sin cos,贝V COS2 a =3(A )少(B ) (C )兰(D )上39 9 333、 (公式的快速展开+两边平方)(开滦二中2014届高三12月月考,文) 已知sin (— X ) ,则sin2x4 5的值为( )7 71416A.—BC .D.252525254、(公式的快速展开) (2013年咼考课标 n 卷(文6)) 已知sin 2-,则 co$(-34(A ) - (B ) - (C ) -(D )-63235.(公式的快速展开 +两边平方)(2011 辽宁文1 7)设 sin 1+ )= _43,贝ysin2717(A ) 9 (B )9(C ) 9(D ) 96、(公式的快速展开+二倍角展开平方差因子)(2013 六校联考)已知sin点cos 二 一 2 sin()和 sin( ) (sin 4 42cos )的顺向和逆向快速转换, 要形成解题敏感1. (两边平方)【2012高考辽宁文6】已知sin cos 、一 2 , (0 , n ),则 sin2 =(A)1 (B)(C)辽(D) 12两大公式”的符号问题。