心理统计-录音笔记
心理统计学学习笔记数据整理
即#~N(μ, σ2 /n)
Z=(#-μ)σ/n1/2
Eg:一次测验,μ=100 σ=5
从该总体中抽样一个容量为25的简单随机样本,求这一样本均值间于99到101的概率?
解:已知X~N(100,52)
n=25.
则#~N(100,12)
Z=(#-100)/1~N(0,1)
4.定各组限
5.求组值 X=(上限+下限)/2上限——指最高值加或取10的倍数等)
6.归类划记
7.登记次数
例题:99 96 92 90 90(I) R=99-57+1=43
87 86 84 83 83
8282 80 79 78 (II)K=1.87(50-1)。。。≈9
7878 78 77 77
7776 76 76 76
简单平均数:(70+80)/2
三.中(位)数。(Md)
1.原始数据计算法
分:奇、偶。
2.频数分布表计算法(不要求)
3.优点,缺点,适用情况(p42)
四.众数(Mo)
1.理论众数
粗略众数
2.计算方法:Mo=3Md-2#
Mo=Lmo+fa/(fa+fb)*I
计算不要求
3.优缺点
平均数,中位数,众数三者关系。
W(A)=m/n (频率/相对频数)
后验概率:
P(A)=lim m/n
先验概率:不用做试验的
二.概率的性质和运算
1.性质:o≤P≤1
p=1必然可能事件
p=0不可能事件
2.加法。
P(a+b)=P(a)+P(b)
“或”:两互不相克事件和。
推广:“有限个” P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)
教育与心理统计学 第五章 假设检验考研笔记-精品
假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\
甘怡群《心理与行为科学统计》笔记和习题详解(多元方差分析(MANOVA))【圣才出品】
第20章多元方差分析(MANOVA)20.1 复习笔记一、多元方差分析简介(一)多元方差分析的概念多元方差分析是用于考查类目型变量在多个等距因变量上的主效应和交互作用的统计方法。
(二)MANOVA与ANOVA的比较1.相似之处(1)均可以有一个或几个类目型自变量作为预测源。
(2)计算性质和逻辑相同。
MANOVA可以看成是ANOVA在多个因变量情境下的延伸。
ANOVA是在一个因变量上进行检验,检测组间的差异是否是随机出现的;MANOVA 是在因变量的组合上进行检验,检测组间的差异是否是随机出现的。
2.不同之处MANOVA与ANOVA根本的不同在于因变量的个数。
MANOVA中因变量的个数多于一个,而ANOVA中只有一个因变量。
而且,MANOVA所测量的因变量彼此之间是有相关的。
(三)不能用多个ANOVA的分析来代替MANOVA的分析1.MANOVA的优点(1)首先,通过测量多个因变量而不是一个因变量,MANOVA减少了忽略某个会被自变量和自变量的交互作用影响的因变量的机率;(2)其次,对多个相关的因变量进行多个ANOVA检验,会造成I类错误的膨胀,使用MANOVA能够同时检验多个因变量,而又避免I类错误的膨胀;(3)第三,在特定的情况下,MANOVA能够检验出单独ANOVA分析无法检验出的差异。
2.MANOVA的局限(1)首先,在MANOVA中,有几个非常重要的前提假设需要考虑。
(2)其次,MANOVA在解释自变量对于某个因变量的效果时存在着一些模糊不清。
(3)MANOVA的统计效力高于ANOVA的情境并不是很多。
(四)多元协方差分析MANCOVA与MANOVA类似,因变量个数大于或者等于2,以等距自变量作为“协变量”。
多元协方差分析是协方差分析(ANCOVA)的扩展,应用多元协方差分析。
要回答的问题是:如果控制了一个或者多个协变量对新创建的因变量的影响之后,各组之间是否存在着统计上可靠的均值差异。
心理统计学《现代心理与教育统计学》考研真题与笔记
心理统计学张厚粲《现代心理与教育统计学》考研真题与笔记第一部分考研真题精选一、单项选择题1已知某小学一年级学生的体重平均数21kg,标准差3.2kg,身高平均数120cm,标准差6.0cm,则下列关于体重和身高离散程度的说法正确的是()。
[统考2019研]A.体重离散程度更大B.身高离散程度更大C.两者离散程度一样D.两者无法比较【答案】A查看答案【解析】计算体重和身高的变异系数,CV体重=(3.2/21)×100%=15.2%,CV身高=(6/120)×100%=5%。
由此可知体重离散程度更大。
2已知某正态总体的标准差为16,现从中随机抽取一个n=100的样本,样本标准差为16,则样本平均数分布的标准误为()。
[统考2019研] A.0.16B.1.6C.4D.25【答案】B查看答案【解析】总体正态,且方差已知,则样本平均数的分布为正态分布,标准误SE=σ/sqr(n)=16/10=1.6。
3如果学生参加压力量表测试的分数服从正态分布,平均数为5,标准差为2,那么分数处在5和9之间的学生百分比约为()。
[统考2019研] A.34%B.48%C.50%D.68%【答案】B查看答案【解析】计算原始分数为5的标准分数Z1=0,原始分数为9的标准分数Z2=2,已知±1.96包含95%的个体,则可估计p(0<Z<2)=0.48。
4对样本平均数进行双尾假设检验,在α=0.10水平上拒绝了虚无假设。
如果用相同数据计算总体均值的置信区间,下列描述正确的是()。
[统考2019研]A.置信区间不能覆盖总体均值B.置信区间覆盖总体均值为10%C.置信区间覆盖总体均值为90%D.置信区间覆盖总体均值为0.9%【答案】C查看答案【解析】置信度即置信区间覆盖总体均值的概率,题干说明置信度为1-α=0.90。
5一元线性回归分析中对回归方程是否有效进行检验,H0∶β=0,t=7.20,b =1.80,则斜率抽样分布的标准误SE b为()。
教育与心理统计学 第二章 常用统计参数考研笔记-精品
第二章常用统计参数第二章常用统计参数用参数来描述一组变量的分布特征,便于我们对数据分布状况进行更好的代表性的描述,也有利于我们更好地了解数据的特点。
常见的统计参数包括三类:集中量数、差异量数、地位量数(相对量数X相关量数。
描述统计的指标通常有五类。
第一类集中量数:用于表示数据的集中趋势,是评定一组数据是否有代表性的综合指标,比如平均数、中数、众数等。
概述[不背]第二类差异量数:用于表示数据的离散趋势,是说明一组数据分散程度的指标,比如方差、标准差、差异系数等。
第三类地位量数:是反映个体观测数据在团体中所处位置的量数,比如百分位数、百分等级和标准分数等。
第四类相关量数:用于表示数据间的相互关系,是说明数据间关联程度的指标,比如积差相关、肯德尔和谐系数、①相关等。
第五类:是反映数据的分布形状,比如偏态量和峰度等(不作介绍I第一节集中量数(一)集中量数的定义(种类、作用)[湖南12名]描述数据集中趋势的统计量数称为集中量数。
集中量数能反映大量数据向某一点集中的情况。
常用的集中量数包括算术平均数、加权平均数、几何平均数、中数、众数等等,它们的作用都是用于度量次数分布的集中趋势。
(二)算术平均数(平均数、均数)(一级)简述算术平均数的定义和优缺点。
(1)平均数的含义算术平均数可简称为平均数或均数,符号可记为M。
算术平均数即数据总和除以数据个数,即所有观察值的总和与总频数之比。
只有在为了与其他几种集中.数洞区别时,如几何平均数、调和平均数、加权平均数,才全称为算术平均数。
如果平均数是由变量计算的,就用相应的变量表示,如又匕算术平均数是用以度量连续变量次数分布集中趋势及位置的最常用的集中量数,在一组数据中如果没有极端值, 平均数就是集中趋势中最有代表性的数字指标,是真值的最佳估计值。
(2)平均数的优缺点简述算术平均数的使用特点[含优缺点]算术平均数优点①反应灵敏。
观测数据中任1可一个数值或大或小的变化,甚至细微的变化,在计算平均数时,都能反映出来。
《心理统计学》重要知识点
《心理统计学》重要知识点第二章 统计图表简单次数分布表的编制:Excel 数据透视表列联表(交叉表):两个类别变量或等级变量的交叉次数分布,Excel 数据透视表直方图(histogram ):直观描述连续变量分组次数分布情况,可用Excel 图表向导的柱形图来绘制 散点图(Scatter plot ):主要用于直观描述两个连续性变量的关系状况和变化趋向。
条形图(Bar chart ):用于直观描述称名数据、类别数据、等级数据的次数分布情况。
简单条形图:用于描述一个样组的类别(或等级)数据变量次数分布。
复式条形图:用于描述和比较两个或多个样组的类别(或等级)数据的次数分布。
圆形图(circle graph )、饼图(pie graph ):用于直观描述类别数据或等级数据的分布情况。
线形图(line graph ):用于直观描述不同时期的发展成就的变化趋势;第三章 集中量数● 集中趋势和离中趋势是数据分布的两个基本特征。
● 集中趋势:就是数据分布中大量数据向某个数据点集中的趋势。
● 集中量数:描述数据分布集中趋势的统计量数。
● 离中趋势:是指数据分布中数据分散的程度。
● 差异量数:描述数据分布离中趋势(离散程度)的统计量数 ● 常用的集中量数有:算术平均数、众数(M O )、中位数(M d ) 1.算术平均数(简称平均数,M 、X 、Y ):nx X i∑= Excel 统计函数AVERAGE算术平均数的重要特性:(1)一组数据的离均差(离差)总和为0,即0)(=-∑x x i(2)如果变量X 的平均数为X ,将变量X 按照公式bx a y +=转换为Y 变量后,那么,变量Y 2.中位数(median ,M d ):在一组有序排列的数据中,处于中间位置的数值。
中位数上下的数据出现次数各占50%。
3.众数(mode ,M O ):一组数据中出现次数最多的数据。
4.算术平均数、中数、众数之间的关系。
邓铸《心理统计学与SPSS应用》笔记和课后习题详解-第1~4章【圣才出品】
第1章引论1.1 复习笔记一、学习统计学的原因(一)统计学是研究随机现象的方法论统计学研究的是随机现象,是帮助人们发现随机现象运动规律的科学。
其基本技术就是分析随机现象的各种表现,认识随机事件发生的概率及分布规律。
(二)统计学是心理学研究设计的技术1.心理统计学的概念心理统计学是应用统计学的一个分支,它既是对已有数据资料进行分析的技术,也是根据研究目的和研究对象的特点,确定搜集何种资料、如何搜集、整理、分析以及如何根据这些数字资料所传递的信息,进行科学推论,找出客观规律的一门科学。
2.心理统计学的意义(1)心理统计学是心理学研究设计的基本方法学基础;(2)心理统计学是对心理学研究的全程进行管理的科学;(3)心理统计学是心理学研究不可缺少的科学工具。
(三)统计学是心理学研究资料分析的技术心理学的实验研究和调查研究要解决的问题主要有三类:1.特征描述(1)含义是指对研究对象进行多方面的测量,此类测量一般不是为了描述个体或少数人,而是为了描述一个大的群体,即“总体”。
(2)重要性描述性统计分析是统计学中数据分析的最基础的部分。
2.进行差异比较(1)目的考察不同人群之间的某些差异,以及实验干预是否造成了某种心理品质或心理状态的明显改变。
(2)常用方法主要是依赖于心理统计学中的t检验和F检验方法。
3.相关性分析相关性研究是指尽量在较为自然的情况下,搜集研究对象的一系列心理体验、行为倾向或行动指标,利用统计学方法来考察各方面变量对应的数据资料之间是否具有某种共变关系。
(四)统计学为心理学研究提供了有效的表达语言1.意义统计学的语言已经在相当程度上成为心理学研究报告撰写的“行话”,。
2.要求(1)要借助统计学的知识阅读心理学的研究报告;(2)在撰写研究报告的时候,要使用统计学的概念与符号说“内行”话。
(五)统计学成为心理学专业的应用技术1.学习心理统计学,可以借助于各种测评工具对各个不同实践领域中的人群进行心理测评与支持;2.可以将一个理论的假设转变为一项实证研究的方案;3.可以帮助企事业单位进行人力资源的开发与管理等。
现代心理与教育统计学-笔记
概念(1)随机变量:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。
(2)总体:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体。
(3)样本:样本是从总体中抽取的一部分个体。
(4)个体:构成总体的每个基本单元.(5)次数:是指某一事件在某一类别中出现的数目,又称作频数,用f表示。
(6)频率:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。
(7)概率:概率论术语,指随机事件发生的可能性大小度量指标。
其描述性定义。
随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A)。
(8)统计量:样本的特征值叫做统计量,又称作特征值。
(9)参数:又称总体参数,是描述一个总体情况的统计指标.(10)观测值:随机变量的取值,一个随机变量可以有多个观测值。
2何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。
具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法.(2)学习心理与教育统计学有重要的意义。
①统计学为科学研究提供了一种科学方法。
科学是一种知识体系.它的研究对象存在于现实世界各个领域的客观事实之中。
它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。
要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。
统计学正是提供了这样一种科学方法。
统计方法是从事科学研究的一种必不可少的工具。
②心理与教育统计学是心理与教育科研定量分析的重要工具。
凡是客观存在事物,都有数量的表现。
心理学考研笔记心理统计篇
第一章绪论统计学内容(凑字数):(1)描述统计(整理数据):第二章图表第三章集中量数第四章差异量数第五章相关(2)推论统计(推断总体):第七章参数估计;第八第十第十一章假设检验。
(3)实验设计(取样,实验条件控制,结果分析):第九章方差第十二章回归第十三章因子分析第十四章样本选择数据类型:(1)观测方法:计数数据:能数出来的计量数据:用工具量的(2)测量水平:称名数据:类别顺序数据:类别、次序--------心理测验的原始数据是这个等距数据:类别、次序、相差程度-------心理测验数据都会转换成这个等比数据:类别、次序、相差程度、相差比例(3)是否连续:离散数据:非连续,有个数能数出来连续数据:中间可以无限细分出无数个值第二章图表统计表:(1)次数表:简单次数分布表:无论什么类型数据只要用来记录次数就可,数据少时使用分组次数分布表:同样只要记录次数就能用,数据多时使用相对次数分布表:用比率和百分数表示次数。
累加次数分布表:需知道某个数据以下和以上人数时使用。
双列次数分布表:两列变量的次数用同一个表来表示。
不等距次数分布:无法等距分组时使用。
(2)其他表:简单表:无分类分组表:一个分类复合表:多个分类统计图:(1)次数图:直方图(表分布):横坐标连续数据,纵坐标频次次数多边图:直方图条条去掉连成线就是这个。
比直方图轮廓好易看出规律。
累加次数分布图:横坐标(等距数据以上)分组区间;纵坐标(任何记录次数的数据)累加次数累加曲线:累加次数分布图曲线化。
可更好的看出数据的形态(正态,偏态)(2)其他图:条形图(表内容):对计数或离散数据进行描述圆形图(表内容):不连续的数据-----------可以按比例分的数据线形图(表变化):连续型数据进行描述散点图(表相关):横坐标可计数可离散,纵坐标必须连续数据茎叶图(表分布和保留具体数值):两位数的数据次数箱型图(表数据离散状况)第三章集中量数:一组数据的最佳代表值算数平均数:最好的集中量数,能用就用这个(1)何时不能使用:有极端数值时,有模糊数据时。
《现代心理与教育统计学》第4版笔记和课后习题详解
《现代心理与教育统计学》(第4版)笔记和课后习题详解第1章绪论1.1复习笔记本章重点ü心理与教育统计的研究内容ü选择使用统计方法的基本步骤ü统计数据的基本类型ü心理与教育统计的基本概念一、统计方法在心理和教育科学研究中的作用(一)心理与教育统计的定义与性质1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(appliedstatistics)两部分。
前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。
心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。
类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。
(二)心理与教育科学研究数据的特点1.心理与教育科学研究数据与结果多用数字形式呈现。
2.心理与教育科学研究数据具有随机性和变异性。
3.心理与教育科学研究数据具有规律性。
4.心理与教育科学研究的目标是通过部分数据来推测总体特征。
(三)学习心理与教育统计应注意的事项1.学习心理与教育统计学要注意的几个问题:(1)学习心理与教育统计学时,必须要克服畏难情绪。
心理与教育统计学偏重于应用,只要有中学数学知识就具备了学好心理与教育统计学的前提。
(2)在学习时要注意重点掌握各种统计方法使用的条件。
(3)要做一定的练习。
2.应用心理与教育统计方法时要做到:(1)克服“统计无用”与“统计万能”的思想,注意科研道德。
(2)正确选用统计方法,防止误用和乱用统计。
心理统计笔记—名词解释
第一章:描述性统计统计:描述性统计descriptive statistics推断性统计inferential statistics#描述性统计主要是对一组给定的测量数据进行总结的方法,而推断性统计是把对给定数据的测量结果推广到更大的潜在数据集的方法。
变量variable和常量constant变量:连续变量continuous variable & 离散变量discrete variable一个具有有限水平但相邻水平之间不再可能赋值的变量被称为离散变量。
一个可以无穷小精确度来测量的变量(至少在理论上,可是求两个任意小的测量水平之间的中间值)被称为连续变量。
自变量indepentent variable & 因变量dependent variable称名/类别量尺(nominal/categorical scale):数字是强制定义的,不可计算。
顺序/等级量尺(ordinal scale):不是简单分类,而是有一定顺序。
然而,这些排名数字并不能看作真正的数值,因为等级之间不是等距的。
研究者在对这类的数据进行数学运算时,已经假设它们是等距数据了。
等距和等比量尺(interval and ratio scales):不但具有等距特征,而且还兼具等比特征的量尺被称之为等比量尺。
尽管所有等比量尺都有等距特征,但有些量尺只有等距特征而不具备等比特征。
这些量尺被称为等距量尺。
等距量尺是没有真正零点的。
E.g. 摄氏和华氏温度,IQ值等。
#不能混淆变量和用来测量变量的量尺。
同一个变量可以用多种量尺来测量,例如:测量温度可以用顺序量尺(第一热,第二热),也可以用等距量尺(摄氏/华氏度),还可以用等比量尺(开尔文,有绝对零度)。
尽管在终极意义上,所有量尺都是离散的,但是具有很多水平的量尺通常被认为是连续的,而水平相对少的量尺则当作离散处理。
而用于测量离散变量的量尺总是离散的。
参数统计(parameter statistics)和非参数统计:基于分布及其参数的统计方法叫参数统计。
甘怡群《心理与行为科学统计》笔记和习题详解(集中量数与差异量数)【圣才出品】
第3章 集中量数与差异量数3.1 复习笔记一、集中量数集中量数又称集中趋势,是体现一组数据一般水平的统计量。
它能反映频数分布中大量数据向某一点集中的情况。
(一)算术平均数1.含义算术平均数(mean )是最常用的,也是最容易理解的一个集中量数指标。
算术平均数是所有观察值的总和与总频数之商,也简称为平均数、均值或者均数。
可以用μ来表示;如果想表示变量X 的平均数,可以表示为X 。
2.计算公式假设X 1,X 2,…,X N 代表各次观测值,N 为观察的总频数,则其算术平均数为:123N X +X +X ++X =Nμ⋅⋅⋅ 记作: N 11=N i i X μ=∑ 其中,∑表示连加,1N i =∑表示从1i =到i N =的所有观测值i X 的总和。
3.性质(1)数据中如果每一个数据都加上一个常数C ,则算术平均数也需要加上C ,即∑=+=+ni C X C X n 1)(1 (2)数据中如果每一个数据都乘以一个常数C ,则算数平均数也需要乘以C ,即∑=⋅=⋅n i C X C X n 1)(1 (二)中数中数(median )又称为中位数,它将数据分为数目相等的两半,其中一半的值比它小,另外一半的值比它大,等价于百分位数是50的那个数。
如果将所有数据按照大小顺序进行排列,那么中数正好位于正中间。
中数用M d 表示。
对于一个分布而言,中数将其分为大小相同的两个组。
对于没有经过处理的原始数据,需要先将所有数据按照大小顺序排成一个数列。
以下三种情况,中数有各自不同的求法。
1.数列的总个数为奇数假设数列共包含有n 个数(n 为奇数),如果处于数列中间的数跟相邻的值都不相等,则第21+n 个数就是这n 个值的中数。
2.数列的总个数为偶数如果n 是偶数,那么数列之中没有一个相应的值将该数列分成相等的两半,则取位于中间的两个数(第2n 和第12+n 个值)的平均数作为中数。
3.分布的中间有相等的数如果按照大小顺序排列好之后,位于数列中间的数与其相邻的数有相等的情况,则要进行一定的处理。
《心理统计学》总复习要点1-7章[4]
《心理统计学》总复习要点1-7章[4]《心理统计学》总复习要点第一章、第二章基本概念及次数分布表第一节基本概念一、基本概念1.连续变量与离散变量(不连续变量)变量分为连续变量与离散变量(不连续变量)。
连续变量则可以在量表上的任何两点加以细分,可以取得无限多个大小不同的数值。
不连续变量又称离散变量或间断变量,则在量表上的任何两点中只能取得有限个数值。
是一种只能取特殊值而不能取任何值的变量,它代表一个点,而不是一段距离。
2.总体、样本、个体总体是指具有某一种特征的一类事物的全体,构成总体的每一个基本元素称为个体,在总体中按一定规则抽取的一部分个体,称为总体的一个样本。
二、测量水平心理测量的工具一般可以分为四种水平,它们是由测量工具——量尺的水平决定的,量尺也称为尺度。
(一)量尺(Ratio Measurement)用这样的量尺测量出的数据,可以进行加、减、乘和除运算。
这种测量水平的数据特征是有相等单位和绝对零点。
用这种量尺测量得到的数据变量为比率(或等比)变量。
(二)等距量尺(Interval Measurement)只有相等单位,没有绝对零点,这种测量工具称为等距量尺。
等距量尺测出的数据可以进行加和减的运算,而不能进行乘和除的运算。
但是,等距数据的差值可以进行乘、除运算,因为等距数据的差值有一个绝对零点,两个数值相等,差值即为零。
用这种量尺测量得到的数据变量为等距变量。
(三)顺序量尺(Ordinal Measurement)顺序量尺又叫等级量尺,它的特点是:既无绝对零点,又无相等单位。
用这种量尺对研究对象进行测量,只能给对象排个顺序。
顺序量尺的测量结果原则上不能进行加、减、乘、除四则运算。
如有必要的话,只能进行不等式运算。
用这种量尺测量得到的数据变量为顺序变量。
(四)分类量尺(Nominal Measurement)分类测量不包含任何类间数量关系的假定,仅仅是把测量对象分为相同或相异,但在性质上没有哪一类较大,哪一类较小之分。
张敏强《教育与心理统计学》笔记和课后习题(含考研真题)详解-常用统计参数【圣才出品】
第2章常用统计参数【学习目标】1.了解各种集中量数、差异量数和地位量数的概念、性质和作用,理解各种量数的适用条件及特点。
2.识记相关、散点图及相关系数的概念与彼此之间的关系。
3.掌握各种量数的计算方法,并能够熟练使用各种量数对测量数据的数据特征进行描述。
4.掌握各种常见相关分析方法的适用条件及计算方法。
2.1复习笔记一组变量的次数分布,一般至少有以下两个方面的基本特征:中心位置:用以度量一组数据的集中趋势,描述它们的中心位于何处,故对其数量化描述称为位置度量数或集中量数。
离散性:反映一组数据的分散程度,即次数分布的离散程度。
对其数量化描述称为次数分布变异特性的度量或差异量数。
中心位置相同的次数分布,其离散程度不一定相同。
对任何一个已知的次数分布,均可以计算出反映上述统计特征的量数。
在教育与心理统计中,总体统计特征的量数称为参数,用希腊字母表示,如μ,σ2,ρ等;样本统计特征的量数称为统计量,用英文字母表示,如X,S2,r等。
一、集中量数集中量数是指描述数据集中趋势的统计量,包括算术平均数、加权平均数、几何平均数、中数,等等,其作用都是用于度量次数分布的集中趋势。
(一)算术平均数算术平均数(简称平均数、均数)是用以度量连续变量次数分布集中趋势的最常用的集中量数。
1.总体平均数与样本平均数(1)总体平均数如果一个总体X 包含N 个元素,x i 是这个总体中的第i 个元素,则称x i 为第i 次观测值,那么对x 来讲,该总体的算术平均数被定义为:11=Nii x N μ=∑式中:μ——总体算术平均数;N——总体容量;i x ——第i 次观测值。
(2)样本平均数当无法对总体进行全面观测时,对于样本X ,其算术平均数被定义为:11n i i X x n =∑式中:X ——样本平均数;n ——样本容量。
2.加权平均数若已知各组平均数和各组人数,要求总的平均数时,则要用加权平均数的方法,其计算公式为:式中:——总平均数(或加权平均数);12,,,k n n n …——各组人数;12,k ,X X X …,——各组平均数;12t k n n n n =+++…——总人数。
现代心理与教育统计学 笔记
概念(1)随机变量:在统计学上把取值之前,不克不及精确预感取到什么值的变量,称为随机变量.(2)总体:总体(population)又称为母全部或全域,是具有某种特点的一类事物的总体,是研讨对象的全部.(3)样本:样本是从总体中抽取的一部分个别.(4)个别:构成总体的每个根本单元.(5)次数:是指某一事宜在某一类别中消失的数量,又称作频数,用f暗示.(6)频率:又称相对次数,即某一事宜产生的次数除以总的事宜数量,通经常应用比例或百分数来暗示.(7)概率:概率论术语,指随机事宜产生的可能性大小器量指标.其描写性定义.随机事宜A在所有实验中产生的可能性大小的量值,称为事宜A的概率,记为P(A).(8)统计量:样本的特点值叫做统计量,又称作特点值.(9)参数:又称总体参数,是描写一个总体情形的统计指标.(10)不雅测值:随机变量的取值,一个随机变量可以有多个不雅测值.2何谓心理与教导统计学?进修它有何意义?答:(1)心理与教导统计学是专门研讨若何应用统计学道理和办法,汇集.整理.剖析心理与教导科学研讨中获得的随机性数据材料,并根据这些数据材料传递的信息,进行科学推论找出心理与教导统计运动纪律的一门学科.具体讲,就是在心理与教导研讨中,经由过程查询拜访.实验.测量等手腕有意地获取一些数据,并将得到的数据按统计学道理和步调加以整顿.盘算.绘制图表.剖析.断定.推理,最后得出结论的一种研讨办法.(2)进修心理与教导统计学有重要的意义.①统计学为科学研讨供给了一种科学办法.科学是一种常识体系.它的研讨对象消失于实际世界各个范畴的客不雅事实之中.它的重要义务是对客不雅事实进行猜测和分类,从而揭示储藏于个中的各种因果关系.要进步对客不雅事实不雅测及剖析研讨的才能,就必须应用科学的办法.统计学恰是供给了如许一种科学办法.统计办法是从事科学研讨的一种必不成少的工具.②心理与教导统计学是心理与教导科研定量剖析的重要对象.凡是客不雅消失事物,都稀有量的表示.凡是稀有量表示的事物,都可以进行测量.心理与教导现象是一种客不雅消失的事物,它也稀有量的表示.固然心理与教导测量具有多变性并且旨起它产生变更的身分许多,难以精确测量.但是它毕竟照样可以测量的.是以,在进行心理与教导科学研讨时,在必定前提下,是可以对心理与教导现象进行定量剖析的.心理与教导统计就是对心理与教导问题进行定量剖析的重要的科学对象.③宽大心理与教导工作者进修心理与教导统计学的具体意义.a.可经顺遂浏览国表里先辈的研讨成果.b.可以进步心理与教导工作的科学性和效力.c.为进修心理与教导测量和评价打下基本.?答:一项实验研讨成果要用何种统计办法去剖析,须要对实验数据进行卖力的分析.只有做到对数据剖析精确,才干对统计办法做出精确地选用.选用统计办法可以分为以下步调:(1)起首,要剖析一下实验数据是否合理,即所或得的数据是否合实用统计方法行止理,精确的数量化是应用统计办法的起步,假如对数量化的进程及其意义没有懂得,将一些不着边沿的数据加以统计处理是毫无意义的.(2)其次,要剖析实验数据的类型.不合数据类型所应用的统计办法有很大差别,懂得实验数据的类型和程度,对选用恰当的统计办法至关重要.(3)第三,要剖析数据的分布纪律,如总体方差的情形,肯定其是否知足所选用的统计办法的前提前提.4.什么叫随机变量?心理与教导科学实验所获得的数据是否属于随机变量?答:(1)在统计学上把取值之前,不克不及精确预感取到什么值的变量,称为随机变量.(2)心理与教导科学实验所获得的数据属于随机变量.心理与教导科学研讨数据具有随机性和变异性.科学研讨中因不雅测人员.不雅测对象.不雅测前提的变更而具有随机变更的现象.在心理和教导科学范畴,研讨获得的数据材料也具有必定随机性质.不雅测数据的这种特色,称为变异性.即便应用统一种测量对象,不雅测统一事物,只如果进行多次,那么获得的数据就不会完整雷同.跟着测量对象的完美和精确,数据的这种随机性变更就更明显.例如,人们对统一年级或统一年纪儿童甚至对统一小我进行统一学科的学业测试,或对统一个心理特色进行评量.不雅察多次,得到的数据毫不会全然雷同,这些数据老是在必定的规模内变更.造成数据变异的原因,出自不雅测进程中一些有时的不成掌握的身分,称随机身分.随机身分使测量产生的误差称作随机误差.因为这种随机误差的消失,使得在雷同前提下不雅测的成果常常不止一个,并且事前无法肯定,这是客不雅世界消失的一种广泛现象,人们称这类现象为随机现象.在教导和心理科学的各类研讨中,研讨的对象是人的内涵的各种心理现象,不但由客不雅上一些有时身分会引起测量误差,由实验者和被试主不雅上一些不成掌握的有时身分也会造成测量误差,这些有时身分+分庞杂,因而造成的随机误差就更大,也就是使心理与教导科学研讨中得到的数据具有更明显的变异性.5.如何懂得总体.样本与个别.答:根据其各自的界说,我们可以用下面这个图来暗示.大圆暗示研讨对象的全体,也就是总体;大圆中的小圆暗示个中一个样本,大圆中所有的点代表的是样本.6.统计量与参数之间有何差别和关系.答:(1)参数是描写总体情形的统计指标;样本的特点值称作统计量.(2)差别:1参数是从总体中盘算得到的量数,代表总体特点,一个常数.统计量是从一个样本中盘算得到的量数,它描写一组数据的情形,是一个变量,随样本的变更而变更.2参数经常应用希腊字母暗示,样本统计量用英文字母暗示.(3)接洽:1参数平日是经由过程样本特点值来猜测得到,(7.答案略)8.下述一些数据,哪些是测量数据?哪些是计数数据?其数值意味什么?(1)17. 0千克(2 ) 89. 85厘米(3) 199. 2秒(4) 17人(5) 25本(6 ) 93. 5答:上面的数据中测量数据有:(1) 17.0千克(2 ) 89. 85厘米(3 ) 199. 2秒(6)93. 5分计数数据有:(4) 17人(5) 25本(2) 17. 0千克.89. 85厘米.199. 2秒.93. 5分,这些数据是借助必定的重量.长度.时光或必定的测量尺度而获得数据,分别代表事物的重量.长度.时光或者分数.9符号代表的意义(教材20页)(1)总体平均数,期望值 (2)样本平均数 (3)总体之间的相干系数 (4)样本间的相干系数 (5)总体尺度差 (6)样本尺度差 (7)总体间的回归系数 (8)有限个别数量标总体 (9)样本容量,样本大小1.统计分组应留意哪些问题?答:进行统计分组时须要留意下列问题:(1)分组要以被研讨对象的本质特点为基本面对大量原始数据进行分组时,有时须要先做初步的分类,分类或分组必定是要选择与被研讨现象的本质的关的特点为根据,才干确保分类或分组的精确.在心理与教导学研讨方面,专业常识的懂得和熟习对分组的精确进行有重要的感化.例如在学业成绩研讨中按学科性质分类,在整顿智力磨练成果时,按言语智力.操纵智力和总的智力分数分类等.(2)分类标记要明白,要能包含所有的数据对数据进行分组时,所根据的特点称为分组或分类的标记.整顿数据时,分组标志要明白并在整顿数据的进程中前后一致.这就是说,关于被研讨现象本质特点的概念要明白,不克不及既是这个又是谁人.别的,所根据的标记必须能将全部数据包含进去,不克不及有漏掉,也不克不及半途转变.2.直条图或叫条形图:重要用于暗示离散型数据材料,即计数材料.详见教材45页.3.圆形图或叫饼图:重要用于描写间断性材料,目标是为显示多部分在整体中所占的比重大小,以及各部分之间的比较.:统计学的道理和数学的办法在心理学范畴中的应用.描写统计和推理统计两大部分.3.实验数据可分为两类:精确数和近似值.4.肯定组距今后,要斟酌最小的一组从哪开端.显然,最小的一组应包含全部系列中的最小数值.5.在心理实验中经常应用的表格有三类:原始数据登记表,经由火组整顿的次数分布表,带有对实验成果总结性质的表6.暗示实验成果的图有:平面图和立体图.7.平面图一般分为:曲线图和直方图两类.8.平面图有两个坐标,横坐标代表心理实验中的刺激变量或自变量,纵坐标代表反响变量或因变量.当横坐标代表的数量是持续的,可画曲线图或直方图;当横坐标代表的数量不是持续的变量,而是不合类别时,就只能画直方图,其纵坐标必须从0开端.上限.算术平均数.明显的分散趋向指标,但众数不如平均数和中数稳固.12.分组不合适会消失双峰,可调剂组距.真正的双峰消失的原因是_有两种性质不合的数据_.13.在偏斜的分布中,平均数老是处于偏斜的一端,而中数则永久把一个分布曲线下的面积分成相等的两部分.14. q2-q1<q3-q2时,分布向右偏斜;q2-q1=q3-q2时,分布向对称;q2-q1>q3-q2时,分布向_左(哪方大则朝哪方偏斜)偏斜.15.暗示两个变量之间相干性质和程度的图,叫分布图.假如图中所有的点形成一条直线,解释是一个完整正相干的分布图;假如是椭圆,这个椭圆越窄,解释相干程度越_高_____.16.从样本估计总体是以概率原则为基本的,假如样本中只包含随机误差就不致产生对总体偏性的估计;假如样本中还包含体系误差在内,就会产生偏性估计.17.当一个总体中的成分只分成两类时,根据传统,把_愿望得到的成果,产生的概率叫P;不愿望得到的成果产生的概率叫q.18.在一系列正态分布中,有一个尺度的正态分布,其平均数为_0,尺度差为_ 119.当实验数据有___二组____以上时,并且都是__不持续_____的变量时,要检验各组间的差别是否明显就须要用c2分布进行盘算.20.统计成果磨练时:1 ) w2为0. 14_时,实验后果较强,统计成果可托.2 ) w2为0. 16_时,实验后果中等,统计成果可托度一般.3 ) w2为0. 01_时,实验后果很差,统计成果不成信.21.用d值解释实验后果时:1) d是0.2时,实验后果较小; 2) d;是0.5时,后果中等; 3)d>>0. 8_时,后果较大.概念1.描写统计:是对成组数据归纳分解的描写.描写统计的指标有三类:数据的分散趋向,数据的离中趋向,数据间的相干.2.推论统计:办法包含从样本的数量特点推想总体数量特点的一系列问题:推论假设,推论的各类办法和步调,以及磨练推想靠得住性的各类办法.3.组距:每一组上限和下限的差.(组距习上经常应用2, 3, 5, 10, 204.中点:在某一组的下限和上限当中的那一点.5.分散趋向:是代表一系列数据的典范程度的数字指标,代表分散趋向的指标有平均数,中数和众数.6.平均数(x):是一组数据总和的平均值.7.中数(mdn):一系列按大小次序分列的数据中的一个点,在这个系列中有一半数据在这个点以上,有一半数据在这个点以下.8.众数(mo):在一系列数据中消失次数最多的谁人数.9.全距:一个分布中最大的数值的上限减去最小数值的下限,就得到全距.(全距大,解释这组数据疏散;全距小,则较分散.应用时留意:1.无极端值;2,比较两个分布的全距时,当两个分布所包含数据的数量相等或差不久不多时才干使用)10.离中趋向:是暗示一组数据疏散程度的指标,经常应用的指标有:全距,四分差,平均差和尺度差.(假如离中趋向很小,解释数据分布都在平均数邻近变动,是以平均数的代表性很大;假如离中趋向太大,解释数据分布太疏散)11.四分差(q):是数据的离中趋向的指标之一,四分差解释按大小次序分列的一系列数据中心50%个数据的疏散程度.(假如一个分布中心部分的数据比较分散,则两个四分点q3与q1就离得近些,a的值就小些.)12.百分点:某次数分布中处于某百分等级的数值.13.百分等级:某数值在某次数分布中所处的地位.14.平均差(ad):一个分布中每个变量和平均数的差的绝对值的平均值.15.尺度差:s2开方后的正值就叫尺度差,是数据的离中趋向的指标之一.16.离中系数(CV):用相对量来暗示数据疏散程度的数字指标.:指相干是否亲密,可分为无相干;部分相干;完整相干.18.相干:是描写两种数量关系的一个指标,假如一个变量随另一个变量的增加(减小)而增长(减小),则两个变量之间消失着相干.19. z分数(尺度分数):是以尺度差为单位所暗示的原始分数(x)与平均数的偏离,也可以说是一个以尺度差为单位来暗示的偏离分数.20.总体;某类事物的全部称为总体.21.样本:从全部抽出的部分叫样本.22.推论统计:从局部推想全部,从样本推想总体的统计程序.23.随机抽选样本:指总体中每个成分都有一致的机遇被抽选.24.分层抽样:用分层抽样的办法,必须对总体有必定的懂得,事先对于影响所研讨问题的诸身分做恰当安插.25.样本分布:从许多个样本中算出的许多个平均数的次数分派叫样本分布.26.正态分布:是一个中心高,两侧逐渐降低,两头永久不与横轴订交,两侧完整对称的钟形曲线.27.平均数的尺度误(sx):为了和单个样本的尺度差有所差别,把样本分布的尺度差称做平均数的尺度误.28.自由度(df):可以或许自力变更的数据的数量.29.平均数差的尺度误(sxd ):分别从两个总体中抽掏出的多个样本平均数的差(xd)的分布,这个分布的尺度差叫做平均数差的尺度误.30.虚无假设(ha):除概率以外不加任何其它假定,即假设二总体的平均数差别为O31.备则假设(ha):假设两个总体平均数之间差别中除了抽样误差外,还包含有两个总体平均数之间的差别,即备则假设是个总体平均数之间差别不为O32.明显性生程度(P):我们所选择的颠覆虚无假设的概率叫做磨练的明显性程度.33.第一类错误:当虚无假设不该颠覆时而被颠覆了,这意味着把样本的平均数不同以为是代表了总体平均数的差别.34.第二类错误:当应当颠覆虚无假设时而不颠覆,这意味着把样本的平均数不同是代表总体平均数的不同这一事实给否定了.35.明显性磨练:经由过程样本平均数的不同来推论总体平均数是否真正消失不同,并肯定消失何种程度.36.回归:当两种变量间消失着必定程度的相干时,一种变量有向另一种变量的平均数趋近的现象,这种现象叫回归.37.回归方程式:从一变量的数值猜测另一变量的响应数值的直线方程式,当两个变量部分相干时,有两个回归方程式.38.回归系数(byx):由x变量猜测Y变量的回归方程式的斜率.39.c2磨练:是实际不雅察次数与假设次数偏离程度的指标.40.方差剖析:根据组间和组内方差的比值,来比较两组或多组数据的差别是否达到明显.41.组间变异:在两组之间所产生的因变量的变异,就是体系变异,也就是由自变量引起的变异.因为这种变异产生在两组之间,所以又叫组间变异.42.组内变异:统一组内的因变量的变异,就不是因为自变量的情形不合引起的,而只是因为未加掌握的变量引起的.因为这种变异产生在统一组内,所以叫做组内变异.43.组间设计:每个被试只介入1个程度的实验44.组内实际:每个被试介入所有程度的实验.45.主效应:自变量所引起的平均数差别46.交互感化:一个自变量对反响变量的影响因另一个自变量的变更而产生1,伽利略提出了概率论的根本理论;法国数学家帕斯卡和费马创立了概率论,未统计学的成长奠基了重要基本;贝奴里定理的产生,为发明正态概率分布创造了前提;棣莫弗推导出“正态曲线方程”;皮尔逊揭橥了频率曲线理论和积差相干;斯皮尔曼提出等级相干;肯德尔W系数和U系数;格赛特T分布理论;费舍是推论统计真正的创始者,最先提出F分布理论,使方差剖析体系化;凯特勒他将统计办法应用于教导学和社会学的研讨;斯内德克提出方差剖析;克一瓦氏H磨练是一种非参数方差剖析办法,它与参数办法中的完整随机材料方差剖析相对应;费里德曼双向等级方差剖析可解决随机区组实验设计的非参数磨练问题2:从数据的不雅测办法和起源划分,研讨数据可分为计数数据和测量数据两大类;根据数据反应的测量程度,可把数据区分为称名数据.次序数据.等距数据和比率数据四种类型;按照数据是否具有持续性,把数据分为离散数据和持续数据3:统计表的儿个构成要素:表号.名称.标目.数字.表注.4:统计图的构成部分:图号及图题.图目.图尺.图形.图例.图注5:次数分布显示初步整顿后一组数据的分布情形重要暗示数据在各个分组区问内的散布情形,可分为简略次数分布.分组次数分布.相对次数分布.累计次数分布.6:经常应用的次数分布图有直方图.次数多边形图及累加次数分布图.7:其它经常应用的统计图的类别:直方图.条形图.圆形图.线形图.散点图:条形图又分为简略条形图.分组条形图.分段条形图8:其它经常应用统计表类型:简略表.分组表.复合表9:用来描写数据分散趋向和离中趋向的统计量分别称为分散量数和差别量数.10:分散量数包含:算数平均数.中数.众数.加权平均数.儿何平均数.折衷平均数等.12:平均数的优缺陷:长处:反响敏锐.盘算周密.盘算简略.简明易解.合适于进一步用代数办法演算.较少受抽样变动的影响;缺陷:易受极端数据的影响.若消失隐约不清的数据时,无法盘算平均数.13:盘算和应用平均数的原则:同质性原则.平均数与个别数值相联合的原则.平均数与尺度差.发差相联合的原则14:差别量数就是对一组数据的变异性,即离中趋向特色进行器量和描写的统计量.15:差别量数有:全距.四分位差.白一分位差.平均差.尺度差与方差16:相干类别为:正相干.负相干.零相干17:质量相干分为:点二列相干.二列相干及多系列相干18:品德相干:重要分为四分相干.C相干.列联表相干19:概率:是标明随机事宜消失可能性大小的客不雅指标就是概率,概率的界说有两种即后验概率和先验概率20:概率分布类型:160页离散分布与持续分布.经验分布与理论分布.根本随机变量分布与抽样分布21“概率分布:是指对随机变量取值的概率分布情形用数学办法(函数)进行描写22:持续分布:是指持续随机变量的概率分布,即测量数据的概率分布,它用持续随机变量的分布函数描写它的分布纪律23:离散分布:离散随机变量的分布又称作离散分布24:经验分布:是指根据不雅察或实验所获得的数据而编制的次数分布或相对频率分布25:理论分布:一是随机变量概率分布的函数一数学模子,二是按某种数学模子盘算出的总体的次数分布26:抽样分布:是样本统计量的理论分布,样本统计量有:平均数.两平均数之差.方差.尺度差.相干系数.回归系数.白一分比率等. 27:正态分布:也称常态分布或常态分派,是持续随机变量概率分布的一种,正态分布N C0,1)称为尺度正态分布,它的平均值是0,尺度差是1.28:二项分布:是指实验仅有两种不合性质成果的概率分布,具体界说是:设有N次实验,各次实验是彼此自力的,每次实验某事宜消失的概率都是P,某事宜不消失的概率都是q(等于1-P).则对于某事宜消失X次(0,1,2,3.0 0 o n)的概率分布为为29:除了尺度正态Z分布外,儿种罕有的抽样分布包含X的平方分布,T分布,F分布.30:点估计:是用样本统计量来估计总体参数,因为样本统计量为数值上某一点值,估计的成果也以一个点的数值暗示,所以称为点估计.31:优越估计量的特点:无偏性.有用性.一致性.充分性犯:区问估计:就是根据估计值以必定靠得住程度揣摸总体参数地点的区问规模,它是用数轴上的一段距离暗示未知参数可能落入的规模,他虽不具体指出总体参数等于什么,但能指出未知总体参数落入某一区问的概率有多大33:置信区问:也称置信问距,是指在某一置信度时,总体参数地点的区域距离或区域长度.置信区问的高低两头点值称为置信界线.34:明显性程度是指估计总体参数落在某一区问时,可能犯错误的概率,用符号a暗示35:假设磨练:经由过程样本统计量得出的差别做出一般性结论,断定总体参数之问是否消失差异,这种推论进程称作假设磨练,它的根本义务就是事先对总体参数或总体分布形态做出一个假设,然后应用样本信息来断定原假设是否合理,从而决议是否吸收原假设.假设磨练包括“参数磨练”和“非参数磨练”.36:参数假设磨练:若进行假设磨练时总体的分布情势已知,须要对总体的未知参数进行假设磨练;非参数假设磨练:若对总体分布情势37:方差剖析:重要功效在于剖析实验数据中不合起源的变异对总变异的进献大小,从而肯定实验中的白变量是否对因变量有重要影响38:方差剖析的基起源基本理:分解虚无假设和部分虚无假设.方差的可分化性39:平方和:指不雅测数据与平均数离差的平方总和40:总变异被分化为“组问变异”和“组内变异"41:组问变异:重要指因为接收不合的2而造成的各组之问的变异,可以用两个平均数之问的差别暗示42:组内变异:是由组内各被试因变量的差别规模决议的,重要指由实验误差.或组内被试之问的差别造成的变异.43:发差剖析的根本假定:总体正态分布.变异的互相自力性.各实验处理内的方差要一致44:组内设计:又称被试内设计,是指每个被试都要接收所有白变量程度的实验处理45:完整随机设计的方差剖析:就是对单身分组问设计的方差剖析,在这种实验研讨设计中,各类处理的分类仅以单个实验变量为基本,因而把它称为单身分方差剖析或单向方差剖析46:随机区组设计的方差剖析:根据被试特色把被试划分为儿个区组,再根据实验变量的程度数在每一个区组内划分为若干个小区,统一区组随机吸收不合的处理.这类实验设计的原则是统一区组内的被试应尽量同质47:试比较完整随机设计与随机区组设计的优.缺陷?随机区组设计因为统一区组接收所有实验处理,使实验处理之问有相干组设计,或称被试内设计.与完整随机设计比拟,其最大长处是斟酌到个别差别的影响.这种因为被试之问性质不合导致产生的差别就称为区组效应.随机区组设计可以将这种影响从组内变异平分别出来,从而进步效力.但是这种设计也出缺少,重要表示为划分区组艰苦,假如不克不及包管统一区组内尽量同质,则有消失更大误差的可能. 48:当全部实验中的个别差别知道后,就可以算出个别差别造成的变异,即区组变异.这时总平方和被分化为三部分:被试问平方和.区组平方和.误差项平方和。
甘怡群《心理与行为科学统计》笔记和习题详解(二项分布)【圣才出品】
第7章二项分布7.1 复习笔记一、利用正态分布求二项分布概率(一)二项分布与正态分布1.二项分布的概念如果在某种特定的情境下,只有两种可能的结果,其结果就形成一个二项分布。
二项分布是离散型随机变量最常用的一种类型。
假设两个事件分别是A和B,设p为A的概率,q为B的概率,那么p+q=1,q=1-p。
以n来表示样本中所包含个体(或观察)的数目,而X为样本中事件A发生的数目,那么,在n次观察中,事件A发生的总次数x就是二项变量,X的概率分布就称为二项分布。
当p=0.5时,二项分布是正态的;而当p=0.3时,二项分布是正偏态分布。
2.二项分布与正态分布的关系当n足够大(pn>10且qn>10)时,二项分布可以近似为正态分布。
(二)二项分布的均值和标准差1.计算公式二项分布的均值计算公式:μ=pn方差的公式:σ2=npq标准差的公式:2.应用(1)利用二项分布来计算考生对n个选项的选择题进行回答时,仅凭猜测可能的分数范围首先计算μ=pn,,再根据,95%或99%的置信区间来计算分数范围。
(2)利用正态分布来求二项分布的概率正态分布中X的值是一段,而并非一点,所以当二项分布近似为正态分布时,需要考虑精确上下限。
因为在用连续型分布(正态分布)来估计离散型分布(二项分布)的值。
首先计算μ=pn,,再根据计算出z值(X需要用精确值),最后根据计算出的z值去查正态分布表。
二、百分比检验(一)对总体的百分比检验1.总体百分比率与样本百分比率把总体比率记作p,是总体中具有某种特征的个体数占全部个体数的比例;把样本比率记作p',是样本中具有这种特征的个体数占样本的全部个体数的比例。
样本百分比率会随着抽取到的样本的不同而发生变化,因此可以形成一个取样分布。
如:城市居民的男性比例是总体百分比率,而抽取的一部分居民中男性比例则是样本百分比率。
2.样本百分比率与二项分布的关系与二项分布所研究的问题相同,在同一个总体当中,要么发生事件A,要么发生事件B。
甘怡群《心理与行为科学统计》笔记和习题详解(因素分析)【圣才出品】
第19章因素分析19.1 复习笔记一、因素分析简介(一)因素分析的概念在实际的研究中,面对很多的观测变量,经常需要把它们进行浓缩,找出数据之间的内在联系,以最少的信息丢失为代价将众多彼此之间可能有关系的观测变量浓缩为少数几个因素。
这种将一系列变量归结为较少变量,以揭示其潜在结构(维度)的统计程序就是因素分析(Factor Analysis)。
(二)因素分析的作用1.因素分析可以减少变量数目,用数目较少的更有意义的潜在构念来解释一组观测变量。
在进行统计分析的过程中,可能会遇到以下情况,即观测变量之间存在着较高的相关程度,这种多重共线性的问题会导致信息的高度重合,给统计带来了局限性。
2.因素分析可以生成少数几个相对独立的因素代替多数变量进行统计分析,可以解决多重共线性的问题。
3.因素分析也能帮助研究者在一组变量中选择少数几个有代表性,即与所有其他因素相关最高的变量,它们代表了数据的基本结构,反映了信息的本质特征。
因此,在验证心理的量表结构效度时,也要进行因素分析。
(三)因素分析的种类因素分析按照研究者对因素的确定性程度可以分为两类:探索性因素分析(EFA)和验证性因素分析(CFA)。
1.探索性因素分析在探索性因素分析中,研究者事先对观测数据背后可以提取出多少个因素并不确定,因素分析主要是用来探索因素的个数,所以被称为探索性的因素分析。
2.验证性因素分析在验证性因素分析中,研究者根据已有的理论模型对因素的个数,以及每个变量在哪个因素上有载荷有明确的假设,所以这时的因素分析主要目的在于对假设进行验证。
注意:两者并不是完全对立的,在实际应用中。
可以发现一个好的研究往往不单纯用探索性因素分析,而是以探索性因素分析开始,以验证性因素分析结束。
(四)因素分析的一般表达形式由于因素分析中相互之间存在联系的变量被浓缩为几个独立的因素,因此每个观测变量都可以由一组因素的线性组合来表示。
设有n个观测变量,则因素分析模型的一般表达形式为:X i=A i1Z1+A i2Z2+…+A im Z m+u i(i=1,2,…,n)其中,X i(i=1,2,…,n)为观测变量;Z1,Z2,…,Z m为公因子(Common Factor),是各个观测变量所共有的因素,解释了变量之间的相关;u i(i=l,2,…,n)为特殊因素(Unique Factor),是该观测变量中独特的,只对当前变量有影响,不能被公因子所解释的特征;A ij(i=1,2,…,n;j=1,2,…,m)为因素负载(Factor Loadings),它是第i个变量在第j个公因素上的负载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、黄底的是听录音自己加上去的(因看不到,无法知道所加是否正确)。
第一章绪论
心理统计:心理统计是研究心理学科的科学方法和工具,是统计学的原理和数学方法在心理学领域中的应用。
心理统计分为描述统计和推论统计两大部分。
描述统计:是把实验中所得到的数据进行概括的整理,得出实验者可利用的信息,用表和图将实验数据形象地表示出来,描述统计的指标有三类,即集中量数、离中量数和数据间的相关。
集中量数,是指一组数据具有代表性的指标,如,平均数、中数、众数。
离中量数,表示一组数据分散程度的指标,如,四分差,标准差,方差。
数据间的相关,是表示成对的两组数据之间的关系的指标。
进行心理实验是为了发现心理现象的客观规律。
心理统计将研究对象的全部称为总体,从总体中抽出的参与实验的部分称为样本。
推论统计就是从样本的数量特征去推论总体的数量特征。
它包括一系列的统计程序:推论的假设、推论的方法步骤和检验推论的可靠性的各种方法等。
描述统计和推论统计是相辅相成,描述统计是推论统计的基础,只有描述统计准确无误,推论统计才具有意义。
第二章数据的初步整理
实验数据的类型:
计数数据:是准确数,它是一个一个数出来的。
数据形式为计数数据的变量称为离散型变量。
推翻虚无假设,备择假设就成立,就说明样本与总体存在显著性差异,即总体与样本有真实的差异;接受虚无假设,就意味着备择假设不成立,就可以推论样本与总体不存在显著差异,样本与总体的差异仅仅是随机误差。
显著水平(ɑ或P):是人为选择的推翻虚无假设的概率,在统计检验中用P来表示,常用的有.05和.01显著水平,如果.01<P≤.05,该差异就在.05水平上显著,如果p≤.01,该差异就在.01水平上显著。
第一类错误:是指当虚无假设不应被推翻时而被推翻了,即将随机误差当成了真正的差异。
第二类错误:指当应该推翻虚无假设时而没有推翻,即将存在的真实差异当成了随机误差。
第九章平均数差异的显著性检验
两个总体没有差异:当比较不同总体是否存在差异时,需要分别从不同总体中抽取样本,计算出各自的样本平均数,两个总体的样本平均数之间总会存在差别,这个差别里如果仅包含抽样误差,说明两个总体没有差异,是相同的总体或者是同一总体。
两个总体存在差异:当比较不同总体是否存在差异时,需要分别从不同总体中抽取样本,计算出各自的样本平均数,两个总体的样本平均数之间总会存在差别,这个差别里如果不仅包含抽样误差,还包含来自自变量不同水平的影响,就说明两个总体存在差异,两个样本来自不同总体。
被试间实验设计:每个被试只参加自变量一个水平的实验,两个实验条件各自独立,所得的数据是不相关的,所得的样本称为独立样本。
被试内实验设计:每个被试参加自变量所有水平的实验,每个被试被多次测量,两个实验条件之间不独立,因此所得的数据是相关的。
方差一致性检验:检验的目的是判定两个样本是否来自方差一致的总体。
如果两个样本不是来自方差一致的总体,一个总体的数据比较分散,一个总体的数据相对集中,它们的总体平均数的代表性就不一致,分散的数据平均数代表性就小,集中的数据平均数代表性就大。
是单侧还是用双侧是事先确定的
双侧检验:当研究的问题仅仅是回答某一随机样本是否属于某一总体,或需要检验的两个总体谁强谁弱没有方向性,就会用到双侧检验。
双侧检验的大样本查正态分布表,临界值.05水平为
1.96;.01水平为
2.58,小样本则根据不同的df查t表。
单侧检验:如果研究的是某一样本平均数比总体平均数大还是小,这类研究的问题存在方向性,需要使用单侧检验。
单侧检验的特点是带有方向性的,它的.05、.01的临界值比双侧检验的小,大样本查正态分布表临界值为:.05水平为1.65;.01水平2.33。
小样本根据df查t表,单侧检验比双侧检验容易达到显著性差异。