2017九年级数学二次函数学案.doc
2017届九年级数学上册22.1二次函数的图象和性质教案新人教版 (2)
第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数教学目标1.通过对实际问题情境的分析,让学生经历二次函数概念的形成过程,学会用类比思想学习二次函数知识.2.掌握二次函数的概念.3.认识到二次函数来源于实际生活,感受到二次函数在实际生活中有着广泛的应用. 教学重难点重点:二次函数的概念.难点:理解变量之间的对应关系.教学过程与方法知识点:二次函数的概念1.学生自主学习教材P28~P29问题1、问题2(约5分钟)2.观察思考与归纳(约5分钟)(1)观察y=6x2、d=n2-n、y=20(1+x)2这三个函数,它们有什么共同点?(2)你觉得这样的函数可以叫做什么函数?(3)在学生思考回答后,给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a ≠0)的函数,叫做二次函数.其中,x是自变量,a、b、c分别是函数解析式的二次项系数、一次项系数和常数项.(4)师生一起讨论二次函数有哪几种特殊形式.3.巩固强化与交流(约5分钟)(1)教材P29练习第1~2题.(2)出示例1:下列函数中,哪些是二次函数?哪些不是?①y=1-2x2②y=(x-2)(x+3)-x2③y=(a2+1)x2+bx④y=+-1⑤y=⑥y=()2+2-1解:①③是二次函数;其余都不是二次函数.4.合作与探究(约5分钟)(1)你对二次函数概念的理解有了哪些新的认识?(2)出示例2:已知函数y=(a+1)+(a-2)x.①当a为何值时,此函数为二次函数?②当a为何值时,此函数为一次函数?解:①a=1.②a=0或a=-1.5.课堂小结(约5分钟)(1)到目前为止,我们学习了哪些函数?这些函数之间有什么联系?(2)二次函数的一般表达式是怎样的?对a、b、c有什么条件限制?(3)谈谈你的收获和困惑.6.独立作业(10分钟)(1)必做题:习题22.1第1题.(2)选做题:习题22.1第2题.(3)备用题:当k为何值时,函数y=(k-1)+2kx-1①为二次函数;②为一次函数?22.1.2 二次函数y=ax2的图象和性质教学目标1.会用描点法画出二次函数y=ax2的图象,掌握二次函数y=ax2的性质.2.经历探索二次函数y=ax2的图象与性质的过程,能运用二次函数y=ax2的图象及性质解决简单的实际问题,掌握数形结合的数学思想方法.3.通过数学学习活动,体会数学与实际生活的联系,感受数学的实际意义,激发学习兴趣.教学重难点会画二次函数y=ax2的图象和理解相关概念是本节课的学习重点也是难点;对二次函数研究的途径和方法的体悟也是本节课的难点.教学过程与方法知识点一:函数y=ax2图象的画法1.情境导入(约3分钟)导语一:回忆一次函数的图象、反比例函数的图象特征,思考二次函数的图象又有何特征呢?导语二:展示(用课件或幻灯片)具有抛物线的实例图让大家欣赏,议一议这与二次函数有何联系,从而引入新课.导语三:用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考其运动路线有何特征.怎样用数学规律来描述呢?2.自主学习(约10分钟)(1)认真阅读教材P29~P30,并操作(填表与画图).(2)思考:利用描点法画函数图象有哪些步骤?在第一步“”时,自变量x的取值需要注意什么?你怎样体会关键词“列表”、“描点”、“连线”、“平滑”?3.交流体会(约5分钟)二次函数y=ax2的图象是什么?二次函数y=ax2+bx+c的图象叫什么?抛物线的对称轴、顶点坐标、最高点、最低点有什么含义?知识点二:y=ax2的图象与性质4.合作与探究(约10分钟)(1)画函数y=-x2,y=-x2,y=-2x2.(2)归纳与总结一般地,抛物线y=ax2的对称轴是y轴,顶点是(0,0) .当a>0时,抛物线的开口向上,顶点是抛物线的最低点,a越大,抛物线的开口越小,在对称轴的左侧,y随x 的增大而减小,在对称轴的右侧,y随x的增大而增大.当a<0时,抛物线的开口向下,顶点是抛物线的最高点,a越大,抛物线的开口越大,在对称轴的左侧,y随x 的增大而增大,在对称轴的右侧,y随x的增大而减小.5.课堂小结(约3分钟)谈谈收获与困惑或发现.6.独立作业(约9分钟)(1)必做题:习题22.1第3、4题(2)备用题:①二次函数y=x2,y=-x2,y=x2的图象在同一平面直角坐标系中的共同点是( D )A.开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共顶点②在同一平面直角坐标系中,同一水平线上开口最大的抛物线是( B )A.y=-x2B.y=-x2C.y=-x2D.y=-x222.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质教学目标1.能解释二次函数y=ax2+k和y=ax2的图象的位置关系.2.掌握y=ax2上、下平移规律.3.体会图形的变化与图形上的点的坐标变化之间的关系,领悟y=ax2与y=ax2+k相互转化的过程.教学重难点重点:抛物线y=ax2+k的图象与性质.难点:理解抛物线y=ax2与y=ax2+k之间的位置关系.教学过程与方法知识点一:y=ax2+k的图象1.回顾与思考(5分钟)(1)回顾:抛物线y=x2和y=-x2的图象和性质及它们之间的关系.(2)思考:y=x2+1,y=x2-1的图象怎样?它们与y=x2之间又有怎样的关系呢?2.自主学习(15分)(1)参照教材P32例2的填表、描点.(2)讨论①抛物线y=x2+1,y=x2-1的开口方向、对称轴、顶点各是什么?②抛物线y=x2+1,y=x2-1与抛物线y=x2有什么位置关系?(3)归纳与交流①把抛物线y=x2向上平移 1 个单位,就得到抛物线y=x2+1,把抛物线y=x2向下平移 1 个单位,就得到抛物线y=x2-1.②一般情况:当k>0,把抛物线y=ax2向上平移k 个单位,可得y=ax2+k;当k<0时,把抛物线y=ax2向下平移|k|或-k 个单位,可得y=ax2+k.③y=ax2+k的开口方向、对称轴、顶点坐标、最值分别是什么?解:a>0时,开口向上,对称轴是y轴,顶点(0,k),最小值为k.a<0时,开口向下,对称轴是y轴,顶点(0,k),最大值为k.知识点二:y=ax2+k的性质3.合作与探究(5分钟)(1)抛物线y=ax2+k与y=ax2的图象的异同点是什么?(2)抛物线y=ax2+k与y=ax2的增减性又是怎样?4.课堂小结(5分钟)1.二次函数y=ax2+k的图象和性质(包括开口方向、对称轴、顶点坐标).2.抛物线y=ax2+k与y=ax2之间的联系与区别(包括平移、开口、对称轴、顶点等).处理方法:可以让学生围绕这两个问题先小结,然后教师进行补充或强调.5.独立作业(15分钟)(1)必做题:P33练习.(2)选做题:习题22.1第5题(1).(3)备用题:①二次函数y=ax2+k的图象经过点A(1,-3),B(-2,-6),求这个二次函数的解析式.解:该二次函数的解析式为:y=-x2-2.②已知二次函数y=-2x2+3,当x取何值时,y随x的增大而增大;当x取何值时,y随x的增大而减小?解:当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小.③二次函数y=ax2+k(a,k为常数),当x取值x1、x2时(x1≠x2),函数值相等,则当x取x1+x2时,函数值为0 .④函数y=ax2-a与y=(a≠0)在同一平面直角坐标系中的图象可能为( A )第2课时二次函数y=a(x-h)2的图象和性质教学目标1.会用描点法画二次函数y=a(x-h)2的图象.2.理解抛物线y=a(x-h)2与y=ax2之间的位置关系.3.在图象的平移过程中,渗透变与不变的辩证思想.教学重难点重点:二次函数y=a(x-h)2的图象和性质.难点:把握抛物线y=ax2通过平移后得到y=a(x-h)2时平移的方向和距离.教学过程与方法1.师生互动,提出问题(3分钟)(1)抛物线y=-x2+3与y=-x2的位置有什么关系?(2)抛物线y=-x2+3的开口方向、对称轴、顶点坐标分别是什么?2.探究新知(10分钟)知识点一:y=a(x-h)2的图象和性质(1)在同一坐标系中画出二次函数y=-x2、y=-(x+1)2、y=-(x-1)2的图象.①列表时怎样取值才能使抛物线具有对称性?②这三条抛物线的对称轴、顶点坐标分别是什么?③这三条抛物线能否经过相互的平移得到?怎样平移?3.交流探究:教材P34~P35(5分钟)4.归纳总结(5分钟)抛物线y=a(x-h)2与抛物线y=ax2的形状相同,只是位置不同,它可以由抛物线y=ax2平移得到:当h>0时,向右平移h个单位,当h<0时,向左平移|h|个单位,它的对称轴是直线x=h,顶点坐标为(h,0).知识点二:y=a(x-h)2的性质5.讨论(5分钟)(1)a>0,开口向上,当x= h 时,函数y有最小值= 0 ,在对称轴的左侧,y 随x的增大而减小,在对称轴的右侧,y随x的增大而增大.(2)a<0,开口向下,当x= h 时,函数y有最大值= 0 ,在对称轴的左侧,y 随x的增大而增大,在对称轴的右侧,y随x的增大而减小.6.课堂练习(3分钟)(1)抛物线y=2(x+1)2可以由抛物线y=2x2向左平移1个单位得到.(2)抛物线y=-(x-4)2可以由抛物线y=-x2向右平移 4 个单位得到.(3)已知二次函数y=-(x-2)2,说出函数图象的对称轴和顶点及最值、增减性.解:二次函数y=-(x-2)2的对称轴为x=2,顶点为(2,0),有最大值0.当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.7.课堂小结(3分钟)(1)抛物线y=a(x-h)2与y=ax2的关系.(2)抛物线y=a(x-h)2的对称轴、顶点.(3)平移规律:“左加右减”.(4)你还有哪些困惑和收获?8.独立作业(11分钟)(1)必做题:习题22.1第5题(2).(2)备用题:①已知抛物线y=a(x+h)2的顶点是(-3,0),它是由抛物线y=-4x2平移得到的,则a= -4 ,h= 3 .②把抛物线y=(x+1)2向右平移 4 个单位后得到抛物线y=(x-3)2.③把抛物线y=x2+mx+n向左平移4个单位,得到抛物线y=(x-1)2,则m= -10 ,n=25 .第3课时二次函数y=a(x-h)2+k的图象和性质教学目标1.会用描点法画出二次函数y=a(x-h)2+k(a、h、k是常数,a≠0)的图象,掌握抛物线y=a(x-h)2+k与y=ax2的图象之间的关系,熟练掌握函数y=a(x-h)2+k的有关性质,并能用函数y=a(x-h)2+k的性质解决一些实际问题.2.经历探索y=a(x-h)2+k的图象及性质的过程,体验y=a(x-h)2+k与y=ax2、y=ax2+k、y=a(x-h)2之间的转化过程,深刻理解数学建模思想及数形结合的思想方法.3.通过观察函数的图象,归纳函数的性质等活动,感受学习数学的价值.教学重难点重点:二次函数y=a(x+h)2+k的性质.难点:教材P36例4的解答需要选取合适的坐标系,有一定的难度,是本节教学的难点.教学过程与方法1.回顾与思考(3分钟)我们已经学习了形如y=ax2,y=ax2+k,y=a(x-h)2的函数,知道了它们可以经过互相平移得到.二次函数y=a(x-h)2+k又是一条怎样的抛物线呢?它与这三条抛物线之间有什么关系?知识点一:y=a(x-h)2+k的图象和性质2.合作与探究:教材P35例3(15分钟)(1)在同一坐标系内,画出二次函数y=-x2,y=-x2-1,y=-(x+1)2-1的图象.处理方法:师生一起完成列表,再由学生画出图象,如图.(2)指出y=-(x+1)2-1的开口方向、对称轴、顶点坐标、最值、增减性.(3)y=-(x+1)2-1可以由y=-x2怎样平移而得到?(4)归纳:y=a(x-h)2+k的图象和性质及由y=ax2平移得到函数图象的规律.知识点二:y=a(x-h)2+k的实际运用3.解决问题,交流思想(16分钟)(1)读懂教材P36例4题意.(2)怎样建立平面直角坐标系?(3)怎样才能与二次函数联系起来?4.课堂练习:教材P37练习(3分钟)5.课堂小结(4分钟)(1)本节课我们学习了哪些内容?引导学生从以下几个方面去回顾:①二次函数y=a(x-h)2+k的性质;②抛物线y=a(x-h)2+k与y=ax2的平移关系;③选取坐标系的方法.(2)谈一谈你的收获或困惑.6.独立作业(10分钟)(1)必做题:习题22.1第5题(3),第7题(1).(2)备用题:已知y=a(x-h)2+k是由抛物线y=-x2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.①求出a、h、k的值;②在同一坐标系中,画出y=a(x-h)2+k与y=-x2的图象;③观察y=a(x-h)2+k的图象,当x取何值时,y随x的增大而增大;当x取何值时,y随x 的增大而减小,并求出函数的最值;④观察y=a(x-h)2+k的图象,你能说出对于一切x的值,函数y的取值范围吗?解:①a=-,h=1,k=2 ②图略③当x<1时,y随x的增大而增大;当x>1时,y随x 的增大而减小;当x=1时,函数有最大值2 ④对于一切x的值y≤2.22.1.4 二次函数y=ax2+bx+c(a≠0)的图象和性质第1课时二次函数y=ax2+bx+c(a≠0)的图象和性质教学目标1.会用描点法画二次函数y=ax2+bx+c(a≠0)的图象;会用配方法将二次函数y=ax2+bx+c 的解析式写成y=a(x-h)2+k的形式;通过图象能熟练地掌握二次函数y=ax2+bx+c的性质.2.经历探索y=ax2+bx+c与y=a(x-h)2+k的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想.3.通过合作交流,激发学习数学的兴趣,感受数学的价值.教学重难点重点:用描点法画出二次函数的图象,并指出该图象的基本性质.难点:通过对二次函数y=ax2+bx+c上的一些点的分析得出关于a、b、c的不等式.教学过程与方法知识点:y=ax2+bx+c的图象和性质1.提出问题(3分钟)你能作出y=x2-6x+21的图象吗?2.自主学习:教材P37~P39(9分钟)3.交流方法(2分钟)4.归纳总结(4分钟)①一般地,我们可以用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.y=ax2+bx+c=a(x+)2+,因此,抛物线y=ax2+bx+c的对称轴是x=-,顶点坐标是(-,).②开口方向、最值、增减性怎样?5.课堂练习:P39练习(3分钟)6.课堂小结(5分钟)(1)求二次函数y=ax2+bx+c的对称轴和顶点坐标通常有几种方法?配方时应注意什么?公式是怎样的?(2)指出y=ax2+bx+c的开口方向、顶点坐标.7.独立作业(15分钟)(1)必做题:习题22.1第6题(1)(3).(2)选做题:习题22.1第6题(2)(4).(3)备用题:①用配方法将二次函数y=x2-6x+21化成y=a(x-h)2+k的形式.解:y=(x-3)2+12②某学生推铅球,铅球飞行的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+x+,则铅球落地的水平距离为 5 m.第2课时用待定系数法求二次函数的解析式教学目标1.能用待定系数法列方程组求二次函数的解析式.2.经历探索由已知条件的特点,灵活选择二次函数三种形式的过程,明确正确选择二次函数设法能使计算简化和三种形式是可以互相转化的.3.通过亲自体验,感受学习数学的乐趣.教学重难点重点:用待定系数法求二次函数的解析式.难点:灵活选择合适的表达式设法,使求解达到简便、快捷的效果.教学过程与方法1.回顾与思考(3分钟)(1)二次函数有哪些形式?y=ax2,y=ax2+c,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,y=a(x-x1)(x-x2) (2)要求二次函数的解析式,你打算怎么办?知识点:用待定系数法求二次函数的解析式2.出示例题,学会合作解决(20分钟)2x …--1-0 1 …y …--2--2-0 …则该二次函数的解析式为y=x2+x-2 .【例2】已知二次函数图象的顶点是(1,-3),且经过点M(2,0),这个函数的解析式为y=3x2-6x .【例3】已知二次函数的图象如图所示,此抛物线的解析式为y=-x2+2x+3 .【例4】已知一抛物线与x轴的交点是A(-1,0),B(m,0),且经过第四象限的点C(1,n),而m+n=-1,mn=-12,此抛物线的解析式为y=x2-2x-3 .3.学生交流、归纳(5分钟)求解二次函数的解析式所设置的表达式:(1)一般式:y=ax2+bx+c.(2)顶点式:y=a(x-h)2+k.(3)交点式(两根式):y=a(x-x1)(x-x2).(4)y=ax2,y=ax2+c,y=a(x-h)2等特殊形式.4.课堂练习(5分钟)根据下列条件,求二次函数解析式.(1)抛物线经过(-1,11),(2,8)和(0,6)三点.(2)抛物线的顶点坐标为(3,-1),且经过点(2,3).(3)抛物线的对称轴为直线x=2,且经过点(1,4)和(5,0).(4)抛物线经过(-1,0),(3,0)和(0,2)三点.解:(1)y=2x2-3x+6(2)y=4(x-3)2-1(3)y=-(x-2)2+4(4)y=-(x+1)(x-3)5.质疑视导(2分钟)师生一起分析有哪些收获或困惑.6.拓展性练习(15分钟)(1)已知抛物线y=ax2+bx+c的顶点坐标为(3,-2),且与x轴两交点间的距离为4,则抛物线的解析式为y=(x-3)2-2 .已知抛物线y=ax2+bx+3与x轴交于(1,0),试添加一个条件,使它的对称轴为直线x=2.小华说:过点(3,0);小彬说:过点(4,3),小明说:a=1,小颖说:抛物线被x轴截得的线段长为2,你认为四个人的说法中,正确的有( D )A.1个B.2个C.3个D.4个。
初三数学2.1《二次函数》学案
2.1 二次函数学习目标:1.探索并归纳二次函数的定义,能够表示简单变量之间的二次函数关系.2.让学生学习了二次函数的定义后,能够利用尝试求值的方法解决实际问题.3.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用.学习重点:二次函数的定义,能够表示简单变量之间的二次函数关系学习难点:经历探索和表示二次函数关系的过程,利用二次函数解决实际问题一、学前准备1、把一个长4cm宽3cm的矩形的长和宽都增加xcm所得的新矩形的面积y(cm2)用x 表示为。
2、一台机器原价60万元,如果每年的折旧率为x,两年后这台机器的价格为y元,则y与x的函数关系式为。
二、探究活动1、认真阅读P43橙子数量与橙子树棵数问题,并尝试解答课本上的问题2、学生交流:(1)问题中有哪些变量?其中哪些是自变量?哪些是因变量?(2)假设果园增种;棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.3、点拨对y=(600-5x)(100+x)的整理,为归纳二次函数定义做准备在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?应用探究:1、认真阅读P44银行储蓄问题,并尝试回答课本上的问题2、学生交流:表达式3、点拨有关名词,本金.利息,本息时,如何计算利息:本金是存入银行时的资金,利息是银行根据利率和存的时间付给的“报酬”,本息和就是本金和利息的和,利息=本金×利率×期数(时间得出二次函数定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数。
练习1:P44随堂1练习2、已知函数x m x m y m m )1()1(232-++=--(m 为常数)⑴m 为何值时,这个函数为二次函数?⑵m 为何值时,这个函数为一次函数?三.学习体会1.本节课你有哪些收获?你还有哪些疑问?2.预习时的疑问解决了吗?四.自我测试1、已知正方形边长是6,若边长增加x ,则面积增加y,求y 与x 的函数关系。
九年级《二次函数》全章教案
教学目标:1.了解二次函数的概念及特点。
2.掌握二次函数的图像、顶点、轴对称、零点等基本性质。
3.学会利用函数图像解决实际问题。
教学重点:1.理解二次函数的相关概念。
2.掌握二次函数图像的绘制方法。
3.能够运用二次函数解决实际问题。
教学难点:1.掌握二次函数的顶点和轴对称的概念及求解方法。
2.学会利用函数图像解决实际问题。
教学准备:1.教材《二次函数》的教学课件及习题。
2.计算器、直尺、笔记本等教学工具。
3.多媒体设备及相关教学资源。
教学过程:一、导入(10分钟)1.通过展示一副二次函数的图像和实际应用问题,引起学生兴趣。
2.复习一次函数的相关内容,引出二次函数的定义及特点。
二、概念讲解与示例演示(25分钟)1.讲解二次函数的定义,即形如f(x)=ax²+bx+c(a≠0)的函数。
2.介绍二次函数图像的最简形式,即顶点形式f(x)=a(x-h)²+k。
3.示例演示:给出一个二次函数式,通过变换得到最简形式,并通过求顶点等方式解决具体问题。
三、绘制二次函数图像(40分钟)1.讲解如何绘制二次函数图像的步骤,包括求顶点、确定轴对称、绘制图像等。
2.分组活动:将学生分成小组,每组选择一道习题,并利用求顶点和绘图方法解答。
3.展示小组成果,让每个小组派学生来展示解题过程和图像结果。
四、实际应用问题(30分钟)1.引导学生思考如何利用二次函数图像解决实际问题。
2.提供一些实际应用问题,如物体抛射问题、面积最大问题等,让学生结合所学知识进行求解。
3.组织学生进行小组合作讨论,并将解题思路和结果展示给全班。
五、拓展与总结(15分钟)1.通过讨论、展示和总结,让学生理解二次函数的基本性质和应用方法。
2.布置课后作业,要求学生进一步巩固所学知识,并解决一些拓展问题,如不等式问题、复合函数问题等。
3.回顾本节课的主要内容和思路,澄清学生对二次函数的理解和掌握程度。
教学反思:通过本节课的教学,学生对二次函数的定义和特点有了更深入的了解。
(九年级数学教案)二次函数的学案
二次函数的学案九年级数学教案教材分析“二次函数”是在对一次函数和反比例函数的基础上,知识深度的进一步扩展。
激起学生思维的火花,揭示现实生活中的函数体系,并从本质上理解函数在实际中的应用。
学情分析学生对函数已有初步的了解,掌握了一次函数和反比例函数的简单运用。
但对九年级学生来讲,函数显得比较抽象,难以理解。
☆教学目标1、认知目标:理解二次函数定义,并能判断是不是二次函数。
2、能力目标:⑴能够根据实际问题,熟练地列出二次函数关系式。
⑵并求出函数的自变量的取值范围。
3、情感与思想目标:注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯。
☆教学重点和难点重点:能够根据实际问题,熟练地列出二次函数关系式。
难点:求出函数的自变量的取值范围。
教学过程教学环节教师活动预设学生行为设计意图●一、复习铺垫1、复习提问一次函数的定义,举例。
学生回顾思考回答问题并小结复习旧知引入概念●二、创设情境问题导入悬念1:1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,AB长x(m)123456789BC长(m) 12面积y(m2) 482.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.激发学生的学习兴趣三、新知探讨(一) 某商店将每件进价为8元的某种商品按每件10元出售,一天可。
2017秋北京课改版数学九上19.1《二次函数》word导学案.doc
2017秋北京课改版数学九上19.1《二次函数》word导学案119.1二次函数预习案一、预习目标及范围1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。
2、理解二次函数的概念,掌握二次函数的形式。
3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。
4.预习课本38-39页内容二次函数内容。
预习要点我们把形如y=ax²+bx+c(其中a,b,C 是常数,a≠0)的函数叫做称a 为, b 为,c 为预习检测1.下列函数中,哪些是二次函数?(1)y=3(x-1)²+1 (3) s=3-2t 2 (5)y=(x+3)²-x²(6) v=10πr²探究案一、合作探究1、探索1、列出下列函数的表达式:(1)圆的面积A 是它的半径r 的函数;(2)如图19-1,利用成直角的墙角,用20m 长的栅栏围成一个矩形的小花园,花园的面积S(m2)是它一边长a(m)的函数;(3)如图19-2,正方形中圆的半径是4cm ,红色部分的面积Q(cm2)是正方形的边长x(cm)的函数;x x y -=21)4(xx y 1)2(+=(4)某种药品现价每盒26元,计划两年内每年的降价率都为p,那么两年后这种药品每盒的价格M(元)是年降价率p的函数。
解:2、观察所列出的表达式,它们有什么共同的特点?这些表达式可以用怎样的式子来概括?如果我们用x表示自变量,y表示因变量,这些函数的表达式都可以分别写为:所以它们的表达式都可以表示为的形式总结二次函数的定义:提问:1.上述概念中的a为什么不能是0?2. 对于二次函数y=ax2+bx+c中的b和c可否为0?若b和c各自为0或均为0,上述函数的式子可以改写成怎样?你认为它们还是不是二次函数?思考:2. 二次函数的一般式y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)有什么联系和区别?例、已知:如图,一个边长为8cm的正方形,把它的边长延长xcm后得到一个新的正方形。
26.1 二次函数的概念
长春市第五十二中赫行实验校九年级(上)数学学案命题人:邵波 审题人:范贵志 时间: 2017 .926.1二次函数的概念【学习目标】1.理解二次函数的概念,掌握二次函数的形式.2.能判断一个给定的函数是否为二次函数,会利用二次函数的概念分析解题.3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围. 【教学重、难点】1.重点:理解二次函数的概念,能根据已知条件写出函数表达式. 2.难点:理解二次函数的概念.【学习过程】一.复习:一次函数的概念 二.合作学习,探索新知:请用适当的函数关系式表示下列问题中的两个变量y 与x 之间的关系:1. 面积y(cm 2)与圆的半径 x(cm).2. 一个长方形的长是宽的2倍,写出这个长方形的面积y 与宽x 之间的函数关系式.3. 在边长为4的正方形中间挖去一个长为x 的小正方形, 剩下的四方框形的面积为y , 则y 与x 间的函数关系式.4.用100cm 长的铁丝围成一个扇形,试写出扇形面积y (cm 2)与半径x (cm )的函数关系式.. 知识点:一般地,形如_________________________________的函数,叫做二次函数.其中x 是________, a 是_______________,b 是________________,c 是_____________. 三.典型例题:例1. 下列函数中,哪些是二次函数?(1)2x y = (2) 21xy -= (3) 122--=x x y (4))1(x x y -=(5))1)(1()1(2-+--=x x x y (6) y=c bx ax ++2练习.分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)12+=x y (2)12732-+=x x y (3))1(2x x y -=例2.若()mm x m m y -+=22是二次函数,求m 的值.练习.函数y =(m -2)x 2+mx -3(m 为常数).(1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数.例3. 已知y 与x 2成正比例,并且当x =-1时,y =-3.求:(1)函数y 与x 的函数关系式;(2)当x =4时,y 的值; (3)当y =-13 时,x 的值.例4.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.四.课堂训练: 1.y =(m +1)xmm -2-3x +1是二次函数,则m 的值为_________________.2.下列函数中是二次函数的是( ) A .y =x +12B . y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米B .48米C .68米D .88米4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.26.1二次函数的概念课后作业班级:__________ 姓名:___________ 日期:____________ 分数:___________ 1.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1B .a =±1C .a ≠1D .a ≠-12.下列函数中,不是二次函数的是( )2 B.y=2(x-1)2+4; C.y=12(x-1)(x+4) D.y=(x-2)2-x 23.已知函数y=(k-2)24k k x +-是关于x 的二次函数,则k=________.4.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各对应项的系数. (1)y =1-3x 2(2)y =3x 2+2x(3)y =x (x -5)+2(4)y =3x 3+2x 2 (5)y =x +1x5.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式.6.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式.7. 富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形。
2017年秋学期人教版九年级数学上册22.1.1二次函数的概念(教案)
4.二次函数的增减性:当a>0时,函数在顶点左侧递减,在顶点右侧递增;当a<0时,函数在顶点左侧递增,在顶点右侧递减。
本节课将围绕以上内容展开教学,结合实际案例,帮助学生深入理解和掌握二次函数的概念及其相关性质。
五、教学反思
今天我们在课堂上探讨了二次函数的概念,整个过程下来,我觉得有几个地方值得反思。首先,我发现同学们对二次函数定义中的a≠0这个条件理解得不够透彻,这是判断一个函数是否为二次函数的关键。在今后的教学中,我需要更加注重这一点的讲解和强调。
其次,关于二次函数图像的顶点式与标准式的互化,明显感觉到这是一个难点。虽然我通过例题和图示进行了解释,但仍有部分同学表示理解起来有些困难。我想,下次可以尝试用更多
此外,课堂上的实践活动和小组讨论环节,总体来说效果还是不错的。同学们积极参与,提出了很多有创意的想法。但在引导讨论的过程中,我发现有些同学可能因为害羞或者不自信而不敢发言。针对这个问题,我打算在以后的课堂上多鼓励大家,创造一个轻松愉快的氛围,让每个同学都有机会表达自己的观点。
还有一个值得注意的地方是,在新课导入时,我提到了二次函数在日常生活中的应用,但感觉这个话题没有引起大家足够的兴趣。可能是因为我举的例子不够贴近他们的生活。在以后的教学中,我需要寻找更多与同学们生活息息相关的事例,激发他们的学习兴趣。
5.培养学生数学抽象素养,理解二次函数的顶点式与标准式之间的转换,提高数学表达与交流能力。通过本节课的学习,使学生形成完整的知识结构,为后续学习打下坚实基础。
三、教学难点与重点
1.教学重点
-二次函数的定义:强调a≠0的条件,使学生理解这是判断二次函数的关键。
九年级数学二次函数复习导学案.doc
精品文档九年级数学二次函数复习导学案一、中考要求:1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;22 3.会平移二次函数y= ax(a ≠ 0) 的图象得到二次函数y= a(x-h)+k的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与 x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
二、知识要点:1.二次函数的图象22+)成y=a(x+图象时通常先通过配方配在画二次函数y=ax ≠ +bx+c(a0) 的的形式 , 先确定顶点 (,),然后对称找点列表并画图, 或直接代用顶点公式来求得顶点坐标.2.理解二次函数的性质抛物线的开口方向由 a 的符号来确定, 当 a>0 时 , 在对称轴左侧y 随 x 的增大而;时,y 时y最最大值小值在对称轴的右侧,y 随 x 的增大而;简记左减右增,这时当x==;反之当a<?0时,简记左增右减,当x==.3.待定系数法是确定二次函数解析式的常用方法(1)一般地 , 在所给的三个条件是任意三点 ( 或任意三对 x,y? 的值 )? 可设解析式为2 +bx+c, 然后组成三元一次方程组来求解 ;y=ax 2+k,顶点是( h, (2) 在所给条件中已知顶点坐标或对称轴或最大值时, 可设解析式为y=a(x-h)k ) ;(3) 在所给条件中已知抛物线与x?轴两交点坐标或已知抛物线与x 轴一交点坐标和对称轴, 则可设解析式为 y=a(x-x)(x-x) 来求解 . 214.二次函数与一元二次方程的关系22+bx+c=0,即时抛物线便转化为一元二次方程axy=ax +bx+c 当 y=0 抛物线2+bx+c=0有两个不相等实根 ax;当抛物线与x 轴有两个交点时, 方程 (1) 22+bx+c=0 有两个相等实根 ax; x 轴有一个交点 , 当抛物线(2)y=ax 方程 +bx+c 与22+bx+c=0 无实根 . 轴无交点 ,? 方程)当抛物线( 3y=axax+bx+c 与 x 2+bx+c 中 a、 b、 y=ax5. 抛物线 c 符号的确定(1) a 的符号由抛物线开口方向决定, 当 a>0 时 , 抛物线开口当 a<0 时 ,? 抛物线开口;(2) c 的符号由抛物线与y 轴交点的纵坐标决定 . 当 c 0 时 , 抛物线交 y 轴于正半轴 ;当 c 0时,抛物线交y 轴于负半轴 ;(3) b 的符号由对称轴来决定. 当对称轴在y?轴左侧时 ,b 的符号与 a 的符号相同 ; 当对称轴在 y轴右侧时 ,b 的符号与 a 的符号相反 ;? 简记左同右异 .三、典例剖析:c2),(的图像如图,则点二次函数 1 例 1() y=ax+bx+cMb )在( a 精品文档.精品文档A.第一象限B .第二象限 C .第三象限 D .第四象限2+bx+c(a≠02)已知二次函数y=ax )的图象如图所示,( ? 则下列结论:① a、 b 同号;②当 x=1 和 x=3 时,函数值相等;③ 4a+b=0;④当 y=-2 时, x 的值只能取0. 其中正确的个数是()A . 1 个B . 2 个C.3个D . 4 个例 2(1) 若二次函数 y =( m + 1) x + m – 2m – 3 的图象经过原点,则m的值必为()2 2A .– 1 和 3 B. – 1 C.3 D. 无法确定2a9x a 2)y x (已知抛物线的顶点在坐标轴上,求的值.(2)2b ax 2axy x0),B( 10a轴y轴的一个交点为)与(例 3 如图,已知抛物线,与.的负半轴交于点 C,顶点为 D x 的坐标;轴的另一个交点 A )直接写出抛物线的对称轴,及抛物线与( 1 .AD 为直径的圆经过点C( 2)以①求抛物线的解析式;EFA,, B, FE 四点为顶点的四在抛物线上,②点在抛物线的对称轴上,点且以 F 为平行四边形,求点的坐标.边形yBxOACD四、随堂练习:224xm (m 1)x 2y 时,函数的图象是直线;.当 1. 已知函数 m函数的图象是开口向上且经过时,当m 当 m 时,函数的图象是抛物线;原点的抛物线.2 )a≠ 0)的图象,下列叙述正确的是( 2.对于y = ax (越大开口越小, B.aa 越小开口越大 A.a 越大开口越大, a 越小开口越小D.| a |越大开口越大,越小开口越小| a | C.| a |越大开口越小,| a |越小开口越大1122x xy y 12x 向平移抛物线 3. 个单位,再向可由抛物线平22移个单位而得到.2y=(m -1)x+2mx+2m -1m=_______. 的图象的最低点的纵坐标为零,则 4. 若抛物线精品文档.精品文档2y a(x 1) b有最小值–1,则 a 与 5.已知二次函数 b 之间的大小关系是()A . a< bB . a=b C. a> b D .不能确定520 x 52x 3,-1的两根是 6.已知方程,则二次函数y223xx 5y 2与x轴的两个交点间的距离为.E F DC3xC( 1,,平行于) 2, 0)、 B( 6, 0)、7.抛物线过点 A(x AB O为直径的圆交,以ABCD轴的直线交抛物线于点C、D)F,则CE+FD的值是(直线 CD 于点 E 、5D. 6C .A2 B . 4.12x y 1 在抛物线PP8.如图,已知⊙的半径为2,圆心 2 运动,当⊙ P 与坐标轴相切时,圆心P 的坐标为21x ax 3y ax a的值及交点坐标.的图象与x9.函数轴有且只有一个交点,求2, 象 y 的图 2x BA 或点是以点、向右平移 2 个单位,得到抛物线=10.(1)将抛物线y21则= 2 轴, y= t 平行于)如图,P 是抛物线y 对称轴上的一个动点,直线B.若△ ABP 分别与直线y= x 、抛物线y 交于点 A 2。
2017年秋季学期新版新人教版九年级数学上学期22.1、二次函数的图象和性质学案1
二次函数学习目标Array 1.通过实际问题的探索,体会二次函数的形成过程,并理解二次函数的概念;2.通过具体实例,让学生经历概念的形成过程,使学生体会到函数能够反映实际事物的变化规律,体验数学来源于生活,又服务于生活的辩证观点.学习重点、难点学习重点:探索实际问题,体会二次函数的意义.学习难点:二次函数模型的建立.【学前准备】1.请写出一一次函数、反比例函数的一般形式.2.(1)已知正方体的棱长为x,表面积为y,请写出y与x的函数关系式.(2)六多边形有顶点,从一个顶点出发,连接与这一点不相邻的各顶点,可以作对角线;n多边形有顶点,从一个顶点出发,连接与这一点不相邻的各顶点,可以作对角线;请写出多边形的对角线的对角线数d与n的函数关系式是:.(3)某工厂一种产品,现在的产量是20件,计划今后两年增加产量,如果每年比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定x的值而确定,y与x的函数关系式应怎样表示?产品的原产量是20件,一年后的产量是件,再经过一年后的产量是件.所以y与x的函数关系式为:.想一想:函数(1)(2)(3)有什么共同点?与一次函数有何区别?归纳总结:一般地,形如的函数叫做二次函数.其中x是自变量,分别是函数解析式的二次项系数、一次项系数及常数项.【课堂探究】问题:1.一个圆柱的高等于底面半径,写出它的表面积S与半径r的函数关系式,并判断它是什么函数.2.n支球队参加比赛,每两队之间进行一场比赛,比赛场次m.(1)写出比赛场次m与球队数之间n的函数关系式,并判断它是什么函数.(2)比赛场次能否是15?能否为20?3.某商场销售一批衬衫,平均每天可售出20件,每件赢利40元.,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施.经过市场调查发现,如果每件衬衫每降1元,商场平均 每天可多售出2件.设每件衬衫降价x 元,每天的利润为y 元. (1)试写出y 与x 之间的函数关系式;(2)若商场平均每天赢利1200元,每件衬衫应降价多少元?【课堂小结】请分别写出一次函数(含正比例函数),反比例函数,二次函数的表达式.【课堂检测】 一、选择题1.圆的面积S 是它的半径r 的( )A .一次函数B .二次函数C .正比例函数D .反比例函数 2.三角形的高是定值,则三角形的面积S 是底边x 的( )A .二次函数B .反比例函数C .一次函数D .三角函数 3.矩形的面积为24,则它的一边长y 是与它相邻的边x 的( )A .二次函数B .反比例函数C .一次函数D .正比例函数4.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子。
2017年秋季学期新版新人教版九年级数学上学期22.1、二次函数的图象和性质学案28
5)1(2 3)112(2 3)2(2 3422222+--=+-+--=+--=++-=x x x x x x x y二次函数的图象学习目标:1.会将二次函数c bx ax y ++=2化为k h x a y +-=2)(的形式; 2.会结合函数图象说出函数c bx ax y ++=2的性质; 3.在探究学习活动中体会事物之间的相互转化.学习重点:会将二次函数c bx ax y ++=2化为k h x a y +-=2)(的形式. 学习难点:结合图象说出c bx ax y ++=2的性质. 【学前准备】1.(1)把二次函数3422++-=x x y 化成k h x a y +-=2)(的形式,并指出它的图象的对称轴、顶点坐标及性质; 解:所以函数图象开口向 ,顶点坐标是 ,对称轴是 ; 当x 时,函数y 的最 值为 .当x 时,y 随x 的增大而增大,当x 时,y 随x 增大而减小.(2)把二次函数142++-=x x y 化成k h x a y +-=2)(的形式,画出它的图象;并指出对称轴、顶点坐标及性质;【课堂探究】问题1:把二次函数253212-+-=x x y 化成k h x a y +-=2)(的形式,画出它的图象;并指出 对称轴、顶点坐标及性质.问题2:把二次函数c bx ax y ++=2化为k h x a y +-=2)(的形式,并指出它的图象的开口方向、对称轴、顶点坐标.归纳总结:【课堂小结】画二次函数c bx ax y ++=2图象时,先化成k h x a y +-=2)(的形式,再求出对称轴、 顶点坐标.最后再由五个点确定—顶点必取,两边对称; 【课堂检测】 1.填写下表:2.抛物线322+-=x x y 可由抛物线2x y =平移得到,正确的平移过程应该是 ( )A .先向左平移1个单位,再向上平移2个单位B .先向右平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移2个单位,再向下平移1个单位 3.已知:二次函数x x y 422+-=,(1)用配方法把上述二次函数化为k h x a y +-=2)(的形式,说出它的图象的开口方向、对称轴、顶点坐标及其性质;(2)指出抛物线x x y 42-=与抛物线2x y =的关系.【课堂拓展】某种爆竹点燃后,其上升高度h (米)和时间t (秒)符合关系式:2021gt t v h -=(20≤<t ), 其中重力加速度g 以10米/秒2计算.这种爆竹点燃后以0v =20米/秒的初速度上升, (1)这种爆竹在地面上点燃后,经过多少时间离地15米?(2)在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由.【课后作业】1.抛物线...322--=x x y 上有一动点),(b a p ,若50≤≤a ,则b 的取值范围是 ( ) A .123≤≤-b B .124≤≤-b C .120≤≤b D .04≤≤-b 2.已知:点 A (1,1y ),B (2-,2y ),C (2-,3y )在函数k x y ++-=2)1(2的图象上,则1y ,2y ,3y 的关系是 ( )A .1y >2y >3yB .1y >3y >2yC .2y >3y >1yD .2y >1y >3y 3.一抛物线的顶点坐标为(-2,1),开口方向及形状大小与抛物线221x y -=相同,则该抛物线的 解析式为 .【课后反思】。
2017浙教版数学九年级上册2.1二次函数word导学案
种植面积通道 九年级数学上学期导学案2.1二次函数一、课前热身1.我们已经学过了一次函数,它是怎么下定义的?你能用类比的方法给二次函数下定义吗?例举几种你认为形式不同的二次函数.2.函数y=ax 2+bx+c (a ,b ,c 是常数),问当a ,b ,c 满足什么条件时:(1)它是二次函数 ;(2)它是一次函数 ;(3)它是正比例函数 。
二、合作交流请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系:(1)面积y (cm 2)与圆的半径x (c m )(2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x ,两年后王先生共得本息y 元; (3)拟建中的一个温室的平面图如图,外围是一个矩形,周长为120m , 室内通道的尺寸如图,设一条边长为 x (m ), 种植面积为 y (m 2)。
归纳:(1)上述三个函数解析式经化简后都具有 的形式,我们把形如这样的函数叫做 ,称a 为 ,b 为 ,c 为 。
请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项:做一做:1、下列函数中,哪些是二次函数?(1)2x y = (2) 21xy -= (3) 122--=x x y (4))1(x x y -= (5))1)(1()1(2-+--=x x x y2、分别说出下列二次函数的二次项系数、一次项系数和常数项:(1)12+=x y (2)12732-+=x x y (3))1(2x x y -=x A B E F C G D H三、体验成功例1、如图,正方形纸板的边长为2cm ,将它剪去4个全等的直角三角形(图中阴影部分)。
设AE =BF =CG =DH =x (cm ) ,四边形EFGH 的面积为y (cm 2),求:(1)y 关于x 的函数解析式和自变量x 的取值范围。
(2)当x 分别为0.25,0.5,1.5,1.75时,对应的四边形EFGH 的面积,并列表表示。
2017春九年级数学下册第1章二次函数课题二次函数的应用(1)—建立二次函数模型解决抛物线型问题学案(新版
课题:二次函数的应用(1)——建立二次函数模型解决抛物线型问题【学习目标】1.学会建立适当坐标系,解决拱桥类问题.2.准确把握条件,解决抛物线型运动问题.【学习重点】列出函数解析式,找准点的坐标代入求解.【学习难点】仔细分析题目条件,选择较为简单的方法解决问题.情景导入生成问题旧知回顾:1.y=2x2-4x+1化为顶点式为__y=2(x-1)2-1__,其顶点为(1,-1),对称轴为直线x=1,当x=__1__时,有最小值__-1__.2.一条抛物线,顶点坐标为(4,-2),且形状与抛物线y=x2+2相同,则它的函数表达式是__y=x2-8x+14__.3.抛物线y=-x2+bx+c的部分图象如右图所示,若y>0,则x的取值范围是__-3<x<1__.自学互研生成能力知识模块一抛物线型建筑问题阅读教材P29~P30,完成下列问题:解决抛物线型问题的基本方法是什么?答:解决抛物线型问题的基本方法是:利用数形结合思想和函数思想,建立适当直角坐标系,根据已知数据,求出二次函数表达式,再由二次函数性质分析解决.【例1】 某涵洞是抛物线型,它的截面如图所示,现测得水面宽度AB =1.6m ,涵洞顶点O 到水面的距离为2.4m ,那么在如图所示的直角坐标系中,涵洞所在抛物线的函数表达式是__y =-154x 2__.【变例1】 如图,小明家门前有一座抛物线形拱桥,当水面在L 时,拱顶高出水面2m ,水面宽4m ,水面下降1m 时,水面宽度增长__(26-4)__m .【变例2】 如图,四边形ABCD 是矩形,A ,B 两点在x 轴的正半轴上,C ,D 两点在抛物线y =-x 2+6x 上,设OA 的长为m(0<m<3),矩形ABCD 的周长l 的最大值为__20__.(变例1图) (变例2图) (变例3图)【变例3】 有一个抛物线型的桥拱,这个桥拱的最大高度为16m ,跨度为40m ,现把它的图形放在坐标系中(如图).若在离跨度中心M 点5m 处垂直竖立一铁柱支撑拱顶,则这根铁柱的长为__15__m .知识模块二 抛物线型运动问题【例2】 竖直向上发射的小球的高度h(m )关于运动时间t(s )的函数表达式为h =at 2+bt.若小球在发射后第2s 与第6s 时的高度相等,则下列时刻中小球的高度最高的是( C )A .第3sB .第3.5sC .第4.2sD .第6.5s【变例1】 某幢建筑物,从10m 高的窗口A 用水管向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M 离墙1m ,离地面403m ,则水流下落点B 到墙的距离OB 是__3__m .【变例2】 某菜农搭建一个横截面为抛物线的大棚,有关尺寸如图所示,若菜农身高为1.6m ,则他在不弯腰的情况下在大棚内活动的范围是__5__m .【变例3】 小明在某次投篮中,球的运动线路是抛物线y =-15x 2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是( B )A .3.5mB .4mC .4.5mD .4.6m交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一抛物线型建筑问题知识模块二抛物线型运动问题检测反馈达成目标1.一个四合院的大门是一抛物线形水泥建筑物,如下图所示,大门地面宽AB=4m,顶部C离地面高度为4.4m.现有一辆公交大客车要通过大门,车厢顶部距地面2.8m,车厢宽度为2.4m.这辆大客车能顺利通过大门吗?解:设抛物线解析式为y=ax2+4.4(a≠0),将A点坐标(-2,0)代入得4a+4.4=0,a=-1.1y=-1.1x2+4.4(-2≤x≤2).当y=2.8时,x≈±1.21,∴E(-1.21,2.8),F(1.21,2.2),∴EF=2.42>2.4,∴这辆大客车能顺利通过.2.如图,小明的父亲在相距2m的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高度是2.5m,绳子自然下垂呈抛物线状,身高1m的小明距较近的那棵树0.5m时,头部刚好接触到绳子,则绳子的最低点距地面的距离为__0.5__m.课后反思查漏补缺1.收获:________________________________________________________________2.存在困惑:_________________________________________________________________。
初中数学九年级下册《二次函数》学案word资料6页
第二章 二次函数 §2.1 二次函数所描述的关系学习目标:1.探索并归纳二次函数的定义.2.能够表示简单变量之间的二次函数关系. 学习重点:1.经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数. 学习难点:经历探索二次函数关系的过程,获得用二次函数表示变量之间关系的体验. 学习方法:讨论探索法. 学习过程:【例1】 函数y=(m +2)x22-m +2x -1是二次函数,则m= .【例2】 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x+x .A .1个B .2个C .3个D .4个【例3】正方形的边长是5,若边长增加x ,面积增加y ,求y 与x 之间的函数表达式.1、 已知正方形的周长为20,若其边长增加x ,面积增加y ,求y 与x 之间的表达式.2、 已知正方形的周长是x ,面积为y ,求y 与x 之间的函数表达式.3、已知正方形的边长为x ,若边长增加5,求面积y 与x 的函数表达式.【例4】如图2-1-1,正方形ABCD 的边长为4,P 是BC 边上一点,QP ⊥AP 交DC 于Q ,如果BP=x ,△ADQ 的面积为y ,用含x 的代数式表示y .课后练习:1.已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数. 2.当m 时,y=(m -2)x22-m 是二次函数.3.已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系.4.已知:一等腰直角三角形的面积为S ,请写出S 与其斜边长a 的关系表达式,并分别求出a=1,a=2,a=2时三角形的面积.5.在物理学内容中,如果某一物体质量为m ,它运动时的能量E 与它的运动速度v 之间的关系是E=21mv 2(m 为定值).(1)若物体质量为1,填表表示物体在v 取下列值时,E 的取值:(2)若物体的运动速度变为原来的2倍,则它运动时的能量E 扩大为原来的多少倍? 6.下列不是二次函数的是( )A .y=3x 2+4 B .y=-31x 2C .y=52 xD .y=(x +1)(x -2) 7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数8.半径为3的圆,如果半径增加2x ,则面积S 与x 之间的函数表达式为( )A .S=2π(x +3)2B .S=9π+xC .S=4πx 2+12x +9D .S=4πx 2+12x +9π 9.下列函数关系中,可以看作二次函数y=ax 2+bx +c (a ≠0)模型的是( )A .在一定的距离内汽车的行驶速度与行驶时间的关系;B .我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系;C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力);D .圆的周长与圆的半径之间的关系. 10.下列函数中,二次函数是( )A .y=6x 2+1 B .y=6x +1 C .y=x 6+1 D .y=26x+1§2.2 结识抛物线学习目标:经历探索二次函数y=x 2的图象的作法和性质的过程,获得利用图象研究二次函数性质的经验.掌握利用描点法作出y=x 2的图象,并能根据图象认识和理解二次函数y=x 2的性质.能够作为二次函数y=-x 2的图象,并比较它与y=x 2图象的异同,初步建立二次函数表达式与图象之间的联系. 学习重点:利用描点法作出y=x 2的图象过程中,理解掌握二次函数y=x 2的性质,这是掌握二次函数y=ax 2+bx +c (a ≠0)的基础,是二次函数图象、表达式及性质认识应用的开始,只有很好的掌握,才会把二次函数学好.只要注意图象的特点,掌握本质,就可以学好本节. 学习难点:函数图象的画法,及由图象概括出二次函数y=x 2性质,它难在由图象概括性质,结合图象记忆性质. 学习方法:探索——总结——运用法. 学习过程:一、作二次函数y=x 2的图象。
2017浙教版数学九年级上册2.3《二次函数的性质》word导学案
九年级数学上学期导学案2.3二次函数的性质一、课前热身:y* 探索填空:(1)如图,抛物线y = —2x2的顶点坐标是 _____对称轴是______ ,在对称轴左侧,即x___0时,y随x的增大而,在对称轴右侧,即x___0时,y随x的增大而,当x=_时,函数有最—值。
(2)如图,抛物线y = 2x2的顶点坐标是________ ,对称轴是______ ,在对称轴左侧,即x___0时,y随x的增大而____________ ,在对称轴右侧,即x___________ 0时,y随x的增大而________,当x= ____ 时,函数有最_____ 值_________________________。
二、合作交流:21、二次函■数y =ax +bx + c(a^O)的顶点坐标是______ ,对称轴是____________________________________________________ 当a>0时,抛物线开口___,在对称轴左侧,即x< _______ 时,y随x的增大而_________________________________________________ ,在对称轴右侧,即x> ______ 时,y随x的增大而_______ ,当x=______________________ 时,函数y有最___________ 值当a<0时,抛物线开口___,在对称轴左侧,即x< ____ 时,y随x的增大而,在对称轴右侧,即x> ______ 时,y随x的增大而______ ,当x=_ 时,函数y有最___________________ 值_____________________ 。
来源:]22、二次函数y =ax bx c(a = 0)的图像与x轴的交点有三种情况:"…b2— 4ac0时, 抛物线与x轴有两个交点;(1)当(2)b2 _4ac0时, 抛物线与x轴只有一个交点;当(3)b2 _4ac0时, 抛物线与x轴没有交点;[*源~~.当、体验成功:例1、求二次函数y =x2-3x • 2的图像与x轴的交点A、B的坐标。
2016-2017学年九年级数学上册 22 二次函数学案 (新版)新人教版
第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数结合具体情境体会二次函数的意义,理解二次函数的有关概念;能够表示简单变量之间的二次函数关系.重点:能够表示简单变量之间的二次函数关系. 难点:理解二次函数的有关概念.一、自学指导.(10分钟)自学:自学课本P 28~29,自学“思考”,理解二次函数的概念及意义,完成填空.总结归纳:一般地,形如y =ax 2+bx +c(a ,b ,c 是常数,且a≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为a ,b ,c .现在我们已学过的函数有一次函数、二次函数,其表达式分别是y =ax +b(a ,b 为常数,且a≠0)、y =ax 2+bx +c(a ,b ,c 为常数,且a≠0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.下列函数中,是二次函数的有__A ,B ,C __. A .y =(x -3)2-1B .y =1-2x 2C .y =13(x +2)(x -2) D .y =(x -1)2-x 22.二次函数y =-x 2+2x 中,二次项系数是__-1__,一次项系数是__2__,常数项是__0__.3.半径为R 的圆,半径增加x ,圆的面积增加y ,则y 与x 之间的函数关系式为y =πx 2+2πRx(x ≥0).点拨精讲:判断二次函数关系要紧扣定义.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 若y =(b -2)x 2+4是二次函数,则__b≠2__.探究2 某超市购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个,如果超市将篮球售价定为x 元(x>50),每月销售这种篮球获利y 元.(1)求y 与x 之间的函数关系式;(2)超市计划下月销售这种篮球获利8000元,又要吸引更多的顾客,那么这种篮球的售价为多少元?解:(1)y =-10x 2+1400x -40000(50<x<100).(2)由题意得:-10x 2+1400x -40000=8000,化简得x 2-140x +4800=0,∴x 1=60,x 2=80. ∵要吸引更多的顾客,∴售价应定为60元.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如果函数y =(k +1)xk 2+1是y 关于x 的二次函数,则k 的值为多少?2.设y =y 1-y 2,若y 1与x 2成正比例,y 2与1x成反比例,则y 与x 的函数关系是( A )A .二次函数B .一次函数C .正比例函数D .反比例函数3.已知,函数y =(m -4)xm 2-m +2x 2-3x -1是关于x 的函数. (1)m 为何值时,它是y 关于x 的一次函数? (2)m 为何值时,它是y 关于x 的二次函数? 点拨精讲:第3题的第(2)问,要分情况讨论.4.如图,在矩形ABCD 中,AB =2 cm ,BC =4 cm ,P 是BC 上的一动点,动点Q 仅在PC 或其延长线上,且BP =PQ ,以PQ 为一边作正方形PQRS ,点P 从B 点开始沿射线BC 方向运动,设BP =x cm ,正方形PQRS 与矩形ABCD 重叠部分面积为y cm 2,试分别写出0≤x≤2和2≤x≤4时,y 与x 之间的函数关系式.点拨精讲:1.二次函数不要忽视二次项系数a ≠0. 2.有时候要根据自变量的取值范围写函数关系式.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.1.2 二次函数y =ax 2的图象和性质1.能够用描点法作出函数的图象,并能根据图象认识和理解其性质.2.初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感.重点:描点法作出函数的图象. 难点:根据图象认识和理解其性质.一、自学指导.(7分钟)自学:自学课本P 30~31“例1”“思考”“探究”,掌握用描点法作出函数的图象,理解其性质,完成填空.(1)画函数图象的一般步骤:取值-描点-连线;(2)在同一坐标系中画出函数y =x 2,y =12x 2和y =2x 2的图象;点拨精讲:根据y≥0,可得出y 有最小值,此时x =0,所以以(0,0)为对称点,对称取点.(3)观察上述图象的特征:形状是抛物线,开口向上,图象关于y 轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点);(4)找出上述三条抛物线的异同:__________.(5)在同一坐标系中画出函数y =-x 2,y =-12x 2和y =-2x 2的图象,找出图象的异同.点拨精讲:可从顶点、对称轴、开口方向、开口大小去比较寻找规律.总结归纳:一般地,抛物线的对称轴是y 轴,顶点是(0,0),当a>0时,抛物线的开口向上,顶点是抛物线的最低点.a 越大,抛物线的开口越小;当a<0时,抛物线的开口向下,顶点是抛物线的最高点,a 越大,抛物线的开口越大.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.教材P 41习题22.1第3,4题.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 填空:(1)函数y =(-2x)2的图象形状是______,顶点坐标是______,对称轴是______,开口方向是______.(2)函数y =x 2,y =12x 2和y =-2x 2的图象如图所示,请指出三条抛物线的解析式.解:(1)抛物线,(0,0),y 轴,向上;(2)根据抛物线y =ax 2中,a 的值来判断,在x 轴上方开口小的抛物线为y =x 2,开口大的为y =12x 2,在x 轴下方的为y =-2x 2.点拨精讲:解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y =ax 2中,a>0时,开口向上;a<0时,开口向下;|a|越大,开口越小.探究2 已知函数y =(m +2)xm 2+m -4是关于x 的二次函数. (1)求满足条件的m 的值; (2)m 为何值时,抛物线有最低点?求这个最低点;当x 为何值时,y 随x 的增大而增大? (3)m 为何值时,函数有最大值?最大值为多少?当x 为何值时,y 随x 的增大而减小?解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0.解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2.∴当m =2或m =-3时,原函数为二次函数.(2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m>-2,∴只能取m =2. ∵这个最低点为抛物线的顶点,其坐标为(0,0),∴当x>0时,y 随x 的增大而增大. (3)若函数有最大值,则抛物线开口向下,∴m +2<0,即m<-2, ∴只能取m =-3.∵函数的最大值为抛物线顶点的纵坐标,其顶点坐标为(0,0), ∴m =-3时,函数有最大值为0.∴x>0时,y随x的增大而减小.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.二次函数y=ax2与y=-ax2的图象之间有何关系?2.已知函数y=ax2经过点(-1,3).(1)求a的值;(2)当x<0时,y的值随x值的增大而变化的情况.3.二次函数y=-2x2,当x1>x2>0,则y1与y2的关系是__y1<y2__.4.二次函数y=ax2与一次函数y=-ax(a≠0)在同一坐标系中的图象大致是( B)点拨精讲:1.二次函数y=ax2的图象的画法是列表、描点、连线,列表时一般取5~7个点,描点时可描出一侧的几个点,再根据对称性找出另一侧的几个点,连线将几个点用平滑的曲线顺次连接起来,抛物线的两端要无限延伸,要“出头”;2.抛物线y=ax2的开口大小与|a|有关,|a|越大,开口越小,|a|相等,则其形状相同.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3二次函数y=a(x-h)2+k的图象和性质(1)1.会作函数y=ax2和y=ax2+k的图象,能比较它们的异同;理解a,k对二次函数图象的影响,能正确说出两函数图象的开口方向、对称轴和顶点坐标.2.了解抛物线y=ax2上下平移规律.重点:会作函数的图象.难点:能正确说出两函数图象的开口方向、对称轴和顶点坐标.一、自学指导.(10分钟)自学:自学课本P32~33“例2”及两个思考,理解y=ax2+k中a,k对二次函数图象的影响,完成填空.总结归纳:二次函数y=ax2的图象是一条抛物线,其对称轴是y轴,顶点是(0,0),开口方向由a的符号决定:当a>0时,开口向上;当a<0时,开口向__下__.当a>0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大.抛物线有最__低__点,函数y有最__小__值.当a<0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小.抛物线有最__高__点,函数y有最__大__值.抛物线y=ax2+k可由抛物线y=ax2沿__y__轴方向平移__|k|__单位得到,当k>0时,向__上__平移;当k<0时,向__下__平移.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.在抛物线y=x2-2上的一个点是( C)A .(4,4)B .(1,-4)C .(2,2)D .(0,4)2.抛物线y =x 2-16与x 轴交于B ,C 两点,顶点为A ,则△ABC 的面积为__64__. 点拨精讲:与x 轴的交点的横坐标即当y 等于0时x 的值,即可求出两个交点的坐标.3.画出二次函数y =x 2-1,y =x 2,y =x 2+1的图象,观察图象有哪些异同? 点拨精讲:可从开口方向、对称轴、形状大小、顶点、位置去找.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)探究1 抛物线y =ax 2与y =ax 2±c 有什么关系?解:(1)抛物线y =ax 2±c 的形状与y =ax 2的形状完全相同,只是位置不同;(2)抛物线y =ax 2向上平移c 个单位得到抛物线y =ax 2+c ;抛物线y =ax 2向下平移c 个单位得到抛物线y =ax 2-c.探究2 已知抛物线y =ax 2+c 向下平移2个单位后,所得抛物线为y =-2x 2+4,试求a ,c 的值.解:根据题意,得⎩⎪⎨⎪⎧a =-2,c -2=4,解得⎩⎪⎨⎪⎧a =-2,c =6. 二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(13分钟) 1.函数y =ax 2-a 与y =ax -a(a≠0)在同一坐标系中的图象可能是( D )2.二次函数的图象如图所示,则它的解析式为( B ) A .y =x 2-4B .y =-34x 2+3 C .y =32(2-x)2 D .y =32(x 2-2)3.二次函数y =-x 2+4图象的对称轴是y 轴,顶点坐标是(0,4),当x<0,y 随x 的增大而增大.4.抛物线y =ax 2+c 与y =-3x 2的形状大小,开口方向都相同,且其顶点坐标是(0,5),则其表达式为y =-3x 2+5,它是由抛物线y =-3x 2向__上__平移__5__个单位得到的.5.将抛物线y =-3x 2+4绕顶点旋转180°,所得抛物线的解析式为y =3x 2+4.6.已知函数y =ax 2+c 的图象与函数y =5x 2+1的图象关于x 轴对称,则a =__-5__,c =__-1__.点拨精讲:1.函数的图象与性质以及抛物线上下平移规律.(可结合图象理解)2.抛物线平移多少个单位,主要看两顶点坐标,确定两顶点相隔的距离,从而确定平移的方向与单位长,有时也可以比较两抛物线上横坐标相同的两点相隔的距离,从而确定平移的方向与单位长.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3 二次函数y =a (x -h )2+k 的图象和性质(2)1.进一步熟悉作函数图象的主要步骤,会作函数y =a(x -h)2的图象.2.能正确说出y =a(x -h)2的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y =a(x -h)2的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y =a(x -h)2的图象.难点:能正确说出图象的开口方向、对称轴和顶点坐标,掌握抛物线y =a(x -h)2的平移规律.一、自学指导.(10分钟)自学:自学课本P 33~34“探究”与“思考”,掌握y =a(x -h)2与y =ax 2之间的关系,理解并掌握y =a(x -h)2的相关性质,完成填空.画函数y =-12x 2、y =-12(x +1)2和y =-12(x -1)2的图象,观察后两个函数图象与抛物线y =-12x 2有何关系?它们的对称轴、顶点坐标分别是什么?点拨精讲:观察图象移动过程,要特别注意特殊点(如顶点)的移动情况.总结归纳:二次函数y =a(x -h)2的顶点坐标为(h ,0),对称轴为直线x =h .当a>0时,在对称轴的左侧y 随x 的增大而减小,在对称轴的右侧y 随x 的增大而增大,抛物线有最低点,函数y 有最小值;当a<0时,在对称轴的左侧y 随x 的增大而增大,在对称轴的右侧y随x 的增大而减小,抛物线有最高点,函数y 有最大值.抛物线y =ax 2向左平移h 个单位,即为抛物线y =a(x +h)2(h>0);抛物线y =ax 2向右平移h 个单位,即为抛物线y =a(x -h)2(h>0).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟) 1.教材P 35练习题;2.抛物线y =-12(x -1)2的开口向下,顶点坐标是(1,0),对称轴是x =1,通过向左平移1个单位后,得到抛物线y =-12x 2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究1在直角坐标系中画出函数y =12(x +3)2的图象.(1)指出函数图象的对称轴和顶点坐标;(2)根据图象回答,当x 取何值时,y 随x 的增大而减小?当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 取最大值或最小值?(3)怎样平移函数y =12x 2的图象得到函数y =12(x +3)2的图象?解:(1)对称轴是直线x =-3,顶点坐标(-3,0);(2)当x<-3时,y 随x 的增大而减小;当x>-3时,y 随x 的的增大而增大;当x =-3时,y 有最小值;(3)将函数y =12x 2的图象沿x 轴向左平移3个单位得到函数y =12(x +3)2的图象.点拨精讲:二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.探究2 已知直线y =x +1与x 轴交于点A ,抛物线y =-2x 2平移后的顶点与点A 重合.(1)求平移后的抛物线l 的解析式;(2)若点B(x 1,y 1),C(x 2,y 2)在抛物线l 上,且-12<x 1<x 2,试比较y 1,y 2的大小.解:(1)∵y=x +1,∴令y =0,则x =-1,∴A(-1,0),即抛物线l 的顶点坐标为(-1,0),又抛物线l 是由抛物线y =-2x 2平移得到的,∴抛物线l 的解析式为y =-2(x +1)2.(2)由(1)可知,抛物线l 的对称轴为x =-1,∵a =-2<0,∴当x>-1时,y 随x 的增大而减小,又-12<x 1<x 2,∴y 1>y 2.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.不画图象,回答下列问题:(1)函数y =3(x -1)2的图象可以看成是由函数y =3x 2的图象作怎样的平移得到的?(2)说出函数y =3(x -1)2的图象的开口方向、对称轴和顶点坐标. (3)函数有哪些性质?(4)若将函数y =3(x -1)2的图象向左平移3个单位得到哪个函数图象? 点拨精讲:性质从增减性、最值来说.2.与抛物线y =-2(x +5)2顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数关系式是y =2(x +5)2.3.对于函数y =-3(x +1)2,当x>-1时,函数y 随x 的增大而减小,当x =-1时,函数取得最大值,最大值y =0.4.二次函数y =ax 2+bx +c 的图象向左平移2个单位长度得到y =x 2-2x +1的图象,则b =-6,c =9.点拨精讲:比较函数值的大小,往往可根据函数的性质,结合函数图象,能使解题过程简洁明了.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.3 二次函数y =a (x -h )2+k 的图象和性质(3)1.进一步熟悉作函数图象的主要步骤,会作函数y =a(x -h)2+k 的图象.2.能正确说出y =a(x -h)2+k 的图象的开口方向、对称轴和顶点坐标.3.掌握抛物线y =a(x -h)2+k 的平移规律.重点:熟悉作函数图象的主要步骤,会作函数y =a(x -h)2+k 的图象.难点:能正确说出y =a(x -h)2+k 的图象的开口方向、对称轴和顶点坐标,掌握抛物线y =a(x -h)2+k 的平移规律.一、自学指导.(10分钟)自学:自学课本P 35~36“例3、例4”,掌握y =a(x -h)2+k 与y =ax 2之间的关系,理解并掌握y =a(x -h)2+k 的相关性质,完成填空.总结归纳:一般地,抛物线y =a(x -h)2+k 与y =ax 2的形状相同,位置不同,把抛物线y =ax 2向上(下)向左(右)平移,可以得到抛物线y =a(x -h)2+k ,平移的方向、距离要根据h ,k 的值来决定:当h>0时,表明将抛物线向右平移h 个单位;当k<0时,表明将抛物线向下平移|k|个单位.抛物线y =a(x -h)2+k 的特点是:当a>0时,开口向上;当a<0时,开口向下;对称轴是直线x =h ;顶点坐标是(h ,k).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟 1.教材P 37练习题2.函数y =2(x +3)2-5的图象是由函数y =2x 2的图象先向左平移3个单位,再向下平移5个单位得到的;3.抛物线y =-2(x -3)2-1的开口方向是向下,其顶点坐标是(3,-1),对称轴是直线x =3,当x>3时,函数值y 随自变量x 的值的增大而减小.一、小组讨论:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)答.探究2 已知y =a(x -h)2+k 是由抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.(1)求出a ,h ,k 的值;(2)在同一坐标系中,画出y =a(x -h)2+k 与y =-12x 2的图象;(3)观察y =a(x -h)2+k 的图象,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 的增大而减小,并求出函数的最值;(4)观察y =a(x -h)2+k 的图象,你能说出对于一切x 的值,函数y 的取值范围吗?解:(1)∵抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线是y =-12(x -1)2+2,∴a =-12,h =1,k =2;(2)函数y =-12(x -1)2+2与y =-12x 2的图象如图;(3)观察y =-12(x -1)2+2的图象可知,当x<1时,y 随x 的增大而增大;x>1时,y随x 的增大而减小;(4)由y =-12(x -1)2+2的图象可知,对于一切x 的值,y ≤2.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.将抛物线y =-2x 2向右平移3个单位,再向上平移2个单位,得到的抛物线解析式是y =-2(x -3)2+2.点拨精讲:抛物线的移动,主要看顶点位置的移动.2.若直线y =2x +m 经过第一、三、四象限,则抛物线y =(x -m)2+1的顶点必在第二象限.点拨精讲:此题为二次函数简单的综合题,要注意它们的图象与性质的区别.3.把y =2x 2-1的图象向右平移1个单位,再向下平移2个单位,得到的新抛物线的解析式是y =2(x -1)2-3.4.已知A(1,y 1),B(-2,y 2),C(-2,y 3)在函数y =a(x +1)2+k(a>0)的图象上,则y 1,y 2,y 3的大小关系是y 2<y 3<y 1.点拨精讲:本节所学的知识是:二次函数y =a(x -h)2+k 的图象画法及其性质的总结;平移的规律.所用的思想方法:从特殊到一般.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4 二次函数y =ax 2+bx +c 的图象和性质(1)1.会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.2.能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法. 3.会求二次函数的最值,并能利用它解决简单的实际问题.重点:会画二次函数y =ax 2+bx +c 的图象,能将一般式化为顶点式,掌握顶点坐标公式,对称轴的求法.难点:能将一般式化为交点式,掌握抛物线与坐标轴交点坐标的求法.一、自学指导.(10分钟)自学:自学课本P 37~39“思考、探究”,掌握将一般式化成顶点式的方法,完成填空.总结归纳:二次函数y =a(x -h)2+k 的顶点坐标是(h ,k),对称轴是x =h ,当a>0时,开口向上,此时二次函数有最小值,当x>h 时,y 随x 的增大而增大,当x<h 时,y 随x 的增大而减小;当a<0时,开口向下,此时二次函数有最大值,当x<h 时,y 随x 的增大而增大,当x>h 时,y 随x 的增大而减小;用配方法将y =ax 2+bx +c 化成y =a(x -h)2+k 的形式,则h =-b 2a ,k =4ac -b24a;则二次函数的图象的顶点坐标是(-b 2a ,4ac -b 24a ),对称轴是x =-b 2a ;当x =-b2a 时,二次函数y =ax 2+bx +c 有最大(最小)值,当a<0时,函数y 有最大值,当a>0时,函数y 有最小值.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.求二次函数y =x 2+2x -1顶点的坐标、对称轴、最值,画出其函数图象.点拨精讲:先将此函数解析式化成顶点式,再解其他问题,在画函数图象时,要在顶点的两边对称取点,画出的抛物线才能准确反映这个抛物线的特征.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 将下列二次函数写成顶点式y =a(x -h)2+k 的形式,并写出其开口方向、顶点坐标、对称轴.(1)y =14x 2-3x +21;(2)y =-3x 2-18x -22.解:(1)y =14x 2-3x +21=14(x 2-12x)+21 =14(x 2-12x +36-36)+21 =14(x -6)2+12 ∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x =6.(2)y =-3x 2-18x -22=-3(x 2+6x)-22=-3(x 2+6x +9-9)-22=-3(x+3)2+5∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.点拨精讲:第(2)小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.探究2 用总长为60 m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?(1)S与l有何函数关系?(2)举一例说明S随l的变化而变化?(3)怎样求S的最大值呢?解:S=l(30-l)=-l2+30l(0<l<30)=-(l2-30l)=-(l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225).点拨精讲:二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.y=-2x2+8x-7的开口方向是向下,对称轴是x=2,顶点坐标是(2,1);当x=2时,函数y有最大值,其值为y=1.2.已知二次函数y=ax2+2x+c(a≠0)有最大值,且ac=4,则二次函数的顶点在第四象限.3.抛物线y=ax2+bx+c,与y轴交点的坐标是(0,c),当b2-4ac=0时,抛物线与x轴只有一个交点(即抛物线的顶点),交点坐标是(-b2a,0);当b2-4ac>0时,抛物线与x轴有两个交点,交点坐标是2a,0);当b2-4ac<0时,抛物线与x轴没有交点,若抛物线与x轴的两个交点坐标为(x1,0),(x2,0),则y=ax2+bx+c=a(x-x1)(x-x2).点拨精讲:与y轴的交点坐标即当x=0时求y的值;与x轴交点即当y=0时得到一个一元二次方程,而此一元二次方程有无解,两个相等的解和两个不相等的解三种情况,所以二次函数与x轴的交点情况也分三种.注意利用抛物线的对称性,已知抛物线与x轴的两个交点坐标时,可先用交点式:y=a(x-x1)(x-x2),x1,x2为两交点的横坐标.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时对应训练部分.(10分钟)22.1.4二次函数y=ax2+bx+c的图象和性质(2)能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.重难点:能熟练根据已知点坐标的情况,用适当的方法求二次函数的解析式.一、自学指导.(10分钟)自学:自学课本P 39~40,自学“探究、归纳”,掌握用待定系数法求二次函数的解析式的方法,完成填空.总结归纳:若知道函数图象上的任意三点,则可设函数关系式为y =ax 2+bx +c ,利用待定系数法求出解析式;若知道函数图象上的顶点,则可设函数的关系式为y =a(x -h)2+k ,把另一点坐标代入式中,可求出解析式;若知道抛物线与x 轴的两个交点(x 1,0),(x 2,0),可设函数的关系式为y =a(x -x 1)(x -x 2),把另一点坐标代入式中,可求出解析式.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.二次函数y =4x 2-mx +2,当x<-2时,y 随x 的增大而减小;当x>-2时,y 随x 的增大而增大,则当x =1时,y 的值为22.点拨精讲:可根据顶点公式用含m 的代数式表示对称轴,从而求出m 的值.2.抛物线y =-x 2+6x +2的顶点坐标是(3,11).3.二次函数y =ax 2+bx +c 的图象大致如图所示,下列判断错误的是( D ) A .a<0 B .b>0 C .c>0 D .ac>0第3题图 第4题图 第5题图4.如图,抛物线y =ax 2+bx +c(a>0)的对称轴是直线x =1,且经过点P(3,0),则a -b +c 的值为( A )A .0B .-1C .1D .2点拨精讲:根据二次函数图象的对称性得知图象与x 轴的另一交点坐标为(-1,0),将此点代入解析式,即可求出a -b +c 的值.5.如图是二次函数y =ax 2+3x +a 2-1的图象,a 的值是-1. 点拨精讲:可根据图象经过原点求出a 的值,再考虑开口方向.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(13分钟)探究1 已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),求函数的关系式和对称轴.解:设函数解析式为y =ax 2+bx +c ,因为二次函数的图象经过点A(3,0),B(2,-3),C(0,-3),则有⎩⎪⎨⎪⎧9a +3b +c =0,4a +2b +c =-3,c =-3.解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴函数的解析式为y =x 2-2x -3,其对称轴为x =1.探究2 已知一抛物线与x 轴的交点是A(3,0),B(-1,0),且经过点C(2,9).试求该抛物线的解析式及顶点坐标.解:设解析式为y =a(x -3)(x +1),则有 a(2-3)(2+1)=9, ∴a =-3,∴此函数的解析式为y =-3x 2+6x +9,其顶点坐标为(1,12).点拨精讲:因为已知点为抛物线与x 轴的交点,解析式可设为交点式,再把第三点代入即可得一元一次方程,较之一般式得出的三元一次方程组简单.而顶点可根据顶点公式求出.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.已知一个二次函数的图象的顶点是(-2,4),且过点(0,-4),求这个二次函数的解析式及与x 轴交点的坐标.2.若二次函数y =ax 2+bx +c 的图象过点(1,0),且关于直线x =12对称,那么它的图象还必定经过原点.3.如图,已知二次函数y =-12x 2+bx +c 的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积.点拨精讲:二次函数解析式的三种形式:1.一般式y =ax 2+bx +c ;2.顶点式y =a(x -h)2+k ;3.交点式y =a(x -x 1)(x -x 2).利用待定系数法求二次函数的解析式,需要根据已知点的情况设适当形式的解析式,可使解题过程变得更简单.学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)22.2 二次函数与一元二次方程(1)1.理解二次函数与一元二次方程的关系. 2.会判断抛物线与x 轴的交点个数. 3.掌握方程与函数间的转化.重点:理解二次函数与一元二次方程的关系;会判断抛物线与x 轴的交点个数. 难点:掌握方程与函数间的转化.一、自学指导.(10分钟)自学:自学课本P 43~45.自学“思考”与“例题”,理解二次函数与一元二次方程的关系,会判断抛物线与x 轴的交点情况,会利用二次函数的图象求对应一元二次方程的近似解,完成填空.总结归纳:抛物线y =ax 2+bx +c 与x 轴有公共点,公共点的横坐标是x 0,那么当x =x 0时,函数的值是0,因此x =x 0就是方程ax 2+bx +c =0的一个根.二次函数的图象与x 轴的位置关系有三种:当b 2-4ac>0时,抛物线与x 轴有两个交点;当b 2-4ac =0时,抛物线与x 轴有一个交点;当b 2-4ac<0时,抛物线与x 轴有0个交点.这对应着一元二次方程ax 2+bx +c =0根的三种情况:有两个不等的实数根,有两个相等实数根,没有实数根.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.观察图中的抛物线与x 轴的交点情况,你能得出相应方程的根吗?方程x 2+x -2=0的根是:x 1=-2,x 2=1;方程x 2-6x +9=0的根是:x 1=x 2=3;方程x 2-x +1=0的根是:无实根.2.如图所示,你能直观看出哪些方程的根?点拨精讲:此题充分利用二次函数与一元二次方程之间的关系,即函数y =-x 2+2x +3中,y 为某一确定值m(如4,3,0)时,相应x 值是方程-x 2+2x +3=m(m =4,3,0)的根.错误!,第3题图)3.已知抛物线y =ax 2+bx +c 的图象如图所示,则关于x 的方程ax 2+bx +c -3=0的根是x 1=x 2=1.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)探究 已知二次函数y =2x 2-(4k +1)x +2k 2-1的图象与x 轴交于两点.求k 的取值范围.解:根据题意知b 2-4ac>0,即[-(4k +1)]2-4×2×(2k 2-1)>0,解得k>-98.点拨精讲:根据交点的个数来确定判别式的范围是解题关键,要熟悉它们之间的对应关。
2017秋上海教育版数学九上26.1《二次函数的概念》word教案
四【课堂巩固练习】
一、填空
1、如果函数 是关于x的二次函数,那么m的值是。m=2
2、如果函数 是关于x的二次函数,那么常数a的取值范围是。
3、已知二次函数 ,当 时, 。8
4、已知二次函数 ,当 时, 。
5、已知二次函数 。如果当 ,那么a=。2
(5) ;(6) 为常数)。
解:(1)(6)一定是;(2)一定不是;(3)(4)(5)不一定是。
当 时,(3)是二次函数;当 时,(4)是二次函数;当 时,(6)是二次函数。
2、 取哪些值时,函数 是以x为自变量的二次函数?这个函数能否为一次函数或常值函数?如果可能,写出这个函数的表达式。
解: 或 时是二次函数;
可能。 时时一次函数; 时是常值函数。
3、在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。
解: ;
4、已知二次函数y=4x2+5x+1,求当y=0时的x的值。
解:
5、已知二次函数y=x2-kx-15,当x=5时,y=0,求k。
3、填表:
c
2
6
1
4
4、在边长为4m的正方形中间挖去一个长为xm的小正方形,剩下的四方框形的面积为y,则y与x间的函数关系式为___y=16-x2______。
5、用一根长为8m的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为__y=-x2+4x______。
图1 图2
解:因为Rt 的两条直角边之比为1:2,所以分两种情况:
九年级数学教案二次函数及其图象和性质(学案)
二次函数及其图象和性质(学案)学习内容:1、二次函数的概念;2、二次函数的图象;3、二次函数的性质。
学习要求:1、理解二次函数的概念,会用描点法画出二次函数的图象,理解二次函数与抛物线的有关概念2、通过二次函数的图象,理解并掌握二次函数的性质,会判断二次函数的开口方向;会求顶点坐标,会判顶点坐标,对称轴方程;会判断并求出最大值或最小值;会判断增减性,等等。
3、由图象能确定a、b、c、△的符号,及判定。
学习重点:二次函数的图象和性质及运用。
学习难点:二次函数的图象的画法以及理解y=a(x-h)2+h型抛物线是由抛物线y=ax2平移而得到的。
例题分析第一阶梯例1、在同一坐标系中画出下列二次函数的图象。
1、 2、y=3x23、 4、y=-3x2提示:以上四个二次函数我们在列表时首先在所列的表正中位置选择点(0,0),然后再在两边找对应的点,画好图象后就能发现首先确定点(0,0)的重要性。
参考答案:观察图象我们应掌握以下几点。
二次函数的图象是一条抛物线。
1、抛物线当a>0时,向上无限延伸,同时a>0,抛物线开口向上抛物线当a<0时,向上无限延伸,同时当a<0时,抛物线开口向下。
2、抛物线以y轴为对称轴,由于y轴上的点的横坐标为零,我们也说对称轴方程为x=0。
3、抛物线的顶点是这样定义:抛物线与对称轴交点叫抛物线的顶点。
所以抛物线y=ax2 (a≠0)的顶点坐标为(0,0)。
这就是我们在画图象时首先确定点(0,0)的理由,再根据抛物线关于y轴对称,我们在确定其它点时,也选对称的点,这样既能减少运算量,又能使图象画的优美、准确。
4、二次函数的最大、最小值。
①当a>0时,抛物线开口向上,它有最底点,所以存在最小值。
这个最小值就是当x取顶点横坐标,顶点纵坐标的值就是二次函数的最小值。
②当a<0时,抛物线开口向下,它有最高点,所以存在最大值。
这个最大值就是当x取顶点横坐标,顶点纵坐标的值就是二次函数的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学学案
用待定系数法求二次函数解析式
学习目标
1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。
2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。
3、从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣。
教学过程
一、合作交流例题精析
1、一般地,形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式。
例1已知二次函数的图象过(1,0),(-1,-4)和(0,-3)三点,求这个二次函数解析式。
小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。
2、二次函数y=ax2+bx+c用配方法可化成:y=a(x+h)2+k,顶点是(-h,k)。
配方:y=ax2+bx+c=__________________=___________________=
__________________=a(x+
b
2a
)2+
4ac-b2
4a。
对称轴是x=-
b
2a
,顶点坐标是(-
b
2a
,
4ac-b2
4a ), h=-
b
2a
,k=
4ac-b2
4a
, 所以,我们把_____________叫做二次函数的顶点式。
例2已知二次函数的图象经过原点,且当x=1时,y有最小值-1,求这个二次函数的解析式。
小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。
请大家试一试,比较它们的优劣。
3、一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系。
所以,已知抛物线与x轴的两个交点坐标时,可选用二次函数的交点式:y=a(x-x
1
)(x-x
2
),
其中x
1
,x
2
为两交点的横坐标。
例3已知二次函数的图象与x轴交点的横坐标分别是x
1
=-3,x
2
=1,且与y轴交点为(0,-3),求这个二次函数解析式。
想一想:还有其它方法吗?
二、应用迁移巩固提高
1、根据下列条件求二次函数解析式
(1)已知一个二次函数的图象经过了点A(0,-1),B(1,0),C(-1,2);
(2)已知抛物线顶点P(-1,-8),且过点A(0,-6);
(3)二次函数图象经过点A(-1,0),B(3,0),C(4,10);
(4)已知二次函数的图象经过点(4,-3),并且当x=3时有最大值4;
(5)已知二次函数的图象经过一次函数y=-—x+3的图象与x轴、y轴的交点,且过(1,1);
(6)已知抛物线顶点(1,16),且抛物线与x轴的两交点间的距离为8;
2、如图所示,已知抛物线的对称轴是直线x=3,它与x轴交于A、B两点,与y 轴交于C点,点A、C的坐标分别是(8,0)(0,4),求这个抛物线的解析式。
三、总结反思突破重点
1、二次函数解析式常用的有三种形式:
(1)一般式:_______________ (a≠0)
(2)顶点式:_______________ (a≠0)
(3)交点式:_______________ (a≠0)
2、本节课是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式,要让学生熟练掌握配方法,并由此确定二次函数的顶点、对称轴,并能结合图象分析二次函数的有关性质。
(1)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。
(2)当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。
(3)当已知抛物线与x轴的交点或交点横坐标时,通常设
为两根式y=a(x-x
1)(x-x
2
)。
四、布置作业拓展升华
1、已知二次函数的图象经过(0,0),(1,2),(-1,-4)三点,那么这个二次函数
的解析式是_______________。
2、已知二次函数的图象顶点是(-1,2),且经过(1,-3),那么这个二次函数
的解析式是_______________。
3、已知二次函数y=x2+px+q的图象的顶点是(5,-2),那么这个二次函数解析
式是_______________。
4、已知二次函数y=ax2+bx+c的图象过A(0,-5),B(5,0)两点,它的对称轴
为直线x=2,那么这个二次函数的解析式是_______________。
5、已知二次函数图象与x轴交点(2,0)(-1,0)与y轴交点是(0,-1),那么这
个二次函数的解析式是_______________。
6、已知抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标为-1和3,与y
轴的交点C的纵坐标为3,那么这个二次函数的解析式是_______________。
7、已知直线y=x-3与x轴交于点A,与y轴交于点B,二次函数的图象经过A、
B两点,且对称轴方程为x=1,那么这个二次函数的解析式是_______________。
8、已知一抛物线与x轴的交点是A(-2,0)、B(1,0),且经过点C(2,8),那
么这个二次函数的解析式是_______________。
9、在平面直角坐标系中, AOB的位置如图所示,已知∠AOB=90°,AO=BO,点
A的坐标为(-3,1)。
(1)求点B的坐标。
(2)求过A,O,B三点的抛物线的解析式;
(3)设点B关于抛物线的对称轴的对称点为B
1
,求ΔAB
1
B的面积。
3
2。