高中数学课时作业13数列求和习题课新人教A版必修013
高中数学第二章数列数列求和习题课课件新人教A版必修5
=(1+3+5+… +2n-1)+
1 1 ������ 1- 2 (1+2������-1)· ������ 2 = + 2 1- 1 2
1 1 1 1 + + + … + ������ 2 4 8 2
=n2+1- ������ .
1 2
探究一
探究二
探究三
规律总结
求数列的前n项和时,一般先求出通项公式,再根据通项公式的特点选择合适的 方法求解.
数列{an}是公比为q的等比数列,则
当q=1时,Sn=na1;
1.等差数列{an}的前n项和
������1 (1-������������ ) ������1 -������������ ������ 当 q ≠1 时,Sn= = . 1-������ 1-������
探究一
探究二
探究三
探究一分组法求和
①
②
探究一
探究二
探究三
① -②,得
2 1 1 1 1 1 1 Tn= +3× 2 +3× 3 +3× 4 +… +3× ������ -(3n-2)× ������+1 3 3 3 3 3 3 3
1 1 1 2 ������-1 1 3 3 +3× 3 1-1 3
=
-(3n-2)×
������ +1.
(3+3������)������ 1-2������ +1) n +2 -1. 2
探究一
探究二
探究三
探究二错位相减法求和
如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的, 那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导 的. 用错位相减法求和时,应注意: 在写出“Sn”与“qSn”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确 写出“Sn-qSn”的表达式.若公比是参数(字母),则应先对参数加以讨论,一般情况下 分为等于1和不等于1两种情况分别求和.
高中数学第二章数列课时作业等比数列前n项和的性质与数列求和新人教B版必修01386
课时作业(十四) 等比数列前n 项和的性质与数列求和 A 组(限时:10分钟)1.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13C.19 D .-19解析:设数列{a n }的公比为q ,若q =1,则由a 5=9,得a 1=9,此时S 3=27,而a 2+10a 1=99,不满足题意,因此q ≠1.∵q ≠1时,S 3=a 11-q 31-q=a 1·q +10a 1, ∴1-q 31-q=q +10,整理得q 2=9. ∵a 5=a 1·q 4=9,即81a 1=9,∴a 1=19. 答案:C2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-15解析:∵a n =(-1)n (3n -2),则a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.答案:A3.数列{a n }的通项公式a n =11+2+3+…+n ,则其前n 项和S n =( ) A.2n n +1 B.n +12n C.n +1n2 D.n 2+n +2n +1解析:∵a n =11+2+3+…+n=2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =a 1+a 2+…+a n=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 答案:A4.等比数列{a n }共有奇数项,所有奇数项和S 奇=255,所得偶数项和S 偶=-126,末项是192,则首项a 1=( )A .1B .2C .3D .4解析:设等比数列{a n }共有2k +1(k ∈N *)项,则a 2k +1=192,S 奇=a 1+a 3+…+a 2k -1+a 2k +1=1q (a 2+a 4+…+a 2k )+a 2k +1=1q S 偶+a 2k +1=-126q +192=255,解得q =-2,而S 奇=a 1-a 2k +1q 21-q 2=a 1-192×-221--22=255,解得a 1=3.答案:C 5.已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和. 解:(1)设{a n }的公差为d ,则S n =na 1+n n -12d . 由已知可得⎩⎪⎨⎪⎧ 3a 1+3d =0,5a 1+10d =-5,解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n .(2)由(1)知1a 2n -1a 2n +1=13-2n 1-2n=12⎝ ⎛⎭⎪⎫12n -3-12n -1, 从而数列⎩⎨⎧⎭⎬⎫1a 2n -1a 2n +1的前n 项和为 12⎝ ⎛⎭⎪⎫1-1-11+11-13+…+12n -3-12n -1 =n1-2n .B 组(限时:30分钟)1.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6等于( )A .2 B.73C.83 D .3 解析:∵S 6S 3=S 31+q 3S 3=1+q 3=3,∴q 3=2, ∴S 9S 6=S 31+q 3+q 6S 31+q 3=1+2+41+2=73. 答案:B2.设f (n )=2+24+27+210+…+23n +1(n ∈N ),则f (n )等于( ) A.27(8n -1) B.27(8n +1-1) C.27(8n +3-1) D.27(8n +4-1) 解析:f (n )=2[1-23n +1]1-23=27(8n +1-1). 答案:B3.已知等比数列{a n }中,公比q =12,且a 1+a 3+a 5+…+a 99=60,则a 1+a 2+a 3+…+a 100=( )A .100B .90C .120D .30解析:∵S 奇=60,q =12,∴S 偶=S 奇·q =30, ∴S 100=S 奇+S 偶=90.答案:B4.在数列{a n }中,已知对任意正整数n ,有a 1+a 2+…+a n =2n -1,那么a 21+a 22+…+a 2n 等于( )A .(2n -1)2 B.13(2n -1)2 C .4n -1 D.13(4n -1) 解析:由S n =2n -1,可得a n =2n -1,∴a 2n =4n -1,∴a 21+a 22+…+a 2n =1-4n1-4=13(4n -1). 答案:D5.已知数列{a n }满足a 1=1,a n +1=a n +n +2n (n ∈N *),则a n 为( )A.n n -12+2n -1-1 B.n n -12+2n -1 C.n n +12+2n +1-1 D.n n -12+2n +1-1解析:解法一:当n =1时,a 1=1,可以排除A 、C 、D ,∴选B.解法二:∵a n +1-a n =n +2n ,∴a n =(a n -a n +1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(n -1)+2n -1+(n -2)+2n -2+…+1+21+1=(1+2+…+n )+(2+22+…+2n -1)=n n -12+2n-1.答案:B6.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln nC .2+n ln nD .1+n +ln n解析:∵a n +1-a n =ln(n +1)-ln n ,∴a n =(a n -a n -1)+(a n -1-a n -2)…+(a 2-a 1)+a 1=ln n -ln1+2=2+ln n .答案:A7.在等比数列{a n }中,a 1+a 2=2,a 3+a 4=4,则a 5+a 6=________. 解析:∵a 1+a 2,a 3+a 4,a 5+a 6成等比数列,∴a 5+a 6=8.答案:88.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N +),则a 5=________;前8项的和S 8=________.(用数字作答)解析:由a 1=1,a n +1=2a n 知a n =2n -1,故a 5=24=16,S 8=1-281-2=255. 答案:16 2559.已知数列{a n }的前n 项和满足log 2(S n +1)=n +1,则a n =________. 解析:由S n +1=2n +1得S n =2n +1-1,∴a n =⎩⎪⎨⎪⎧ 3n =12nn ≥2)答案:⎩⎪⎨⎪⎧3n =12n n ≥2) 10.已知数列{a n }是公差不为0的等差数列,a 1=1且a 1,a 3,a 9成等比数列. (1)求数列{a n }的通项公式; (2)求数列{2a n }的前n 项和. 解:(1)由题设知公差d ≠0,由a 1,a 3,a 9成等比数列得1+2d 1=1+8d 1+2d . 解得d =1或d =0(舍去),故{a n }的通项a n =1+(n -1)×1=n . (2)由(1)知2a n =2n, ∴S n =2+22+23+…+2n =21-2n 1-2=2n +1-2.11.已知数列{a n }是首项a 1=4,公比q ≠1的等比数列,S n 是其前n 项和,且4a 1,a 5,-2a 3成等差数列.(1)求公比q 的值;(2)设A n =S 1+S 2+S 3+…+S n ,求A n .解:(1)由已知2a 5=4a 1-2a 3,即2a 1·q 4=4a 1-2a 1·q 2,∵a 1≠0,整理得,q 4+q 2-2=0,解得q 2=1,即q =1或q =-1,又∵q ≠1,∴q =-1.(2)S n =4[1--1n ]1--1=2-2(-1)n ,∴A n =S 1+S 2+…+S n=2n -2·-1[1--1n ]1--1=2n +1-(-1)n .12.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n. 解:(1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数.a n =3+(n -1)d ,b n =q n -1,依题意有⎩⎪⎨⎪⎧ S 2b 2=6+d q =64,S 3b 3=9+3d q 2=960,解得⎩⎪⎨⎪⎧ d =2q =8或⎩⎪⎨⎪⎧ d =-65q =403(舍去).故a n =3+2(n -1)=2n +1,b n =8n -1.(2)S n =3+5+…+(2n +1)=n (n +2).所以1S 1+1S 2+…+1S n=11×3+12×4+13×5+…+1n n +2=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =34-2n +32n +1n +2.。
第四章 数列的求和(三)习题课 课件-高二上学期数学人教A版(2019)选择性必修第二册
Sn
n(a1 an ) 2
或 Sn
n(n 1) na1+ 2 d
2.等比数列前n项和公式(错位相减法)
Sn
naa1(111,qqqn )1
a1 anq 1 q
,
q 1
3.两类特殊数列的前n项和(二次幂和、三次幂和)
①12+22+32+…+n2=16n(n+1)(2n+1) ②13+23+33+…+n3=14n2(n+1)2
(1)形如cn=an·bn, 一个是等差数列,一个是等比数列; (2)步骤:乘公比,错位减
6.裂项相消法
(1)通项公式为分式,可用待定系数法对通项公式拆项; (2)记住常见的拆项公式
7.绝对值型求和
实际就是一个去绝对值的过程, 绝对值的临界值就是分类讨论的点.
2022年
(a1 6)2 (a1 2)(a1 12) , a1 6
an a1 (n 1)d 2n 4
1
1
1
1
1( 1 1 )
anan1 (2n 4)(2n 6) 4 (n 2)(n 3) 4 n 2 n 3
11 1 1 1
1 1 11 1
n
Tn
4
[( 3
) 4
( 4
) 5
...
综上, Tn
n2
2
21n
,
n
11
n2
21n 2
220
,
n
12
.
课堂小结 求数列前n项和的方法
5.裂项相消法
(1)把数列的每一项拆成两项之差,求和时有些部分可以相互抵消,从而达到求和的
目的.
(2)裂项原则:一般是前边裂几项,后边就裂几项直到发现被消去项的规律为止.
高考数学(文)一轮复习备选练习:《数列求和》(人教A版)含详析
[B 组 因材施教·备选练习]1.设等差数列{a n }的前n 项和为S n ,已知(a 6-1)3+2 013(a 6-1)=1,(a 2 008-1)2+2 013(a 2 008-1)=-1,则下列结论中正确的是( )A .S 2 013=2 013,a 2 008<a 6B .S 2 013=2 013,a 2 008>a 6C .S 2 013=-2 013,a 2 008≤a 6D .S 2 013=-2 013,a 2 008≥a 6解析:依题意,构造函数f (x )=x 3+2 013x ,易知函数f (x )=x 3+2 013x 为奇函数,由f (a 6-1)=1,f (a 2 008-1)=-1,得a 6-1=-(a 2 008-1),∴a 6+a 2 008=2,∵数列{a n }是等差数列,∴S 2 013=2 013(a 1+a 2 013)2=2 013(a 6+a 2 008)2=2 013,排除C 、D ;∵函数f (x )=x 3+2 013x 为增函数,且f (a 2 008-1)<f (a 6-1),∴a 2 008-1<a 6-1,即a 2 008<a 6,排除B ,应选A.答案:A2.(2014年石家庄模拟)对于一切实数x ,令[x ]为不大于x 的最大整数,则函数f (x )=[x ]称为高斯函数或取整函数,若a n =f ⎝⎛⎭⎫n 3,n ∈N *,S n 为数列{a n }的前n 项和,则S 3n 的值为________.解析:依题意得,a 1=0,a 2=0,a 3=1,a 4=1,a 5=1,a 6=2,a 7=2,a 8=2,…,a 3n -3=n -1,a 3n -2=n -1,a 3n -1=n -1,a 3n =n ,所以S 3n =3[1+2+3+…+(n -1)]+n =3n 2-n 2. 答案:3n 2-n 23.在数1和2之间插入n 个实数,使得这n +2个数构成递增的等比数列,将这n +2个数的乘积记为A n ,令a n =log 2A n ,n ∈N *.(1)求数列{A n }的前n 项和S n ;(2)求T n =tan a 2·tan a 4+tan a 4·tan a 6+…+tan a 2n ·tan a 2n +2的值.解析:(1)设b 1,b 2,b 3,…,b n +2构成等比数列,其中b 1=1,b n +2=2,依题意,A n =b 1·b 2·…·b n +1·b n +2,①A n =b n +2·b n +1·…·b 2·b 1,②由于b 1·b n +2=b 2·b n +1=b 3·b n =…=b n +2·b 1=2,①×②得A 2n = (b 1b n +2)·(b 2b n +1)·…·(b n +1b 2)·(b n +2·b 1)=2n +2. ∵A n >0,∴A n =2n +22. ∵A n +1A n =2n +322n +22=2, ∴数列{A n }是首项为A 1=22,公比为2的等比数列.∴S n =22[1-(2)n ]1-2=(4+22)[ (2)n -1]. (2)由(1)得a n =log 2A n =log 22n +22=n +22, ∵tan 1=tan[(n +1)-n ]=tan (n +1)-tan n 1+tan (n +1)·tan n, ∴tan n ·tan(n +1)=tan (n +1)-tan n tan 1-1,n ∈N *. ∴T n =tan a 2·tan a 4+tan a 4·tan a 6+…+tan a 2n ·tan a 2n +2, ∴T n =tan 2·tan 3+tan 3·tan 4+…+tan(n +1)·tan(n +2) =⎝⎛⎭⎪⎫tan 3-tan 2tan 1-1+⎝ ⎛⎭⎪⎫tan 4-tan 3tan 1-1+… +⎣⎢⎡⎦⎥⎤tan (n +2)-tan (n +1)tan 1-1 =tan (n +2)-tan 2tan 1-n .。
2020版高中数学课时作业13等比数列的前n项和新人教A版必修5
课时作业13 等比数列的前n 项和[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .135B .100C .95D .80解析:由等比数列的性质知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8成等比数列,其首项为40,公比为6040=32. ∴a 7+a 8=40×⎝ ⎛⎭⎪⎫323=135. 答案:A2.已知等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =( )A .-2B .2C .3D .-3解析:∵S 3+3S 2=0,∴a 1(1-q 3)1-q +3a 1(1-q 2)1-q=0,即(1-q )·(q 2+4q +4)=0.解得q =-2或q =1(舍去).答案:A3.在等比数列{a n }中,a 1+a n =82,a 3·a n -2=81,且数列{a n }的前n 项和S n =121,则此数列的项数n 等于( )A .4B .7C .6D .5解析:在等比数列{a n }中,a 3·a n -2=a 1·a n =81,又a 1+a n =82,所以⎩⎪⎨⎪⎧ a 1=1,a n =81或⎩⎪⎨⎪⎧ a 1=81,a n =1.当a 1=1,a n =81时,S n =1-81q 1-q=121,解得q =3. 由a n =a 1q n -1得81=3n -1,解得n =5.同理可得当a 1=81,a n =1时,n =5.故选D.答案:D4.等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n =( )A .2n -1 B.4n-13 C.1-(-4)n 3 D.1-(-2)n 3解析:设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧ a 31q 3=1,a 1q 3=4,解得⎩⎪⎨⎪⎧ a 1=12,q =2或⎩⎪⎨⎪⎧ a 1=-12,q =-2.所以a 2,a 4,…,a 2n 构成以a 2=1为首项,q 2=4为公比的等比数列,所以a 2+a 4+…+a 2n =1×(1-4n )1-4=4n -13. 答案:B5.一个项数是偶数的等比数列,它的偶数项的和是奇数项的和的两倍,它的首项为1,且中间两项的和为24,则此等比数列的项数为( )A .12B .10C .8D .6解析:由题意可知q =2.设该数列为a 1,a 2,…,a 2n ,则a n +a n +1=24.又a 1=1,∴q n -1+q n =24,即2n -1+2n =24,解得n =4,故项数为8. 答案:C二、填空题(每小题5分,共15分)6.在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项和S 15=________.解析:记b 1=a 1+a 2+a 3,b 2=a 4+a 5+a 6,…,b 5=a 13+a 14+a 15,依题意{b n }构成等比数列, 其首项b 1=1,公比为q =b 2b 1=-2,则{b n }的前5项和即为{a n }的前15项和S 15=1-(-2)51-(-2)=11. 答案:117.在等比数列{a n }中,已知S 30=13S 10,S 10+S 30=140,则S 20等于________. 解析:因为S 30≠3S 10,所以q ≠1.由⎩⎪⎨⎪⎧ S 30=13S 10,S 10+S 30=140得⎩⎪⎨⎪⎧S 10=10,S 30=130, 所以⎩⎪⎨⎪⎧a 1(1-q 10)1-q =10,a 1(1-q 30)1-q =130, 所以q 20+q 10-12=0. 所以q 10=3, 所以S 20=a 1(1-q 20)1-q =S 10(1+q 10) =10×(1+3)=40. 答案:40 8.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和为________.解析:因为a 2n +1-6a 2n =a n +1a n ,所以(a n +1-3a n )(a n +1+2a n )=0,因为a n >0,所以a n +1=3a n ,所以{a n }为等比数列,且公比为3,所以S n =3n -1.答案:3n -1三、解答题(每小题10分,共20分)9.在等比数列{a n }中,a 1+a n =66,a 3a n -2=128,S n =126,求n 和q . 解析:因为a 3a n -2=a 1a n ,所以a 1a n =128,解方程组⎩⎪⎨⎪⎧ a 1a n =128,a 1+a n =66,得a 1=64,a n =2①或a 1=2,a n =64②将①代入S n =a 1-a n q 1-q ,可得q =12, 由a n =a 1q n -1可解得n =6.将②代入S n =a 1-a n q 1-q ,可得q =2, 由a n =a 1q n -1可解得n =6.故n =6,q =12或2. 10.已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n ∈N *. (1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列;(2)记S n =1a 1+1a 2+……+1a n,若S n <100,求最大正整数n . 解析:(1)因为1a n +1=23+13a n , 所以1a n +1-1=13a n -13. 又因为1a 1-1≠0, 所以1a n-1≠0(n ∈N *). 所以1a n +1-11a n-1=13, 又1a 1-1=23, 所以⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列. (2)由(1)可得1a n -1=23·⎝ ⎛⎭⎪⎫13n -1, 所以1a n =2·⎝ ⎛⎭⎪⎫13n +1. S n =1a 1+1a 2+…+1a n=n +2⎝ ⎛⎭⎪⎫13+132+…+13n =n +2·13-13n +11-13=n +1-13n , 若S n <100,则n +1-13n <100,因为函数y =n +1-13n 单调递增,所以最大正整数n 的值为99. [能力提升](20分钟,40分)11.在数列{a n }中,a 1=1,a n +1=2a n ,则S n =a 21-a 22+a 23-a 24+…+a 22n -1-a 22n 等于( ) A.13(2n -1) B.15(1-24n )C.13(4n -1)D.13(1-2n ) 解析:在数列{a n }中,由a 1=1,a n +1=2a n ,可得a n =2n -1, 则S n =a 21-a 22+a 23-a 24+…+a 22n -1-a 22n=1-4+16-64+…+42n -2-42n -1 =1-(-4)2n 1-(-4)=15(1-42n )=15(1-24n ).故选B. 答案:B12.已知数列{a n }是等比数列,若a 2=1,a 5=18,则a 1a 2+a 2a 3+…+a n a n +1(n ∈N *)的最小值为________.解析:设等比数列{a n }的公比为q ,则由已知得,数列{a n }的公比满足q 3=a 5a 2=18,解得q =12, ∴a 1=2,a 3=12, ∴a n =12n -2, ∴a n a n +1=122n -3, 又a 1a 2=2,a 2a 3a 1a 2=14, ∴数列{a n a n +1}是以2为首项,14为公比的等比数列, ∴a 1a 2+a 2a 3+…+a n a n +1=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=83⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n ∈⎣⎢⎡⎭⎪⎫2,83, ∴a 1a 2+a 2a 3+…+a n a n +1的最小值为2.答案:213.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29.(1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为c 的等比数列,求{b n }的前n 项和S n . 解析:(1)设等差数列{a n }的公差是d .依题意a 3+a 8-(a 2+a 7)=2d =-6,从而d =-3.所以a 2+a 7=2a 1+7d =-23, 解得a 1=-1.所以数列{a n }的通项公式为a n =-3n +2.(2)由数列{a n +b n }是首项为1,公比为c 的等比数列. 得a n +b n =c n -1,即-3n +2+b n =cn -1, 所以b n =3n -2+c n -1.所以S n =[1+4+7+…+(3n -2)]+(1+c +c 2+…+cn -1) =n (3n -1)2+(1+c +c 2+…+c n -1). 从而当c =1时,S n =n (3n -1)2+n =3n 2+n 2; 当c ≠1时,S n =n (3n -1)2+1-c n1-c. 14.设数列{a n }(n =1,2,3…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值. 解析:(1)由已知S n =2a n -a 1, 有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2).从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列, 即a 1+a 3=2(a 2+1).所以a 1+4a 1=2(2a 1+1),解得a 1=2.所以数列{a n }是首项为2,公比为2的等比数列. 故a n =2n.(2)由(1)得1a n =12n , 所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n . 由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000, 即2n >1 000.因为29=512<1 000<1 024=210, 所以n ≥10.于是,使|T n -1|<11 000成立的n 的最小值为10.。
数列的求和(第2课时)高二数学(人教A版2019选择性必修第二册)
(2)若 = − 3 ,求数列{
解(2):∵设 =
∴
1
+1
1
4
=
1
,∴
3
1
2×2(+1)
1
2
=
1
2
= − 3 = −
1
4(+1)
1
3
1 1
4
= ( −
1
∴ = [(1 − ) + ( − ) + ⋯ + ( −
1
3 3
(20 × 1.05) × (1 − 1.05 )
3 2 27
=
− (7.5 + 6 + 1.5) = 420 × 1.05 − − − 420.
1 − 1.05
2
4
4
当 = 5时,5 ≈ 63.5.
所以,从今年起5年内,通过填埋方式处理的垃圾总量约为63.5万吨.
例析
例12.某牧场今年初生的存栏数为1200,预计以后每年存栏数
的增长率为8%,且在每年年底卖出100头牛.设牧场从今年起每
年年初的计划存栏数依次为,1 ,2 ,3 , ⋯.
(3)求10 = 1 + 2 + 3 + ⋯ + 10 的值(精确到1).
(3)由(2)可知,数列{ − 1250}是以-50为首项,1.08为公比的等比数列,
则:(1 − 1250) + (2 − 1250) + (3 − 1250) + ⋯ + (10 − 1250)
(2):将+1 − = ( − )化成+1 = − + .
人教A版高中数学选择性必修第二册精品课件 第4章 数列 习题课——数列求和
[nx
-(n+1)x
+1],
2
(1-)
(+1)
,
2
= 1,
∴Sn= 0, = 0,
+1
[
-(
+
1)
+ 1], ≠ 0, ≠ 1.
2
(1-)
若若已知数列{(2n-1)an-1}(a≠0,n∈N*),求它的前n项和Sn.
解:当 a=1 时,数列变成 1,3,5,7,…,(2n-1),…,则
2.什么情况下可以用错位相减法求和?
提示:当一个数列的各项是由一个等差数列和一个等比数列的对应项之
积构成时可以用错位相减法求和.
3.已知数列{an}的前n项和为Sn,且an=n·2n,则Sn=
解析:∵an=n·2n,
∴Sn=1×21+2×22+3×23+…+n×2n,①
∴2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1.②
( 1 + )
(-1)
Sn=
=na1+
d
2
2
等比数列{an}的前 n 项和公式是 Sn=
;
1 , = 1,
1 (1- )
,
1-
.
≠1
2.是不是所有的数列求和都可以直接用这两个公式求解?
提示:不是.
3.将数列中的每项分解,然后重新组合,使之能消去一些项,最终达到求和
的目的的方法叫做裂项相消法.
解:设数列的第 n 项为 an,则 an=1+2+2 +…+2
2
1-2
第四章 数列的求和(一)习题课 课件高二上学期数学人教A版(2019)选择性必修第二册
B.33
C.30
√D.27
由 f(x)=x+log228+ -xx,知28+ -xx>0,解得-2<x<8. 所以-2<an<8.又因为an=n-2,所以满足f(an)的an所有的取值为-1, 0,1,2,…,7,即a1,a2,…,a9. 因为 f(6-x)=6-x+log282- +xx,所以 f(x)+f(6-x)=6. 所以数列{f(an)}的各项之和S=f(a1)+f(a2)+…+f(a9)=f(-1)+f(0) +…+f(7).
f
(0)
②
n 1
由① + ②可得 2an n 1 ,an 2
所以数列an 是首项为
1,公差为
1 2
的等差数列,其前
20
项和为 201
20 1 2
115
2
巩固练习
2.
A.36
已知数列{an}的通项公式为an=n-2(n∈N*),设f(x)=x+log228+-xx ,
则数列{f(an)}的各项之和为
Sn
n(a1 an ) 2
或 Sn
n(n 1) na1+ 2 d
2.等比数列前n项和公式(错位相
减法)
Sn
naa1(111,qqqn )1
a1 anq 1 q
,
q 1
3.两类特殊数列的前n项和(二次幂和、三次幂和)
①12+22+32+…+n2=16n(n+1)(2n+1) ②13+23+33+…+n3=14n2(n+1)2
第四章 习题课 数列求和(一)
高二数学备课组
学习目标
1. 熟练掌握等差和等比数列前n项和的结构特点以 及各个符号的意义
2. 掌握分组求和、倒序相加法求和、并项求
新高考一轮复习人教版 数列求和、数列的综合 作业
7.4 数列求和、数列的综合基础篇 固本夯基考点一 数列求和1.(2021浙江,10,4分)已知数列{a n }满足a 1=1,a n+1=n 1+√a (n ∈N *).记数列{a n }的前n 项和为S n ,则( ) A.32<S 100<3 B.3<S 100<4 C.4<S 100<92 D.92<S 100<5 答案 A2.(2020山东仿真联考3)已知正项数列{a n }满足a n+1>2a n ,S n 是{a n }的前n 项和,则下列四个命题中错误的是( )A.a n+1>2na 1 B.S 2k >(1+2k)S k C.S n <2a n -a 1(n ≥2) D.{a n+1a n}是递增数列 答案 D3.(2020浙江,11,4分)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列{n(n+1)2}就是二阶等差数列.数列{n(n+1)2}(n ∈N *)的前3项和是 . 答案 104.(2022届T8联考,18)设等差数列{a n }的前n 项和为S n ,已知a 1=3,S 3=5a 1. (1)求数列{a n }的通项公式;(2)设b n =1+2S n,数列{b n }的前n 项和为T n .定义[x]为不超过x 的最大整数,例如[0.3]=0,[1.5]=1.当[T 1]+[T 2]+…+[T n ]=63时,求n 的值.解析 (1)设等差数列{a n }的公差为d,因为a 1=3,所以S 3=3a 1+3d=9+3d. 又因为S 3=5a 1=15,所以9+3d=15,得d=2. 所以数列{a n }的通项公式是a n =3+2(n-1)=2n+1. (2)因为S n =3n+n(n−1)2×2=n 2+2n,所以b n =1+2S n =1+2n(n+2)=1+1n -1n+2. 所以T n =n+(1−13)+(12−14)+(13−15)+…+(1n−1−1n+1)+(1n −1n+2)=n+1+12-1n+1-1n+2. 当n ≤2时,因为-13≤12-1n+1-1n+2<0,所以[T n ]=n.当n ≥3时,因为0<12-1n+1-1n+2<12,所以[T n ]=n+1.因为[T 1]+[T 2]+…+[T n ]=63, 所以1+2+4+5+…+(n+1)=63, 即3+(n−2)(4+n+1)2=63,即n 2+3n-130=0,即(n-10)·(n+13)=0.因为n ∈N *,所以n=10.5.(2022届华中师范大学琼中附中月考,17)已知等差数列{a n }中,a 2=3,a 4+a 6=18. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n+1=2b n ,并且b 1=a 5,试求数列{b n }的前n 项和S n .解析 (1)设数列{a n }的公差为d,根据题意得{a 1+d =3,2a 1+8d =18,解得{a 1=1,d =2,∴a n =a 1+(n-1)d=2n-1.(2)∵b n+1=2b n ,∴数列{b n }是公比为2的等比数列, 又b 1=a 5=2×5-1=9,∴S n =b 1(1−q n )1−q =9(1−2n )1−2=-9+9×2n.6.(2022届长沙雅礼中学月考,17)已知数列{a n }中,a 1=1,a 2=3,其前n 项和S n 满足S n+1+S n-1=2S n +2(n ≥2,n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =a n +2a n ,求数列{b n }的前n 项和T n .解析 (1)由题意得S n+1-S n =S n -S n-1+2(n ≥2),即a n+1-a n =2(n ≥2),又a 2-a 1=3-1=2,所以a n+1-a n =2(n ∈N *).所以数列{a n }是以1为首项,2为公差的等差数列,所以a n =2n-1(n ∈N *).(2)b n =a n +2a n=2n-1+22n-1=2n-1+12·4n ,所以T n =[1+3+5+…+(2n-1)]+12×(4+42+43+…+4n )=n 2+2(4n−1)3.7.(2022届广东深圳七中月考)已知等比数列{a n }中,a 1=1,且2a 2是a 3和4a 1的等差中项.等差数列{b n }满足b 1=1,b 7=13.(1)求数列{a n }的通项公式; (2)求数列{a n -b n }的前n 项和T n .解析 (1)设数列{a n }的公比为q,由题意可得2×2a 2=a 3+4a 1,即4a 1q=a 1q 2+4a 1,又a 1=1,所以q=2,则数列{a n }的通项公式为a n =2n-1.(2)设数列{b n }的公差为d,由题意可得b 7-b 1=12=6d,即d=2,则数列{b n }的通项公式为b n =1+(n-1)×2=2n-1.a n -b n =2n-1-(2n-1),则T n =(20-1)+(21-3)+…+[2n-1-(2n-1)]=(20+21+…+2n-1)-(1+3+…+2n-1)=1−2n 1−2-(1+2n−1)·n 2=2n -1-n 2.8.(2022届河北秦皇岛青龙8月测试,18)已知数列{a n }的前n 项和为S n ,且满足S n =2a n -1(n ∈N *). (1)求数列{a n }的通项公式a n 及S n ;(2)若数列{b n }满足b n =|S n -15|,求数列{b n }的前n 项和T n . 解析 (1)当n=1时,S 1=2a 1-1,即a 1=1,由S n =2a n -1得S n+1=2a n+1-1,两式相减得a n+1=2a n+1-2a n ,即a n+1=2a n ,即数列{a n }是以1为首项,2为公比的等比数列,则a n =2n-1,则S n =1−2n 1−2=2n-1.(2)由(1)知b n =|2n-16|,则b n ={16−2n (1≤n ≤4),2n −16(n >4).记{2n -16}的前n 项和为A n ,则A n =(21+22+…+2n)-16n=2·(1−2n )1−2-16n=2n+1-16n-2.则当1≤n ≤4时,T n =-A n =16n-2n+1+2.当n>4时,T n =(16-21)+(16-22)+…+(16-24)+(25-16)+(26-16)+…+(2n-16)=-A 4+A n -A 4=A n -2A 4=2n+1-16n+66,则T n ={16n −2n+1+2(1≤n ≤4),2n+1−16n +66(n >4).9.(2021浙江“山水联盟”开学考)已知数列{a n }满足:a 1=1,a n+1a n =nn+1;数列{b n }是等比数列,并满足b 1=2,且b 1-1,b 4,b 5-1成等差数列. (1)求数列{a n },{b n }的通项公式;(2)若数列{b n }的前n 项和是S n ,数列{c n }满足c n =a n a n+1a n+2(S n +2),求证:c 1+c 2+…+c n <12.解析 (1)由于a 1=1,na n =(n+1)a n+1,所以{na n }是常数列,所以na n =1·a 1=1,故a n =1n. 设{b n }的公比是q,由已知得2b 4=(b 1-1)+(b 5-1),所以4q 3=2q 4,所以q=2,故b n =2n.(2)证明:由(1)得S n =2(1−2n )1−2=2n+1-2,则c n =a n a n+1a n+2(S n +2)=n+2n(n+1)·2n+1=1n·2n -1(n+1)·2n+1, 则c 1+c 2+…+c n =11×2-12×22+12×22-13×23+…+1n·2n-1(n+1)·2n+1,所以c 1+c 2+…+c n =12-1(n+1)·2n+1<12. 10.(2020天津,19,15分)已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4-a 3),b 5=4(b 4-b 3). (1)求{a n }和{b n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N *);(3)对任意的正整数n,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1b n+1,n 为偶数.求数列{c n }的前2n 项和.解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由a 1=1,a 5=5(a 4-a 3),可得d=1,从而{a n }的通项公式为a n =n.由b 1=1,b 5=4(b 4-b 3),又q ≠0,可得q 2-4q+4=0,解得q=2,从而{b n }的通项公式为b n =2n-1.(2)证明:由(1)可得S n =n(n+1)2,故S n S n+2=14n(n+1)·(n+2)(n+3),S n+12=14(n+1)2(n+2)2,从而S n S n+2-S n+12=-12(n+1)(n+2)<0,所以S n S n+2<S n+12.(3)当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2-2n−1n ;当n 为偶数时,c n =a n−1b n+1=n−12n.对任意的正整数n,有∑k=1nc 2k-1=∑k=1n(22k 2k+1−22k−22k−1)=22n 2n+1-1和∑k=1n c 2k =∑k=1n 2k−14k =14+342+543+…+2n−14n ①. 由①得14∑k=1n c 2k =142+343+…+2n−34n +2n−14n+1②. 由①-②得34∑k=1n c 2k =14+242+…+24n -2n−14n+1=24(1−14n )1−14-14-2n−14n+1,从而得∑k=1n c 2k =59-6n+59×4n .因此,∑k=12nc k =∑k=1nc 2k-1+∑k=1nc 2k =4n 2n+1-6n+59×4n -49.所以,数列{c n }的前2n 项和为4n 2n+1-6n+59×4n -49.考点二 数列的综合1.(2020福建泉州线上测试)已知{a n }是公差为3的等差数列.若a 1,a 2,a 4成等比数列,则{a n }的前10项和S 10=( )A.165B.138C.60D.30 答案 A2.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了以下猜想:F n =22n+1(n=0,1,2,…)是质数.直到1732年才被善于计算的大数学家欧拉算出F 5=641×6700417,不是质数.现设a n =log 2(F n -1),n=1,2,…,S n表示数列{a n }的前n 项和.则使不等式2S 1S 2+22S 2S 3+…+2n S n S n+1<2n2 020成立的最小正整数n 的值是( )A.11B.10C.9D.8 答案 C3.(2022届浙江“山水联盟”开学考,20)已知数列{a n }的前n 项和为S n ,2S n =(2n+1)a n -2n 2(n ∈N *),数列{b n }满足b 1=a 1,nb n+1=a n b n .(1)求数列{a n }和{b n }的通项公式; (2)设数列{c n }满足:c 1=4,c n+1=c n -a n b n (n ∈N *),若不等式λ+3n+92n ≥c n (n ∈N *)恒成立,求实数λ的取值范围. 解析 (1)当n=1时,2a 1=3a 1-2,∴a 1=2.当n ≥2时,由{2S n =(2n +1)a n −2n 2,2S n−1=(2n −1)a n−1−2(n −1)2得2a n =(2n+1)a n -(2n-1)a n-1-2n 2+2(n-1)2,即a n -a n-1=2,∴数列{a n }是公差为2的等差数列, ∵a 1=2,∴a n =2n.由条件得b 1=2,nb n+1=2nb n ,∴b n+1=2b n ,即数列{b n }是公比为2的等比数列,∴b n =2n.(2)由(1)得a n b n =2n 2n =n 2n−1,设数列{a n b n }的前n 项和为T n ,则T n =1+22+322+423+…+n2n−1, ∴12T n =12+222+323+…+n−12n−1+n2n , ∴12T n =1+12+122+123+…+12n−1-n 2n =1−12n 1−12-n 2n =2-n+22n , ∴T n =4-n+22n−1,由c n+1=c n -a nb n 得c n+1-c n =-a n b n ,所以c n -c n-1=-a n−1b n−1,……,c 2-c 1=-a 1b 1,累加得c n -c 1=-T n-1,即c n -4=-4+n+12n−2,∴c n =n+12n−2,∴λ≥n+12n−2-3n+92n =n−52n 对任意n ∈N *恒成立, 令f(n)=n−52n ,则f(n+1)-f(n)=n−42n+1-n−52n =−n+62n+1, ∴f(1)<f(2)<…<f(6)=f(7),f(7)>f(8)>…, ∴f(n)max =f(6)=f(7)=164,∴λ≥164. 故λ的取值范围是[164,+∞). 4(2022届校际联合考试)我国南宋时期的数学家杨辉,在他1261年所著的《详解九章算法》一书中,用如图的三角形解释二项和的乘方规律,此图称为“杨辉三角”.在此图中,从第三行开始,首尾两数为1,其他各数均为它肩上两数之和.(1)把“杨辉三角”中第三斜列的各数取出,按原来的顺序排列得一数列:1,3,6,10,15,…,写出a n 与a n-1(n ∈N *,n ≥2)的递推关系,并求出数列{a n }的通项公式;(2)已知数列{b n }满足b 1+12b 2+13b 3+ (1)b n =2a n (n ∈N *),设数列{c n }满足c n =2n+1b n b n+1,数列{c n }的前n 项和为T n ,若T n <n n+1λ(n ∈N *)恒成立,试求实数λ的取值范围. 解析 (1)由题意可知a 1=1,n ≥2时,a n -a n-1=n,所以a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+a 1=n+(n-1)+…+2+1=n(n+1)2,故a n =n(n+1)2. (2)数列{b n }满足b 1+12b 2+13b 3+ (1)b n =n 2+n,① 当n ≥2时,b 1+12b 2+13b 3+…+1n−1b n-1=(n-1)2+(n-1),② ①-②得1nb n =2n,故b n =2n 2(n ≥2),又n=1时亦成立,所以b n =2n 2(n ∈N *). 数列{c n }满足c n =2n+1b n b n+1=2n+14n 2(n+1)2=14[1n 2−1(n+1)2], 则T n =14[1−122+122−132+⋯+1n 2−1(n+1)2]=14[1−1(n+1)2],由T n <n n+1λ(n ∈N *)恒成立, 得14[1−1(n+1)2]<n n+1λ,整理得λ>n+24n+4,因为y=n+24n+4=14(1+1n+1)在n ∈N *上单调递减,故当n=1时,(n+24n+4)max =38,即λ>38,所以实数λ的取值范围为(38,+∞). 5.(2022届长沙长郡中学月考,18)已知数列{a n }满足a n+1-2a n =0,a 3=8. (1)求数列{a n }的通项公式; (2)设b n =n a n,数列{b n }的前n 项和为T n .若2T n >m-2021对n ∈N *恒成立,求正整数m 的最大值. 解析 (1)由a n+1-2a n =0得a n+1=2a n ,则{a n }是以2为公比的等比数列, 又a 3=8,即4a 1=8,解得a 1=2,所以a n =2n.(2)由(1)可得b n =n a n =n 2n ,则T n =12+222+323+…+n 2n ,12T n =122+223+324+…+n 2n+1,两式相减可得12T n =12+122+123+…+12n -n 2n+1=12(1−12n)1−12-n 2n+1, 化简可得T n =2-n+22n (n ∈N *),因为T n+1-T n =2-n+32n+1-2+n+22n =n+12n+1>0,所以{T n }逐项递增,T 1最小,为12,所以2×12>m-2021,解得m<2022,又m ∈N *,所以m 的最大值为2021. 6.(2021南京三模,18)已知等差数列{a n }满足:a 1+3,a 3,a 4成等差数列,且a 1,a 3,a 8成等比数列. (1)求数列{a n }的通项公式;(2)在任意相邻两项a k 与a k+1(k=1,2,…)之间插入2k个2,使它们和原数列的项构成一个新的数列{b n },记S n为数列{b n }的前n 项和,求满足S n <500的n 的最大值. 解析 (1)设等差数列{a n }的公差为d, 由题意知a 1+3+a 4=2a 3, 即2a 1+3+3d=2a 1+4d,解得d=3, 又a 1a 8=a 32,即a 1·(a 1+7×3)=(a 1+2×3)2,解得a 1=4,故a n =3n+1.(2)因为b n >0,所以{S n }是单调递增数列,又因为a k+1前的所有项的项数为k+21+22+ (2)=k+2k+1-2,所以S k+2k+1−2=(a 1+a 2+…+a k )+2(21+22+23+ (2))=k(4+3k+1)2+2×2(1−2k )1−2=3k 2+5k 2+2k+2-4.当k=6时,S 132=321<500;当k=7时,S 261=599>500, 令S 132+a 7+2(n-133)<500,即321+22+2(n-133)<500, 解得n<211.5,所以满足S n <500的n 的最大值为211.7.(2020辽宁葫芦岛兴城高中模拟)设函数f(x)=x 2,过点C 1(1,0)作x 轴的垂线l 1,交函数f(x)的图象于点A 1,以A 1为切点作函数f(x)图象的切线交x 轴于点C 2,再过C 2作x 轴的垂线l 2,交函数f(x)的图象于点A 2,……,以此类推得点A n ,记A n 的横坐标为a n ,n ∈N *.(1)证明数列{a n }为等比数列,并求出通项公式;(2)设直线l n 与函数g(x)=lo g 12x 的图象相交于点B n ,记b n =OA⃗⃗⃗⃗ n ·OB ⃗⃗⃗⃗ n (其中O 为坐标原点),求数列{b n }的前n 项和S n .解析 (1)以点A n-1(a n-1,a n−12)(n ≥2)为切点的切线方程为y-a n−12=2a n-1(x-a n-1).当y=0时,x=12a n-1,即a n =12a n-1,又∵a 1=1,∴数列{a n }是以1为首项,12为公比的等比数列,∴a n =(12)n−1. (2)由题意,得B n ((12)n−1,n −1), ∴b n =OA⃗⃗⃗⃗ n ·OB ⃗⃗⃗⃗ n =(14)n−1+(14)n−1·(n-1)=n ·(14)n−1, ∴S n =1×(14)0+2×(14)1+…+n ×(14)n−1,14S n =1×(14)1+2×(14)2+…+n ×(14)n. 两式相减,得34S n =1×(14)0+14+…+(14)n−1-n ×(14)n=1−(14)n1−14-n ×(14)n,化简,得S n =169-(4n 3+169)×(14)n =169-3n+49×4n−1.综合篇 知能转换A 组考法一 错位相减法求和1.(2022届全国学业质量联合检测)已知正项数列{a n }的前n 项和为S n ,且满足a n 2,S n ,a n 成等差数列. (1)求数列{a n }的通项公式;(2)请从以下三个条件中任意选择一个,求数列{b n }的前n 项和T n . 条件①:设数列{b n }满足b n =(-1)na n ;条件②:设数列{b n }满足b n =2a n ·a n ; 条件③:设数列{b n }满足b n =√a +√a .解析 (1)因为a n 2,S n ,a n 成等差数列,所以2S n =a n 2+a n ,当n ≥2时,2S n-1=a n−12+a n-1,两式作差化简,得(a n +a n-1)·(a n -a n-1-1)=0.因为该数列是正项数列,所以a n +a n-1≠0, 所以a n -a n-1-1=0,即a n -a n-1=1, 所以数列{a n }是公差为1的等差数列, 又当n=1时,2a 1=a 12+a 1,解得a 1=1, 所以a n =n(n ∈N *).(2)选择条件①:数列{b n }满足b n =(-1)n a n =(-1)nn. 所以T n =-1+2-3+4-5+6-…+(-1)nn,当n 为偶数时,T n =(-1+2)+(-3+4)+(-5+6)+…+[-(n-1)+n]=n2×1=n 2; 当n 为奇数时,T n =(-1+2)+(-3+4)+(-5+6)+…+[-(n-2)+(n-1)]-n=n−12×1-n=-1+n2.所以T n ={n2,n 为偶数,−1+n 2,n 为奇数.选择条件②:数列{b n }满足b n =2a n ·a n =n ·2n,可得T n =1×21+2×22+…+n ·2n,①2T n =1×22+2×23+…+n ·2n+1,②①-②得-T n =2+22+23+ (2)-n ·2n+1=2(1−2n )1−2-n ·2n+1=(1-n)·2n+1-2,则T n =(n-1)·2n+1+2.选择条件③:数列{b n }满足b n =√a +√a =√n+1+√n=√n +1-√n ,则T n =(√2-1)+(√3-√2)+…+(√n +1-√n )=√n +1-1.2.(2022届山东德州夏津一中入学考试)设数列{a n }是等差数列,数列{b n }是公比大于0的等比数列,已知a 1=1,b 1=3,b 2=3a 3,b 3=12a 2+3.(1)求数列{a n }和数列{b n }的通项公式;(2)设数列{c n }满足c n ={1,n ≤5,b n−5,n ≥6,求数列{a n c n }的前n 项和T n .解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q(q>0),根据题意得{3q =3(1+2d),3q 2=12(1+d)+3,解得{d =1,q =3或{d =−1,q =−1(舍),所以a n =1+(n-1)×1=n,b n =3·3n-1=3n .(2)当n ≤5时,c n =1,所以T n =a 1+a 2+…+a n =1+2+…+n=n(n+1)2.当n ≥6时,c n =b n-5=3n-5,所以T n =T 5+a 6b 1+a 7b 2+…+a n b n-5=15+6×31+7×32+…+n ·3n-5.令M=6×31+7×32+…+n ·3n-5,则3M=6×32+7×33+…+(n-1)·3n-5+n ·3n-4,两式相减得-2M=6×31+(32+33+…+3n-5)-n ·3n-4=18+32(1−3n−6)1−3-n ·3n-4,整理得M=-274+2n−14·3n-4,所以T n =334+2n−14·3n-4.综上,T n ={n(n+1)2,n ≤5,334+2n−14·3n−4,n ≥6.3.(2022届山东泰安肥城摸底考试)已知数列{a n }各项均为正数,a 1=1,{a n 2}为等差数列,公差为2. (1)求数列{a n }的通项公式.(2)求S n =2a 12+22a 22+23a 32+ (2)a n 2.解析 (1)∵a 1=1,∴a 12=1,又∵{a n 2}为等差数列,公差为2,∴a n 2=a 12+(n-1)×2=2n-1,又∵a n >0,∴a n =√2n −1.(2)由(1)可得S n =1×2+3×22+5×23+…+(2n-1)·2n ,2S n =1×22+3×23+5×24+…+(2n-1)·2n+1, 两式相减得-S n =1×2+2×22+2×23+…+2·2n-(2n-1)·2n+1=2+2n+2-23-(2n-1)·2n+1=-6-(2n-3)·2n+1,∴S n =6+(2n-3)·2n+1.4.(2021浙江,20,15分)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n+1=3S n -9(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n-4)a n =0(n ∈N *),记{b n }的前n 项和为T n ,若T n ≤λb n 对任意n ∈N *恒成立,求实数λ的取值范围.解析 (1)解法一:由4S n+1=3S n -9,得4S n =3S n-1-9(n ≥2),两式相减,得4a n+1=3a n ,则a n+1=34a n (n ≥2).又由4S n+1=3S n -9,得4S 2=3S 1-9,即4(a 1+a 2)=3a 1-9, 又a 1=-94,所以a 2=-2716,则a 2=34a 1, 所以数列{a n }是以-94为首项,34为公比的等比数列, 所以数列{a n }的通项公式为a n =-94·(34)n−1=-3·(34)n . 解法二:由4S n+1=3S n -9,得S n+1=34S n -94,则S n+1+9=34S n -94+9=34S n +274=34(S n +9),又S 1+9=-94+9=274≠0,所以数列{S n +9}是以274为首项,34为公比的等比数列,则S n +9=274·(34)n−1=9·(34)n ,所以S n =9·(34)n-9.当n ≥2时,a n =S n -S n-1=[9·(34)n −9]-[9·(34)n−1−9]=-3·(34)n .当n=1时,a 1=-94也满足上式,所以数列{a n }的通项公式为a n =-3·(34)n.(2)由(1)知a n =-3·(34)n.由3b n +(n-4)a n =0,得b n =-n−43a n =(n-4)(34)n. 则T n =(-3)×34+(-2)×(34)2+(-1)×(34)3+0×(34)4+…+(n-5)(34)n−1+(n-4)(34)n,① 因此34T n =(-3)×(34)2+(-2)×(34)3+(-1)×(34)4+0×(34)5+…+(n-5)(34)n +(n-4)(34)n+1,②由①-②,得14T n =-3×34+(34)2+(34)3+(34)4+…+(34)n -(n-4)(34)n+1 =-94+(34)2−(34)n ·341−34-(n-4)(34)n+1=-n (34)n+1, 所以T n =-4n (34)n+1.由T n ≤λb n ,得-4n (34)n+1≤λ(n-4)(34)n 恒成立,即λ(n-4)≥-3n 恒成立. 当n<4时,λ≤-3n n−4,设f(n)=-3n n−4=-3+−12n−4,当n<4且n ∈N *时,f(n)min =f(1)=1,所以λ≤1;当n=4时,不等式恒成立; 当n>4时,λ≥-3n n−4,设f(n)=-3n n−4=-3+−12n−4,当n>4且n ∈N *,n →+∞时,f(n)→-3,所以λ≥-3.综上所述,实数λ的取值范围是[-3,1].5.(2021全国乙文,19,12分)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n 2. 解析 (1)设等比数列{a n }的公比为q. ∵a 1,3a 2,9a 3成等差数列,∴6a 2=a 1+9a 3,又∵{a n }是首项为1的等比数列,∴6a 1q=a 1+9a 1q 2,∴9q 2-6q+1=0,解得q 1=q 2=13,∴a n =a 1·q n-1=(13)n−1,∵b n =na n 3,∴b n =n ·(13)n. (2)证明:∵S n 为{a n }的前n 项和, ∴S n =a 1(1−q n )1−q =32[1−(13)n]. ∵T n 为{b n }的前n 项和, ∴T n =b 1+b 2+…+b n =1×(13)1+2×(13)2+…+n (13)n,① 13T n =1×(13)2+2×(13)3+…+n (13)n+1.② ①-②可得23T n =13+(13)2+…+(13)n-n ·(13)n+1=13[1−(13)n ]1−13-n ·(13)n+1=-(13n +12)(13)n +12,∴T n =-(12n +34)(13)n +34, ∴T n -S n 2=-12n ·(13)n <0,∴T n <S n2.6.(2020课标Ⅲ理,17,12分)设数列{a n }满足a 1=3,a n+1=3a n -4n. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2na n }的前n 项和S n . 解析 (1)a 2=5,a 3=7. 猜想a n =2n+1.由已知可得 a n+1-(2n+3)=3[a n -(2n+1)], a n -(2n+1)=3[a n-1-(2n-1)], ……a 2-5=3(a 1-3).因为a 1=3,所以a n =2n+1. (2)由(1)得2na n =(2n+1)2n,所以S n =3×2+5×22+7×23+…+(2n+1)×2n.①从而2S n =3×22+5×23+7×24+…+(2n+1)×2n+1.②①-②得-S n =3×2+2×22+2×23+…+2×2n-(2n+1)×2n+1.所以S n =(2n-1)2n+1+2.7.(2017山东文,19,12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n+1=b n b n+1,求数列{b na n}的前n 项和T n . 解析 (1)设{a n }的公比为q,由题意知a 1(1+q)=6,a 12q=a 1q 2,又a n >0,所以解得a 1=2,q=2,所以a n =2n. (2)由题意知S 2n+1=(2n+1)(b 1+b 2n+1)2=(2n+1)b n+1,又S 2n+1=b n b n+1,b n+1≠0,所以b n =2n+1.令c n =b n a n ,则c n =2n+12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n−12n−1+2n+12n ,又12T n =322+523+724+…+2n−12n +2n+12n+1,两式相减得12T n =32+(12+122+⋯+12n−1)-2n+12n+1,所以T n =5-2n+52n. 8.(2017天津理,18,13分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,因为b 1=2,所以q 2+q-6=0,解得q=2或q=-3,又因为q>0,所以q=2.所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8①.由S 11=11b 4,可得a 1+5d=16②,联立①②,解得a 1=1,d=3,由此可得a n =3n-2. 所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,得a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n +(3n-1)×4n+1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1−4n )1−4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n =3n−23×4n+1+83.所以,数列{a 2n b 2n-1}的前n 项和为3n−23×4n+1+83. 9.(2018浙江,20,15分)已知等比数列{a n }的公比q>1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1-b n )·a n }的前n 项和为2n 2+n. (1)求q 的值;(2)求数列{b n }的通项公式.解析 (1)由a 4+2是a 3,a 5的等差中项得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8. 由a 3+a 5=20得8(q +1q )=20,解得q=2或q=12, 因为q>1,所以q=2.(2)设c n =(b n+1-b n )a n ,数列{c n }的前n 项和为S n . 由c n ={S 1,n =1,S n −S n−1,n ≥2,解得c n =4n-1. 由(1)可知a n =2n-1,所以b n+1-b n =(4n-1)·(12)n−1,故b n -b n-1=(4n-5)·(12)n−2,n ≥2, 所以b n -b 1=(b n -b n-1)+(b n-1-b n-2)+…+(b 3-b 2)+(b 2-b 1)=(4n-5)·(12)n−2+(4n-9)·(12)n−3+…+7×12+3.设T n =3+7×12+11×(12)2+…+(4n-5)·(12)n−2,n ≥2,则12T n =3×12+7×(12)2+…+(4n-9)·(12)n−2+(4n-5)·(12)n−1, 所以12T n =3+4×12+4×(12)2+…+4·(12)n−2-(4n-5)·(12)n−1,因此T n =14-(4n+3)·(12)n−2,n ≥2,又b 1=1,所以b n =15-(4n+3)·(12)n−2. 10.(2021浙江嘉兴教学测试,20)已知数列{a n }的前n 项和为S n ,S n =2a n -n,n ∈N *. (1)求数列{a n }的通项公式;(2)令b n =2na n ,求数列{b n }的前n 项和T n . 解析 (1)当n=1时,S 1=a 1=2a 1-1,得a 1=1;当n ≥2时,由S n =2a n -n,得S n-1=2a n-1-(n-1),两式相减得a n =2a n-1+1,变形得a n +1=2(a n-1+1), ∴数列{a n +1}是等比数列,且公比为2.又∵a 1+1=2,∴a n +1=2n,∴a n =2n-1.(2)b n =2na n =2n(2n -1)=n ·2n+1-2n,于是T n =b 1+b 2+…+b n =(1×22-2)+(2×23-4)+…+(n ×2n+1-2n)=(1×22+2×23+…+n ×2n+1)-2(1+2+…+n),令A n =1×22+2×23+…+n ·2n+1,即T n =A n -n(n+1).A n =1×22+2×23+…+(n-1)·2n +n ·2n+1,① 2A n =1×23+2×24+…+(n-1)·2n+1+n ·2n+2,②①-②得-A n =22+23+…+2n+1-n ·2n+2=4(1−2n )1−2-n ·2n+2=-4+2n+2-n ·2n+2=-(n-1)·2n+2-4,∴A n =(n-1)·2n+2+4,∴T n =(n-1)·2n+2+4-n 2-n.考法二 裂项相消法求和1.(2020长沙明德中学3月月考)在各项都为正数的等比数列{a n }中,若a 1=2,且a 1a 5=64,则数列{a n(an −1)(a n+1−1)}的前n 项和是( )A.1-12n+1−1B.1-12n+1C.1-12n+1 D.1-12n −1答案 A2.(多选)(2021辽宁百校联盟质检,10)已知数列{a n }满足a 2=4,n(n-1)a n+1=(n-1)a n -na n-1(n>1且n ∈N *),数列{a n }的前n 项和为S n ,则( ) A.a 1+a 3=2 B.a 1+a 3=4C.2020S 2021-a 2020=8080D.2021S 2021-a 2020=4040 答案 AC3.(2017课标Ⅱ,15,5分)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k = . 答案2nn+14.(2020浙江丽水四校联考,14)已知数列{a n }满足:a 1=12,a n+1=a n 2+a n ,用[x]表示不超过x 的最大整数,则[1a1+1+1a 2+1+⋯+1a 2 012+1]的值等于 . 答案 15.(2022届河北邢台入学考试)在①a3+a6=18,②{a n}的前n项和S n=n2+pn,③a3+a4=a7这三个条件中任选一个,补充在下面的问题中并解答.问题:在等差数列{a n}中,a1=2,且.(1)求数列{a n}的通项公式;(2)若b n=1a n a n+1,求数列{b n}的前n项和T n.注:若选择多个条件分别解答,则按第一个解答计分.解析(1)选①.设{a n}的公差为d.由题意可得a1+2d+a1+5d=2a1+7d=18.因为a1=2,所以d=2,则a n=a1+(n-1)d=2n.选②.设{a n}的公差为d.因为S n=n2+pn,所以S n-1=(n-1)2+p(n-1)=n2+pn-2n-p+1(n≥2),两式相减得a n=2n+p-1(n≥2),又因为a1=S1=p+1满足上式,所以a n=2n+p-1(n∈N*).由a1=2得p+1=2,所以p=1,所以a n=2n. 选③.设{a n}的公差为d.因为a3+a4=a7,所以a1+2d+a1+3d=a1+6d,即a1=d.因为a1=2,所以d=2,所以a n=a1+(n-1)d=2n.(2)由(1)可得a n+1=2(n+1),则b n=12n·2(n+1)=14(1n−1n+1).故T n=14[(1−12)+(12−13)+⋯+(1n−1n+1)]=14(1−1n+1)=n4n+4.6.(2022届河北唐山玉田一中开学考试)在①S7=49,②S5=a8+10,③S8=S6+28这三个条件中任选一个,补充在下面问题中,并完成解答.问题:已知等差数列{a n}的前n项和为S n,a5=9,,若数列{b n}满足b n=1a n a n+1,证明:数列{b n}的前n项和T n<12.注:若选择多个条件分别解答,则按第一个解答计分.证明 选择①.设数列{a n }的公差为d,由{S 7=49,a 5=9,得{7a 1+7×(7−1)2d =49,a 1+4d =9,解得{a 1=1,d =2,所以a n =2n-1.又因为b n =1a n a n+1=1(2n−1)(2n+1)=12(12n−1−12n+1),所以T n =b 1+b 2+b 3+…+b n =12(1−13+13−15+15−17+⋯+12n−1−12n+1), 所以T n =12(1−12n+1)<12. 选择②.设数列{a n }的公差为d,由S 5=a 8+10,可得4a 1+3d=10,又a 5=a 1+4d=9,联立解得d=2,a 1=1,所以a n =2n-1.下面同选择①.选择③.设数列{a n }的公差为d,由S 8-S 6=28,可得a 7+a 8=2a 5+5d=28,又因为a 5=9,所以d=2,所以a 1=a 5-4d=9-4×2=1,所以a n =2n-1.下面同选择①.7.(2022届湖北黄冈调研,19)已知数列{a n }的前n 项和为S n ,2S n =(n+1)a n ,且a 1>1,a 2-1,a 4-2,a 6成等比数列. (1)求数列{a n }的通项公式; (2)设b n =4a n a n+1+2−a n ,数列{b n }的前n 项和为T n ,求证:T n <43.解析 (1)∵2S n =(n+1)a n ,∴S n =(n+1)a n 2,当n ≥2时,a n =S n -S n-1=n+12·a n -n 2·a n-1,化简得a n n =a n−1n−1,即a n n =a n−1n−1=…=a 11,∴a n =na 1,又a 2-1,a 4-2,a 6成等比数列,∴(a 2-1)·a 6=(a 4-2)2,即(2a 1-1)·6a 1=(4a 1-2)2,解得a 1=2或a 1=12.又a 1>1,∴a 1=2,∴a n =2n(n ∈N *). (2)证明:由(1)可得b n =4a n a n+1+2−a n =42n·2(n+1)+2-2n =1n -1n+1+(14)n ,∴T n =b 1+b 2+…+b n =[(1−12)+14]+[(12−13)+(14)2]+…+[(1n −1n+1)+(14)n ]=(1−12+12−13+⋯+1n −1n+1)+14+(14)2+…+(14)n=1-1n+1+14[1−(14)n]1−14=43-1n+1-13(14)n ,∵n ∈N *,∴T n <43. 8.(2021广东深圳外国语学校第一次月考)设数列{a n }的前n 项和为S n ,∀m ∈N *,都有a m+1-a m =-1,且a 2+S 2=-5. (1)求数列{a n }的通项公式; (2)求证:1a 1a 2+1a 2a 3+…+1a n a n+1<1. 解析 (1)∵∀m ∈N *,都有a m+1-a m =-1, ∴{a n }是等差数列,设公差为d,则d=-1.由a 2+S 2=3a 1+2d=-5,解得a 1=-1, 所以a n =-1-(n-1)=-n. (2)证明:由a n =-n,得1a n a n+1=1n(n+1)=1n -1n+1,所以1a 1a 2+1a 2a 3+…+1a n a n+1=(1−12)+(12−13)+…+(1n −1n+1)=1-1n+1<1. 9.(2021湖北八市3月联考,18)已知数列{a n },其前n 项和为S n ,请在下列三个条件中补充一个在下面问题中,使得最终结论成立并证明你的结论. 条件①:S n =-a n +t(t 为常数);条件②:a n =b n b n+1,其中数列{b n }满足b 1=1,(n+1)b n+1=nb n ;条件③:3a n 2=3a n+12+a n+1+a n .数列{a n }中,a 1是(2√301x)6展开式中的常数项,且 .求证:S n <1对任意n ∈N *恒成立.注:如果选择多个条件作答,则按第一个条件的解答计分.解析 (2√30+1x )6的展开式的通项为T r+1=C 6r·(2√30)6−r(1x )r =C 6r (√30)6−r x 12-3r,令12-3r=0,得r=4,得展开式的常数项为12,即a 1=12.若选择①:在S n =-a n +t 中,令n=1,得2a 1=t,即t=1, 当n ≥2时,S n-1=-a n-1+1.两式相减得a n =12a n-1, 故{a n }是以12为首项,12为公比的等比数列, 所以S n =a 1(1−q n )1−q =1-(12)n <1对任意n ∈N *恒成立. 若选择②:由(n+1)b n+1=nb n 得b n+1b n =nn+1, 所以b n =b n b n−1·b n−1b n−2·…·b 2b 1·b 1=1n (n ≥2),n=1时也满足,故b n =1n (n ∈N *),则a n =1n(n+1)=1n -1n+1, S n =(1−12)+(12−13)+…+(1n −1n+1)=1-1n+1<1对任意n ∈N *恒成立. 若选择③:由题意得3a n+12-3a n 2=-(a n+1+a n ),得a n+1-a n =-13或a n+1+a n =0,又a 1=12,当a n+1+a n =0时,有S n ={0,n 为偶数,12,n 为奇数,所以S n <1;当a n+1-a n =-13时,有S n =n 2-n(n−1)6=-16(n 2-4n),当n=2时,S n 取最大值,为-16×(22-4×2)=23,因为23<1,所以S n <1对任意的n ∈N *恒成立.10.(2022届广东阶段测,17)设{a n }是各项均为正数的数列,a 1=3,a n+1=√a n 2+4a n+1+4a n . (1)求数列{a n }的通项公式;(2)若S n 为数列{a n }的前n 项和,且b n =n(n+1)S n+1S n,求数列{b n }的前n 项和.解析 (1)由a n+1=√a n 2+4a n+1+4a n 得a n+12=a n 2+4a n+1+4a n ,整理得(a n+1-a n -4)(a n+1+a n )=0,又a n+1+a n >0,所以a n+1-a n =4,所以{a n }是首项为3,公差为4的等差数列,故a n =4n-1. (2)由(1)可知,S n =n(3+4n−1)2=n(2n+1),S n+1=(n+1)(2n+3),所以b n =n(n+1)S n+1S n =1(2n+1)(2n+3)=12(12n+1−12n+3),设数列{b n }的前n 项和为T n , 则T n =12[(13−15)+(15−17)+⋯+(12n+1−12n+3)] =12(13−12n+3)=n6n+9.B 组1.(2022届重庆西南大学附中月考,8)设数列{a n }的前n 项和是S n ,令T n =S 1+S 2+⋯+S nn,称T n 为数列a 1,a 2,…,a n 的“超越数”.已知数列a 1,a 2,…,a 504的“超越数”为2020,则数列5,a 1,a 2,…,a 504的“超越数”为( )A.2018B.2019C.2020D.2021 答案 D2.(2022届河北张家口宣化一中考试,6)将正整数12分解成两个正整数的乘积,有1×12,2×6,3×4三种分解方式,其中3×4是这三种分解方式中两数差的绝对值最小的一种,我们称3×4为12的最佳分解.当p ·q(p,q ∈N *)是正整数n 的最佳分解时,我们定义函数f(n)=|p-q|,例如f(12)=|4-3|=1,则∑i=12 021f(2i)=( )A.21011-1B.21011C.21010-1 D.21010答案 A3.(2021山东菏泽期末,7)已知数列{a n }的前n 项和是S n ,且S n =2a n -1,若a n ∈(0,2021),则称项a n 为“和谐项”,则数列{a n }的所有“和谐项”的和为( ) A.1022 B.1023 C.2046 D.2047 答案 D4.(2021河北衡水中学联考二,11)若P(n)表示正整数n 的个位数字,a n =P(n 2)-P(2n),数列{a n }的前n 项和为S n ,则S 2021=( )A.-1B.0C.1009D.1011 答案 C5.(多选)(2021新高考Ⅱ,12,5分)若正整数n=a 0·20+a 1·2+…+a k-1·2k-1+a k ·2k ,其中a i ∈{0,1}(i=0,1,…,k),记ω(n)=a 0+a 1+…+a k ,则( )A.ω(2n)=ω(n)B.ω(2n+3)=ω(n)+1C.ω(8n+5)=ω(4n+3)D.ω(2n-1)=n 答案 ACD6.(多选)(2021广州一模,12)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……;第n(n ∈N *)次得到数列1,x 1,x 2,x 3,…,x k ,2.记a n =1+x 1+x 2+…+x k +2,数列{a n }的前n 项和为S n ,则( ) A.k+1=2nB.a n+1=3a n -3C.a n =32(n 2+3n) D.S n =34(3n+1+2n-3) 答案 ABD7.(2020山东师范大学附中最后一卷)对n 个不同的实数a 1,a 2,…,a n 可得n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第i 行a i1,a i2,…,a in ,记b i =-a i1+2a i2-3a i3+…+(-1)nna in ,i=1,2,3,…,n!.例如用1,2,3可得数阵如图,此数阵中每一列各数之和都是12,所以b 1+b 2+…+b 6=-12+2×12-3×12=-24.那么,在用1,2,3,4,5形成的数阵中,b 1+b 2+…+b 120等于( )1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1A.-3600B.-1800C.-1080D.-720 答案 C8.(2021湖南岳阳一模,4)“中国剩余定理”又称“孙子定理”,讲的是一个关于整除的问题.现有这样一个整除问题:将1到2021这2021个数中能被3整除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{a n },则此数列的所有项中,中间项的值为( ) A.992 B.1022 C.1007 D.1037 答案 C9.(多选)(2021济南十一学校联考,11)已知数列{F n }:1,1,2,3,5,8,13,…,从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n 项和为S n ,则下列结论中正确的是( ) A.S 6=F 8 B.S 2019=F 2021-1C.F 1+F 3+F 5+…+F 2021=F 2022D.F 12+F 22+F 32+…+F 2 0202=F 2020F 2021答案 BCD10.(2022届南京调研,7)取一条长度为1的直线段,将它三等分,去掉中间一段,留剩下的两段;再将剩下的两段分别三等分,各去掉中间一段,留剩下的更短的四段;……;将这样的操作一直继续下去,直至无穷,由于在不断分割舍弃的过程中,所形成的线段数目越来越多,长度越来越小,在极限的情况下,得到一个离散的点集,称为康托尔三分集.若在第n 次操作中去掉的线段长度之和不小于160,则n 的最大值为(参考数据:lg2≈0.3010,lg3≈0.4771)( ) A.6 B.7 C.8 D.9 答案 C应用篇知行合一应用构建数列模型解决实际生活中的问题1.(2020山东潍坊6月模拟数学文化与等差数列)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.相逢时良马比驽马多行()A.540里B.426里C.963里D.114里答案A2.(2020山东省实验中学期中数学文化与等比数列)古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上述已知条件,若要使织布的总尺数不少于30尺,则至少需要()A.6天B.7天C.8天D.9天答案C3.(2022届全国联考,6实际生活)某微生物科研机构为了记录微生物在不同时期的存活状态,计划将微生物分批次培养,第一批次,培养1个;从第二批次开始,每一批次培养的个数是前一批次的2倍,按照这种培养方式(假定每一批次的微生物都能成活),要使微生物的总个数不少于950,大概经过的批次为()A.10B.9C.8D.7答案A4.(2022届湖南湘潭月考,4数学文化与等比数列)我国古代数学名著《算法统宗》是明代数学家程大位(1533年—1606年)所著.程大位少年时,读书极为广博,对书法和数学颇感兴趣.20岁起便在长江中下游一带经商,因商业计算的需要,他随时留心数学,遍访名师,搜集了很多数学书籍,刻苦钻研,时有心得,终于在他60岁时,完成了《算法统宗》这本著作.该书中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”根据诗词的意思,可得塔的最底层共有灯()A.192盏B.128盏C.3盏D.1盏答案 A5.(多选)(2022届江苏南通海门一中月考数学文化)《张丘建算经》是中国古代众多数学名著之一.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了9匹3丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹=4丈,1丈=10尺,若这个月有30天,记该女子这个月中第n 天所织布的尺数为a n ,b n =2a n ,则( )A.b 10=8b 5B.数列{b n }是等比数列C.a 1b 30=105D.a 3+a 5+a 7a 2+a 4+a 6=209193答案 BD6.(多选)(2021江苏栟茶中学学情调研数学文化与等比数列)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难,次日脚痛减一半,如此六日过其关.”则下列说法正确的是( )A.此人第二天走了九十六里路B.此人第一天走的路程比后五天走的路程多六里C.此人第三天走的路程占全程的18D.此人后三天共走了42里路答案 ABD7.(多选)(2021湖南、河北联考,11数学文化与等差数列)朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( )。
高中数学习题课数列求和课件新人教a必修5
(������∈N*),求数列{bn}的前
n
项和
Tn.
解(1)设等差数列{an}的首项为a1,公差为d,
∵a3=7,a5+a7=26,
∴a1+2d=7,2a1+10d=26,
解得a1=3,d=2. 由于 an=a1+(n-1)d,Sn= ������(������12+������������),
∴an=2n+1,Sn=n(n+2).
(3)错位相减法
若数列{an}为等差数列,数列{bn}是等比数列,由这两个数列的对 应项乘积组成的新数列为{anbn}.当求该数列的前n项和时,常常将 {anbn}的各项乘以公比q,然后错位一项与{anbn}的同次项对应相减, 即可转化为特殊数列的求和,这种数列求和的方法称为错位相减法.
题型一 题型二 题型三
保留了哪些项.
3.常见的裂项相消技巧有:
(1)
1 ������(������+1)
=
1 ������
−
1 ������+1
;
(2)
1 (2������-1)(2������+1)
=
1 2
1 2������-1
-
1 2������+1
;
1 ������(������+������)=1 ������
1 ������
(2)已知数列1,1+2,1+2+22,…,1+2+22+…+2n-1,….
①求其通项公式an;
②求这个数列的前n项和Sn.
解①an=1+2+22+…+2n-1=
高考数学(人教a版,理科)题库:数列求和(含答案)
第4讲 数列求和一、选择题1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.25 解析15242451,5551522a a a a a a S ++==⇒=⨯=⨯=.答案 B2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ). A .15B .12C .-12D .-15解析 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15. 答案 A3.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0132 014,则项数n 为( ).A .2 011B .2 012C .2 013D .2 014解析 ∵a n =1n (n +1)=1n -1n +1,∴S n =1-1n +1=n n +1=2 0132 014,解得n =2 013.答案 C4.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690B .3 660C .1 845D .1 830解析 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3, ∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30×(3+119)2=30×61=1 830.答案 D5. 已知数列{a n }的通项公式为a n =2n +1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A .70B .75C .80D .85 解析 由已知a n =2n +1,得a 1=3,a 1+a 2+…+a n =+2n +2=n(n +2),则b n =n +2,T 10=+2=75,故选B .答案 B6.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=( ). A.212B .6C .10D .11解析 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项、偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6,故选B. 答案 B 二、填空题7.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12. 答案 -2 2n -1-128.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1.∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列.∴a 21+a 22+…+a 2n =-4n 1-4=13(4n -1). 答案13(4n-1) 9.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和S n =________.解析 设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n ,故b n =log 3a n =n , 所以1b n b n +1=1nn +=1n -1n +1. 则S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案n n +110.设f (x )=4x 4x +2,利用倒序相加法,可求得f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011的值为________. 解析当x 1+x 2=1时,f (x 1)+f (x 2)=4x 14x 1+2+4x 24x 2+2=2×4x 1+x 2+2×(4x 1+4x 2)4x 1+x 2+(4x 1+4x 2)×2+4=1.设S =f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011,倒序相加有2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫1011+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫911+…+f ⎝ ⎛⎭⎪⎫1011+f ⎝ ⎛⎭⎪⎫111=10,即S =5.答案 5 三、解答题11.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求1S 1+1S 2+…+1S n.解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =3+(n -1)d ,b n =q n -1. 依题意有⎩⎨⎧S 2b 2=+d q =64,S 3b 3=+3dq 2=960,解得⎩⎨⎧d =2,q =8或⎩⎪⎨⎪⎧d =-65,q =403.(舍去)故a n =3+2(n -1)=2n +1,b n =8n -1. (2)S n =3+5+…+(2n +1)=n (n +2), 所以1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n n +=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =34-2n +3n +n +.12.已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…). (1)求数列{a n }的通项公式;(2)设b n =log 32(3a n +1)时,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .解(1)由已知得⎩⎪⎨⎪⎧a n +1=12S n ,a n =12S n -1(n ≥2),得到a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列.又a 2=12S 1=12a 1=12,∴a n =a 2×⎝ ⎛⎭⎪⎫32n -2=12⎝ ⎛⎭⎪⎫32n -2(n ≥2).又a 1=1不适合上式,∴a n =⎩⎪⎨⎪⎧1,n =1,12⎝ ⎛⎭⎪⎫32n -2,n ≥2.(2)b n =log 32(3a n +1)=log 32⎣⎢⎡⎦⎥⎤32·⎝ ⎛⎭⎪⎫32n -1=n . ∴1b n b n +1=1n (1+n )=1n -11+n. ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -11+n =1-11+n =nn +1. 13.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *.(1)求数列{a n }的通项;(2)设b n =na n,求数列{b n }的前n 项和S n .思维启迪:(1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n 的特点是数列{n }与{3n }之积,可用错位相减法. 解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n 3, ①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13, ②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n . (2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n , ③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+…+3n ), 即2S n =n ·3n +1-3(1-3n )1-3,∴S n =(2n -1)3n +14+34.探究提高 解答本题的突破口在于将所给条件式视为数列{3n -1a n }的前n 项和,从而利用a n 与S n 的关系求出通项3n -1a n ,进而求得a n ;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养.14.将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 …已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=10.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n .(1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1. ①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围.解 (1)设等差数列{b n }的公差为d , 则⎩⎨⎧ b 1+d =4,b 1+4d =10,解得⎩⎨⎧b 1=2,d =2, 所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且32<13<42,a 10=b 4=8, 所以a 13=a 10q 3=8q 3,又a 13=1,所以解得q =12.由已知可得c n =b n q n -1,因此c n =2n ·⎝ ⎛⎭⎪⎫12n -1=n 2n -2. 所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n 2n -2, 12S n =120+221+…+n -12n -2+n2n -1, 因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1,解得S n =8-n +22n -2.②由①知c n =n 2n -2,不等式(n +1)c n ≥λ,可化为n (n +1)2n -2≥λ. 设f (n )=n (n +1)2n -2, 计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154. 因为f (n +1)-f (n )=(n +1)(2-n )2n -1,所以当n ≥3时,f (n +1)<f (n ).因为集合M 的元素个数为3,所以λ的取值范围是(4,5].。
高中数学课时训练(十三)数列求和(习题课)新人教A版必修5(2021年整理)
(浙江专版)2018年高中数学课时跟踪检测(十三)数列求和(习题课)新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018年高中数学课时跟踪检测(十三)数列求和(习题课)新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018年高中数学课时跟踪检测(十三)数列求和(习题课)新人教A版必修5的全部内容。
课时跟踪检测(十三)数列求和(习题课)层级一学业水平达标1.已知a n=(-1)n,数列{a n}的前n项和为S n,则S9与S10的值分别是()A.1,1 B.-1,-1C.1,0 D.-1,0解析:选D S9=-1+1-1+1-1+1-1+1-1=-1,S=S9+a10=-1+1=0。
102.数列{a n}的通项公式是a n=错误!,若前n项和为10,则项数为()A.11 B.99C.120 D.121解析:选C ∵a n=错误!=错误!-错误!,∴S n=a1+a2+…+a n=(错误!-1)+(错误!-错误!)+…+(错误!-错误!)=错误!-1,令错误!-1=10,得n=120.3.等差数列{a n}中,a1=1,a n,a n+1是方程x2-(2n+1)x+错误!=0的两个根,则数列{b n}前n项和S n=()A。
错误! B。
错误!C。
错误! D.错误!解析:选D 因为a n,a n+1是方程x2-(2n+1)x+错误!=0的两个根,所以a n+a n+1=2n +1,又因为数列{a n}为等差数列,所以a n+a n+1=a1+a2n=1+a2n=2n+1,所以a2n=2n,所以a n =n。
高中数学课时作业13数列求和习题课新人教A版必修013
所以Sn= =3n-1,
又bn= = = - ,则
b1+b2+…+bn= + +…+ = - = - .
答案: -
三、解答题(每小题10分,共20分)
9.求数列2 ,4 ,6 ,…,2n+ ,…的前n项和Sn.
解析:Sn=2 +4 +6 +…+
解析:由题意,a1+a2+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=100.
答案:100
8.(广东潮州二模)已知Sn为数列{an}的前n项和,an=2·3n-1(n∈N*),若bn= ,则b1+b2+…+bn=________.
∴S2 017=a1+(a2+a3)+…+(a2 016+a2 017)
=1+(-1)×1 008=-1 007.
答案:-1 007
13.(福建福州八中第六次质检)在等比数列{an}中,公比q≠1,等差数列{bn}满足b1=a1=3,b4=a2,b13=a3.
(1)求数列{an}与{bn}的通项公式;
所以bn+1-bn= - = ,
所以数列{bn}是等差数列,首项b1=1,公差为 .
所以bn=1+ (n-1)= .
(2)an=3nbn=(n+2)×3n-1,
所以Sn=a1+a2+…+an
=3×1+4×3+…+(n+2)×3n-1①
所以3Sn=3×3+4×32+…+(n+2)×3n②
①-②得
-2Sn=3×1+3+32+…+3n-1-(n+2)×3n
课时作业13数列求和习题课
新人教版高中数学必修5《数列求和》练习
1 +2 1 + 2 +3 + ⋅⋅⋅ +2= na +n(n-1)(2)等比数列求和公式:⎧ na , S = ⎨ a (1 - q n ) a - a q ⎪ 1 - q , q ≠ 1⎩ 1 - q = 1⎪ 1 n a + 2n (n +1)6 n n + 1)(2n + 1)4 ⎡⎣n (n + 1)⎤⎦ 2例 3、已知等差数列 {a }的首项为 1,前 10 项的和为 145,求n 1 ⎛ 1 1 ⎫ ;d ⎝ a⎭= (2n -1)(2n +1) 2 ⎝ 2n -1 2n +1 ⎪⎭ - 1 n (n + 1)(n + 2) = ⎢ ( 2 ⎣ n n + 1) (n + 1)(n + 2)⎦a +b =n + k + n = 例 6 、 数列 {a n } 的 前 n 项 和 S = 1(6) a = ⎨ ⎩ S - S , n ≥ 2【知识要点】主要方法:1、基本公式法:新人教版高中数学必修五《数列求和》例 1、 S = 1 + 1 +1 n11 +2 +3 + + n(1)等差数列求和公式: S =n(a 1 + a n )n12 dn1 q = 1例 2、 S = 1 n2 a 2+ 3 a 3++n a n(3)1 + 2 + 3 + .... + n = 1(4)12+ 22++ n 2= 1((5)13 + 23 + 33 ++ n 3 = 12、错位相消法:给 S = a + a + + a 各边同乘以一个适当的n12n数或式,然后把所得的等式和原等式相减,对应项相互抵消,a + a + + a . 2 4 2nn最后得出前 n 项和 S n.一般适应于数列{a n b n }的前 n 项求和,其中 {a }成等差数列, {b }成等比数列。
nn3、分组求和:把一个数列分成几个可以直接求和的数列,然后利用公式法求和。
4、拆项(裂项)求和:把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和.常见的拆项公式有:例 4、求 s in 2 1 + sin 2 2 + sin 2 3 + ⋅ ⋅ ⋅ + sin 2 88 + sin 2 89 的值(1)若 {a }是公差为 d 的等差数列,则 1a a n n +1= - ⎪ a n例 5、求数列{n(n+1)(2n+1)}的前 n 项和.(2)11 ⎛ 1 1 ⎫ ; -(3) 1 1 ⎡ 1⎤ ; ⎥(4)1 1a - b(a -b );(5)1 1k(n + 1 - n );n 2 n 2- 2n ,数 列 {b n } 满 足n ⎧ S , n = 1 1n n -1b = n a + 1 n an。
数列求和习题课 人教课标版精品公开PPT课件
到
s.64 =264 -1
三、错 位 相 减 法
错位相减法在等比数列求前 n项和时用过;它主要用于由 一个等差数列与一个等比数列的积数列。
求法步骤如下:
1、在 Sna1a2an 的两边同时乘于公比q。 2、两式相减 ;左边为(1 q)Sn ,右边q的同次式 相减
3、右边去掉最后一项(有时还得去掉第一项) 剩下的 各项组成等比数列,可用公式求和。
方法总结:
公式法: 对等差数列、等比数列或可以 转化成等差、等比数列的数列,求前n项 和Sn可直接用等差、等比数列的前n项 和公式进行求解.
二、 分组求和法
例1.
求数列 2 ,21 2,31 4,48 1,,n2 1 n 1,的前n项和
方法:分组求和法
方法总结:
分组求和法:将数列的一项分成两项(或多 项),然后重新组合,再利用等差、等比数 列的前n项和公式进行求解.
变式求 : :1 和 11 1 1 44 77 10 (3 n 2 )3 n ( 1 )
变式练习答案:
, ,, , 求数列
11 1 14 47 710
(3n21 )3(n1)的前n 项和。
分析:该数列的特征是:分子都是1,分母是一个以1为首项,
以3为公差的等差数列的相邻两项的乘积。只要分子变
例2 求数列 x, 2x2,3x3, … nxn,…
的前n项和。
解:⑴当x=0时 Sn=0
⑵当x=1时
Sn=1+2+3+…+ n=
n ( n 1) 2
⑶当x ≠ 0且x≠1时
Sn=x+ 2x2+3x3+ … + nxn
①
xSn= x2 +2x3+3x4… + (n-1)xn +nxn +1 ②
高中数学课时作业:数列求和与数列的综合应用
课时作业34 数列求和与数列的综合应用第一次作业 基础巩固练一、选择题1.已知数列{a n }的通项公式是a n =2n -3⎝ ⎛⎭⎪⎫15n,则其前20项和为( C )A .380-35⎝⎛⎭⎪⎫1-1519B .400-25⎝⎛⎭⎪⎫1-1520C .420-34⎝ ⎛⎭⎪⎫1-1520D .440-45⎝ ⎛⎭⎪⎫1-1520解析:令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+…+a 20=2(1+2+…+20)-3⎝ ⎛⎭⎪⎫15+152+…+1520=2×20×(20+1)2-3×15⎝ ⎛⎭⎪⎫1-15201-15=420-34⎝ ⎛⎭⎪⎫1-1520. 2.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则其前6项之和是( C )A .16B .20C .33D .120解析:由已知得a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以S 6=1+2+3+6+7+14=33.3.化简S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1的结果是( D ) A .2n +1+n -2 B .2n +1-n +2 C .2n -n -2D .2n +1-n -2 解析:因为S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1,① 2S n =n ×2+(n -1)×22+(n -2)×23+…+2×2n -1+2n ,②所以①-②得,-S n =n -(2+22+23+…+2n )=n +2-2n +1,所以S n =2n +1-n -2.4.(沈阳市教学质量监测)在各项都为正数的等比数列{a n }中,若a 1=2,且a 1a 5=64,则数列{a n(a n -1)(a n +1-1)}的前n 项和是( A )A .1-12n +1-1B .1-12n +1C .1-12n +1D .1-12n -1解析:∵数列{a n }为等比数列,a n >0,a 1=2,a 1a 5=64,∴公比q =2,∴a n =2n,a n (a n -1)(a n +1-1)=2n(2n -1)(2n +1-1)=12n -1-12n +1-1.设数列 {a n (a n -1)(a n +1-1)}的前n 项和为T n ,则T n =1-122-1+122-1-123-1+123-1-124-1+…+12n -1-12n +1-1=1-12n +1-1,故选A. 5.我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何.”其意思为:今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和,恰好重1斤.问此人总共持金多少.则在此问题中,第5关收税金( B )A.120斤 B.125斤 C.130斤D.136斤解析:假设原来持金为x ,则第1关收税金12x ;第2关收税金13(1-12)x =12×3x ;第3关收税金14(1-12-16)x =13×4x ;第4关收税金15(1-12-16-112)x =14×5x ;第5关收税金16(1-12-16-112-120)x =15×6x .依题意,得12x +12×3x +13×4x +14×5x +15×6x =1,即(1-16)x =1,56x =1,解得x =65,所以15×6x =15×6×65=125.故选B. 6.设数列{a n }的前n 项和为S n ,a n +1+a n =2n +1,且S n =1 350.若a 2<2,则n 的最大值为( A )A .51B .52C .53D .54解析:因为a n +1+a n =2n +1 ①,所以a n +2+a n +1=2(n +1)+1=2n +3 ②,②-①得a n +2-a n =2,且a 2n -1+a 2n =2(2n -1)+1=4n -1,所以数列{a n }的奇数项构成以a 1为首项,2为公差的等差数列,数列{a n }的偶数项构成以a 2为首项,2为公差的等差数列,数列{a 2n -1+a 2n }是以4为公差的等差数列,所以S n=⎩⎨⎧n (n +1)2+(a 1-1),n 为奇数,n (n +1)2,n 为偶数.当n 为偶数时,n (n +1)2=1 350,无解(因为50×51=2 550,52×53=2 756,所以接下来不会有相邻两数之积为2 700). 当n 为奇数时,n (n +1)2+(a 1-1)=1 350,a 1=1 351-n (n +1)2,因为a 2<2,所以3-a 1<2,所以a 1>1,所以1 351-n (n +1)2>1,所以n (n +1)<2 700,又n ∈N *,所以n ≤51,故选A. 二、填空题7.已知数列{a n }的通项公式为a n =(-1)n +1(3n -2),则前100项和S 100等于-150.解析:∵a 1+a 2=a 3+a 4=a 5+a 6=…=a 99+a 100=-3,∴S 100=-3×50=-150.8.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=3·21_009-3. 解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ,①∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n-1,②由①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列,∴S 2 018=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.9.(2018·全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=-63. 解析:解法1:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1;当n =2时,a 1+a 2=2a 2+1,解得a 2=-2; 当n =3时,a 1+a 2+a 3=2a 3+1,解得a 3=-4; 当n =4时,a 1+a 2+a 3+a 4=2a 4+1,解得a 4=-8; 当n =5时,a 1+a 2+a 3+a 4+a 5=2a 5+1,解得a 5=-16;当n =6时,a 1+a 2+a 3+a 4+a 5+a 6=2a 6+1,解得a 6=-32.所以S 6=-1-2-4-8-16-32=-63.解法2:因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1,当n ≥2时,a n=S n -S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列,所以a n =-2n -1,所以S 6=-1×(1-26)1-2=-63.三、解答题10.(贵阳市监测考试)设等比数列{a n }的前n 项和为S n ,公比q >0,S 2=4,a 3-a 2=6.(1)求数列{a n }的通项公式;(2)设b n =log 3a n +1,数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+…+1T n<2.解:(1)∵S 2=a 1+a 2=4,a 3-a 2=6,∴⎩⎪⎨⎪⎧a 1(1+q )=4,a 1(q 2-q )=6, ∵q >0,∴q =3,a 1=1,∴a n =1×3n -1=3n -1, 即数列{a n }的通项公式为a n =3n -1.(2)证明:由(1)知b n =log 3a n +1=log 33n =n ,∴b 1=1,b n +1-b n =n +1-n =1, ∴数列{b n }是首项b 1=1,公差d =1的等差数列, ∴T n =n (n +1)2,则1T n=2n (n +1)=2(1n -1n +1),∴1T 1+1T 2+…+1T n =2(11-12+12-13+…+1n -1n +1)=2(1-1n +1)<2,∴1T 1+1T2+…+1T n<2.11.已知数列{a n }的首项为a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n ,求数列{b n }的前n 项和T n .解:(1)由已知得S nn =1+(n -1)×2=2n -1,所以S n =2n 2-n . 当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. 而a 1=1满足上式,所以a n =4n -3,n ∈N *. (2)由(1)可得b n =(-1)n (4n -3).当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ;当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1.综上,T n =⎩⎪⎨⎪⎧2n ,n 为偶数,-2n +1,n 为奇数.12.(石家庄质量检测(二))已知等差数列{a n }的前n 项和为S n ,若S m -1=-4,S m=0,S m +2=14(m ≥2,且m ∈N *).(1)求m 的值;(2)若数列{b n }满足a n2=log 2b n (n ∈N *),求数列{(a n +6)·b n }的前n 项和. 解:(1)由已知得,a m =S m -S m -1=4, 且a m +1+a m +2=S m +2-S m =14, 设数列{a n }的公差为d , 则有2a m +3d =14,∴d =2.由S m =0,得ma 1+m (m -1)2×2=0,即a 1=1-m ,∴a m =a 1+(m -1)×2=m -1=4,∴m =5.(2)由(1)知a 1=-4,d =2,∴a n =2n -6, ∴n -3=log 2b n ,得b n =2n -3, ∴(a n +6)·b n =2n ×2n -3=n ×2n -2. 设数列{(a n +6)·b n }的前n 项和为T n ,则T n =1×2-1+2×20+…+(n -1)×2n -3+n ×2n -2,① 2T n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1,②①-②,得-T n =2-1+20+…+2n -2-n ×2n -1=2-1(1-2n )1-2-n ×2n -1=2n -1-12-n ×2n -1,∴T n =(n -1)×2n -1+12(n ∈N *).第二次作业 高考·模拟解答题体验1.(河北名校联考)已知数列{a n }是等差数列,a 2=6,前n 项和为S n ,{b n }是等比数列,b 2=2,a 1b 3=12,S 3+b 1=19.(1)求{a n },{b n }的通项公式; (2)求数列{b n cos(a n π)}的前n 项和T n . 解:(1)∵数列{a n }是等差数列,a 2=6, ∴S 3+b 1=3a 2+b 1=18+b 1=19,∴b 1=1, ∵b 2=2,数列{b n }是等比数列,∴b n =2n -1. ∴b 3=4,∵a 1b 3=12,∴a 1=3,∵a 2=6,数列{a n }是等差数列,∴a n =3n . (2)由(1)得,令C n =b n cos(a n π)=(-1)n 2n -1, ∴C n +1=(-1)n +12n , ∴C n +1C n=-2,又C 1=-1,∴数列{b n cos(a n π)}是以-1为首项、-2为公比的等比数列,∴T n =-1×[1-(-2)n ]1+2=-13[1-(-2)n ].2.已知各项均不相等的等差数列{a n }的前四项和为14,且a 1,a 3,a 7恰为等比数列{b n }的前三项.(1)分别求数列{a n },{b n }的前n 项和S n ,T n ;(2)记数列{a n b n }的前n 项和为K n ,设c n =S n T nK n ,求证:c n +1>c n (n ∈N *).解:(1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ),解得⎩⎪⎨⎪⎧a 1=2,d =1或⎩⎨⎧a 1=72,d =0(舍去),所以a n =n +1,S n =n (n +3)2.又b 1=a 1=2,b 2=a 3=4,所以b n =2n ,T n =2n +1-2. (2)证明:因为a n ·b n =(n +1)·2n , 所以K n =2·21+3·22+…+(n +1)·2n ,① 所以2K n =2·22+3·23+…+n ·2n +(n +1)·2n +1,② ①-②得-K n =2·21+22+23+…+2n -(n +1)·2n +1, 所以K n =n ·2n +1.则c n =S n T n K n =(n +3)(2n -1)2n +1,c n +1-c n =(n +4)(2n +1-1)2n +2-(n +3)(2n -1)2n +1=2n +1+n +22n +2>0,所以c n +1>c n (n ∈N *). 3.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .解:(1)由题设知a 1a 4=a 2a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧ a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去).设等比数列{a n }的公比为q ,由a 4=a 1q 3,得q =2,故a n =a 1q n -1=2n -1,n ∈N *. (2)S n =a 1(1-q n )1-q=2n-1,又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n-1S n +1=1S 1-1S n +1=1-12n +1-1,n ∈N *. 4.(石家庄质量检测)已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn ,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)由a n +1=n +1n a n +n +12n ,可得a n +1n +1=a n n +12n ,又b n =a n n ,∴b n +1-b n =12n ,由a 1=1,得b 1=1,累加可得(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1=121+122+…+12n -1,即b n -b 1=12(1-12n -1)1-12=1-12n -1,∴b n =2-12n -1.(2)由(1)可知a n =2n -n2n -1,设数列{n2n -1}的前n 项和为T n ,则T n =120+221+322+…+n2n -1 ①,12T n =121+222+323+…+n 2n ②,①-②得12T n =120+121+122+…+12n -1-n 2n =1-12n1-12-n2n =2-n +22n ,∴T n =4-n +22n -1. 易知数列{2n }的前n 项和为n (n +1), ∴S n =n (n +1)-4+n +22n -1.5.已知S n 是正项数列{a n }的前n 项和,且2S n =a 2n +a n ,等比数列{b n }的公比q >1,b 1=2,且b 1,b 3,b 2+10成等差数列.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n ·b n +(-1)n·2n +1a n ·a n +1,记T 2n =c 1+c 2+c 3+…+c 2n ,求T 2n .解:(1)当n ≥2时,由题意得2S n -2S n -1=a 2n -a 2n -1+a n -a n -1, 2a n =a 2n -a 2n -1+a n -a n -1, a 2n -a 2n -1-(a n +a n -1)=0,(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1,当n =1时,2a 1=a 21+a 1,∵a 1>0,∴a 1=1, ∴数列{a n }是首项为1,公差为1的等差数列, ∴a n =1+(n -1)×1=n .由b 1=2,2b 3=b 1+(b 2+10),得2q 2-q -6=0, 解得q =2或q =-32(舍),∴b n =b 1q n -1=2n .(2)由(1)得c n =n ·2n+(-1)n·2n +1n (n +1)=n ·2n +(-1)n ⎝ ⎛⎭⎪⎫1n +1n +1,∴T 2n=(1×2+2×22+…+2n ·22n )+⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫12+13-13+14+…+⎝ ⎛⎭⎪⎫12n +12n +1=(1×2+2×22+…+2n ·22n )+⎝ ⎛⎭⎪⎫-1+12n +1,记W 2n =1×2+2×22+…+2n ·22n , 则2W 2n =1×22+2×23+…+2n ·22n +1,以上两式相减可得-W 2n =2+22+…+22n -2n ·22n +1=2(1-22n )1-2-2n ·22n +1=(1-2n )·22n +1-2,∴W 2n =(2n -1)·22n +1+2,∴T 2n =W 2n +⎝⎛⎭⎪⎫-1+12n +1=(2n -1)·22n +1+12n +1+1. 6.在数列{a n }中,a 1=2,a n +1=2⎝ ⎛⎭⎪⎫1+1n a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =2na n,数列{b n }的前n 项的和为S n ,试求数列{S 2n -S n }的最小值;(3)求证:当n ≥2时,S 2n ≥7n +1112. 解:(1)由条件a n +1=2⎝ ⎛⎭⎪⎫1+1n a n , 得a n +1n +1=2·a n n ,又a 1=2,所以a 11=2, 因此数列⎩⎨⎧⎭⎬⎫a n n 构成首项为2,公比为2的等比数列.a nn=2·2n -1=2n ,因此,a n =n ·2n. (2)由(1)得b n =1n ,设c n =S 2n -S n , 则c n =1n +1+1n +2+…+12n , 所以c n +1=1n +2+1n +3+…+12n +12n +1+12n +2,从而c n +1-c n =12n +1+12n +2-1n +1>12n +2+12n +2-1n +1=0, 因此数列{c n }是单调递增的,所以(c n )min =c 1=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业13 数列求和习题课 |基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.(湖北黄冈中学期中)已知{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( )A .40B .200C .400D .20解析:设数列{a n }的公差为d .S 20-2S 10=20a 1+a 202-2×10a 1+a 102=10(a 20-a 10)=100d .∵a 10=a 2+8d ,∴33=1+8d ,∴d =4.∴S 20-2S 10=400.答案:C2.已知a n =(-1)n ,数列{a n }的前n 项和为S n ,则S 9与S 10的值分别是( )A .1,1B .-1,-1C .1,0D .-1,0解析:S 9=-1+1-1+1-1+1-1+1-1=-1,S 10=S 9+a 10=-1+1=0.答案:D3.数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数为( ) A .11 B .99C .120D .121解析:因为a n =1n +n +1=n +1-n , 所以S n =a 1+a 2+…+a n=(2-1)+(3-2)+…+(n +1-n )=n +1-1, 令n +1-1=10,得n =120.答案:C4.(天津高二检测)已知数列{a n }的通项a n =2n cos(n π),则a 1+a 2+…+a 99+a 100等于( )A .0 B.2-21013C .2-2101 D.23·(2100-1) 解析:因为a n =2n cos(n π),n 为奇数时,cos(n π)=-1,a n =-2n ,n 为偶数时,cos(n π)=1,a n =2n ,综上,数列{a n }的通项公式a n =(-2)n .所以数列{a n }是以-2为首项,-2为公比的等比数列.所以a 1+a 2+…+a 99+a 100=-2[1--2100]1--2=23(2100-1).故选D. 答案:D5.(东北三省四市二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A .9B .15C .18D .30解析:由题意知{a n }是以2为公差的等差数列,又a 1=-5,所以|a 1|+|a 2|+…+|a 6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18.故选C.答案:C二、填空题(每小题5分,共15分)6.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为________.解析:a 1+…+a k +…+a 10=240-(2+...+2k + (20)=240-2+20×102=240-110=130.答案:1307.已知函数f (n )={ n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于________.解析:由题意,a 1+a 2+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=100.答案:1008.(广东潮州二模)已知S n 为数列{a n }的前n 项和,a n =2·3n -1(n ∈N *),若b n =a n +1S n S n +1,则b 1+b 2+…+b n =________.解析:因为a n +1a n =2·3n2·3n -1=3,且a 1=2,所以数列{a n }是以2为首项,3为公比的等比数列,所以S n =21-3n1-3=3n -1, 又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,则 b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=12-13n +1-1. 答案:12-13n +1-1三、解答题(每小题10分,共20分)9.求数列214,418,6116,…,2n +12n +1,…的前n 项和S n . 解析:S n =214+418+6116+…+⎝⎛⎭⎪⎫2n +12n +1 =(2+4+6+…+2n )+⎝ ⎛⎭⎪⎫14+18+…+12n +1=n 2n +22+14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=n (n +1)+12-12n +1. 10.(山东淄博六中期中)若{a n }的前n 项和为S n ,点(n ,S n )均在函数y =32x 2-12x 的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N *都成立的最小正整数m .解析:(1)由题意知,S n =32n 2-12n , 当n ≥2时,a n =S n -S n -1=3n -2,当n =1时,a 1=1,适合上式.所以a n =3n -2.(2)b n =3a n a n +1=33n -23n +1=13n -2-13n +1, T n =b 1+b 2+…+b n =1-14+14-17+…+13n -2-13n +1=1-13n +1. 数列{T n }在n ∈N *上是增函数,所以T n <1,则m 20≥1,m ≥20, 要使T n <m 20对所有n ∈N *都成立,最小正整数m 为20. |能力提升|(20分钟,40分)11.(陕西渭南二模)设S n 为等差数列{a n }的前n项和,a 2=3,S 5=25,若⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n项和为1 0082 017,则n 的值为( ) A .504 B .1 008C .1 009D .2 017解析:设等差数列{a n }的公差为d , 则由题意可得a 2=a 1+d =3,S 5=5a 1+5×42d =25, 联立解得a 1=1,d =2,∴a n =1+2(n -1)=2n -1,∴1a n a n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴1a 1a 2+1a 2a 3+…+1a n a n +1=12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1, 令12⎝ ⎛⎭⎪⎫1-12n +1=1 0082 017, 则1-12n +1=2 0162 017, ∴2n +1=2 017,∴n =1 008,故选B.答案:B12.在数列{a n }中,已知a 1=1,a n +1+(-1)n a n =cos(n +1)π,记S n 为数列{a n }的前n 项和,则S 2 017=________.解析:∵a n +1+(-1)n a n =cos(n +1)π=(-1)n +1,∴当n =2k ,k ∈N *时,a 2k +1+a 2k =-1, ∴S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1+(-1)×1 008=-1 007.答案:-1 00713.(福建福州八中第六次质检)在等比数列{a n }中,公比q ≠1,等差数列{b n }满足b 1=a 1=3,b 4=a 2,b 13=a 3.(1)求数列{a n }与{b n }的通项公式;(2)记c n =(-1)n b n +a n ,求数列{c n }的前2n 项和S 2n .解析:(1)设等差数列{b n }的公差为d .则有{ 3+3d =3q ,3+12d =3q 2,解得{ q =3,d =2或{ q =1,d =0(舍去), 所以a n =3n ,b n =2n +1.(2)由(1)知c n =(-1)n (2n +1)+3n ,则S 2n =(3+32+33+…+32n )+{(-3)+5+(-7)+9+…+[-(4n -1)]+(4n +1)}=31-32n1-3+[(5-3)+(9-7)+…+(4n +1-4n +1)] =32n +1-32+2n . 14.(辽宁大连20中月考)已知数列{a n }满足a 1=3,a n +1-3a n =3n (n ∈N *),数列{b n }满足b n =a n 3n . (1)证明数列{b n }是等差数列并求数列{b n }的通项公式;(2)求数列{a n }的前n 项和S n .解析:(1)由b n =a n 3n ,得b n +1=a n +13n +1, 所以b n +1-b n =a n +13n +1-a n 3n =13, 所以数列{b n }是等差数列,首项b 1=1,公差为13.所以b n =1+13(n -1)=n +23. (2)a n =3n b n =(n +2)×3n -1,所以S n =a 1+a 2+…+a n=3×1+4×3+…+(n +2)×3n -1① 所以3S n =3×3+4×32+…+(n +2)×3n ② ①-②得-2S n =3×1+3+32+…+3n -1-(n +2)×3n =2+1+3+32+…+3n -1-(n +2)×3n=3n +32-(n +2)×3n 所以S n =-3n +34+n +23n 2=2n +13n 4-34.。